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Abstract. For every integer g, we construct a 2-solvable and 2-bipolar knot whose topological 4-genus
is greater than g. Note that 2-solvable knots are in particular algebraically slice and have vanishing
Casson-Gordon obstructions. Similarly all known smooth 4-genus bounds from gauge theory and
Floer homology vanish for 2-bipolar knots. Moreover, our knots bound smoothly embedded height
four gropes in D4, an a priori stronger condition than being 2-solvable. We use new lower bounds for
the 4-genus arising from Lp2q-signature defects associated to meta-metabelian representations of the
fundamental group.

1. Introduction

A knot K in S3 is slice if there exists a locally flat proper embedding D2 ãÑ D4 such that the
boundary of D2 is the knot K. This idea of ‘4-dimensional triviality’ can be generalized in a
number of ways, perhaps most easily by approximating a disc by a small genus surface. The
4-genus g4pKq of a knot K in S3 is the minimal possible genus gpΣq of an orientable surface Σ
with a locally flat proper embedding Σ ãÑ D4 in the 4-ball, where Σ has a single boundary
component whose image coincides with K. From this point of view, a knot is approximately
slice if it has small 4-genus. However, this perspective does not give successively closer
approximations to sliceness; there also exist many knots of 4-genus one, such as the trefoil,
which intuitively seem far from slice.

An alternative approach is to approximate the slice disc exterior XD :“ D4 r νpD2q, a
compact 4-manifold with the three key properties that (i) BXD “ MK , the 0-surgery of S3

alongK; (ii) the inclusion induces an isomorphismH1pMKq – H1pXDq; and (iii)H2pXDq “ 0.
We therefore think of a compact 4-manifold W with BW “ MK such that i˚ : H1pMKq Ñ

H1pW q is an isomorphism and some condition on H2pW q is satisfied as an approximation to
a slice disc exterior. One might ask that H2pXDq is of small rank, but a little thought shows
that this essentially recovers the 4-genus condition, besides again not yielding arbitrarily
refined approximations.

In [COT03], Cochran, Orr, and Teichner introduced a new perspective, motivated by
surgery theory, in which one allows H2pW q to be arbitrarily large but requires that it is
generated by almost disjointly embedded surfaces with a condition on the image of their
fundamental groups in π1pW q. See Section 2 for the precise definition. In fact, they give
an infinite family of increasingly strict conditions, indexed by h P 1

2N: a knot is said to be
h-solvable if its 0-surgery bounds a slice disc exterior approximation satisfying the hth such
condition. It is an open question whether any knot which is h-solvable for all h must be slice,
and in general knots which are h-solvable for large h are hard to distinguish from slice knots.

The idea of solvability is closely related to the more geometric notion of bounding a grope of
large height. A grope of height 1 is defined to be an orientable surface of arbitrary genus and
a single boundary component, and a grope of height n is obtained by attaching boundaries
of gropes of height n ´ 1 to an orientable surface along standard basis curves. We refer to
[FQ90, COT03], or our Section 10 for the precise definition. A grope of larger height is a
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better approximation to a disc. Gropes are ingredients of fundamental importance for the
topological disc embedding technology of Freedman and Quinn [Fre84, FQ90] on 4-manifolds,
and also in the work of Cochran, Orr and Teichner [COT03] discussed above, where it was
shown that if a knot K bounds an embedded framed grope of height h in D4 then K is
ph´ 2q-solvable. The converse remains an open question.

It is natural to ask whether the 4-genus and grope/n-solvability approximations to sliceness
have any relationship.

Question 1.1 ([Cha08, Remark 5.6]). For a fixed h, do there exist h-solvable knots, i.e.
knots which are close to slice in the sense of [COT03], which have arbitrarily large 4-genera,
and hence are far from slice in the first sense?

This question seem to be difficult, one reason for which is that existing methods for ex-
tracting lower bounds for the topological 4-genus are not effective for h-solvable knots with
h ě 2. The simplest lower bounds are the Tristram-Levine signature function and Tay-
lor’s bound [Tay79], the best possible bound for the 4-genus coming from the Seifert form.
For algebraically slice knots these lower bounds vanish. In [Gil82], Gilmer showed that
there are algebraically slice knots with arbitrarily large 4-genus using Casson-Gordon signa-
tures [CG78, CG86]. In [Cha08], Cha showed that there exist knots with arbitrarily large
4-genus which are algebraically slice and have vanishing Casson-Gordon signatures, using
Cheeger-Gromov Von Neumann Lp2q ρ-invariants corresponding to metabelian fundamental
group representations. The above abelian and metabelian lower bounds can be used to give
affirmative answers to Question 1.1 for the initial cases h “ 0, 1, but these lower bounds
vanish for h-solvable knots with h ě 2. Extending Cha’s ρ-invariant approach beyond the
metabelian level to give further lower bounds for the 4-genus was left open, essentially because
of difficulties arising from non-commutative algebra.

In this paper, we present a new method that avoids the non-commutative algebra problem.
It enables us to go one step further than Gilmer and Cha, by combining a Casson-Gordon
type approach and Lp2q-signatures associated with representations to 3-solvable groups i.e.
solvable groups with length 3 derived series. Here is our main result.

Theorem 1.2. For each g P N, there exists a 2-solvable knot K with g4pKq ą g. Moreover,
K bounds an embedded framed grope of height 4 in D4.

Moreover, the knots of Theorem 1.2 are 2-bipolar in the sense of Cochran, Harvey and
Horn [CHH13]. We give the definition in Section 2, noting for now that the notion of bipo-
larity is an approximation to being smoothly slice, which combines the idea of Donaldson’s
diagonalization theorem with fundamental group information related to gropes and derived
series. Also, for a 2-bipolar knot, the invariants τ , Υ, ε, ν` from Heegaard-Floer homology,
as well as the d-invariants of p{q surgery, all cannot prove that the knot is not smoothly slice,
and consequently cannot bound the smooth 4-genus [CHH13]. This also holds for gauge
theoretic obstructions such as those arising from Donaldson’s theorem and the 10{8 theorem.

Theorem 1.2 answers the h “ 2 case of Question 1.1, and prompts us to conjecture that
the answer is ‘yes’ in general. In fact, we make a bolder conjecture.

Conjecture 1.3. Let K be an h-solvable knot which is not torsion in C. Then t#nKu is a
collection of h-solvable knots containing knots with arbitrarily large 4-genera.

A knot which did not satisfy the second sentence would be an example of a non-torsion
knot with stable 4-genus zero i.e. limnÑ8 g4pnKq{n “ 0, and it is unknown whether any such
knots exist [Liv10]. Thus a counterexample to this conjecture would also be very interesting.

One might also wonder whether there exist highly bipolar knots with large smooth 4-genus,
especially with the additional requirement that they be topologically slice. The following
question seems to be unknown even in the case h “ 0.
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Question 1.4. Do there exist topologically slice h-bipolar knots with large smooth 4-genus?

As above, there are many reasonable candidate knots with which one might hope to answer
‘yes.’ The main result of [CK17] gave many examples of topologically slice, h-bipolar knots
K which are of infinite order, even modulo the subgroup of ph ` 1q-bipolar knots, and a
smooth/bipolar analogue of Conjecture 1.3 suggests we should expect #nK to have arbitrarily
large smooth 4-genus as nÑ8.

Summary of the construction and proof. In order to construct 2-bipolar knots bounding
height four gropes, we take connected sums of sufficiently many copies of the seed ribbon knot
R :“ 11n74, and perform satellite operations on a collection of judiciously chosen infection
curves tα`i , α

´
i u, with α˘i lying in the second derived subgroup π1pS

3 rRqp2q of the knot group
of the ith copy of R. Our choice of pR,α`, α´q is depicted on the right side of Figure 3. We
use knots tJ`i , J

´
i u with Arf invariant zero for the companions of the satellite operations,

chosen so that the tJ`i u have increasingly large negative Tristram-Levine signature functions
and the tJ´i u have increasingly large positive signature functions.

Let K be the result of these satellite operations. In Proposition 2.3, we show that K is
2-solvable; in Proposition 2.6, we show that K is 2-bipolar; and in Proposition 10.7, we show
that K bounds a grope of height 4 in D4. Writing Ki for the knot resulting from the satellite
construction on pR,α˘i , J

˘
i q, we have K “ #N

i“1Ki. Let MKi be the zero-surgery manifold of

Ki and write Y :“
ŮN
i“1MKi .

The main idea of our proof is as follows. If there were a surface Σ of genus g embedded
in D4 with boundary K, then there would be an associated 4-manifold Z with boundary Y
and a quotient Γ of π1pZq such that the Lp2q ρ-invariant

ρp2qpY,Γq :“ ρp2qpY, φ : π1pY q Ñ π1pZq Ñ Γq

would be bounded above by a constant depending only on g and the base knot R. However, by
choosing the infection knots tJ˘i u to have suitably large Tristram-Levine signature functions,

Lp2q-induction will imply that ρp2qpY,Γq must be very large so long some curve α˘i represents
an element of π1pY q mapping nontrivially to Γ. The key difficulty is to show that this must
always be the case, recalling that Γ depends on the hypothesized surface Σ.

In Example 6.1 we present a slightly simpler construction of a family of 2-solvable knots
with arbitrary 4-genera, starting with connected sums of the ribbon knot 88 and performing
a single satellite construction on each copy of 88 as indicated in Figure 1.

Coefficient systems: comparison with earlier methods. To show the nontriviality
of some α˘i in Γ, we use twisted homology over a metabelian representation to define the
coefficient system. Although the representation is non-abelian, we use the ideas of Casson and
Gordon [CG86] to define finitely generated twisted homology modules over a commutative
principal ideal domain. The commutativity enables us to consider the “size” of the twisted
homology modules in terms of the minimal number of generators, generalizing the abelian
representation case in e.g. [Cha08]. Supposing that the 4-genus is small compared to the size
of the twisted first homology, we show that there is a meta-metabelian quotient Γ of π1pZq,
i.e. a quotient whose third derived subgroup vanishes, in which one of the α˘i is nontrivial in
order to eventually obtain a contradiction. In previous approaches to slice obstructions using
Lp2q-signature defects corresponding to representations to groups with nontrivial nth derived
subgroups for n ě 2, the homology modules associated to non-abelian representations were
over non-commutative rings, for which it is still unknown how to implement an analogous
generating rank argument.

In our method, it is also crucial to use Lp2q-signatures over amenable groups that are
not torsion-free, which were developed in [CO12, Cha14a] and deployed in a similar context
in [MP18].
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The smooth slice genus. We remark that concordance obstructions predicated on a
smooth embedding cannot be used to draw conclusions about locally flat surfaces, and hence
cannot be used to prove our result. On the other hand our knots have arbitrarily large
smooth 4-genus, since a smooth embedding of a surface in D4 is in particular a locally flat
embedding.

If we were interested in the smooth 4-genus version of Theorem 1.2, currently known
techniques using Heegaard Floer homology or gauge theory would not apply. It is unknown
whether the Rasmussen s-invariant, which does provide a lower bound on the smooth 4-
genus of a knot, must vanish for 2-bipolar knots. Our knots are even the first examples in
the literature of 1-bipolar knots with large 4-genus, though for that result one could use a
simpler Casson-Gordon signature argument analogous to [Gil82].

Horn’s results. The fact that g4pKq is large implies that the base surface of any embedded
grope in D4 with boundary K must have large genus. The main theorem of Horn [Hor11]
gives examples, for each g and each n, of knots bounding height n gropes such that the base
surface of any height n grope must have genus at least g. However, Horn’s example knots are
not known to have large 4-genera: he was only able to provide lower bounds on the genera
of surfaces that extend to an embedding of a height n grope.

Organization of the paper. The next four sections are concerned with background theory.
Section 2 recalls the definitions of the derived series of a group, a useful variation called the
local derived series, and what it means for a knot to be h-solvable or h-bipolar. We also
explain here how to construct h-solvable and h-bipolar knots using the satellite construction.
Section 3 introduces some conventions for dealing with disconnected manifolds, in particular
as relates to representations of their fundamental groupoids and associated twisted homology
groups. Section 4 recalls the Cheeger-Gromov von Neumann Lp2q ρ-invariant ρp2qpY, φq of a
closed 3-manifold Y together with a homomorphism of its fundamental group π1pY q Ñ Γ to
a group Γ, and gives the facts about this invariant that we will need. Section 5 describes ho-
mology twisted with metabelian representations. In particular we consider coefficient systems
inspired by Casson-Gordon invariants [CG86].

Section 6 begins the proof of Theorem 1.2, by precisely stating the criteria that will imply
certain knots have large topological 4-genus, giving a brief outline of the proof, and providing
examples meeting those criteria. Section 7 proves some technical lemmas that are vital in
arranging that the representation used for our ρ-invariant computation is suitably nontrivial.
For this, we control the size of the homology groups of certain covering spaces. In Section 8
we review a standard cobordism used in the proof of Theorem 1.2, and carefully investigate
the way metabelian representations extend over this cobordism. Section 9 proves the main
theorem by bounding the ρ-invariant in two different ways as described above. Section 10
proves that our knots bound height four embedded gropes.

Acknowledgements. The first and third authors thank the Max Planck Institute for Math-
ematics in Bonn, where they were visiting when part of the work on this paper occurred.
The second author thanks Shelly Harvey for stimulating conversations. Finally, we thank the
anonymous referee for a careful reading and useful suggestions which improved the paper.

2. The solvable and bipolar filtrations

In this section we recall the definitions of the solvable and bipolar filtrations, and how to
construct highly solvable or bipolar knots. We will also need, later in the article, not just the
standard derived series of a group but also the local derived series [CH05, CH08, Cha14a].
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Definition 2.1. Let G be a group. The hth derived subgroup Gphq of G is defined recursively
via Gp0q :“ G and Gphq “ rGph´1q, Gph´1qs for h ě 1. Moreover, for any sequence S “ pSiqiPN
of abelian groups, define the hth S-local derived subgroup of G recursively by G

p0q
S :“ 0 and,

for h ě 1,

G
phq
S :“ ker

!

G
ph´1q
S Ñ G

ph´1q
S {rG

ph´1q
S , G

ph´1q
S s Ñ

`

G
ph´1q
S {rG

ph´1q
S , G

ph´1q
S s

˘

bZ Sh

)

.

We remark that a group G is called metabelian if Gp1q ‰ 0 but Gp2q “ 0 and analogously
meta-metabelian if Gp2q ‰ 0 but Gp3q “ 0. This explains some language from the introduction.

For any sequence S and any h P N we have that Gphq Ď G
phq
S . Note that since for fixed h P N

the subgroup G
phq
S only depends on the first h terms of S, we will often take S “ pS1, . . . , Shq

to be a partial sequence. We will be particularly interested in S “ pQ,Zp,Qq for a prime p.
For h P Ně0, we now define h-solvability of a knot. As indicated in the introduction, there

is an extension of this definition to h P 1
2Ně0. We do not require this more general definition,

and refer the reader to [COT03, Definition 1.2] for details.

Definition 2.2. A knot K is h-solvable if there exists a compact spin 4-manifold W such
that BW “MK , the inclusion induced map H1pMKq Ñ H1pW q is an isomorphism, and there
exist embedded surfaces with trivial normal bundle D1, . . . , Dk and L1, . . . , Lk in W such
that

(1) The surfaces are pairwise disjoint except for Dj and Lj , which for each j “ 1, . . . , k
intersect transversely in a single point.

(2) The second homology classes represented by D1, . . . , Dk, L1, . . . , Lk generate H2pW q.
(3) The inclusion induced maps π1pDiq Ñ π1pW q and π1pLiq Ñ π1pW q have image

contained in π1pW q
phq.

This gives a filtration of the knot concordance group by subgroups Fh consisting of the
concordance classes of h-solvable knots, explored in [COT03, COT04, CT07, CHL09], among
others. Every 1-solvable knot is algebraically slice and every 2-solvable knot has vanishing
Casson-Gordon invariant sliceness obstruction. In particular, as mentioned in the introduc-
tion, the traditional 4-genus lower bounds of Tristram-Levine and Casson-Gordon signatures
cannot be usefully employed with 2-solvable knots.

The satellite operation interacts particularly nicely with the solvable filtration. We remind
the reader that given a knot R, infection curves α1, . . . , αk in S3 r νpRq that form an unlink
in S3, and infection knots J1, . . . , Jk, the satellite of R by tJiu along tαiu is defined to be the
image of R in

´

S3 r
k
ğ

i“1

νpαiq
¯

Y

k
ğ

i“1

EJi – S3,

where EJi is the exterior of Ji and the identification is made so that a 0-framed longitude of
αi, denoted by λpαiq, is identified with a meridian of Ji and vice versa. We denote this knot
by RαpJq. The next proposition comes from [COT04, Proposition 3.1]. We will apply it with
h “ 2 to see that the knots we construct are 2-solvable.

Proposition 2.3. Let R be a slice knot and tαiu
k
i“1 be a collection of unknotted, unlinked

curves in S3 rR such that rαis P π1pMRq
phq for all i “ 1, . . . , k. If for each i “ 1, . . . , k the

knot Ji has ArfpJiq “ 0, then RαpJq is h-solvable.

While our discussions have been thus far focused on the topological category, there are
analogous notions of smooth sliceness, concordance, and 4-genera of knots. There is con-
siderable interest in understanding the structure of T , the collection of topologically slice
knots modulo smooth concordance. Here the h-solvable filtration is of no use, since every
topologically slice knot lies in

Ş8
h“0 Fh. This prompted Cochran-Harvey-Horn to define the

bipolar filtration as follows.
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Definition 2.4. A knot K is h-positive (respectively h-negative) if there exists a smoothly
embedded disc D in a smooth simply connected 4-manifold V such that BpV,Dq “ pS3,Kq
and such that there exist disjointly embedded surfaces S1, . . . , Sk in V r νpDq which form a
basis for H2pV q such that for each i “ 1, . . . k,

(1) The surface Si has Si ¨ Si “ `1 (respectively Si ¨ Si “ ´1).

(2) The inclusion induced map π1pSiq Ñ π1pV rDq has image contained in π1pV rDqphq.

Note that smoothly slice knots are h-positive for all h P N, that the connected sum of two
h-positive knots is h-positive, and that any knot that can be unknotted by changing crossings
from positive to negative (negative to positive) is 0-positive (0-negative) [CHH13].

Definition 2.5. We say that a knot K is h-bipolar if it is both h-positive and h-negative.

The following proposition, inspired by [CK17, Lemma 2.3], gives us a way to construct
h-bipolar knots; we will apply it when h “ 2.

Proposition 2.6. Let R be a smoothly slice knot and let η` and η´ be curves in the comple-
ment of R that form an unlink in S3. Suppose that each η˘ represents a class in π1pS

3 rRqphq,
and that for any knot J we have that Rη`pJq and Rη´pJq are both smoothly slice. Then for
any 0-positive knot J` and 0-negative knot J´, the satellite knot Rη`,η´pJ

`, J´q is h-bipolar.

Proof. Since Rη`pJ
`q is slice and J´ is 0-negative, the knot

Rη`,η´pJ
`, J´q “

`

Rη`pJ
`q
˘

η´
pJ´q

is h-negative by [CHH13, Proposition 3.3]. We see that

Rη`,η´pJ
`, J´q “

`

Rη´pJ
´q
˘

η`
pJ`q

is h-positive by a symmetric argument. �

3. Disconnected manifolds, fundamental groups and twisted homology

We will need to understand the twisted homology of a connected 4-manifold X with dis-
connected boundary Y . In this section, we establish some technical details in this setting,
for example by defining inclusion maps from the twisted homology of Y to that of X and
showing that there is a long exact sequence of the homology of the pair pX,Y q. On a first
reading we encourage the reader to skim this section, focusing on the paragraph leading into
Definition 3.1 and the statement of Proposition 3.3. A similar discussion can be found in
[FK06, Section 2.1].

We note once and for all that manifolds are oriented and either compact or arising as an

infinite cover of a compact manifold. For a manifold V , we write p : rV Ñ V for the universal
cover.

Let Y “
ŮN
i“1 Yi be a compact `-dimensional manifold with N connected components. Let

yi P Yi be a basepoint for each connected component. Let S be a ring with unity and let
A be a left S-module. A representation Φ of the fundamental groupoid of Y into AutpAq is
equivalent to a homomorphism

Φ “
N
ž

i“1

Φi :
N
ž

i“1

π1pYi, yiq Ñ AutpAq

from the free product of the fundamental groups of the connected components to AutpAq.
We will use the following examples.

(a) Let Γ be a group. Then we will take A “ S “ ZΓ, with Φi : π1pYi, yiq Ñ Γ Ď AutpAq,
where g P Γ acts on A by left multiplication. We will also take A “ NΓ, the group Von
Neumann algebra of Γ, discussed in Section 4.
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(b) The ring S is a commutative PID and A “ Sr, together with a homomorphism

Φi : π1pYi, yiq Ñ GLrpSq “ AutpSrq.

For each i we use the representation Φi : π1pYi, yiq Ñ AutpAq to give A a right Zrπ1pYi, yiqs-

module structure. Then we let C˚prYiq be a cellular chain complex obtained by lifting some
CW decomposition of Yi (or a CW complex homotopy equivalent to Yi in the case that Yi is
a topological 4-manifold), and define the homology of Y twisted by Φ to be

H˚pY ;Aq :“
N
à

i“1

H˚
`

AbZrπ1pYi,yiqs C˚p
rYiq

˘

.

Now suppose that Y “ BX, where X is a compact connected p`` 1q-dimensional manifold

with BX “ Y “
ŮN
i“1 Yi. A schematic of a similar situation is shown in Figure 6. Let

x P X be a basepoint and let τi : r0, 1s Ñ X be a path from x to yi. The paths τi induce
homomorphisms ιi : π1pYi, yiq Ñ π1pX,xq, by γ ÞÑ τiγτi.

Definition 3.1. We say that Φ:
šN
i“1 π1pYi, yiq Ñ AutpAq extends over X if there is a

homomorphism Ψ: π1pX,xq Ñ AutpAq such that Ψ ˝ ιi “ Φi for each i “ 1, . . . , N .

Use the inclusion ji : Yi Ñ X to define the pullback cover of Yi in terms of the universal
cover of X via the diagram:

rY X
i

//

��

rX

p

��
Yi

ji
// X

The pullback rY X
i is given by pairs tpy, rxq P Yi ˆ rX | jipyq “ pprxqu. Apply the action of the

group π1pX,xq on rX to the second factor to obtain an action of π1pX,xq on rY X
i . This is

defined since the action on rX is equivariant with respect to p. The action of π1pX,xq on rY X
i

induces an action of Zrπ1pX,xqs on the chain complex C˚prY
X
i q.

Lemma 3.2. We have a homeomorphism

π1pX,xq ˆπ1pY,yiq
rYi – rY X

i ,

where by definition the left hand side means:

π1pX,xq ˆ rYi{
`

pγ, ryq „ pγ1, ry1q if there is g P π1pY, yiq such that γιipgq “ γ1 and g ¨ ry “ ry1
˘

.

Proof. Start with the covering space π1pYi, yiq Ñ rYi Ñ Yi with fibre π1pYi, yiq, and then
apply the ‘product over π1pYi, yiq’ construction to obtain a covering space π1pX,xq ˆπ1pYi,yiq
π1pYi, yiq Ñ π1pX,xq ˆπ1pYi,yiq

rYi Ñ Yi. Since π1pX,xq ˆπ1pYi,yiq π1pYi, yiq – π1pX,xq as
discrete spaces and affine sets over π1pX,xq, this fibre bundle is homeomorphic to

π1pX,xq Ñ π1pX,xq ˆπ1pYi,yiq
rYi Ñ Yi.

Since both π1pX,xq ˆπ1pYi,yiq
rYi and rY X are covering spaces of Yi corresponding to the

homeomorphism ιi : π1pYi, yiq Ñ π1pX,xq, they are homeomorphic by the classification of
covering spaces. �

It follows from Lemma 3.2 that we have an chain isomorphism Zrπ1pX,xqs bZrπ1pYi,yiqs

C˚prYiq – C˚prY
X
i q. Consider the sequence of chain maps:

AbZrπ1pYi,yiqs C˚p
rYiq

–
ÝÑ AbZrπ1pX,xqs Zrπ1pX,xqs bZrπ1pYi,yiqs C˚p

rYiq

–
ÝÑ AbZrπ1pX,xqs C˚p

rY X
i q

ÝÑ AbZrπ1pX,xqs C˚p
rXq.
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The first map sends a b c ÞÑ a b 1 b c. The second map uses the isomorphism discussed
above, and the third map is induced by ji.

This chain level map induces a map on homology pjiq˚ : H˚pYi;Aq Ñ H˚pX;Aq, which in
turn induces

N
à

i“1

pjiq˚ :
N
à

i“1

H˚pYi;Aq – H˚pY ;Aq Ñ H˚pX;Aq.

Let rY X :“
ŮN
i“1

rY X
i . Then by identifying rY X with its image in rX we also have relative

twisted homology groups

H˚pX,Y ;Aq :“ H˚pAbZrπ1pX,xqs C˚p
rX, rY Xqq.

The chain maps above fit into a short exact sequence of chain complexes

0 Ñ
N
à

i“1

AbZrπ1pYi,yiqs C˚p
rYiq Ñ AbZrπ1pX,xqs C˚p

rXq Ñ AbZrπ1pX,xqs C˚p
rX, rY Xq Ñ 0.

That this is exact follows from the chain isomorphism

AbZrπ1pYi,yiqs C˚p
rYiq – AbZrπ1pX,xqs C˚p

rY X
i q.

The short exact sequence of chain complexes gives rise to a long exact sequence in homology,
which we record in the next proposition.

Proposition 3.3. With a fixed choice of paths tτiu and a representation Φ:
šn
i“1 π1pYi, yiq Ñ

AutpAq that extends over X, there is a long exact sequence in twisted homology

¨ ¨ ¨ Ñ HkpY ;Aq Ñ HkpX;Aq Ñ HkpX,Y ;Aq Ñ Hk´1pY ;Aq Ñ ¨ ¨ ¨

with HkpY ;Aq Ñ HkpX;Aq the inclusion induced map discussed above.

In later sections we work with many different representations of a given fundamental
group(oid), and so we emphasize the representation Φ rather than the module A by writing
HΦ
k pY q for HkpY ;Aq.

4. Lp2q-signature invariants

In this section we introduce the Von Neumann Lp2q ρ-invariant of a closed (not necessarily
connected) 3-manifold equipped with a representation of its fundamental group or groupoid,
and we recall the key properties of this invariant required for the proof of Theorem 1.2. In
particular, we review the Cheeger-Gromov bound, a satellite formula, and an upper bound
in terms of the second Betti number of a bounding 4-manifold.

Definition 4.1. Let Y be a closed oriented 3-manifold, let Γ be a discrete group, and let
φ : π1pY q Ñ Γ be a representation. Note that Y might be disconnected, in which case we
use the conventions of Section 3. Suppose that φ extends to Φ: π1pW q Ñ Γ where W is a

compact oriented 4-manifold with BW “ Y . The von Neumann Lp2q ρ-invariant of pY, φq is
the signature defect

ρp2qpY, φq “ σ
p2q
Γ pW,Φq ´ σpW q,

where σ
p2q
Γ pW,Φq is the Lp2q-signature of the intersection form λΓ : H2pW,NΓqˆH2pW,NΓq Ñ

NΓ and σpW q is the ordinary signature of the intersection form on H2pW ;Qq. Here the Lp2q-
signature is defined via the completion ZΓ Ñ CΓ Ñ NΓ to the Von Neumann algebra,
and the spectral theory of operators on NΓ-modules. We refer to [COT03, Section 5] and

[Cha14a, Section 3.1] for more details. In particular, ρp2qpY, φq only depends on the pair pY, φq

since both the Lp2q signature and the ordinary signature satisfy Novikov additivity and also

σ
p2q
Γ pV,Φq “ σpV q for a closed 4-manifold V . (See [CW03, p. 323] and [COT03, Lemma 5.9].)
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This invariant was originally defined by Cheeger and Gromov via Riemannian geometry
and η-invariants, independently of any bounding 4-manifold, so the above definition could
be taken as a proposition that the two definitions coincide. For our purposes, as is common
in the knot concordance literature, it is simpler to take the above as the definition; for a
discussion, see [COT03, Section 5] and [CT07].

Example 4.2. Let MJ be the zero-framed surgery manifold of a knot J Ă S3 and let
φ : π1pMJq Ñ Z be the abelianization map. Then

ρ0pJq :“ ρp2qpMJ ,Zq “
ż

ωPS1

σωpJq dω,

where σωpJq is the Tristram-Levine signature of J at ω P S1, that is the signature of p1 ´

ωqV ` p1´ ωqV T for V a Seifert matrix of J . See [COT03, Lemma 5.4] for the proof.

We will need the following theorem of Cheeger and Gromov, establishing a universal bound
for the ρ-invariants of a fixed closed 3-manifold Y .

Theorem 4.3 ([CG85]). Let Y be a closed oriented 3-manifold. Then there exists a constant

C such that |ρp2qpY, φq| ď C for any discrete group Γ and any representation φ : π1pY q Ñ Γ.

We will refer to the infimum of all such constants C as the Cheeger-Gromov constant of Y ,
denoted CpY q. We note that [Cha16] has given a proof of Theorem 4.3 using the signature

defect definition of ρp2qpY, φq given above, and has given explicit bounds for CpY q in terms
of the triangulation complexity of Y .

The following proposition comes from [CHL09].

Proposition 4.4. Let K “ RαpJq be the result of a satellite operation on a knot R by infec-
tion knots tJku along infection curves tαku. Let φ : π1pMKq Ñ Γ, and suppose that for some

h P N we have αk P π1pMRq
phq for all k and Γph`1q “ 1. Suppose that for all k, either φpαkq “

1 or φpαkq is infinite order in Γ. Then the restriction induced maps π1pMRr
Ů

νpαkqq Ñ Γ
and π1pEJkq Ñ Γ extend uniquely to φ0 : π1pMRq Ñ Γ and φk : π1pMJkq Ñ Γ and we have

ρp2qpMK , φq “ ρp2qpMR, φ0q `
ÿ

k

ρp2qpMJk , φkq.

Proof. The proof of [CHL09, Lemma 2.3] applies, with the following modification. The
original statement of this proposition assumes the additional hypothesis that Γ is a poly-
torsion-free-abelian (PTFA) group. However, an inspection of the proof shows that we need
only assume that for each k either φpαkq “ 1 P Γ or φpαkq is infinite order. In the case
that φpαkq ‰ 1 in Γ, they need in the proof of [CHL09, Lemma 2.3] that H1pαk;ZΓq “ 0.
But since φpαkq is infinite order, H1pαk;ZΓq is the first homology of R ˆ Γ{xαky, which
vanishes. �

We will apply Proposition 4.4 when Γ “ G{G
p3q
pQ,Zp,Qq for some group G and h “ 2. For such

Γ, any curves αk P π1pMRq
p2q satisfy the hypothesis of the proposition, since then φpαkq P Γp2q

and Γp2q{Γp3q is torsion-free.
Under the assumptions of Proposition 4.4, we have that the map φk : π1pMJkq Ñ Γ factors

through the abelianization map. To see this, note that each meridian of Jk is identified
with a longitude of αk, which lies in π1pMRq

phq and hence is sent to Γphq. So the image of

φk : π1pMJkq Ñ Γ is contained in Γphq, which is an abelian group since Γph`1q “ 1. When

Γphq{Γph`1q is torsion-free, as occurs when Γ “ G{G
p3q
pQ,Zp,Qq and h “ 2, we therefore have that

φk is either the zero map or maps onto a copy of Z in Γ. By the principle of Lp2q-induction
[COT03, Proposition 5.13] and Example 4.2, we have that
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ρp2qpMJk , φkq “

#

ρ0pJkq if φk ‰ 0

0 if φk “ 0.

Finally, note that since a meridian of Jk is identified with a longitude λpαkq of αk in MK , we
have that φk is the zero map if and only if φpλpαkqq “ 0. We summarize the results of the
above discussion for later use.

Proposition 4.5. Let K “ RαpJq be the result of a satellite operation on R by infec-

tion knots tJku along infection curves tαku lying in π1pMRq
p2q. Let Γ “ G{G

p3q
pQ,Zp,Qq for

some group G and prime p, and let φ : π1pMKq Ñ Γ. Then the restriction induced maps
π1pMRr

Ů

νpαkqq Ñ Γ and π1pEJkq Ñ Γ extend uniquely to maps φ0 : π1pMRq Ñ Γ and
φk : π1pMJkq Ñ Γ. Moreover,

ρp2qpMK , φq “ ρp2qpMR, ψ0q `
ÿ

k

ρp2qpMJk , φkq “ ρp2qpMR, φ0q `
ÿ

k

δkpψqρ0pJkq,

where

δkpψq “

#

0 if ψpλpαkqq “ 0

1 if ψpλpαkqq ‰ 0.

The following straightforward consequence of [Cha14a, Theorem 3.11] will provide our key

upper bound on Lp2q-signatures. Strebel’s class of groups DpZpq was defined in [Str74]; we
will not recall the definition. We will use the fact that for any group G and any h P N, we

have that Λ “ G{G
phq
S is amenable and lies in DpZpq provided Si is either Q or Zpai for every

i P N [CO12, Lemma 6.8].

Theorem 4.6. Let Z be a 4-manifold with boundary BZ “ Y and let φ : π1pY q Ñ π1pZq Ñ Λ

be a homomorphism, where Λ is amenable and in Strebel’s class DpZpq. Then |ρp2qpY, φq| ď
2 dimZp H2pZ,Zpq.

Proof of Theorem 4.6. Let rZ be the cover of Z induced by the homomorphism π1pZq Ñ Λ.
Since Z is a compact 4-manifold with boundary, it has the homotopy type of a finite 3-
dimensional CW complex. This follows from [KS69, §1(III)] to get a finite CW complex,
combined with [Wal66, Corollary 5.1] to restrict the dimension of the CW complex to three.

Let C˚ be the corresponding chain complex, and let ĂC˚ :“ C˚p rZq denote the chain complex

of rZ. Since Λ is amenable and in Strebel’s [Str74] class DpZpq, [Cha14a, Theorem 3.11] tells
us that

dimp2qH2pZ;NΛq “ dimZp H2pZpbZΛ
ĂC˚q

“ dimZp H2pZpbZC˚q “ dimZp H2pZ;Zpq.

It follows that

|ρp2qpY, φq| “ |σ
p2q
Λ pZq ´ σpZq| ď dimp2qH2pZ;NΛq ` dimQH2pZ;Qq ď 2 dimZp H2pZ;Zpq.

We use the universal coefficient theorem to deduce that dimQH2pZ;Qq ď dimZp H2pZ;Zpq
for the final inequality. �

5. Metabelian twisted homology

In this section we review Casson-Gordon type metabelian representations of knot groups, and
the resulting twisted homology. The behavior of infection curves in this twisted homology
will be key to our proof of Theorem 1.2.
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We now let S denote a commutative PID and let Q denote its quotient field. We will often
take S “ Frt˘1s and Q “ Fptq for some field F, as well as S “ Z and Q “ Q.

Let X be a space homotopy equivalent to a finite CW-complex and let A be a left S-module
given the structure of a right Zrπ1pXqs-module by a homomorphism φ : π1pXq Ñ AutpAq.

Note that π1pXq naturally acts on ĂC˚, the chain complex of the universal cover rX of X, on
the left. Then as in Section 3, the twisted homology H˚pX;Aq is defined to be

Hφ
˚ pXq :“ H˚pAbZrπ1pXqs

ĂC˚q.

We will be particularly interested in the following metabelian representations. Suppose
that we have a preferred surjection ε : H1pXq Ñ Z. For every r P N, we let pr : Z Ñ Zr be
the usual projection map and let Xr denote the r-fold cyclic cover of X corresponding to
kerppr ˝εq. Note that covering transformations give H1pX

rq the structure of a ZrZrs-module.
Choosing a preferred element γ0 P π1pXq with εpγ0q “ `1 then gives us a map

ργ0 : π1pXq Ñ Z˙H1pX
rq by γ ÞÑ

`

tεpγq, rγ
´εpγq
0 γs

˘

,

where γ
´εpγq
0 γ P π1pXrq ď π1pXq and rγ

´εpγq
0 γs denotes the image of γ

´εpγq
0 γ under the

Hurewicz map.
Given any choice of a homomorphism χ : H1pX

rq Ñ Zm, we let ξm “ e2πi{m and obtain a
map θχ : Z˙H1pX

rq Ñ GLrpQpξmqrt˘1sq by

ptj , aq ÞÑ

»

—

—

—

—

–

0 . . . 0 t

1 0 . . . 0
...

. . .
. . .

...

0 . . . 1 0

fi

ffi

ffi

ffi

ffi

fl

j »

—

—

—

—

–

ξ
χpaq
m 0 . . . 0

0 ξ
χpt¨aq
m . . . 0

...
...

. . .
...

0 0 . . . ξ
χptk´1¨aq
m

fi

ffi

ffi

ffi

ffi

fl

.

We then let S “ Qpξmqrt˘1s and A “ Qpξmqrt˘1sr, noting that θχ ˝ ργ0 gives A a right
Zrπ1pXqs-module structure. These representations appear in [KL99, Let00, Fri04, HKL10,
FP12], modelled on the covering spaces used in the definition of Casson-Gordon invari-
ants [CG86]. We refer to such representations as Casson-Gordon type representations.

In particular, given an oriented knot K and a preferred meridian µ P π1pXKq, the canonical
abelianization map ε : π1pXKq Ñ Z has εpµq “ `1. Note that since the zero-framed longitude

λK of K is an element of π1pXKq
p2q, for every r P N the map ρµ : π1pXKq Ñ Z˙H1pX

r
Kq

extends uniquely over π1pMKq. The homology H1pX
rq splits canonically as H1pΣrpKqq ‘Z,

where ΣrpKq is the rth cyclic branched cover of S3 along K. Our map χ : H1pX
rq Ñ Zm

will always be chosen to factor through the projection map to H1pΣrpKqq.
In the case r “ 2 we have that t must act by ´1 on H1pΣ2pKqq , as discussed in the first

paragraphs of [Dav95], and so we can conveniently decompose θχ ˝ ρµ differently as θ ˝ fχ,
where

fχ : π1pMKq Ñ Z˙Zm
γ ÞÑ ptεpγq, χprµ´εpγqγsqq

and

θ : Z˙Zm Ñ GL2pQpξmqrt˘1sq

ptj , aq ÞÑ

„

0 t
1 0

j „
ξam 0
0 ξ´am



.

The following proposition is a slight modification of a result of [MP18, Prop. 7.1], and gives
the key connection between a certain derived series and metabelian homology, when m “ qs

is a prime power.
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Proposition 5.1. Let W be a 4-manifold with boundary BW “ Y . Let Φ: π1pW q Ñ AutpAq
be a representation that factors through Z˙Zqs for some prime q, and let φ : π1pY q Ñ AutpAq

be the composition of Φ with the inclusion map π1pY q Ñ π1pW q. Let η P π1pY q
p2q and suppose

η is sent to the identity in π1pW q{π1pW q
p3q
pQ,Zqs ,Qq

. Then for any v P A and any rη, a lift of

η to the cover of W induced by Φ, we have that the class rv b rηs in Hφ
1 pY q maps to 0 in

HΦ
1 pW q.

Proof. The proof of [MP18, Prop. 7.1] (with its first and last sentences deleted) applies
verbatim. �

Finally, we recall the twisted Blanchfield form. In analogy to the linking form on the
torsion part of the ordinary first homology of a closed oriented 3-manifold, if φ : π1pMKq Ñ

GLrpQpξmqrt˘1sq arises as above then there is a metabelian twisted Blanchfield form [MP18]

Blφ : Hφ
1 pMKq ˆH

φ
1 pMKq Ñ Qpξmqptq{Qpξmqrt˘1s.

Note that in the above circumstanceHφ
1 pMKq is a torsion Qpξmqrt˘1s-module, by the corollary

to [CG86, Lemma 4]; see also [FP12]. In Section 6.1, we will need to know that this form
is sesquilinear [Pow16]. That is, letting s̈ denote the involution of Qpξmqrt˘1s induced by
sending tÑ t´1 and a` bi ÞÑ a´ bi, we have

Blφppx, qyq “ psqBlφpx, yq for every p, q P Qpξmqrt˘1s and x, y P Hφ
1 pMKq.

6. Main theorem and examples

Here is the result that we use to show that certain satellite knots have large 4-genus.

Theorem 6.1. Let R be a ribbon knot and let η1, . . . , ηr be curves in S3 r νpRq that form

an unlink in S3 such that each ηj represents an element of π1pMRq
p2q. Suppose that there is

a prime p such that for every nontrivial character χ : H1pΣ2pRqq Ñ Zp we have

(1) The module H
θ˝fχ
1 pMRq :“ H1

´

Qpξpqrt˘1s2 bZrπ1pMRqs
C˚pĄMRq

¯

is nontrivial and gen-

erated by the collection tr1, 0s b rηjsurj“1.

(2) The order of H
θ˝fχ
1 pMRq is relatively prime to ∆Rptq over Qpξpaqptq for all a ą 0.

Let mR ą 0 denote the generating rank of the p-primary part of H1pΣ2pRqq and let dR denote

the number of distinct orders of H
θ˝fχ
1 pMRq as χ ranges over all nontrivial characters from

H1pΣ2pRqq to Zp.
Now fix g ą 0 and suppose that N ě

4gpdR`1q`2
mR

and that the collection of knots tJ ji | 1 ď

i ď N, 1 ď j ď ru satisfy

|ρ0pJ
j
i q| ą 2p2g `N ´ 1q `NCR `

i´1
ÿ

k“1

r
ÿ

`“1

|ρ0pJ
`
kq| `

j´1
ÿ

`“1

|ρ0pJ
`
i q|

for each 1 ď i ď N , 1 ď j ď r. Then the knot K “ #N
i“1Rη1,...,ηrpJ

1
i , . . . , J

r
i q has 4-genus at

least g ` 1.

We remark that both mR and dR depend not only on the ribbon knot R but also on the
choice of prime p, though for convenience we suppress this from the notation. We remark
also that Theorem 6.1 can be generalized to consider higher prime power branched covers by
appropriately changing the constants; we leave the details of that to the interested reader.

For convenience, we write ηji for the curve ηj in the ith copy of R in #N
i“1R. Note that we

can also write K “ #N
i“1Ki, where Ki :“ Rη1,...,ηj pJ

1
i , . . . , J

r
i q. We will prove Theorem 6.1 in

Section 9 by assuming that g4pKq ď g and obtaining a contradiction as follows.
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Under the assumption that g4pKq ď g, we construct a manifold Z with BZ “ Y :“
ŮN
i“1MKi , χpZq “ 2g, and a few other nice properties. We then let

ψ : π1pY q Ñ π1pZq Ñ Λ :“ π1pZq{π1pZq
p3q
pQ,Zpa ,Qq

be the map induced by inclusion. Since Λ is amenable and in DpZpq [Cha14a, Lemma 4.3],

Proposition 4.6 gives an upper bound on |ρp2qpY, ψq| in terms of g. Our result follows

from obtaining a contradictory lower bound on |ρp2qpY, ψq|. By Proposition 4.5 and our

choices of the J ji knots, we will obtain a contradiction if for some i and j we have λpηji q R

π1pZq
p3q
pQ,Zpa ,Qq

. By Proposition 5.1, this will be implied if we can construct some repre-

sentation φ : π1pY q Ñ Z˙Zpa which extends over π1pZq to Φ such that for some i and

j, the element r1, 0s b rλpηji qs P H
φ
1 pY q is not in the kernel of the inclusion induced map

Hφ
1 pY q Ñ HΦ

1 pZq. The technical work of the proof consists of showing that such a map φ
must exist under the assumption that g4pKq ď g together with our construction of K.

We will first give some examples of knots satisfying the hypotheses of the theorem and then
prove some technical lemmas in the next two sections. In particular we will need to gain some

control over the size of certain homology groups, in order to show that some curve ηji always
survives into a suitable 3-solvable quotient of the fundamental group of the complement of
a hypothesized locally flat embedded surface of genus g. Of course Theorem 1.2 follows
immediately from Theorem 6.1 together with the examples exhibited in Section 6.2 below
and (for the grope bounding result) Proposition 10.7.

It is relatively easy to find examples of seed ribbon knots satisfying the hypotheses of
Theorem 6.1, at least with the help of a computer program to compute twisted metabelian
homology, as developed in [MP18]. In Section 6.1 we give one such example of a pair pR,αq,
and describe the appropriate infection by knots with Arf invariant zero and large signature
in order to obtain 2-solvable large 4-genus knots.

It is a little harder to find suitable seed knots R that also satisfy Proposition 2.6, and there-
fore produce 2-solvable and 2-bipolar large 4-genus examples for the proof of Theorem 1.2..
Nonetheless, we exhibit such a seed knot R with suitable infection curves in Section 6.2, and
describe the appropriate infection by 0-bipolar knots with large signature in order to obtain
2-bipolar, 2-solvable large 4-genus knots.

6.1. Example 1: a 2-solvable knot with large 4-genus

Let R denote the ribbon knot 88, with the unknotted curve α in S3 r νpRq illustrated in
Figure 1.

Figure 1. The knot R “ 88 with a grey Seifert surface and a red infection curve α.



14 JAE CHOON CHA, ALLISON N. MILLER, AND MARK POWELL

This is the same knot-curve pair pR,αq as in [MP18, Example 8.1], with a slight isotopy to
make it more obvious that the curve α bounds a surface in the complement of a Seifert surface
for R, and hence lies in π1pMRq

p2q. We will need a few computations from that paper. First,
H1pΣ2pRqq – Z25. Note that rescaling a character χ : H1pΣ2pRqq Ñ Z5 by a nonzero element
of Z5 does not change the underlying pZ˙Z5q-covering space of MR, and hence preserves the
isomorphism type of the twisted homology. It is therefore not hard to check that given any

nontrivial character χ : H1pΣ2pRqq Ñ Z5, the corresponding twisted homology H
θ˝fχ
1 pMRq is

isomorphic to Qpξ5qrt
˘1s{xt2 ´ 3t ` 1y. Since α is in π1pMRq

p2q, it lifts to a curve rα in the

fχ covering space of MR, and hence x :“ r1, 0s b rα is an element of H
θ˝fχ
1 pMRq. Finally,

the metabelian twisted Blanchfield pairing Blθ˝fχpx, xq is non-zero in Qpξ5qptq{Qpξ5qrt
˘1s,

as was computed in [MP18, Example 8.1].

Lemma 6.2. The element x generates H
θ˝fχ
1 pMRq.

Proof. Supposing for a contradiction that x does not generate. Let y be some generator for

H
θ˝fχ
1 pMRq. Note that Blθ˝fχpy, yq is of the form qptq

t2´3t`1
for some qptq P Qpξ5qrt

˘1s. The

polynomial t2´3t`1 factors as pt´w`qpt´w´q for w˘ “
3˘
?

5
2 P Qpξ5q. Therefore, if x does

not generate then it must be homologous to cpt´ w˚qy for some c P Qpξ5qrt
˘1s and ˚ P t˘u;

without loss of generality, say ˚ “ `. But then we can obtain a contradiction, since

Blθ˝fχpx, xq “ Blθ˝fχpcpt´ w`qy, cpt´ w`qyq

“ pt´ w`qpt´ w`qccBlθ˝fχpy, yq

“ pt´ w`qpt
´1 ´ w`qcc

qptq

t2 ´ 3t` 1

“ ´t´1w`pt´ w`qpt´ w´qcc
qptq

t2 ´ 3t` 1

“ ´t´1w`ccqptq “ 0 P Qpξqptq{Qpξ5qrt
˘1s. �

Now, fix some g ě 0 and let N “ 8g ` 2, noting that mR, the generating rank of the 5-

primary part of H1pΣ2pRqq, is 1 and that there is only one isomorphism class of H
θ˝fχ
1 pMRq

and so dR “ 1 as well. Note that t2´3t`1 is relatively prime to ∆Rptq “ 2´6t`9t2´6t3`2t4,
even considered over C. By [Cha16, Theorem 1.9], CR “ 109 is an upper bound for the
Cheeger-Gromov constant CpMRq of the 0-surgery on R. For k “ 1, . . . , N , let Jk be a knot
with ArfpJkq “ 0 and

ż

ωPS1

σωpJkq dω ą 2p2g `N ´ 1q ` CRN `
k´1
ÿ

i“1

´

ż

ωPS1

σωpJiq dω
¯

. (1)

We can achieve this by taking Jk to be a sufficiently large even connected sum of negative
trefoils, since for the negative trefoil

ż

ωPS1

σωpJiq dω “ 4{3 ą 0.

In fact, the numerically minded reader can easily verify that Equation (1) is satisfied if we
define Jk to be the connected sum of 10k`10g negative trefoils.

We note that K “ #N
i“1RαpJiq is a 2-solvable knot (by Proposition 2.3) which satisfies the

hypotheses of Theorem 6.1, and hence has topological 4-genus at least g ` 1.

6.2. Example 2: a 2-solvable, 2-bipolar knot with large 4-genus

Let R be the knot depicted on the left of Figure 2. On the right of Figure 2 we see a genus
2 Seifert surface F for R along with two sets of derivative curves for R: each of the two
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component links D “ D1YD2 (blue) and L “ L1YL2 (red) generates a half-rank summand
of H1pF q, forms a slice link (in fact, an unlink) in S3, and is 0-framed by F .

Figure 2. The knot R “ 11n74 “ P p3,´3, 3,´2q (left) and a Seifert surface
for R along with two derivative links L “ L1 Y L2 and D “ D1 YD2(right).

Now let β1, β2, γ1, γ2 be the curves indicated on the left of Figure 3. These curves are
disjoint from F and hence lie in π1pMRq

p1q. Note that the indicated basepoints should be
thought of as living in a plane ‘far below’ the plane of the diagram; in that plane they can
be connected, uniquely up to homotopy, to a single preferred basepoint for π1pMRq.

Figure 3. Unknotted curves β1, β2, γ1, γ2 in π1pMRq
p1q (left) and α˘ in π1pMRq

p2q (right).

Let α´ “ rβ1, β2s and α` “ rγ2, γ2s, where rv, ws “ vwv´1w´1; unknotted representatives

for α˘ are shown on the right of Figure 3. Note that α˘ P π1pMRq
p2q. Since α` has no

geometric linking with either component of the link D, for any knot J the satellite knot
Rα`pJq still has a smoothly slice derivative, and hence is itself smoothly slice. Similarly,
since α´ has no geometric linking with the either component of the link L, the satellite knot
Rα´pJq is slice for every knot J . Therefore, by Proposition 2.6, for any 0-positive knot J`

and 0-negative knot J´, the knot Rα`,α´pJ
`, J´q is 2-bipolar.

We now proceed to verify the conditions of Theorem 6.1, so that for appropriate choices
of N P N and of J˘i , i “ 1, . . . , N , the knot #N

i“1Rα`,α´pJ
`
i , J

´
i q will have large topological

4-genus.
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Note that H1pΣ2pRqq – Z3‘Z3, and so (up to rescaling by a nonzero constant), there
are four nontrivial characters χ : H1pΣ2pRqq Ñ Z3. We compute that for three of these
characters, which we call χ1, χ2, and χ3, the resulting twisted homology is

H
θ˝fχi
1 pMRq – Qpξ3qrt

˘1s{xpt´ 1q2y “: A1.

For the fourth character, denoted by χ4, we compute that the twisted homology is

H
θ˝fχ4
1 pMRq – Qpξ3qrt

˘1s{xt2 ´ 14t` 1y “: A2.

Crucially, for any nontrivial χi the lifts of α` and α´ to the cover of MR induced by fχi
generate H

θ˝fχi
1 pMRq. (More precisely, r1, 0s b rα`s and r1, 0s b rα´s generate.)

As in [MP18], we computed the twisted homology using a Maple program, available for
download on the authors’ websites. The program obtains a presentation for the twisted
homology using the Wirtinger presentation, taking the Fox derivatives, and then applying
the representation. It then simplifies the presentation by row and column operations to obtain
a diagonal matrix. Keeping track of how the original generators, which can be identified in
the knot diagram, are modified under the sequence of row and column operations, we not

only compute the twisted homology H
θ˝fχi
1 pMRq but also can identify which elements the

curves r1, 0s b rα˘s represent in H
θ˝fχi
1 pMRq. Note also that the orders of A1 and A2 are

both relatively prime to ∆Rptq “ pt
2 ´ t` 1q2 even over C.

Now let g P N be given. By our discussion above, we have mR “ dR “ 2, and so we let

N :“
4gp2` 1q ` 2

2
“ 6g ` 1.

Let CR denote an upper bound for the Cheeger-Gromov constant CpMRq. For each i “
1, . . . , N , successively pick mi to be even and large enough that J`i :“ #miT2,3 satisfies

ρ0pJ
`
i q ă ´2p2g `N ´ 1q ´NCR `

i´1
ÿ

j“1

ρ0pJ
`
i q ´

i´1
ÿ

j“1

ρ0pJ
´
i q,

and then pick m1i to be even and large enough that J´i :“ ´#m1iT2,3 satisfies

ρ0pJ
´
i q ą 2p2g `N ´ 1q `NCR ´

i
ÿ

j“1

ρ0pJ
`
i q `

i´1
ÿ

j“1

ρ0pJ
´
i q.

Note that in particular ρ0pJ
`
i q ă 0 ă ρ0pJ

´
i q for all i.

We now let Ki “ Rα`,α´pJ
`
i , J

´
i q and K “ #N

i“1Ki. Observe that K is 2-solvable by
Proposition 2.3 and 2-bipolar by Proposition 2.6; K also satisfies the hypotheses of Theo-
rem 6.1, so g4pKq ě g` 1. In Section 10, we will show that K bounds an embedded grope of
height four in the 4-ball. The knot K therefore gives the example claimed in Theorem 1.2.

It now remains to prove Theorem 6.1.

7. Controlling the size of some homology groups

This section contains some technical results needed for the proof of Theorem 6.1, with the
theme that we need to control the size of certain homology groups of some covering spaces.

We start this section with an elementary algebraic lemma. This lemma and the one after
it are very similar to, and are inspired by, results of Levine in [Lev94], in particular Lemma
4.3 of Part I and Proposition 3.2 of Part II. To avoid citing lemmas that were written for
a different situation, and for the edification of the reader, we provide short self-contained
proofs.
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Lemma 7.1. Let F : M ÑM be an endomorphism of a finitely generated free ZrZ2s-module
M such that

IdbF : ZbZrZ2sM Ñ ZbZrZ2sM

is an isomorphism, where Z is a ZrZ2s-module via the trivial action of Z2 on Z. Then

IdbF : QrZ2s bZrZ2sM Ñ QrZ2s bZrZ2sM

is also an isomorphism.

Proof. Let A`BT P ZrZ2s be the determinant of F , where A,B P Z and T P Z2 denotes the
generator. Then A`B “ ˘1 by hypothesis. Thus A2´B2 “ pA`BqpA´Bq “ ˘pA´Bq ‰ 0
since A`B ” A´B modulo 2. Now

pA`BT q ¨
1

A2 ´B2
pA´BT q “ 1,

so over QrZ2s the determinant of F is invertible, and hence IdQrZ2sbF is an isomorphism as
desired. �

Next we apply this lemma to obtain some control on the size of the homology of double
covering spaces.

Lemma 7.2. Let f : X Ñ Y be a map of finite CW complexes such that

f˚ : HipX;Zq Ñ HipY ;Zq
is an isomorphism for i “ 0 and a surjection for i “ 1. Let ϕ : π1pY q Ñ Z2 be a surjective
homomorphism and let X2, Y 2 be the induced 2-fold covers. Then

f˚ : HipX
2;Qq – HipX;QrZ2sq Ñ HipY

2;Qq – HipY ;QrZ2sq

is also an isomorphism for i “ 0 and a surjection for i “ 1.

Proof. The zeroth and first relative homology groups vanish, that is HipY,X;Zq “ 0 for
i “ 0, 1. Thus the cellular chain complex pC˚pY,X;Zq, B˚q admits a partial chain contraction:
writing C˚ to abbreviate C˚pY,X;Zq, the partial chain homotopy comprises maps s0 : C0 Ñ

C1 and s1 : C1 Ñ C2 such that B ˝ s0 “ Id : C0 Ñ C0 and B ˝ s1 ` s0 ˝ B “ Id : C1 Ñ C1.
To see this, follow the proof of the fundamental lemma of homological algebra: for each

basis element xi P C0, choose a lift yi P C1 with Byi “ xi, and define s0pxiq “ yi, and then
extend linearly. Such a yi exists since B : C1 Ñ C0 is surjective. Then for each generator
zi P C1, consider Idpziq ´ s0 ˝ Bpziq. Since

BpIdpziq ´ s0 ˝ Bpziqq “ Bpziq ´ B ˝ s0 ˝ Bpziq “ Bpziq ´ Id ˝Bpziq “ 0,

we have that Idpziq ´ s0 ˝ Bpziq is a cycle. Hence there is a vi P C2 such that Bvi “ Idpziq ´
s0 ˝ Bpziq. Define s1pziq :“ vi, and extend linearly to define s1 on all of C1. Then B ˝ s1pziq “
Bvi “ Idpziq ´ s0 ˝ Bpziq for every generator zi of C1. This completes the construction of a
partial chain homotopy.

Now consider the chain complex D˚ :“ C˚pY,X;ZrZ2sq – C˚pY
2, X2q, the relative chain

complex of the 2-fold covering spaces. Since the cellular chain groups are finitely generated
free modules, the partial chain contraction s0, s1 lifts to maps rs0 : D0 Ñ D1 and rs1 : D1 Ñ D2.

We claim that these maps induce a partial chain contraction after tensoring over QrZ2s.
To see the claim, the maps

F :“ rs0 ˝ B : D0 Ñ D0 and G :“ B ˝ rs1 ` rs0 ˝ B : D1 Ñ D1

are endomorphisms of the free modules D0 and D1 respectively, that become automorphisms
when tensored over Z. That is,

IdbF : ZbZrZ2sD0 Ñ ZbZrZ2sD0,

IdbG : ZbZrZ2sD1 Ñ ZbZrZ2sD1
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are isomorphisms. By Lemma 7.1,

IdbF : QrZ2s bZrZ2s D0 Ñ QrZ2s bZrZ2s D0,

IdbG : QrZ2s bZrZ2s D1 Ñ QrZ2s bZrZ2s D1

are also isomorphisms. Thus

Idbrsi : QrZ2s bZrZ2s Di Ñ QrZ2s bZrZ2s Di`1

is a partial chain contraction and

HipQrZ2s bZrZ2s D˚q “ HipY
2, X2;Qq – HipY,X;QrZ2sq “ 0

for i “ 0, 1. The lemma follows from the long exact sequence of the pair pY,Xq (Proposi-
tion 3.3). �

Our next lemma requires some facts about finitely generated modules over commutative
PIDs, which we remind the reader of in order to establish notation.

Definition 7.3. Let S be a commutative PID with quotient field Q, and let A be a finitely
generated module over S.

(1) TA :“ ta P A such that sa “ 0 for some s P Su, the S-torsion submodule of A.
(2) A^ :“ HomSpA,Q{Sq. If A is torsion (i.e. A “ TA), then A and A^ are non-

canonically isomorphic.
(3) Given a map of S modules f : A Ñ B, we abbreviate f |TA : TA Ñ TB by f |T . We

emphasize that cokerpf |T q is therefore isomorphic to TB{ Impf |TAq, not B{ Impf |TAq.
(4) We say that A has generating rank k over S if A is generated as an S-module by k

elements but not by k ´ 1 elements, and write g-rkS A “ k. It follows immediately
from the definition that if A surjects onto B then g-rkS B ď g-rkS A. It is also true
and easy to check that if B ď A then g-rkS B ď g-rkS A, though this is less obvious
and uses that S is a commutative PID.

(5) By the fundamental theorem of finitely generated modules over PIDs, there exist
j, k P N and elements s1, . . . , sk P S such that there is a (non-canonical) isomorphism

A – Sj ‘ TA – Sj ‘
k
à

i“1

S{xsiy.

When j ą 0 we say that the order of A is |A| “ 0 and when j “ 0 we say that the

order of A is |A| “
śk
i“1 si. This is well-defined up to multiplication by units in S.

The key property of order we use is that if f : A Ñ B is a map of S-modules with
kerpfq torsion, then | Impfq| “ |A|{| kerpfq|.

We will need the following basic lemma in the proof of Theorem 6.1, noting for future use
that Frt˘1s is a Euclidean domain whenever F is a field.

Lemma 7.4. Let A be a finitely generated module over a Euclidean domain S, hence non-
canonically isomorphic to Sm ‘ TA for some m ě 0. Suppose that B is a submodule of A
such there exists C Ď A{B of generating rank ` ą m. Then there exists a module C 1 Ď
TA{pB X TAq of generating rank `´m such that the order of C 1 divides the order of C.

Proof. Let a1, . . . , a` be elements of A such that ra1s, . . . , ra`s generate C Ď A{B. Pick a

decomposition of A – Sm ‘ TA and use it to write each ai “ ps
j
i q
m
j“1 ‘ αi for psji q

m
j“1 P S

m

and αi P TA. Since S is a Euclidean domain, row-reduction of the ` ˆ m matrix M with

Mi,j :“ sji yields a matrix M 1 in Hermite normal form. Since ` ą m, we have that M 1 contains
at least ` ´m rows of zeros. By taking the corresponding linear combinations of the ai, we

obtain a new collection of elements a1i “ pt
j
i q
m
j“1 ‘α

1
i such that the collection of ra1is generate

C. Moreover, for i ą m we have that tji “ 0 for all j “ 1, . . . ,m and so a1i “ α1i P TA. Note
that for i ą m we have that α1i ‰ 0, since if αi “ a1i “ 0 then the generating rank of C would
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be strictly less than `. For similar reasons, we see that the generating rank of the submodule
of TA{pB X TAq generated by α1m`1, . . . , α

1
` is exactly ` ´m. So let C 1 be this submodule.

Finally, the order of C 1 divides the order of C because C 1 is a submodule of C. �

We will use the next lemma twice, once in the proof of Proposition 7.6, and then again in
Step 3 of the proof of Theorem 6.1 in Section 9.

Lemma 7.5. Let X be a 4-manifold with boundary BX “ Y . Let S be a commutative PID
with quotient field Q and let A :“ Sn for some n P N. Suppose there is a representation Φ of
the fundamental groupoid of Y into AutpAq that extends over X, as in Section 3. Consider
the long exact sequence (Proposition 3.3) of S-modules of the pair, with coefficients taken
in A:

¨ ¨ ¨ Ñ H2pXq
j2
ÝÑ H2pX,Y q

B
ÝÑ H1pY q

i1
ÝÑ H1pXq

j1
ÝÑ H1pX,Y q Ñ ¨ ¨ ¨ .

Suppose that H1pX,Y q is torsion. Then kerpj1|T q – cokerpj2|T q.

Proof. Unless otherwise specified, all homology groups are taken with coefficients in A. First,
we argue that the Bockstein homomorphism β is an isomorphism. This Bockstein arises in
the long exact sequence of Ext groups [HS97, IV, Prop. 7.5] associated to the short exact
sequence 0 Ñ S Ñ QÑ Q{S Ñ 0, as follows:

Ext0
SpH1pX,Y q, Qq Ñ Ext0

SpH1pX,Y q, Q{Sq
β
ÝÑ Ext1

SpH1pX,Y q, Sq Ñ Ext1
SpH1pX,Y q, Qq.

Since Q is an injective S-module, Ext1
SpH1pX,Y q, Qq vanishes, and Ext0

SpH1pX,Y q, Qq “ 0
because H1pX,Y q is torsion. Thus β is an isomorphism.

Therefore Poincaré duality, universal coefficients, and the (inverse of the) Bockstein ho-
momorphism together induce natural isomorphisms fitting into a commutative diagram:

TH2pXq
P.D.

–
//

j2|T

��

TH2pX,Y q
U.C.

–
//

��

Ext1
SpH1pX,Y q, Sq

β´1

–
//

��

Ext0
SpH1pX,Y q, Q{Sq –

//

��

TH1pX,Y q
^

pj1|T q
^

��
TH2pX,Y q

P.D.

–
// TH2pXq

U.C.

–
// Ext1

SpH1pXq, Sq
β´1

–
// Ext0

SpH1pXq, Q{Sq –
// TH1pXq

^

By the naturality of the above sequence of maps, the following square commutes and so
cokerpj2|T q – cokerppj1|T q

^q.

TH2pXq
j2|T //

–

��

TH2pX,Y q

–

��
TH1pX,Y q

^
pj1|T q

^

// TH1pXq
^

(2)

Now let H :“ kerpj1|T q ď TH1pXq and define Φ: cokerppj1|T q
^q Ñ H^ by Φprf sq “ f |H .

Observe that Φ is well-defined, since for any g P TH1pX,Y q
^ we have

pj1|T q
^pgqpxq “ gpj1pxqq “ gp0q “ 0 for all x P H “ kerpj1|T q.

Also, Φ is onto: given any f P H^ (i.e. a map f : H Ñ Q{S), since H ď TH1pXq, and using
that Q{S is an injective S-module, we can extend f to a map g : TH1pXq Ñ Q{S, and will
have that Φprgsq “ f . Therefore, in order to show that Φ is an isomorphism it is enough to
show that | cokerppj1|T q

^q| “ |H^|. Note that

| cokerppj1|T q
^q| “

|TH1pXq
^|

| Imppj1|T q^q|
“
|TH1pXq

^| | kerppj1|T q
^q|

|TH1pX,Y q^q|
. (3)
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Also, pj1|T q
^pfq “ 0 if and only if fpj1|T pxqq “ 0 for all x P TH1pXq if and only if f vanishes

on Impj1|T q, so

| kerppj1|T q
^q| “

|TH1pX,Y q
^q|

| Impj1|T q|
.

Therefore we can rewrite Equation (3) as

| cokerppj1|T q
^q| “

|TH1pXq
^|

| Impj1|T q|
“
|TH1pXq|

| Impj1|T q|
“ |H| “ |H^|.

So Φ: cokerppj1|T q
^q Ñ kerpj1|T q

^ is an isomorphism. Since kerpj1|T q is a torsion S-module,
there is an (albeit non-canonical) identification kerpj1|T q – pkerpj1|T qq

^, and so we have as
desired that

cokerpj2|T q – cokerppj1|T q
^q –Φ kerpj1|T q

^ – kerpj1|T q. �

Note that in particular this implies that kerpj1|T qp – cokerpj2|T qp for any prime p, where
for a Z-module G we write Gp for the p-primary part.

Next we apply the control on homology of double covers gained in Lemma 7.2 along with
the homological algebra of Lemma 7.5 to manifolds M3 and V 4.

Proposition 7.6. Let M be a homology S1 ˆ S2, and let V be a connected 4-manifold

with boundary M such that the inclusion induced map H1pMq
i˚
ÝÑ H1pV q an isomorphism.

Suppose that H1pM
2q – Z‘G, where G is torsion. Then for any prime p the p-primary part

of TH1pM
2q{ kerpTH1pM

2q Ñ TH1pV
2qq has generating rank at least n :“ m´2χpV q

2 , where

m denotes the generating rank of the p-primary part of TH1pM
2q.

Proof. Observe that HipV,M ;Zq “ 0 for i “ 0, 1. It follows from Lemma 7.2 that

HipV
2,M2;Qq – HipV,M ;QrZ2sq “ 0 for i “ 0, 1.

Therefore dimH1pV
2,Qq ď dimH1pM

2,Qq “ 1 and

dimH3pV
2;Qq “ dimH3pV 2;Qq “ dimH1pV

2,M2;Qq “ 0.

Also note that

2χpV q “ χpV 2q “ 1´ dimH1pV
2,Qq ` dimH2pV

2,Qq.

We therefore have that dimH2pV
2,Qq “ 2χpV q ` dimH1pV

2,Qq ´ 1 is at most 2χpV q. Now
consider the following long exact sequence:

¨ ¨ ¨ Ñ H2pV
2q

j2
ÝÑ H2pV

2,M2q
B
ÝÑ H1pM

2q
i1
ÝÑ H1pV

2q
j1
ÝÑ H1pV

2,M2q . . . .

From above we have H1pV
2,M2;Qq “ 0, and so by Lemma 7.5 we have that g-rk kerpj1|T qp “

g-rk cokerpj2|T qp. Moreover, for any finitely generated abelian group A, we have that A –
Za‘TA for some a P Ně0 and hence that g-rkpA b Zpq “ a ` g-rkpApq. In particular
g-rkpkerpj1|T q b Zpq “ g-rkpcokerpj2|T q b Zpq. Combining g-rkpAb Zpq “ a` g-rkpApq with
H1pM

2q – Z‘TH1pM
2q, we have that in order to show as desired that the generating rank

of the p-primary part of
`

TH1pM
2q{ kerpi1|T q

˘

is at least n, it suffices to show

g-rk
`

pH1pM
2q{ kerpi1qq b Zp

˘

ě n` 1.

Note that H1pM
2q{ kerpi1q – Impi1q – kerpj1q, so if g-rk pkerpj1q b Zpq ě n ` 1 then we

are done. Similarly, since g-rk
`

H1pM
2q b Zp

˘

“ m` 1 and

kerpi1q “ ImpBq – H2pV
2,M2q{ kerpBq “ H2pV

2,M2q{ Impj2q “ cokerpj2q,

if g-rk pcokerpj2q b Zpq ď m´ n, then we are also done.
So suppose for a contradiction g-rk pcokerpj2q b Zpq ą m´ n and g-rk pkerpj1q b Zpq ď n.

Note that since H3pV
2,M2q – H1pV 2q – H1pM2q – H2pM

2q, the ranks of H2pV
2,M2q and
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H2pV
2q coincide and so H2pV

2,M2q splits (albeit non-canonically) as Zb2pV 2q‘TH2pV
2,M2q.

Thus we obtain our desired contradiction as follows:

2χpV q ` n “ m´ n ă g-rk pcokerpj2q b Zpq
ď g-rk

`

pH2pV
2,M2q{ Impj2|T qq b Zp

˘

“ g-rk
´

Zb2pV
2qbZp

¯

` g-rk
`

pTH2pV
2,M2q{ Impj2|T qq b Zp

˘

“ b2pV
2q ` g-rk pcokerpj2|T q b Zpq

“ b2pV
2q ` g-rk pkerpj1|T q b Zpq

ď b2pV
2q ` g-rk pkerpj1q b Zpq ď 2χpV q ` n. �

8. A standard cobordism

In this section we study a standard cobordism U between the zero-framed surgery manifold
of a connected sum of knots MK “ M#N

i“1Ki
and the disjoint union Y :“

ŮN
i“1MKi of the

zero-framed surgery manifolds of the summands Ki. In particular we need to understand the
behavior of certain representations of the fundamental groups. We will also explicitly choose
the basepoints txiu and paths tτiu necessary to define twisted homology for disconnected
manifolds, as discussed in Section 3.

Figure 4. A Kirby diagram for U .

Let U 1 be MKˆr0, 1s with pN´1q 0-framed 2-handles attached along ‘longitudes of Ki.’ A
schematic of a relative Kirby diagram for U 1 is given by the black and blue curves of Figure 4.
Note that we depict each Ki as the boundary of a Seifert surface Gi, and hence K “ #N

i“1Ki

as the boundary of 6Ni“1Gi. Since repeatedly sliding the black 0-framed curve over the blue
curves gives the standard surgery diagram for Y 1, we have B`pU

1q “ Y 1 :“ #N
i“1MKi . Now

let U2 be Y 1ˆr1, 2s together with pN ´ 1q 3-handles attached along 2-spheres (whose outline

is indicated in green in Figure 4) so that B`U
2 “ Y “

ŮN
i“1MKi . Let U “ U 1 YY 1 U

2.
We now consider the points, arcs, and closed curves shown in Figure 5.
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Figure 5. Basepoints xi, arcs κi, and meridians µi for i “ 1, . . . , N and
closed curves δj for j “ 1, . . . ,m in MK .

Note that the curves δj for j “ 1, . . . ,m form a normal generating set for the first commu-
tator subgroup of π1pMK , xN q, when suitably based using the arcs κi.

The attaching regions for the 2-handles of U 1 avoid

N
ď

i“1

µKi Y
N´1
ď

i“1

κi Y
m
ď

j“1

δj ĂMK ,

and so the points x1i :“ xi ˆ t1u, arcs κ1i :“ κi ˆ t1u, and loops µ1Ki :“ µKi ˆ t1u and

δ1j :“ δj ˆ t1u lie in B`U
1 “ Y 1 for all i “ 1, . . . , N and j “ 1, . . . ,m. Similarly, the attaching

regions for the 3-handles of U2 avoid

´

N
ď

i“1

µ1Ki Y
m
ď

j“1

δ1j

¯

Ă Y 1,

and so the loops µ2Ki :“ µ1Ki ˆ t2u and δ2j :“ δ1j ˆ t2u lie in B`U
2 “ Y for all i “ 1, . . . , N

and j “ 1, . . . ,m. For each i “ 1, . . . N we have an inclusion-induced map

ιi : π1pMKi , x
1
i ˆ t2uq Ñ π1pU

2, x1N q by β ÞÑ κ1i ¨ px
1
i ˆ r1, 2sq ¨ β ¨ px

1
i ˆ r1, 2sq ¨ κ

1
i.

Let U “ U 1 YY 1 U
2, and note that we also have an inclusion-induced map

ι : π1pU
2, x1N q Ñ π1pU, xN q by γ ÞÑ pxN ˆ r0, 1sq ¨ γ ¨ pxN ˆ r0, 1sq.

In the language of Section 3, ι ˝ ιi is induced by the path from xN to x2i given by

τi “ pxN ˆ r0, 1sq ¨ κ
1
i ¨ px

1
i ˆ r1, 2sq.

We return to using the notation from Section 5 in order to state and prove the following.

Proposition 8.1. Let K “ #N
i“1Ki and U be the standard cobordism from MK to

ŮN
i“1MKi

as above. Let p P N and choose maps χi : H1pΣ2pKiqq Ñ Zp for i “ 1, . . . , N , so
pχiq

N
i“1 : H1pΣ2pKqq Ñ Zp . Let µKN be the preferred meridian for K and for i “ 1, . . . , N

let µ2Ki be the preferred meridian for Ki. Then the map

fK
pχiqNi“1

: π1pMK , xN q Ñ Z˙Zp

extends uniquely to a map F : π1pU, xN q Ñ Z˙Zp. Also, the composition

fi : π1pMKi , x
1
i ˆ t2uq

ιi
ÝÑ π1pU

2, x1N q
ι
ÝÑ π1pU, xN q

F
ÝÑ Z˙Zp

satisfies fi “ fKiχi .
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Proof. Notice that π1pUq “ π1pMKq{xλK1 , . . . , λKN´1
y. Therefore, since each λKi bounds

a subsurface of 6Ni“1Gi and hence lies in π1pMKq
p2q, the map fK

pχiqNi“1
extends uniquely as

desired.
Observe that for all i “ 1, . . . , N we have

ιpιipµ
2
Kiqq “ ιpκ1i ¨ px

1
i ˆ r1, 2sq ¨ µ

2
Ki ¨ px

1
i ˆ r1, 2sq ¨ κ

1
iq

“ ιpκ1i ¨ µ
1
Ki ¨ κ

1
iq

“ pxN ˆ r0, 1sq ¨ κ
1
i ¨ µ

1
Ki ¨ κ

1
i ¨ pxN ˆ r0, 1sq “ µKN P π1pU, xN q.

Therefore

fipµ
2
Kiq “ F pµKN q “ fK

pχiqNi“1
pµKN q “ pt, 0q “ fKiχi pµ

2
Kiq P Z˙Zp .

For each i “ 1, . . . N , every element γ P π1pMKi , x
2
i q can be written as γ “ pµ2Kiq

εpγiqa

for some element a P π1pMKi , x
2
i q
p1q. Moreover, the collection of δ2j corresponding to Ki in

Figure 5 normally generate π1pMKi , x
2
i q
p1q. It therefore suffices to check that fi agrees with

fKiχi on µ2Ki (as done above) and on the collection of δ2j corresponding to Ki.

Supposing that δ2j corresponds to Ki, we have that

ιpιipδ
2
j qq “ ιpκ1i ¨ px

1
i ˆ r1, 2sq ¨ δ

2
j ¨ px

1
i ˆ r1, 2sq ¨ κ

1
iq

“ ιpκ1i ¨ δ
1
j ¨ κ

1
iq

“ pxN ˆ r0, 1sq ¨ κ
1
i ¨ δ

1
j ¨ κ

1
i ¨ pxN ˆ r0, 1sq

“ κiδjκi P π1pU, xN q.

Now fix a lift ĂxN of xN to M2
K , the double cover of MK . Since xN does not lie in a tubular

neighborhood of K, we can think of ĂxN as lying in E2
K Ď Σ2pKq as well. The inclusion

induced maps MK Ñ U and MKi Ñ U induce isomorphisms on first homology, and so the

double cover U2 is a cobordism from M2
K to

ŮN
i“1M

2
Ki

. For each i “ 1, . . . , N , lifting the
arc

κi ¨ pxi ˆ r0, 1sq ¨ px
1
i ˆ r1, 2sq

to U2 starting at ĂxN gives a preferred basepoint Ăx2i in M2
Ki

. As before, we also think of this

basepoint as lying in E2
Ki
Ď Σ2pKiq. We can therefore speak of the lift rγ of a curve γ based

at xN (respectively, x2i ) to Σ2pKq (respectively, Σ2pKiq) by choosing the lift with basepoint

ĂxN (respectively, Ăx2i ).

Remark 8.2. A choice of basepoint is technically always necessary to define fKχ , though
this was suppressed in Section 5 in our discussion of the connected case, where it was less
important.

Therefore

fipδ
2
j q “ F pκiδjκiq “ fK

pχkq
N
k“1
pκiδjκiq “ p0, pχkq

N
k“1p

Čκiδjκiqq.

Similarly,

fKiχi pδ
2
j q “ p0, χip

rδ2j qq.

It therefore only remains to show that

pχkq
N
k“1p

Čκiδjκiq “ χip rδ2j q.
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First, note that χkpČκiδjκiq “ 0 unless k “ i. Also, the homology class of Čκiδjκi in

H1pΣ2pKiqq Ă

N
à

i“1

H1pΣ2pKiqq – H1pΣ2pKq

is exactly the same as that of rδ2j in H1pΣ2pKiqq, and so we have that

χipČκiδjκiq “ χip rδ2j q. �

We note for later use that the inclusion induced maps MK Ñ U and MKi Ñ U give

isomorphisms on first homology, and that H2pUq – ZN and H3pUq – ZN .

9. Proof of Theorem 6.1

Since the proof of Theorem 6.1 is rather long, for the reader’s convenience we outline the
main steps of the argument, with references to key results from elsewhere in the paper.

(1) (Proposition 9.1.) Construct a 4-manifold V with boundary BV “ MK such that
the inclusion induced map H1pMKq Ñ H1pV q is an isomorphism and H2pV q – Z2g.

Let U denote the standard cobordism between MK and Y :“
ŮN
i“1MKi discussed in

Section 8 and let Z :“ V YMK
U . Note for later use that H2pZq “ Z2g`N´1 and

χpZq “ 2g.
(2) (Propositions 8.1 and 9.2.) Show that we can choose maps χi : H1pMKiq Ñ Zp

such that the corresponding map φ :
šN
i“1 π1pMKiq Ñ Z˙Zp extends to a map

Φ: π1pZq Ñ Z˙Zpa for some a ě 1 and such that at least n :“ mRN´4g
2 of the χi are

nonzero.
(3) (Claim 9.4.) Show that for some 1 ď i ď N and 1 ď j ď r, the element r1, 0s b

rηji s does not map to 0 in HΦ
1 pZq. This step, which contains much of the technical

work of the theorem, crucially relies on our assumption that for every nontrivial

χ : H1pΣ2pRq Ñ Zp we know that the collection tr1, 0s b rηjsu generates H
θ˝fχ
1 pRq

and that the order of H
θ˝fχ
1 pRq is relatively prime to ∆Rptq.

(4) (Last two paragraphs of Section 9.) Construct a local coefficient derived series repre-

sentation π1pY q Ñ Λ extending over π1pZq and bound the Lp2q ρ-invariant ρp2qpY,Λq
in two different ways to get a contradiction. Essentially, since χpZq “ 2g and our rep-

resentation extends over π1pZq, Theorem 4.6 implies that |ρp2qpY,Λq| is small, while

our assumptions on |ρ0pJ
j
i q| together with Step 3, Proposition 4.4, and Proposition 5.1

will imply that |ρp2qpY,Λq| is very large.

We now prove the two propositions crucial to Steps 1 and 2, respectively.

Proposition 9.1. Let N P N be arbitrary and K “ #N
i“1Ki be a knot with g4pKq ď g.

Then there exists a compact connected 4-manifold V such that, letting U denote the standard
cobordism between MK and Y :“ \Ni“1MKi from Section 8, Z :“ U YMK

V satisfies:

(i) BZ “ Y ,
(ii) H2pZq “ Z2g`N´1, and

(iii) χpZq “ 2g.

Proof. Let F 1 be a locally flat surface embedded in D4 with BF 1 “ K and gpF 1q “ g.
Following [Cha08, Proposition 5.1], we construct a topological 4-manifold V with boundary
BV “ MK , H1pMKq Ñ H1pV q an isomorphism, and H2pV q – Z2g, as follows. Let X “

X0pKq denote the 0-trace of K, the 4-manifold obtained from D4 by attaching a 0-framed
2-handle along a neighborhood of K. Let F be the closed surface in X obtained by taking
the union of F 1 with a core of the 2-handle. Note that since F is locally flat it has a normal
bundle by [FQ90, Section 9.3]. Observe that F ¨ F “ 0, and so νpF q – F ˆ D2. Now, let
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V “ pX r νpF qqYBνpF qH ˆS
1, where H is any handlebody with BH “ F . A Mayer-Vietoris

argument shows that H1pV q – Z, with generator a meridian to F , and that H2pV q – Z2g.
Note that by Poincaré duality and universal coefficients, we have

H3pV q – H1pV,MKq – HompH1pV,MKq,Zq – Homp0,Zq – 0.

So in particular the Euler characteristic of V is χpV q “ 1´ 1` 2g ´ 0` 0 “ 2g.

Let U be the standard cobordism between MK and
ŮN
i“1MKi discussed rather extensively

in Section 8. Now let Z “ V YMK
U , as illustrated schematically in Figure 6.

Figure 6. A schematic diagram of Z “ U YMK
V .

Note that H2pZq – Z2g ‘ZN´1, and the inclusion induced map H1pMKq Ñ H1pZq is an
isomorphism, as are each of the maps H1pMKiq Ñ H1pY q Ñ H1pZq for i “ 1, . . . , N . Also,

H3pZq – ZN´1 and H4pZq “ 0. So the Euler characteristic of Z is

χpZq “ 1´ 1` p2g `N ´ 1q ´ pN ´ 1qq “ 2g. �

Proposition 9.2. Let R be a ribbon knot and p be a prime, and let mR denote the generating
rank of the p-primary part of H1pΣ2pRqq. Fix N P N, and for each i “ 1, . . . , N let Ki be
a knot obtained by infection along an unlink tηjurj“1 in the complement of R such that each

ηj represents an element of π1pMRq
p1q. Let K “ #N

i“1Ki, and suppose that MK bounds a
compact connected 4-manifold V such that H1pMKq Ñ H1pV q is an isomorphism.

Then there exist χi : H1pΣ2pRqq Ñ Zp, for i “ 1, . . . , N such that:

(a) at least mRN´2χpV q
2 of the χi are nonzero, and

(b) for some a ą 0, there exists a map π1pV q Ñ Z˙Zpa such that the composition π1pMKq Ñ

π1pV q Ñ Z˙Zpa is given by the post-composition of f
‘Ni“1χ

Ki
i

with the inclusion Z˙Zp ãÑ

Z˙Zpa.

Proof. For convenience, let n “ mRN´2χpV q
2 . There is a canonical identification H1pM

2
Kq –

Z‘H1pΣ2pKqq, and so given any pχKii q
N
i“1 we obtain not just a map χ : H1pΣ2pKqq Ñ Zp

but also a map χ : H1pM
2
Kq Ñ Zp by sending the Z coordinate to zero. Since the inclusion

H1pMKq Ñ H1pV q is an isomorphism, it therefore suffices to show that there are homomor-
phisms pχRi q

N
i“1 : H1pΣ2pRqq Ñ Zp, at least n of which are nonzero, such that the map

χ :“ pχKii q
N
i“1 : H1pM

2
Kq Ñ Zp

extends over H1pV
2q, perhaps after expanding its codomain to Zpa for some a ą 0. Note

that χ extends over H1pV
2q up to enlarging its codomain if and only if χ vanishes on

H :“ kerpH1pM
2
Kq

i1
ÝÑ H1pV

2qq.

The group of characters TH1pM
2
Kq Ñ Zp is isomorphic to H1pΣ2pKq,Zpq, which is in turn

congruent to pZmRp qN , where we recall that mR denotes the generating rank of the p-primary
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part of H1pΣ2pRqq. The subgroup of characters vanishing on H is in bijective correspondence
with pTH1pM

2
Kq{Hq b Zp.

Note that MK is a homology S1 ˆ S2 with g-rkpTH1pM
2q b Zpq “ mRN Therefore, by

Proposition 7.6, the p-primary part of TH1pM
2
Kq{H has generating rank at least mRN´2χpV q

2 “

n. Therefore TH1pM
2
Kq{H has a subgroup isomorphic to Znp . Our desired result now follows

from a linear algebra argument (see the proof of [KL05, Theorem 6.1]): every subgroup of ZMp
isomorphic to Z`p (0 ď ` ďM) has an element at least ` of whose coordinates are nonzero. �

Now we prove Theorem 6.1.

Proof of Theorem 6.1. Suppose for the sake of contradiction that there is some locally flat
surface F 1 embedded in D4 with BF 1 “ K and gpF 1q “ g. Let U, V, and Z be as in Propo-
sition 9.1. Note that as discussed in Section 8 we have a standard choice of basepoints and
paths inducing inclusion maps; for the rest of the proof, these choices will remain fixed though
not explicitly discussed.

We pause to establish notation. For a knot J in S3, we denote its exterior by EJ . For a
manifold X with H1pXq – Z, we denote its canonical double cover by X2. The choice of a
meridian µJ determines a splitting π1pMJq – Z˙ApJq, where ApJq denotes the Alexander
module of J . Note that H1pΣ2pJqq is naturally identified with ApJq{xt ` 1y, and so a map
χ : H1pΣ2pJqq Ñ Zp induces a map

fχ : π1pMJq
–
ÝÑ Z˙ApJq Ñ Z˙H1pΣ2pJqq

Id˙χ
ÝÝÝÑ Z˙Zp .

Note that in the setting of Proposition 9.1, since H1pMKq Ñ H1pZq – Z is an isomorphism,
Z also has a canonical double cover Z2. It is easy to check that Z2 “ V 2 YM2

K
U2 and that

BZ2 “
ŮN
i“1M

2
Ki

.
For each i “ 1, . . . , N , we have a canonical, linking form–preserving identification of

H1pΣ2pKiqq with H1pΣ2pRqq coming from the degree one maps E
Jji
Ñ Eunknot. Given a map

χR : H1pΣ2pRqq Ñ Zp we will use χKi to denote the corresponding map from H1pΣ2pKiqq Ñ

Zp, and vice versa. We will also always identify H1pΣ2pKqq with
ÀN

i“1H1pΣ2pKiqq in the
canonical, linking form–preserving way.

Define n :“ mRN´4g
2 . (Note that with χpV q “ 2g this agrees with the definition of n used

above.) We wish to show that there exist χRi : H1pΣ2pRqq Ñ Zp, for i “ 1, . . . , N , such that
at least n of the χRi are nonzero and for some a ą 0, there exists a map π1pZq Ñ Z˙Zpa
such that the composition π1pMKiq

ι˝ιi
ÝÝÑ π1pZq Ñ Z˙Zpa is given by the postcomposition

of f
χ
Ki
i

with the inclusion Z˙Zp ãÑ Z˙Zpa . Henceforth, we will implicitly take the usual

inclusion of Zp in Zpa without further comment.
We will accomplish this in a somewhat indirect fashion, by focusing on constructing an

appropriate map on π1pMKq which extends over π1pUq and π1pV q separately. By Proposi-
tion 8.1, given any choice of χR1 , . . . , χ

R
N : H1pΣ2pRqq Ñ Zp, the map f

pχ
Ki
i qNi“1

: π1pMKq Ñ

Z˙Zp extends uniquely to a map F : π1pUq Ñ Z˙Zp such that when we consider the com-
position

F ˝ ι ˝ ιi : π1pMKiq Ñ Z˙Zp,
we have F ˝ ι ˝ ιi “ f

χ
Ki
i

. By applying Proposition 9.2 to our K and V and extending over U

as discussed above, we obtain χ “ pχR1 , . . . , χ
R
N q with at least mRN´4g

2 “: n of the χi nonzero
together with a map F : π1pZq Ñ Z˙Zpa such that the composition

π1pMKiq
ι˝ιi
ÝÝÑ π1pZq Ñ Z˙Zpa

is given by f
χ
Ki
i

.

As described in Section 5, we have a fixed map θ : Z˙π1pΣ2pKqq Ñ GL2pQpξpaqrt˘1sq. By
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post-composing F and each f
χ
Ki
i

with this map, we obtain

Φ “ θ ˝ F : π1pZq Ñ GL2pQpξpaqrt˘1sq,

φi “ θ ˝ f
χ
Ki
i

: π1pMKiq Ñ GL2pQpξpaqrt˘1sq.

We let

φ “
N
ž

i“1

φi :
N
ž

i“1

π1pMKiq Ñ GL2pQpξpaqrt˘1sq.

For convenience, let F “ Qpξpaq, S “ Frt˘1s, Q “ Fptq, and S{p be shorthand for S{xpptqy
for any polynomial pptq P S. Since our infection curves αi live in the second derived subgroup
of MR0 , the degree one maps fi : EJji

Ñ Eunknot give us an identification

f˚ : Hφ
1 pY, Sq “

N
à

i“1

Hφi
1 pMKi , Sq

–
ÝÑ

N
à

i“1

H
θ˝f

χR
i
,S

1 pMRq

where the maps χRi : H1pΣ2pRqq Ñ Zp ãÑ Zpa are as above. We now work towards proving
the following claim.

Claim 9.3.

H :“
à

ti|χRi ‰0u

Hφi
1 pMKiq is not contained in kerpHφ

1 pY ;Frt˘1sq Ñ HΦ
1 pZ;Frt˘1sqq.

Proof of Claim 9.3. First, note that H has generating rank at least rk{dRs, since for some

nontrivial χ0 : H1pΣ2pRqq Ñ Zp there is a submodule of H isomorphic to
´

H
θ˝fχ0
1 pMRq

¯rk{dRs

.

Note that if χRi “ 0 then

H
θ˝f

χR
i

1 pMRq – AQpRq bQrt˘1s Frt˘1s.

We therefore have that

Hφ
1 pY, Sq – pAQpRq bQrt˘1s Frt˘1sqN´k ‘H

where k ě mRN´4g
2 is the number of nonzero χRi .

We now compute the rank of HΦ
2 pZ;Qq. We can immediately see that HΦ

0 pZ;Qqq –

Hφ
0 pY ;Qq – 0, since HΦ

0 pZq and Hφ
0 pY q are annihilated by t ´ 1. Note that for each i “

1, . . . , N the inclusion map Yi Ñ Z induces an isomorphism on H0p´;Zq and H1p´;Zq.
By the proof of [FP12, Proposition 4.1], modified to use only a partial chain contraction
for CΦ

˚ pZ, Yi;Qq in degrees 0, 1, as in [COT03, Proposition 2.10], this implies that the map

Hφi
1 pYi;Qq Ñ HΦ

1 pZ;Qq is onto. We have already observed that Hφi
1 pYiq is a torsion S-

module and so Hφi
1 pYi;Qq “ 0; it follows that HΦ

1 pZ;Qq “ 0 as well. Consideration of the
long exact sequence of the pair pZ, Y q then allows us to conclude that HΦ

1 pZ, Y ;Qq “ 0. By
Poincaré-Lefschetz duality, universal coefficients, and the long exact sequence of pZ, Y q with
Q-coefficients we have that

HΦ
3 pZ;Qq – H1

ΦpZ, Y ;Qq – HompHΦ
1 pZ, Y ;Qq, Qq – 0.

Finally, since Z is a topological 4-manifold and hence homotopy equivalent to a finite CW
complex with cells of dimension at most 3 (see the proof of Theorem 4.6 for references for this
fact), we have that HΦ

j pZ;Fptqq “ 0 for all j ě 4. Re-computing χpZq with Q-coefficients,
we obtain

2g “ χpZq “ 0´ 0` dimQH
Φ
2 pZ;Qq ´ 0` 0 “ dimQH

Φ
2 pZ;Qq.
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We now return to working with S “ Frt˘1s-coefficients and consider the long exact sequence
of Proposition 3.3

¨ ¨ ¨ Ñ Hφ
2 pY q

i2
ÝÑ HΦ

2 pZq
j2
ÝÑ HΦ

2 pZ, Y q
B
ÝÑ Hφ

1 pY q
i1
ÝÑ HΦ

1 pZq
j1
ÝÑ HΦ

1 pZ, Y q Ñ . . . .

Suppose now for a contradiction that H ď kerpi1q. Since

kerpi1q “ ImpBq – HΦ
2 pZ, Y q{ kerpBq “ HΦ

2 pZ, Y q{ Impj2q –
`

S2g ‘ THΦ
2 pZ, Y q

˘

{ Impj2q,

it follows that
`

S2g ‘ THΦ
2 pZ, Y q

˘

{ Impj2q has a submodule H 1 isomorphic to H.

By applying Lemma 7.4 with A “ HΦ
2 pZ, Y q, B “ Impj2q, and C “ H 1 we obtain

that THΦ
2 pZ, Y q{pImpj2q X THΦ

2 pZ, Y qq contains a submodule H2 of generating rank at
least rk{dRs ´ 2g and of order which divides the order of H 1 and so is relatively prime
to ∆R. Since Impj2|T q Ď Impj2q X THΦ

2 pZ, Y q, it follows immediately that cokerpj2|T q “
THΦ

2 pZ, Y q{ Impj2|T q contains a submodule of generating rank at least rk{dRs ´ 2g and of
order relatively prime to ∆R.

As argued above, we have that HΦ
1 pZ, Y ;Qq “ 0, i.e. that HΦ

1 pZ, Y q is torsion, and so we
can apply Lemma 7.5 to conclude that

cokerpj2|T qq – kerpj1|T q “ kerpj1q “ Impi1q.

Therefore Impi1q has a submodule of generating rank at least rk{dRs´ 2g and of order that

is relatively prime to ∆R. Since k ě n “ mRN´4g
2 and N ě

4gpdR`1q`2
mR

, we obtain that

rk{dRs´ 2g ą 0 and so there is a submodule of Impi1q isomorphic to S{s for some nontrivial
polynomial s relatively prime to ∆R. This is our desired contradiction, since H ď kerpi1q

also implies that Impi1q is a quotient of
`

AQpRq bQrt˘1s Frt˘1s
˘N´k

, which has order ∆N´k
R

and therefore cannot contain a submodule isomorphic to S{s. This completes the proof of
the claim. �

Claim 9.4. For some 1 ď i ď N and 1 ď j ď r, the element r1, 0s b rηji s does not map to 0

in HΦ
1 pZq.

Proof of Claim 9.4. Observe that since the longitude λpηji q of ηji is in the second derived

subgroup of π1pMRq it must lift to a curve lji in the cover ĄMR of MR determined by φi. (In

fact, it lifts to Z˙Zpa copies – pick one.) Since whenever χRi ‰ 0 we have that the collection

tr1, 0s b rlji su
r
j“1 generates Hφi

1 pMRq, our argument that H ę kerpi1q in fact implies that for

at least one i and j with 1 ď i ď N and 1 ď j ď r, we have i1pr1, 0s b rl
j
i sq ‰ 0 in HΦ

1 pZq.
This completes the proof of Claim 9.4 and of Step 3. �

We are now ready to complete the proof of Theorem 6.1, as described in Step 4, by
constructing a new representation of π1pY q and bounding ρp2qpY, ψq in two different ways to
derive a contradiction. Let

ψ : π1pY q Ñ π1pZq Ñ Λ :“ π1pZq{π1pZq
p3q
pQ,Zpa ,Qq

be the map induced by inclusion. Since Λ is amenable and in DpZpq [Cha14a, Lemma 4.3] and

ψ evidently extends over π1pZq, Theorem 4.6 and the fact from Step 1 that H2pZq – Z2g`N´1

tells us that

|ρp2qpY, ψq| ď 2 dimZp H2pZ,Zpq “ 2p2g `N ´ 1q. (4)

Let pi0, j0q be the maximal tuple (with respect to the lexicographic ordering) such that

r1, 0sbrlji s does not map to 0 in HΦ
1 pZq. Proposition 5.1 implies that λpηj0i0 q R π1pZq

p3q
pQ,Zpa ,Qq

.
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Moreover, Proposition 4.5 tells us that, letting δji pψq “

#

1, ψpλpηji qq ‰ 0

0, ψpλpηji qq “ 0
, we have

ρp2qpY, ψq “
N
ÿ

i“1

ρp2qpMRαpJiq, ψ|MRαpJiq
q “

N
ÿ

i“1

´

ρp2qpMR, ψ
0
i q `

r
ÿ

j“1

δji pψqρ0pJ
j
i q

¯

. (5)

Since |ρp2qpMR, ψ
0
i q| ď CR for all i, the tuple pi0, j0q is maximal such that δji pψq ‰ 0, and J j0i0

satisfies

|ρ0pJ
j0
i0
q| ą 2p2g `N ´ 1q `NCR `

i0´1
ÿ

k“1

r
ÿ

`“1

|ρ0pJ
`
kq| `

j0´1
ÿ

`“1

|ρ0pJ
`
i q|,

Equation 5 gives the desired contradiction with Equation 4, which completes the proof of
Theorem 6.1. �

10. Height four gropes

In Proposition 10.7 below, we will show the following: the knot K in Section 6.2 bounds a
framed grope of height 4 embedded in D4. For the reader’s convenience, we begin by recalling
the definition of a (capped) grope, a certain type of 2-complex.

Definition 10.1 (Grope of height h [FQ90, COT03]). A capped surface, or a capped grope of
height 1, is an oriented surface of genus g ą 0 with nonempty connected boundary, together
with discs attached along the 2g curves of a standard symplectic basis for the surface. The
discs are called caps. If G is a capped grope of height h ´ 1, then a 2-complex obtained by
replacing each cap of G with a capped surface is called a capped grope of height h. A grope of
height h is obtained by removing caps from a capped grope of height h. It is also called the
body of the capped grope. The initial surface that the inductive construction starts with is
called the base surface, and the boundary of a grope, BG, is the boundary of its base surface.

A (capped) grope defined above is often called disc-like. An annulus-like (capped) grope
is defined in the same way, starting from a base surface with two boundary components.

Remark 10.2. It is not a priori obvious that a 2-complex G known to be a grope has a
well-defined height, but it is true. For the reader’s convenience, we give a quick argument.
Let τ Ă G be the singular set of the grope union its boundary, i.e. the 1-complex consisting
of the points where G is not locally homeomorphic to an open disc. Then Gr τ consists of a
collection of open surfaces, many of which are planar. Removing the subset of G correspond-
ing to the non-planar surfaces (the interior of the ‘top stage’ of G) gives a new grope with
a strictly smaller singular set; we can then repeat the above procedure. In this perspective,
the height of a grope is exactly the number of such steps needed to reduce the grope to a
circle. We leave to the reader the analogous argument that the height of a capped grope is
well-defined, as well as the intrinsic definition of the ith stage of a grope, 1 ď i ď h.

A (capped) grope admits a standard embedding in the upper half 3-space R3
` “ tz ě 0u

which takes the boundary to R2. Compose it with R3
` ãÑ R4

`, take a regular neighborhood
in R4

`, and possibly perform finitely many plumbings. An embedding of the result in a 4-
manifold is called an immersed framed (capped) grope. If no plumbing is performed, then we
say that it is embedded. Often we will regard an immersed/embedded (capped) grope as a
2-complex, but it is always assumed to be framed in this sense. In addition, we assume that
each intersection in an immersed capped grope is always between a cap and a surface in the
body, following the convention of [CK16]. Note that in a simply connected 4-manifold, an
embedded grope without caps can be promoted to an immersed capped grope.
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Returning to our case, recall that the knot K in Section 6.2 is the connected sum of satellite
knots. We will use the following terminology and results from [Cha14b, CK16], which also
consider link versions.

Definition 10.3 (Satellite capped grope [Cha14b, Definition 4.2], [CK16, Definition 4.2]).
Suppose K is a knot in S3 and α is an unknotted circle in S3 disjoint from K. Let Eα be
the exterior of α, and let λα be a zero linking longitude on BEα. A satellite capped grope
for pK,αq is a disc-like capped grope G immersed in Eα ˆ I such that the boundary of G is
λα ˆ 0, the body of G is disjoint from K ˆ I, and the caps are transverse to K ˆ I.

Definition 10.4 (Capped grope concordance [CK16, Definition 4.3]). A capped grope con-
cordance between two knots J and J 1 is an annulus-like capped grope immersed in S3 ˆ I
such that the base surface is bounded by J ˆ 0Y´J 1 ˆ 1.

Proposition 10.5 ([CK16, Section 4.1]). Suppose that there is a satellite capped grope of
height h for pK,αq and a capped grope concordance of height ` between two knots J and J 1.
Then there is a capped grope concordance of height h ` ` between the satellite knots KαpJq
and KαpJ

1q.

The height h` ` capped grope concordance in Proposition 10.5 is obtained by a “product”
construction described in [CK16, Definition 4.4]. The last ingredient we need is the following
result from [COT03].

Proposition 10.6 ([COT03, Remark 8.14]). A knot in S3 with trivial Arf invariant bounds
a capped grope of height two immersed in D4.

We can now prove the following.

Proposition 10.7. Let K “ #n
i“1Rα`,α´pJ

`
i , J

´
i q be a connected sum of satellite knots,

where pR,α`, α´q is as in the right of Figure 3 and tJ`i , J
´
i u

n
i“1 a collection of knots with

vanishing Arf invariant. Then K bounds an embedded grope of height 4 in D4.

Proof. First, note that it suffices to show that each Rα`,α´pJ
`
i , J

´
i q bounds an embedded

grope of height 4, since we can then take the boundary connected sum of such gropes to
obtain one with boundary K. We therefore show that under the hypothesis that ArfpJ`q “
ArfpJ´q “ 0 the knot Rα`,α´pJ

`, J´q bounds a grope of height 4.
Observe that the curve α´ in Figure 3 bounds a disjoint capped grope of height two

embedded in S3, where the body surfaces are disjoint from the knot R but the caps are allowed
to intersect R. This is a geometric analogue of the commutator relation α´ “ rβ1, β2s where
the curves β1 and β2 shown in the left of Figure 3 are again commutators in the fundamental
group.

Indeed, in the planar diagram in the right of Figure 3, the bounded region enclosed by α´

is the projection of an obviously seen embedded disc which intersects R in four points, and
by tubing on this disc, one obtains a genus one surface, shown in red in Figure 7, which is
disjoint from R. This surface is the base surface of the promised height two grope bounded
by α´. The curves β1 and β2 are parallel to standard basis curves of the base surface, and
they bound disjoint genus one surfaces obtained by tubing the obviously seen discs along the
knot R, as illustrated in Figure 7. Attach them to the base stage surface to obtain a height
two grope.

Note that all the surfaces used above are disjoint from the other curve α`, so by performing
the satellite construction, we obtain a height two grope in S3 rRα`pJ

`q bounded by α´.

Identify S3 with S3 ˆ 0 Ă S3 ˆ I, push the interior of the grope into the interior of S3 ˆ I,
and add caps using the simple connectedness of S3 ˆ I as noted above. Apply general
position to make the caps transverse to Rα`pJ

`q ˆ I, to obtain a satellite capped grope
for pRα`pJ

`q, α´q.



TWO-SOLVABLE AND TWO-BIPOLAR KNOTS WITH LARGE FOUR-GENERA 31

Figure 7. An embedded height 2 grope with boundary α´ in S3 rpR\ α`q.

Since the knot J´ has trivial Arf invariant, J´ bounds a capped grope of height two in D4,
by Proposition 10.6. Remove, from D4, a small open 4-ball which intersects the capped grope
in an unknotted 2-disc lying in the interior of the base surface, to obtain a capped grope
concordance of height two between J´ and the trivial knot. By Proposition 10.5 and the
above paragraph, the satellite knot Rα`,α´pJ

`, J´q “ pRα`pJ
`qqα´pJ

´q is height 4 capped
grope concordant to the knot Rα`pJ

`q. Forget the caps of this capped grope concordance,
and attach a slicing disc for the knot Rα`pJ

`q, to obtain a grope of height 4 bounded
by Rα`,α´pJ

`, J´q. �

Remark 10.8. A similar argument shows the existence of a bounding grope of height 4
for the simpler example in Section 6.1. In this case, the height two surfaces constructed by
“tubing along the knot R” in the 3-space are not disjoint, but the intersection can be removed
by pushing the surfaces into 4-space. We omit the details.

References

[CG78] Andrew Casson and Cameron Gordon, On slice knots in dimension three, Algebraic
and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976), Part 2, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53.

[CG85] Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of
L2-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential
Geom. 21 (1985), no. 1, 1–34.

[CG86] Andrew Casson and Cameron Gordon, Cobordism of classical knots, À la recherche
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