Two-solvable and two-bipolar knots with large four-genera

Jae Choon Cha, Allison N. Miller, and Mark Powell

Abstract. For every integer g, we construct a 2-solvable and 2-bipolar knot whose topological 4-genus
is greater than g. Note that 2-solvable knots are in particular algebraically slice and have vanishing
Casson-Gordon obstructions. Similarly all known smooth 4-genus bounds from gauge theory and
Floer homology vanish for 2-bipolar knots. Moreover, our knots bound smoothly embedded height
four gropes in D*, an a priori stronger condition than being 2-solvable. We use new lower bounds for
the 4-genus arising from L(?)-signature defects associated to meta-metabelian representations of the
fundamental group.

1. Introduction

A knot K in S is slice if there exists a locally flat proper embedding D? < D* such that the
boundary of D? is the knot K. This idea of ‘4-dimensional triviality’ can be generalized in a
number of ways, perhaps most easily by approximating a disc by a small genus surface. The
4-genus g4(K) of a knot K in S3 is the minimal possible genus g(2) of an orientable surface ¥
with a locally flat proper embedding ¥ < D?* in the 4-ball, where ¥ has a single boundary
component whose image coincides with K. From this point of view, a knot is approximately
slice if it has small 4-genus. However, this perspective does not give successively closer
approximations to sliceness; there also exist many knots of 4-genus one, such as the trefoil,
which intuitively seem far from slice.

An alternative approach is to approximate the slice disc exterior Xp := D*\ v(D?), a
compact 4-manifold with the three key properties that (i) 0Xp = M, the O-surgery of S®
along K; (ii) the inclusion induces an isomorphism Hy (Mg ) = H1(Xp); and (iii) H2(Xp) = 0.
We therefore think of a compact 4-manifold W with 0W = My such that i.: Hy(Mg) —
H; (W) is an isomorphism and some condition on Ha(W) is satisfied as an approximation to
a slice disc exterior. One might ask that Hy(Xp) is of small rank, but a little thought shows
that this essentially recovers the 4-genus condition, besides again not yielding arbitrarily
refined approximations.

In [COTO03], Cochran, Orr, and Teichner introduced a new perspective, motivated by
surgery theory, in which one allows Hy(W) to be arbitrarily large but requires that it is
generated by almost disjointly embedded surfaces with a condition on the image of their
fundamental groups in m(W). See Section 2 for the precise definition. In fact, they give
an infinite family of increasingly strict conditions, indexed by h € %N : a knot is said to be
h-solvable if its 0-surgery bounds a slice disc exterior approximation satisfying the hth such
condition. It is an open question whether any knot which is h-solvable for all A must be slice,
and in general knots which are h-solvable for large h are hard to distinguish from slice knots.

The idea of solvability is closely related to the more geometric notion of bounding a grope of
large height. A grope of height 1 is defined to be an orientable surface of arbitrary genus and
a single boundary component, and a grope of height n is obtained by attaching boundaries
of gropes of height n — 1 to an orientable surface along standard basis curves. We refer to
[FQ90, COTO3], or our Section 10 for the precise definition. A grope of larger height is a
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better approximation to a disc. Gropes are ingredients of fundamental importance for the
topological disc embedding technology of Freedman and Quinn [Fre84, FQ90] on 4-manifolds,
and also in the work of Cochran, Orr and Teichner [COTO03] discussed above, where it was
shown that if a knot K bounds an embedded framed grope of height h in D* then K is
(h — 2)-solvable. The converse remains an open question.

It is natural to ask whether the 4-genus and grope/n-solvability approximations to sliceness
have any relationship.

Question 1.1 ([Cha08, Remark 5.6]). For a fixed h, do there exist h-solvable knots, i.e.
knots which are close to slice in the sense of [COT03], which have arbitrarily large 4-genera,
and hence are far from slice in the first sense?

This question seem to be difficult, one reason for which is that existing methods for ex-
tracting lower bounds for the topological 4-genus are not effective for h-solvable knots with
h = 2. The simplest lower bounds are the Tristram-Levine signature function and Tay-
lor’s bound [Tay79], the best possible bound for the 4-genus coming from the Seifert form.
For algebraically slice knots these lower bounds vanish. In [Gil82], Gilmer showed that
there are algebraically slice knots with arbitrarily large 4-genus using Casson-Gordon signa-
tures [CG78, CG86]. In [Cha08], Cha showed that there exist knots with arbitrarily large
4-genus which are algebraically slice and have vanishing Casson-Gordon signatures, using
Cheeger-Gromov Von Neumann L) p-invariants corresponding to metabelian fundamental
group representations. The above abelian and metabelian lower bounds can be used to give
affirmative answers to Question 1.1 for the initial cases h = 0, 1, but these lower bounds
vanish for h-solvable knots with h > 2. Extending Cha’s p-invariant approach beyond the
metabelian level to give further lower bounds for the 4-genus was left open, essentially because
of difficulties arising from non-commutative algebra.

In this paper, we present a new method that avoids the non-commutative algebra problem.
It enables us to go one step further than Gilmer and Cha, by combining a Casson-Gordon
type approach and L(2)—signatures associated with representations to 3-solvable groups i.e.
solvable groups with length 3 derived series. Here is our main result.

Theorem 1.2. For each g € N, there exists a 2-solvable knot K with g4(K) > g. Moreover,
K bounds an embedded framed grope of height 4 in D*.

Moreover, the knots of Theorem 1.2 are 2-bipolar in the sense of Cochran, Harvey and
Horn [CHH13|. We give the definition in Section 2, noting for now that the notion of bipo-
larity is an approximation to being smoothly slice, which combines the idea of Donaldson’s
diagonalization theorem with fundamental group information related to gropes and derived
series. Also, for a 2-bipolar knot, the invariants 7, T, ¢, v from Heegaard-Floer homology,
as well as the d-invariants of p/q surgery, all cannot prove that the knot is not smoothly slice,
and consequently cannot bound the smooth 4-genus [CHH13]. This also holds for gauge
theoretic obstructions such as those arising from Donaldson’s theorem and the 10/8 theorem.

Theorem 1.2 answers the h = 2 case of Question 1.1, and prompts us to conjecture that
the answer is ‘yes’ in general. In fact, we make a bolder conjecture.

Conjecture 1.3. Let K be an h-solvable knot which is not torsion in C. Then {#"K} is a
collection of h-solvable knots containing knots with arbitrarily large 4-genera.

A knot which did not satisfy the second sentence would be an example of a non-torsion
knot with stable 4-genus zero i.e. lim,_,o g4(nK)/n = 0, and it is unknown whether any such
knots exist [Liv10]. Thus a counterexample to this conjecture would also be very interesting.

One might also wonder whether there exist highly bipolar knots with large smooth 4-genus,
especially with the additional requirement that they be topologically slice. The following
question seems to be unknown even in the case h = 0.
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Question 1.4. Do there exist topologically slice h-bipolar knots with large smooth 4-genus?

As above, there are many reasonable candidate knots with which one might hope to answer
‘yves.” The main result of [CK17] gave many examples of topologically slice, h-bipolar knots
K which are of infinite order, even modulo the subgroup of (h + 1)-bipolar knots, and a
smooth/bipolar analogue of Conjecture 1.3 suggests we should expect #™ K to have arbitrarily
large smooth 4-genus as n — 0.

Summary of the construction and proof. In order to construct 2-bipolar knots bounding
height four gropes, we take connected sums of sufficiently many copies of the seed ribbon knot
R := 11,74, and perform satellite operations on a collection of judiciously chosen infection
curves {a;, a; }, with o lying in the second derived subgroup 71 (S® \. R)®) of the knot group
of the ith copy of R. Our choice of (R,at,a™) is depicted on the right side of Figure 3. We
use knots {J;", J; } with Arf invariant zero for the companions of the satellite operations,
chosen so that the {J;’} have increasingly large negative Tristram-Levine signature functions
and the {J; } have increasingly large positive signature functions.

Let K be the result of these satellite operations. In Proposition 2.3, we show that K is
2-solvable; in Proposition 2.6, we show that K is 2-bipolar; and in Proposition 10.7, we show
that K bounds a grope of height 4 in D*. Writing K; for the knot resulting from the satellite
construction on (R, aii, J;—r), we have K = #N | K;. Let M, be the zero-surgery manifold of
K; and write Y := |_|f\/:1 Mg, .

The main idea of our proof is as follows. If there were a surface ¥ of genus g embedded
in D* with boundary K, then there would be an associated 4-manifold Z with boundary Y
and a quotient " of 71(Z) such that the L(?) p-invariant

PDY,T) = pO(Y, 6: 1y (V) — m(Z) —T)

would be bounded above by a constant depending only on g and the base knot R. However, by
choosing the infection knots {Jii} to have suitably large Tristram-Levine signature functions,
L®-induction will imply that p® (Y,T') must be very large so long some curve a:—r represents
an element of 71(Y) mapping nontrivially to I'. The key difficulty is to show that this must
always be the case, recalling that I' depends on the hypothesized surface X.

In Example 6.1 we present a slightly simpler construction of a family of 2-solvable knots
with arbitrary 4-genera, starting with connected sums of the ribbon knot 83 and performing
a single satellite construction on each copy of 8g as indicated in Figure 1.

Coefficient systems: comparison with earlier methods. To show the nontriviality
of some oz;*'r in I', we use twisted homology over a metabelian representation to define the
coefficient system. Although the representation is non-abelian, we use the ideas of Casson and
Gordon [CG86] to define finitely generated twisted homology modules over a commutative
principal ideal domain. The commutativity enables us to consider the “size” of the twisted
homology modules in terms of the minimal number of generators, generalizing the abelian
representation case in e.g. [Cha08]. Supposing that the 4-genus is small compared to the size
of the twisted first homology, we show that there is a meta-metabelian quotient I' of 71(Z2),
i.e. a quotient whose third derived subgroup vanishes, in which one of the a;i is nontrivial in
order to eventually obtain a contradiction. In previous approaches to slice obstructions using
L@ _signature defects corresponding to representations to groups with nontrivial nth derived
subgroups for n = 2, the homology modules associated to non-abelian representations were
over non-commutative rings, for which it is still unknown how to implement an analogous
generating rank argument.

In our method, it is also crucial to use L(?-signatures over amenable groups that are
not torsion-free, which were developed in [CO12, Chal4a] and deployed in a similar context
in [MP18].
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The smooth slice genus. We remark that concordance obstructions predicated on a
smooth embedding cannot be used to draw conclusions about locally flat surfaces, and hence
cannot be used to prove our result. On the other hand our knots have arbitrarily large
smooth 4-genus, since a smooth embedding of a surface in D? is in particular a locally flat
embedding.

If we were interested in the smooth 4-genus version of Theorem 1.2, currently known
techniques using Heegaard Floer homology or gauge theory would not apply. It is unknown
whether the Rasmussen s-invariant, which does provide a lower bound on the smooth 4-
genus of a knot, must vanish for 2-bipolar knots. Our knots are even the first examples in
the literature of 1-bipolar knots with large 4-genus, though for that result one could use a
simpler Casson-Gordon signature argument analogous to [Gil82].

Horn’s results. The fact that g4(K) is large implies that the base surface of any embedded
grope in D* with boundary K must have large genus. The main theorem of Horn [Horl1]
gives examples, for each g and each n, of knots bounding height n gropes such that the base
surface of any height n grope must have genus at least g. However, Horn’s example knots are
not known to have large 4-genera: he was only able to provide lower bounds on the genera
of surfaces that extend to an embedding of a height n grope.

Organization of the paper. The next four sections are concerned with background theory.
Section 2 recalls the definitions of the derived series of a group, a useful variation called the
local derived series, and what it means for a knot to be h-solvable or h-bipolar. We also
explain here how to construct h-solvable and h-bipolar knots using the satellite construction.
Section 3 introduces some conventions for dealing with disconnected manifolds, in particular
as relates to representations of their fundamental groupoids and associated twisted homology
groups. Section 4 recalls the Cheeger-Gromov von Neumann L) p-invariant p(?) (Y, ¢) of a
closed 3-manifold Y together with a homomorphism of its fundamental group 7;(Y) — T to
a group I', and gives the facts about this invariant that we will need. Section 5 describes ho-
mology twisted with metabelian representations. In particular we consider coeflicient systems
inspired by Casson-Gordon invariants [CG86].

Section 6 begins the proof of Theorem 1.2, by precisely stating the criteria that will imply
certain knots have large topological 4-genus, giving a brief outline of the proof, and providing
examples meeting those criteria. Section 7 proves some technical lemmas that are vital in
arranging that the representation used for our p-invariant computation is suitably nontrivial.
For this, we control the size of the homology groups of certain covering spaces. In Section 8
we review a standard cobordism used in the proof of Theorem 1.2, and carefully investigate
the way metabelian representations extend over this cobordism. Section 9 proves the main
theorem by bounding the p-invariant in two different ways as described above. Section 10
proves that our knots bound height four embedded gropes.

Acknowledgements. The first and third authors thank the Max Planck Institute for Math-
ematics in Bonn, where they were visiting when part of the work on this paper occurred.
The second author thanks Shelly Harvey for stimulating conversations. Finally, we thank the
anonymous referee for a careful reading and useful suggestions which improved the paper.

2. The solvable and bipolar filtrations

In this section we recall the definitions of the solvable and bipolar filtrations, and how to
construct highly solvable or bipolar knots. We will also need, later in the article, not just the
standard derived series of a group but also the local derived series [CH05, CH08, Chal4a].
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Definition 2.1. Let G be a group. The hth derived subgroup G of G is defined recursively
via GO := G and G = [G—1) G=D] for h > 1. Moreover, for any sequence S = (S;)ien
of abelian groups, define the hth S-local derived subgroup of G recursively by GESO) := 0 and,
for h > 1,

¢8) = ker{GEY oGPV GV G - (68T I6E Y 68TV @ Sl

We remark that a group G is called metabelian if GV % 0 but G = 0 and analogously
meta-metabelian if G?) # 0 but G®) = 0. This explains some language from the introduction.

For any sequence S and any h € N we have that G < Ggh). Note that since for fixed h € N
the subgroup Ggh) only depends on the first h terms of S, we will often take S = (S1,...,Sh)
to be a partial sequence. We will be particularly interested in S = (Q,Z,, Q) for a prime p.

For h € N>, we now define h-solvability of a knot. As indicated in the introduction, there
is an extension of this definition to h € %N>0. We do not require this more general definition,

and refer the reader to [COT03, Definition 1.2] for details.

Definition 2.2. A knot K is h-solvable if there exists a compact spin 4-manifold W such
that W = M, the inclusion induced map H;(Mg) — H;(W) is an isomorphism, and there

exist embedded surfaces with trivial normal bundle Dq,..., Dy and Ly,..., Ly in W such
that
(1) The surfaces are pairwise disjoint except for D; and L;, which for each j =1,...,k

intersect transversely in a single point.
(2) The second homology classes represented by Di, ..., Dy, Li,..., L generate Hao(W).
(3) The inclusion induced maps m1(D;) — 71 (W) and m;(L;) — w1 (W) have image
contained in 7y (W)™,

This gives a filtration of the knot concordance group by subgroups JFj consisting of the
concordance classes of h-solvable knots, explored in [COT03, COT04, CT07, CHL09], among
others. Every 1-solvable knot is algebraically slice and every 2-solvable knot has vanishing
Casson-Gordon invariant sliceness obstruction. In particular, as mentioned in the introduc-
tion, the traditional 4-genus lower bounds of Tristram-Levine and Casson-Gordon signatures
cannot be usefully employed with 2-solvable knots.

The satellite operation interacts particularly nicely with the solvable filtration. We remind
the reader that given a knot R, infection curves aq,...,ax in S® \ v(R) that form an unlink
in $3, and infection knots Ji, ..., Ji, the satellite of R by {J;} along {c;} is defined to be the

image of R in
k k
<53 ~ |_| V(Oéi)> v |_| Ej = S
i=1 i=1

where Ej, is the exterior of J; and the identification is made so that a 0-framed longitude of
a;, denoted by A(qy), is identified with a meridian of J; and vice versa. We denote this knot
by Ra(J). The next proposition comes from [COT04, Proposition 3.1]. We will apply it with
h = 2 to see that the knots we construct are 2-solvable.

Proposition 2.3. Let R be a slice knot and {ai}le be a collection of unknotted, unlinked
curves in S®\ R such that [a;] € m (Mg)™ for alli=1,...,k. If for each i = 1,...,k the
knot J; has Arf(J;) = 0, then Rq(J) is h-solvable.

While our discussions have been thus far focused on the topological category, there are
analogous notions of smooth sliceness, concordance, and 4-genera of knots. There is con-
siderable interest in understanding the structure of 7, the collection of topologically slice
knots modulo smooth concordance. Here the h-solvable filtration is of no use, since every
topologically slice knot lies in ﬂzozo Fr. This prompted Cochran-Harvey-Horn to define the
bipolar filtration as follows.
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Definition 2.4. A knot K is h-positive (respectively h-negative) if there exists a smoothly
embedded disc D in a smooth simply connected 4-manifold V such that o(V, D) = (S3, K)
and such that there exist disjointly embedded surfaces S1, ..., Sk in V \ v(D) which form a
basis for Ha(V') such that for each i = 1,...k,

(1) The surface S; has S; - S; = +1 (respectively S; - S; = —1).

(2) The inclusion induced map 71 (S;) — 1 (V . D) has image contained in 7 (V ~ D)®).

Note that smoothly slice knots are h-positive for all h € N, that the connected sum of two
h-positive knots is h-positive, and that any knot that can be unknotted by changing crossings
from positive to negative (negative to positive) is O-positive (0-negative) [CHH13].

Definition 2.5. We say that a knot K is h-bipolar if it is both h-positive and h-negative.

The following proposition, inspired by [CK17, Lemma 2.3|, gives us a way to construct
h-bipolar knots; we will apply it when h = 2.

Proposition 2.6. Let R be a smoothly slice knot and let n™ and n~ be curves in the comple-
ment of R that form an unlink in S3. Suppose that each n* represents a class in w1 (S R)(h),
and that for any knot J we have that R, +(J) and R,-(J) are both smoothly slice. Then for
any 0-positive knot J* and 0-negative knot J—, the satellite knot R+ - (J*,J7) is h-bipolar.

Proof. Since R, +(J*) is slice and J~ is O-negative, the knot
Ry - (T, J7) = (Rys (7)), (J7)
is h-negative by [CHH13, Proposition 3.3]. We see that
Ry - (J*5J7) = (Rn* (Ji))m (J7)

is h-positive by a symmetric argument. (|

3. Disconnected manifolds, fundamental groups and twisted homology

We will need to understand the twisted homology of a connected 4-manifold X with dis-
connected boundary Y. In this section, we establish some technical details in this setting,
for example by defining inclusion maps from the twisted homology of Y to that of X and
showing that there is a long exact sequence of the homology of the pair (X,Y). On a first
reading we encourage the reader to skim this section, focusing on the paragraph leading into
Definition 3.1 and the statement of Proposition 3.3. A similar discussion can be found in
[FK06, Section 2.1].

We note once and for all that manifolds are oriented and either compact or arising as an
infinite cover of a compact manifold. For a manifold V', we write p: V — V for the universal
cover.

LetY = |_|fi 1 Y; be a compact {-dimensional manifold with N connected components. Let
y; € Y; be a basepoint for each connected component. Let S be a ring with unity and let
A be a left S-module. A representation ® of the fundamental groupoid of Y into Aut(A) is
equivalent to a homomorphism

N N
=[] [[m(Yiv) — Aut(4)
i=1 i=1
from the free product of the fundamental groups of the connected components to Aut(A).
We will use the following examples.
(a) Let I" be a group. Then we will take A = S = ZT', with ®;: m1(Y;,y;) > I' < Aut(A),
where g € T acts on A by left multiplication. We will also take A = NT, the group Von
Neumann algebra of I'; discussed in Section 4.
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(b) The ring S is a commutative PID and A = S”, together with a homomorphism
D;: 7['1(1/;, yi) — GLT(S) = Aut(ST).
For each i we use the representation ®;: 71(Y;,y;) — Aut(A) to give A a right Z[m1(Yi, y;)]-
module structure. Then we let C\ ( 3) be a cellular chain complex obtained by lifting some

CW decomposition of Y; (or a CW complex homotopy equivalent to Y; in the case that Y; is
a topological 4-manifold), and define the homology of Y twisted by ® to be

H,(Y; A) @H*(A®Z[m< vigo) Cx (V).

i=1
Now suppose that Y = 0X, where X is a compact connected (¢ + 1)-dimensional manifold
with 0X =Y = |_|fi 1 Yi. A schematic of a similar situation is shown in Figure 6. Let
x € X be a basepoint and let 7;: [0,1] — X be a path from x to y;. The paths 7; induce
homomorphisms ¢;: m1(Y;, y;) — m (X, x), by v — 77
Definition 3.1. We say that ®: ]_[f\il m1(Y;,yi) — Aut(A) extends over X if there is a
homomorphism ¥: m (X, z) — Aut(A) such that ¥ o; = ®; for each i =1,..., N.

Use the inclusion j;: Y; — X to define the pullback cover of Y; in terms of the universal
cover of X via the diagram:

VX —X

(2

b

Y;‘HX
Ji

The pullback YX is given by pairs {(y,%) € Y; x X | ji(y) = p(Z)}. Apply the action of the
group 7 (X,z) on X to the second factor to obtain an action of 71 (X, ) on YX . This is
defined since the action on X is equivariant with respect to p. The action of m1 (X, x) on YZX
induces an action of Z[71 (X, z)] on the chain complex C\ ()N/ZX ).

Lemma 3.2. We have a homeomorphism
7T1(X, SL’) X (Yoy:) ﬁ = ?;Xa
where by definition the left hand side means:
(X, x) x Y/ ((7,7) ~ (¥, §) if there is g € m1 (Y, y;) such that y;(g) =~ and g-§=7).

Proof. Start with the covering space m1(Y;,v;) — Y, — Y; with fibre 71(Y;,yi), and then
apply the ‘product over 71(Y;,y;)’ construction to obtain a covering space 71 (X, z) Xy (Yi,yi)
7T1(Yvi,yi) — 7T1(X,:U) X7r1(Yi7yi) Y; — Y; Since 7T1(X,x) X7T1(Yi7yi) 7T1(Yvi,yi) = 7T1(X,$) as
discrete spaces and affine sets over 71 (X, x), this fibre bundle is homeomorphic to

(X, ) = 1 (X, 2) Xry (v, 90 Yi — Vi

Since both 71 (X,Z) X (v;y,) Y; and VX are covering spaces of Y; corresponding to the
homeomorphism ¢;: m1(Y;, y;) — 71 (X, z), they are homeomorphic by the classification of
covering spaces. O

It follows from Lemma 3.2 that we have an chain isomorphism Z[m (X, )] @z, (v;,4:)]
Cy (V) = C*(}A}Z-X ). Consider the sequence of chain maps:

A®z[r, (Yiyi)] Cu(Vi) S A ®zfm (x,2)] ZIT1(X, )] @z(r (v;,9:)] Cx (Yi)
=A@z, (x2)] Cx(Y7Y)
— A®gpr, (x.2)] Cx(X).

¢
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The first map sends a ® ¢ — a ® 1 ® c¢. The second map uses the isomorphism discussed
above, and the third map is induced by j;.

This chain level map induces a map on homology (j;)«: Hx(Yi; A) — H,(X; A), which in
turn induces

N N
PBli)e: @ H(Yi; A) = Ho(Y; A) > Ho(X; A).
=1 i=1

Let YX := [_]fV: 1 E?L-X . Then by identifying VX with its image in X we also have relative
twisted homology groups

H*(X7Y7A) = H*(A ®Z[7r1(X,x)] C*(Xv}f}X))

The chain maps above fit into a short exact sequence of chain complexes

N
0= P A®zp vy Cr(Yi) = A®zr, (x.2)] Cx(X) = A Qg x4y C (X, YY) — 0.

i=1

That this is exact follows from the chain isomorphism

A®zfm (vige)] Co (V) =A@z, (x,07) Co (V)

The short exact sequence of chain complexes gives rise to a long exact sequence in homology,
which we record in the next proposition.

Proposition 3.3. With a fized choice of paths {1;} and a representation ®: [[7_, m1 (Y, y;) —
Aut(A) that extends over X, there is a long exact sequence in twisted homology

> Hp(Y;A) > Hp(X;A) > Hp (X, Y;A) > Hp 1(Y;A) — -
with H,(Y; A) —> Hi(X; A) the inclusion induced map discussed above.

In later sections we work with many different representations of a given fundamental
group(oid), and so we emphasize the representation ® rather than the module A by writing
HE(Y) for H,(Y; A).

4. L®-signature invariants

In this section we introduce the Von Neumann L3 p-invariant of a closed (not necessarily
connected) 3-manifold equipped with a representation of its fundamental group or groupoid,
and we recall the key properties of this invariant required for the proof of Theorem 1.2. In
particular, we review the Cheeger-Gromov bound, a satellite formula, and an upper bound
in terms of the second Betti number of a bounding 4-manifold.

Definition 4.1. Let Y be a closed oriented 3-manifold, let I' be a discrete group, and let
¢: m(Y) — I be a representation. Note that Y might be disconnected, in which case we
use the conventions of Section 3. Suppose that ¢ extends to ®: (W) — I' where W is a
compact oriented 4-manifold with W =Y. The von Neumann L® p-invariant of (Y, ¢) is
the signature defect

PDY,§) = o (W, ®) — o (W),

where 01@ (W, ®) is the L(®-signature of the intersection form Ap: Hy(W, NT)x Hy(W,NT) —
NT and o(W) is the ordinary signature of the intersection form on Hy(W; Q). Here the L(?)-
signature is defined via the completion ZI' — CI' — NT to the Von Neumann algebra,
and the spectral theory of operators on NT-modules. We refer to [COT03, Section 5] and
[Chalda, Section 3.1] for more details. In particular, p) (Y, ¢) only depends on the pair (Y, ¢)
since both the L(?) signature and the ordinary signature satisfy Novikov additivity and also

o2 (V,®) = (V) for a closed 4-manifold V. (See [CWO03, p. 323] and [COT03, Lemma 5.9].)
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This invariant was originally defined by Cheeger and Gromov via Riemannian geometry
and n-invariants, independently of any bounding 4-manifold, so the above definition could
be taken as a proposition that the two definitions coincide. For our purposes, as is common
in the knot concordance literature, it is simpler to take the above as the definition; for a
discussion, see [COTO03, Section 5] and [CT07].

Example 4.2. Let M; be the zero-framed surgery manifold of a knot J < S and let
¢: m (M) — Z be the abelianization map. Then

pl1) = o (M12) = | oD
weSt

where o,(J) is the Tristram-Levine signature of J at w € S!, that is the signature of (1 —

W)V + (1 —w)VT for V a Seifert matrix of .J. See [COT03, Lemma 5.4] for the proof.

We will need the following theorem of Cheeger and Gromov, establishing a universal bound
for the p-invariants of a fixed closed 3-manifold Y.

Theorem 4.3 ([CG85]). Let Y be a closed oriented 3-manifold. Then there exists a constant
C such that |p® (Y, ¢)| < C for any discrete group T and any representation ¢: w1 (Y) — T.

We will refer to the infimum of all such constants C' as the Cheeger-Gromov constant of Y,
denoted C(Y'). We note that [Chal6] has given a proof of Theorem 4.3 using the signature
defect definition of p) (Y, ¢) given above, and has given explicit bounds for C(Y) in terms
of the triangulation complexity of Y.

The following proposition comes from [CHLO09].

Proposition 4.4. Let K = R, (J) be the result of a satellite operation on a knot R by infec-
tion knots {J} along infection curves {ay}. Let ¢: mi(Mg) — T', and suppose that for some
h e N we have ay, € w1 (Mg)™ for all k and T"+1) = 1. Suppose that for all k, either ¢(ay,) =
1 or ¢(a) is infinite order in T'. Then the restriction induced maps 71 (Mpr~| |v(ag)) = T
and m(Ey, ) — T extend uniquely to ¢o: mi(Mg) — I' and ¢p: m1(My,) — I' and we have

P (M, ¢) = p® (Mg, ¢o) + Y0P (M, 1)
2

Proof. The proof of [CHL09, Lemma 2.3] applies, with the following modification. The
original statement of this proposition assumes the additional hypothesis that I' is a poly-
torsion-free-abelian (PTFA) group. However, an inspection of the proof shows that we need
only assume that for each k either ¢(ax) = 1 € T or ¢(«y) is infinite order. In the case
that ¢(ay) # 1 in I', they need in the proof of [CHL09, Lemma 2.3] that H;(ag;ZT) = 0.
But since ¢(ay) is infinite order, Hi(ay;ZT") is the first homology of R x I'/{ay), which
vanishes. O

We will apply Proposition 4.4 when I' = G/G % 7,.Q) for some group G and h = 2. For such

T, any curves ay, € 71 (Mp)® satisfy the hypothesis of the proposition, since then ¢(ay) € I'?)
and I'® /T3 is torsion-free.

Under the assumptions of Proposition 4.4, we have that the map ¢y : 7 (M, ) — I factors
through the abelianization map. To see this, note that each meridian of Ji is identified
with a longitude of ay, which lies in m (Mg)™ and hence is sent to I'”). So the image of
¢r: T (M) — T is contained in T™™, which is an abelian group since I'**1) = 1. When

(") /0(h+1) is torsion-free, as occurs when T’ = G/G%,ZP,Q)

ép is either the zero map or maps onto a copy of Z in I'. By the principle of L(?-induction
[COTO03, Proposition 5.13] and Example 4.2, we have that

and h = 2, we therefore have that
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po(Jr) if ¢ #0

(2 =

Finally, note that since a meridian of Jj, is identified with a longitude A(ay) of ay in Mg, we
have that ¢y is the zero map if and only if ¢(A(ax)) = 0. We summarize the results of the
above discussion for later use.

Proposition 4.5. Let K = R,(J) be the result of a satellite operation on R by infec-
tion knots {Jy} along infection curves {ay} lying in m (Mg)®. LetT' = G/GE?Q?Z o) for
some group G and prime p, and let ¢: m(Mg) — I'. Then the restriction induéeﬁ maps
m(Mr~|v(ag)) — T and m(E;,) — T extend uniquely to maps ¢o: m1(Mgr) — I' and
¢r: m(My,) — I'. Moreover,

P (M, ) = p (Mg, o) + Yo (My,, dx) = pP (Mg, o) + Y 51(¥)po(Ji),
k k

where
)0 ifp(Aar)) =0
() = {1 if p(Aag)) # 0.

The following straightforward consequence of [Chal4a, Theorem 3.11] will provide our key
upper bound on L(?-signatures. Strebel’s class of groups D(Z,) was defined in [Str74]; we
will not recall the definition. We will use the fact that for any group G and any h € N, we

have that A = G/ Gfgh) is amenable and lies in D(Z,) provided S; is either Q or Zq; for every
i € N [CO12, Lemma 6.8].

Theorem 4.6. Let Z be a 4-manifold with boundary 0Z =Y and let ¢: m(Y) — m(Z) — A
be a homomorphism, where A is amenable and in Strebel’s class D(Z,). Then 1P, ¢)| <
2 dimzp HQ(Z, Zp).

Proof of Theorem 4.6. Let Z be the cover of Z induced by the homomorphism 71(Z) — A.
Since Z is a compact 4-manifold with boundary, it has the homotopy type of a finite 3-
dimensional CW complex. This follows from [KS69, §1(III)] to get a finite CW complex,
combined with [Wal66, Corollary 5.1] to restrict the dimension of the CW complex to three.

Let C, be the corresponding chain complex, and let @V* = C*(Z ) denote the chain complex

of Z. Since A is amenable and in Strebel’s [Str74] class D(Z,), [Chalda, Theorem 3.11] tells
us that

dim® Hy(Z; N'A) = dimg, Ha(Z, @74 Cx)
= dimg, H2(Z, ®zC%) = dimgz, Ha(Z; Zy).
It follows that
1p2(Y, 9)| = |00(Z) = 0(2)] < dim® Hy(Z; NA) + dimg Hy(Z; Q) < 2dimg, Ha(Z;7Z,).

We use the universal coefficient theorem to deduce that dimg Ho(Z;Q) < dimz, H2(Z;Zy)
for the final inequality. U

5. Metabelian twisted homology

In this section we review Casson-Gordon type metabelian representations of knot groups, and
the resulting twisted homology. The behavior of infection curves in this twisted homology
will be key to our proof of Theorem 1.2.
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We now let S denote a commutative PID and let @) denote its quotient field. We will often
take S = F[t*1] and Q = F(¢t) for some field F, as well as S = Z and Q = Q.

Let X be a space homotopy equivalent to a finite CW-complex and let A be a left S-module
given the structure of a right Z[m(X)]-module by a homomorphism ¢: m(X) — Aut(A).
Note that m(X) naturally acts on 6’;, the chain complex of the universal cover X of X , on
the left. Then as in Section 3, the twisted homology H.(X; A) is defined to be

HY(X) := Hy(A®zpm, (x)) Cr)-

We will be particularly interested in the following metabelian representations. Suppose
that we have a preferred surjection e: Hy(X) — Z. For every r € N, we let p,: Z — Z, be
the usual projection map and let X" denote the r-fold cyclic cover of X corresponding to
ker(p, o€). Note that covering transformations give H;(X") the structure of a Z|Z,]-module.
Choosing a preferred element vy € m1(X) with e(v9) = +1 then gives us a map

Pro 7T1(X) — 7 D(Hl(Xr) by v — (t5(7)7 [,-YO_E(’Y),Y])’
()

where 7, E(V)'y e m(X,) < m(X) and [y, E('Y)'y] denotes the image of v, "y under the
Hurewicz map. '
Given any choice of a homomorphism y: Hi(X") — Zu,, we let &, = 2™/™ and obtain a

map 0y : Z xH1(X") — GL.(Q(&x)[t*]) by

o ... 0o t]'[e@ o . 0

. 0 ... 0 0 gl 0

(#.a) > e .
0 ... 1 0 0 0 ... gtha)

We then let S = Q(&,)[t*] and A = Q(&,)[t*!]", noting that 6, o p,, gives A a right
Z|m1(X)]-module structure. These representations appear in [KL99, Let00, Fri04, HKL10,
FP12], modelled on the covering spaces used in the definition of Casson-Gordon invari-
ants [CG86]. We refer to such representations as Casson-Gordon type representations.

In particular, given an oriented knot K and a preferred meridian p € m (X ), the canonical
abelianization map e: m (Xg) — Z has e(u) = +1. Note that since the zero-framed longitude
Ak of K is an element of m (Xx)?), for every r € N the map p,: m(Xg) — Z = Hy(X})
extends uniquely over 71 (Mg ). The homology H;(X") splits canonically as H (X, (K)) ®Z,
where X,.(K) is the rth cyclic branched cover of $® along K. Our map x: Hi(X") — Zp,
will always be chosen to factor through the projection map to Hi (%, (K)).

In the case 7 = 2 we have that ¢ must act by —1 on H;(X2(K)) , as discussed in the first
paragraphs of [Dav95], and so we can conveniently decompose 6, o p,, differently as 6 o f,
where

fx:m(Mg) > Z X Zp,
v (D, x([=4]))

and

0: Z x Z, — GLo(Q(&)[EE])

; 0 t]’er o
J — m
GO Rk
The following proposition is a slight modification of a result of [MP18, Prop. 7.1], and gives

the key connection between a certain derived series and metabelian homology, when m = ¢*®
is a prime power.
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Proposition 5.1. Let W be a 4-manifold with boundary 0W =Y. Let ®: m (W) — Aut(A)
be a representation that factors through Z x Zgs for some prime q, and let ¢: w1 (Y) — Aut(A)
be the composition of ® with the inclusion map w1 (Y) — w1 (W). Letn e m1(Y)? and suppose

1 is sent to the identity in Wl(W)/Wl(W)E(gZ Q)
s44qS

n to the cover of W induced by ®, we have that the class [v® 7] in Hf(Y) maps to 0 in
Hf’ (W).

Proof. The proof of [MP18, Prop. 7.1] (with its first and last sentences deleted) applies
verbatim. ]

Then for any v € A and any 7, a lift of

Finally, we recall the twisted Blanchfield form. In analogy to the linking form on the
torsion part of the ordinary first homology of a closed oriented 3-manifold, if ¢: m(Mg) —
GL,(Q(&n)[tT1]) arises as above then there is a metabelian twisted Blanchfield form [MP18]

BI: H (M) x HY (M) — Q(&m)(1)/ Q(&m)[t*"].

Note that in the above circumstance H fﬁ (M) is a torsion Q(&,,)[t*!]-module, by the corollary
to [CG86, Lemma 4]; see also [FP12]. In Section 6.1, we will need to know that this form
is sesquilinear [Pow16]. That is, letting ~ denote the involution of Q(&;,)[t*!] induced by
sending t — ¢t~ and a + bi — a — bi, we have

BI?(pz, qy) = pgBI®(x,y) for every p,q € Q(&,)[tF!] and x,y € HY (Mk).

6. Main theorem and examples

Here is the result that we use to show that certain satellite knots have large 4-genus.

Theorem 6.1. Let R be a ribbon knot and let n',...,n" be curves in S®\ v(R) that form
an unlink in S3 such that each 1) represents an element of 7T1(MR)(2). Suppose that there is
a prime p such that for every nontrivial character x: Hi(X2(R)) — Zy, we have
(1) The module HfofX(MR) = H (Q(fp)[til]2 ®z[r1 (Mp)] C*(m)> is nontrivial and gen-
erated by the collection {[1,0] ® [7/] Jp

(2) The order of HfofX(MR) is relatively prime to Ag(t) over Q(&pe)(t) for all a > 0.
Let mp > 0 denote the generating rank of the p-primary part of Hi(X2(R)) and let dr denote
the number of distinct orders of HfofX(MR) as x ranges over all nontrivial characters from
Hl(EQ(R)) to Zp. '

Now fix g > 0 and suppose that N > W and that the collection of knots {J] | 1 <
i < N,1<j<r} satisfy

] —1 r 7j—1
po(J))| > 229+ N = 1) + NCr+ Y Y po(JE| + D |po(JY)]
k=1/4=1 /=1

for each 1 <i< N,1<j<r. Then the knot K = #f\ian%_.’nr(Jil, ...y JT) has 4-genus at
least g + 1.

We remark that both mp and dr depend not only on the ribbon knot R but also on the
choice of prime p, though for convenience we suppress this from the notation. We remark
also that Theorem 6.1 can be generalized to consider higher prime power branched covers by
appropriately changing the constants; we leave the details of that to the interested reader.

For convenience, we write 7] for the curve 7/ in the ith copy of R in #f\i 1 R. Note that we
can also write K = #.¥ | K;, where K; := Ry i (J1,...,Jr). We will prove Theorem 6.1 in
Section 9 by assuming that g4(K) < ¢g and obtaining a contradiction as follows.
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Under the assumption that g4(K) < g, we construct a manifold Z with 0Z =Y :=
|_|Z-]\i1 Mp,, x(Z) = 2g, and a few other nice properties. We then let

V:m(Y) > m(Z) - A= Wl(Z)/Tfl(Z)%,zpa,@)

be the map induced by inclusion. Since A is amenable and in D(Z,) [Chal4a, Lemma 4.3],
Proposition 4.6 gives an upper bound on |p®(Y,%)| in terms of g. Our result follows
from obtaining a contradictory lower bound on ]p(2)(Y, ¥)|. By Proposition 4.5 and our
choices of the Jij knots, we will obtain a contradiction if for some 7 and j we have )\(ng ) ¢
m(2) @z, 0
sentation ¢: m(Y) — Z x Zp« which extends over m(Z) to ® such that for some i and
Jj, the element [1,0] ® [)\(ng )] € H?(Y) is not in the kernel of the inclusion induced map
H?(Y) — H®(Z). The technical work of the proof consists of showing that such a map ¢
must exist under the assumption that g4(K) < g together with our construction of K.

By Proposition 5.1, this will be implied if we can construct some repre-

We will first give some examples of knots satisfying the hypotheses of the theorem and then
prove some technical lemmas in the next two sections. In particular we will need to gain some
control over the size of certain homology groups, in order to show that some curve 7/ always
survives into a suitable 3-solvable quotient of the fundamental group of the complement of
a hypothesized locally flat embedded surface of genus g. Of course Theorem 1.2 follows
immediately from Theorem 6.1 together with the examples exhibited in Section 6.2 below
and (for the grope bounding result) Proposition 10.7.

It is relatively easy to find examples of seed ribbon knots satisfying the hypotheses of
Theorem 6.1, at least with the help of a computer program to compute twisted metabelian
homology, as developed in [MP18]. In Section 6.1 we give one such example of a pair (R, «),
and describe the appropriate infection by knots with Arf invariant zero and large signature
in order to obtain 2-solvable large 4-genus knots.

It is a little harder to find suitable seed knots R that also satisfy Proposition 2.6, and there-
fore produce 2-solvable and 2-bipolar large 4-genus examples for the proof of Theorem 1.2..
Nonetheless, we exhibit such a seed knot R with suitable infection curves in Section 6.2, and
describe the appropriate infection by 0-bipolar knots with large signature in order to obtain
2-bipolar, 2-solvable large 4-genus knots.

6.1. Example 1: a 2-solvable knot with large 4-genus

Let R denote the ribbon knot 8g, with the unknotted curve a in S®\ v(R) illustrated in
Figure 1.

FiGURE 1. The knot R = 8g with a grey Seifert surface and a red infection curve a.
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This is the same knot-curve pair (R, «) as in [MP18, Example 8.1], with a slight isotopy to
make it more obvious that the curve a bounds a surface in the complement of a Seifert surface
for R, and hence lies in 71 (M R)(Q). We will need a few computations from that paper. First,
Hq(X2(R)) = Zss. Note that rescaling a character x : H1(X2(R)) — Zs by a nonzero element
of Zs does not change the underlying (Z x Zs)-covering space of Mg, and hence preserves the
isomorphism type of the twisted homology. It is therefore not hard to check that given any
nontrivial character x: H;(32(R)) — Zs, the corresponding twisted homology H f R (Mp) is
isomorphic to Q(&)[t']/{t? — 3t + 1). Since a is in m (Mg)®, it lifts to a curve & in the
fx covering space of Mg, and hence = := [1,0] ® & is an element of Hfof X(Mpg). Finally,
the metabelian twisted Blanchfield pairing BI1?°/x(z, z) is non-zero in Q(&)(t)/ Q(&)[tF!],
as was computed in [MP18, Example 8.1].

Lemma 6.2. The element x generates Hfofx (Mg).

Proof. Supposing for a contradiction that x does not generate. Let y be some generator for

Hfofx (Mg). Note that B1%/x(y,y) is of the form tﬂg’lrl for some q(t) € Q(&)[tT!]. The

polynomial ¢ — 3t + 1 factors as (t —w, )(t—w_) for wy = LQ/E € Q(&5). Therefore, if x does

not generate then it must be homologous to c(t — wy )y for some c € Q(&)[t*!] and * € {£};

without loss of generality, say # = +. But then we can obtain a contradiction, since
BIH(a,2) = BIH(e(t —wi )y, elt —w)y)

= (t —wy)(t — wy)ceBIx(y,y)

= (- w7 — e
= —t twy (t—wy)(t — w—)CCtQ—qgft)—i—l
— it w,emg(t) = 0 € Q(E)(1)/ Q&[] -

Now, fix some g > 0 and let N = 8¢ + 2, noting that mp, the generating rank of the 5-
primary part of Hi(X2(R)), is 1 and that there is only one isomorphism class of H 10 of X(MRg)
and so dr = 1 as well. Note that t2—3t+1 is relatively prime to Ag(t) = 2—6t+9t> —6t3 +2t4,
even considered over C. By [Chal6, Theorem 1.9], Cr = 10 is an upper bound for the
Cheeger-Gromov constant C(Mpg) of the 0-surgery on R. For k = 1,..., N, let Ji be a knot
with Arf(Jy) = 0 and

k-1

Z; (L651 aw(Ji)dw). (1)

1=

J ou(Ji)dw > 229+ N —1) + CrN +
weS1t

We can achieve this by taking Ji to be a sufficiently large even connected sum of negative
trefoils, since for the negative trefoil

J ow(Ji)dw =4/3 > 0.
weS1t

In fact, the numerically minded reader can easily verify that Equation (1) is satisfied if we
define Jj, to be the connected sum of 10¥*10¢ negative trefoils.

We note that K = #¥ | R,(J;) is a 2-solvable knot (by Proposition 2.3) which satisfies the
hypotheses of Theorem 6.1, and hence has topological 4-genus at least g + 1.

6.2. Example 2: a 2-solvable, 2-bipolar knot with large 4-genus

Let R be the knot depicted on the left of Figure 2. On the right of Figure 2 we see a genus
2 Seifert surface F' for R along with two sets of derivative curves for R: each of the two
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component links D = D; u Ds (blue) and L = Ly u Ly (red) generates a half-rank summand
of Hy(F), forms a slice link (in fact, an unlink) in S3, and is O-framed by F.

FIGURE 2. The knot R = 11,74 = P(3,—3,3,—2) (left) and a Seifert surface
for R along with two derivative links L = L1 U Lo and D = Dy U Da(right).

Now let (1, 82,71,72 be the curves indicated on the left of Figure 3. These curves are
disjoint from F and hence lie in 71 (Mg)("). Note that the indicated basepoints should be
thought of as living in a plane ‘far below’ the plane of the diagram; in that plane they can
be connected, uniquely up to homotopy, to a single preferred basepoint for 7;(Mg).

F1GURE 3. Unknotted curves f31, 82,71, 72 in 7T1(MR)(1) (left) and ot in wl(MR)(Q) (right).

Let a= = [B1, B2] and a™ = [y2,72], where [v, w] = vwv~tw™!; unknotted representatives
for ot are shown on the right of Figure 3. Note that a® € 71 (Mg)®. Since at has no
geometric linking with either component of the link D, for any knot J the satellite knot
R,+(J) still has a smoothly slice derivative, and hence is itself smoothly slice. Similarly,
since a~ has no geometric linking with the either component of the link L, the satellite knot
R, (J) is slice for every knot J. Therefore, by Proposition 2.6, for any 0-positive knot J*
and O-negative knot J~, the knot R,+ ,-(J*,J7) is 2-bipolar.

We now proceed to verify the conditions of Theorem 6.1, so that for appropriate choices
of N € N and of J;—r, i=1,...,N, the knot #i]ilRa+7a—(Ji+, J;) will have large topological
4-genus.
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Note that Hq(X2(R)) = Z3®Zs, and so (up to rescaling by a nonzero constant), there
are four nontrivial characters x: Hi(32(R)) — Zs. We compute that for three of these
characters, which we call x1, x2, and x3, the resulting twisted homology is

H{™¥ (Mp) = Q(&) [/t — 1)%) =: Ay

For the fourth character, denoted by x4, we compute that the twisted homology is
0o
HIa (M) = Qés)[1H1]/¢2 — 14t + 1) =: A,

Crucially, for any nontrivial x; the lifts of o™ and a~ to the cover of Mg induced by fy,
generate Hfof’“ (Mpg). (More precisely, [1,0] ® [a*] and [1,0] ® [a~] generate.)

As in [MP18], we computed the twisted homology using a Maple program, available for
download on the authors’ websites. The program obtains a presentation for the twisted
homology using the Wirtinger presentation, taking the Fox derivatives, and then applying
the representation. It then simplifies the presentation by row and column operations to obtain
a diagonal matrix. Keeping track of how the original generators, which can be identified in
the knot diagram, are modified under the sequence of row and column operations, we not
only compute the twisted homology H fofxi(M r) but also can identify which elements the
curves [1,0] ® [a®] represent in Hfofxi(MR). Note also that the orders of A; and As are
both relatively prime to Ag(t) = (t* —t + 1)? even over C.

Now let g € N be given. By our discussion above, we have mr = dr = 2, and so we let

4g(2+1) +2
2

Let Cr denote an upper bound for the Cheeger-Gromov constant C(Mpg). For each ¢ =
1,..., N, successively pick m; to be even and large enough that J;" := #™T} 5 satisfies

N = = 6g + 1.

i—1

i—1
po(JH) < =2(2g + N — 1) = NCr + > po(J;") = D po(J; ),
j=1 j=1

and then pick m/ to be even and large enough that J; := —#mIiTQ,:), satisfies

i—1

po(J7) > 229+ N —1)+ NCr— > po(J;") + Y po(J;).
i=1 i=1

Note that in particular po(J;") < 0 < po(J;) for all 4.

We now let K; = Ra*,a*(‘];_?t]i_) and K = #,K;. Observe that K is 2-solvable by
Proposition 2.3 and 2-bipolar by Proposition 2.6; K also satisfies the hypotheses of Theo-
rem 6.1, so g4(K) = g+ 1. In Section 10, we will show that K bounds an embedded grope of
height four in the 4-ball. The knot K therefore gives the example claimed in Theorem 1.2.

It now remains to prove Theorem 6.1.

7. Controlling the size of some homology groups

This section contains some technical results needed for the proof of Theorem 6.1, with the
theme that we need to control the size of certain homology groups of some covering spaces.

We start this section with an elementary algebraic lemma. This lemma and the one after
it are very similar to, and are inspired by, results of Levine in [Lev94], in particular Lemma
4.3 of Part I and Proposition 3.2 of Part II. To avoid citing lemmas that were written for
a different situation, and for the edification of the reader, we provide short self-contained
proofs.
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Lemma 7.1. Let F': M — M be an endomorphism of a finitely generated free Z|Zs]-module
M such that
Id@F Z®Z[ZQ]M — Z®Z[ZQ]M

is an isomorphism, where Z is a ZL[Zz]-module via the trivial action of Zy on Z. Then
Id®F: Q[Z2] ®z(z,) M — Q|Z2] ®zz,) M
18 also an isomorphism.

Proof. Let A+ BT € Z[Z2] be the determinant of F, where A, B € Z and T € Zs denotes the
generator. Then A+ B = +1 by hypothesis. Thus A2~ B? = (A+B)(A—B) = +(A—B) # 0
since A + B = A — B modulo 2. Now

1
eyl
so over Q[Zs] the determinant of F' is invertible, and hence Idgz,] ®F is an isomorphism as
desired. O

(A+ BT) - A—BT) =1,

Next we apply this lemma to obtain some control on the size of the homology of double
covering spaces.

Lemma 7.2. Let f: X — Y be a map of finite CW complezes such that
fe: Hi(X;2) - Hi(Y;Z)

is an isomorphism for i = 0 and a surjection for i = 1. Let ¢: m(Y) — Zg be a surjective
homomorphism and let X2,Y? be the induced 2-fold covers. Then

fur Hi(X%Q) = Hi(X;Q[Zy]) — Hi(Y?; Q) = Hy(Y;Q[Z2))
s also an isomorphism for i = 0 and a surjection for i = 1.

Proof. The zeroth and first relative homology groups vanish, that is H;(Y, X;Z) = 0 for
i = 0,1. Thus the cellular chain complex (C (Y, X;Z), 0«) admits a partial chain contraction:
writing Cy to abbreviate C (Y, X;Z), the partial chain homotopy comprises maps so: Cy —
Cq and s1: C7 — (9 such that dosg=1d: Cy — Cyp and do sy +sgod=1d: C7 — C;.

To see this, follow the proof of the fundamental lemma of homological algebra: for each
basis element x; € Cy, choose a lift y; € C; with dy; = z;, and define so(x;) = y;, and then
extend linearly. Such a y; exists since 0: C7 — (Y is surjective. Then for each generator
z; € C1, consider Id(z;) — sg o d(z;). Since

d(Id(z;) — s0 0 0(2:)) = 0(2i) — @0 890 (i) = (2;) — Idod(z;) =0,

we have that Id(z;) — sg 0 d(z;) is a cycle. Hence there is a v; € Cy such that dv; = Id(z;) —
s000(z;). Define s1(z;) := v;, and extend linearly to define s; on all of C;. Then 0o s1(z;) =
ov; = Id(z;) — sp o 0(z;) for every generator z; of Cj. This completes the construction of a
partial chain homotopy.

Now consider the chain complex Dy := Cy(Y, X;Z[Zs2]) = C4(Y?, X?), the relative chain
complex of the 2-fold covering spaces. Since the cellular chain groups are finitely generated
free modules, the partial chain contraction sg, s1 lifts to maps Sp: Dy — D1 and 81: D1 — Ds.

We claim that these maps induce a partial chain contraction after tensoring over Q[Zs].
To see the claim, the maps

F:=35y00: Dy —> Dy and G:=008] +5p00: D — Dy

are endomorphisms of the free modules Dy and D; respectively, that become automorphisms
when tensored over Z. That is,

Id®F: Z®zz,1Do — Z®z[z,) Do,
d®G: Z®zz,1D1 — Z®z(z,1D1
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are isomorphisms. By Lemma 7.1,
Id®F: Q[Z2] ®z(z,] Do — Q[Z2] ®z(z,] Do,
1dRG: Q[Z2] ®zz,) D1 — Q[Z2] ®z(z,) D1
are also isomorphisms. Thus
1d®3;: Q[Z2] ®z(z,) Di — Q[Z2] ®z(z,) Di+1
is a partial chain contraction and
H;(Q[Z2] ®ziz,) D+) = Hi(Y?, X% Q) = Hi(Y, X;Q[Zs]) = 0

for i = 0,1. The lemma follows from the long exact sequence of the pair (Y, X) (Proposi-
tion 3.3). 0

Our next lemma requires some facts about finitely generated modules over commutative
PIDs, which we remind the reader of in order to establish notation.

Definition 7.3. Let S be a commutative PID with quotient field (), and let A be a finitely
generated module over S.

(1) TA := {a € A such that sa = 0 for some s € S}, the S-torsion submodule of A.

(2) A® := Homg(A,Q/S). If A is torsion (i.e. A = TA), then A and A" are non-
canonically isomorphic.

(3) Given a map of S modules f: A — B, we abbreviate f|ra: TA — TB by f|p. We
emphasize that coker(f|r) is therefore isomorphic to TB/Im(f|r4), not B/Im(f|ra).

(4) We say that A has generating rank k over S if A is generated as an S-module by &
elements but not by £ — 1 elements, and write g-tkg A = k. It follows immediately
from the definition that if A surjects onto B then g-rkg B < g-tkg A. It is also true
and easy to check that if B < A then g-rkg B < g-rkg A, though this is less obvious
and uses that S is a commutative PID.

(5) By the fundamental theorem of finitely generated modules over PIDs, there exist
J,k € N and elements s1, ..., s, € S such that there is a (non-canonical) isomorphism

k
A= S @TA= S @D S/(si).
i=1
When j > 0 we say that the order of A is |A| = 0 and when j = 0 we say that the
order of A is |A| = Hle 8;. This is well-defined up to multiplication by units in S.

The key property of order we use is that if f: A — B is a map of S-modules with
ker(f) torsion, then |Im(f)| = |A|/| ker(f)].

We will need the following basic lemma in the proof of Theorem 6.1, noting for future use
that F[t*!] is a Euclidean domain whenever F is a field.

Lemma 7.4. Let A be a finitely generated module over a Fuclidean domain S, hence non-
canonically isomorphic to S™ @ TA for some m = 0. Suppose that B is a submodule of A
such there exists C < A/B of generating rank ¢ > m. Then there exists a module C' <
TA/(BnTA) of generating rank ¢ — m such that the order of C' divides the order of C.

Proof. Let aq,...,ap be elements of A such that [a1],...,[as] generate C < A/B. Pick a
decomposition of A =~ S™ @ TA and use it to write each a; = (sf);”:l @ «; for (sz)znzl e sm
and o; € TA. Since S is a Euclidean domain, row-reduction of the £ x m matrix M with
M; ; := s] yields a matrix M’ in Hermite normal form. Since ¢ > m, we have that M’ contains
at least £ — m rows of zeros. By taking the corresponding linear combinations of the a;, we

obtain a new collection of elements aj = (t])7.; @ «; such that the collection of [a}] generate

C. Moreover, for ¢ > m we have that tg =0forall j=1,...,m and so a, = o € TA. Note
that for i > m we have that o} # 0, since if a; = a} = 0 then the generating rank of C' would
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be strictly less than ¢. For similar reasons, we see that the generating rank of the submodule
of TA/(B n TA) generated by o, 1,...,, is exactly £ —m. So let C’ be this submodule.
Finally, the order of C’ divides the order of C' because C’ is a submodule of C. g

We will use the next lemma twice, once in the proof of Proposition 7.6, and then again in
Step 3 of the proof of Theorem 6.1 in Section 9.

Lemma 7.5. Let X be a 4-manifold with boundary 06X =Y. Let S be a commutative PID
with quotient field QQ and let A := S™ for some n € N. Suppose there is a representation ® of
the fundamental groupoid of Y into Aut(A) that extends over X, as in Section 3. Consider

the long exact sequence (Proposition 3.3) of S-modules of the pair, with coefficients taken
in A:

, 5 . .
o Hy(X) 5 Hy(X,Y) S Hi(Y) 5 Hiy(X) 25 Hi(X,Y) —> - .
Suppose that Hi1(X,Y) is torsion. Then ker(ji|r) = coker(ja|r).

Proof. Unless otherwise specified, all homology groups are taken with coefficients in A. First,
we argue that the Bockstein homomorphism S is an isomorphism. This Bockstein arises in
the long exact sequence of Ext groups [HS97, IV, Prop. 7.5] associated to the short exact
sequence 0 —> S — Q — Q/S — 0, as follows:

Ext$(H(X,Y),Q) — Ext(H(X,Y),Q/S) A, Exth(Hi(X,Y),S) — Exts(H (X,Y), Q).

Since @ is an injective S-module, Ext(H(X,Y), Q) vanishes, and Ext%(H;(X,Y),Q) = 0
because Hi(X,Y) is torsion. Thus 3 is an isomorphism.

Therefore Poincaré duality, universal coefficients, and the (inverse of the) Bockstein ho-
momorphism together induce natural isomorphisms fitting into a commutative diagram:

-1
THy(X) "2 THA(X,Y) "5 Exth(Hy(X,Y), S) ﬁ? Exty(Hi(X,Y),Q/S) = TH (X, Y)"

P

THy(X,Y) P2 TH?(X) L2 Extl(H (X), 5) 5? Exty(H1(X),Q/S) —= THy(X)"

By the naturality of the above sequence of maps, the following square commutes and so
coker(ja|r) = coker((ji|r)").

Jo|T

TH>(X) THy(X,Y)

I
(Jilr)”

TH (X, V) 222 THy(X)

Now let H := ker(ji|r) < TH;(X) and define ®: coker((ji|r)") — H”" by ®([f]) = flu-.
Observe that @ is well-defined, since for any g € TH1(X,Y )" we have

(1) (9)(x) = g(jr(2)) = 9(0) =0 for all z € H = ker(j|r).

Also, ® is onto: given any fe H" (i.e. amap f: H — Q/S), since H < TH;(X), and using
that @/S is an injective S-module, we can extend f to a map g: TH1(X) — @Q/S, and will
have that ®([g]) = f. Therefore, in order to show that ® is an isomorphism it is enough to
show that | coker((j1|7)")| = |H"|. Note that

vay I THA(X)N [ TH(X) " | ker ((1]7) ")
| coker((j1|7)")| = (G ) )] THL(X,Y)")| : (3)
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Also, (ji|7)" (f) = 0if and only if f(j1|r(x)) = 0 for all z € TH;(X) if and only if f vanishes
on Im(j1|7), so
: [TH\ (X, Y)")]
ker M = _ .
| ((]1’T) )’ |I (]1|T)‘

Therefore we can rewrite Equation (3) as
_ | TH(X)"] _ [TH (X))
[Im(ja|r)[  [Im(ji|r)|

So ®@: coker((ji|r)") — ker(ji|r)”" is an isomorphism. Since ker(j1|7) is a torsion S-module,
there is an (albeit non-canonical) identification ker(ji|7) = (ker(j1|7))”, and so we have as
desired that

| coker((j1|7)")] = [H| = [H"|.

coker(ja|r) = coker((ji|r)") = ker(ji|r)" = ker(j1|7). O

Note that in particular this implies that ker(ji|r), = coker(ja|r), for any prime p, where
for a Z-module G we write G, for the p-primary part.

Next we apply the control on homology of double covers gained in Lemma 7.2 along with
the homological algebra of Lemma 7.5 to manifolds M3 and V4.
Proposition 7.6. Let M be a homology S* x S?, and let V be a connected 4-manifold

with boundary M such that the inclusion induced map Hy(M) N H1(V) an isomorphism.
Suppose that Hi(M?) = Z®G, where G is torsion. Then for any prime p the p-primary part

of THy(M?)/ker(THy(M?) — THi(V?)) has generating rank at least n := %X(V), where
m denotes the generating rank of the p-primary part of THy(M?).

Proof. Observe that H;(V, M;Z) =0 for i = 0,1. It follows from Lemma 7.2 that
H;(V?, M? Q) = H{(V,M;Q|[Zs]) =0 fori=0,1.
Therefore dim Hy(V?,Q) < dim Hy(M? Q) =1 and
dim H3(V?;Q) = dim H3(V?;Q) = dim H,(V?, M?;Q) = 0.
Also note that
2x(V) = x(V?) = 1 —dim H(V?,Q) + dim Hy(V2, Q).

We therefore have that dim Ha(V?2, Q) = 2x(V) + dim H;(V?2,Q) — 1 is at most 2x(V). Now
consider the following long exact sequence:

A ; . .
s Ho(VH B Hy(VE M?) S Hy(M?) 2 Hy(VE) 2 H (V2 M?) ...

From above we have H1(V2, M?;Q) = 0, and so by Lemma 7.5 we have that g-rk ker(j|r), =
g-rk coker(ja|7)p. Moreover, for any finitely generated abelian group A, we have that A x~
Z*@TA for some a € Ny and hence that g-rk(A ® Z,) = a + g-rk(A,). In particular
g-rk(ker(ji1|7) ® Zp) = g-rk(coker(ja|7) ® Zp). Combining g-rk(A ® Z,,) = a + g-rk(A,) with
Hy(M?) =~ Z&®T Hy1(M?), we have that in order to show as desired that the generating rank
of the p-primary part of (T'H;(M?)/ker(i1|r)) is at least n, it suffices to show

gk ((Hi(M?)/ker(i1)) ® Zy) = n + 1.
Note that Hiy(M?)/ker(i1) =~ Im(i1) = ker(j1), so if g-rk (ker(j1) ® Z,) = n + 1 then we
are done. Similarly, since g-rk (H1(M?) ® Z,) = m + 1 and
ker(i1) = Im(0) =~ Hy(V?, M?)/ker(d) = Ha(V?, M?)/Im(jz) = coker(jz),

if g-rk (coker(j2) ® Z,) < m — n, then we are also done.
So suppose for a contradiction g-rk (coker(ja2) ® Zp) > m — n and g-rk (ker(j1) ® Zp) < n.
Note that since H3(V2, M?) =~ HY(V?) =~ HY(M?) =~ Hy(M?), the ranks of Hy(V?, M?) and
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Ho(V?) coincide and so Ho(V2, M?) splits (albeit non-canonically) as 7> (V) @®THy(V?, M?).
Thus we obtain our desired contradiction as follows:

2x(V) +n =m —n < g-rk (coker(j2) ® Zp)
< g—rk( Hy( V2 M? )/ Im(j2|7)) ® Z )
= g1k (Zb2 ) + gk ((THay(V?, M?)/Tm(ja|7)) ® Zy)
= by(V?) + g-rk (coker(ja| 1) ® Z))
= bz(VQ) + gtk (ker(ji|r) ® Zp)
by(V?) + gtk (ker(j1) ® Zp) < 2x(V) + n. -

8. A standard cobordism

In this section we study a standard cobordism U between the zero-framed surgery manifold
of a connected sum of knots Mg = Myy , and the disjoint union V" := |_|l 1 Mk, of the
zero-framed surgery manifolds of the summands K;. In particular we need to understand the
behavior of certain representations of the fundamental groups. We will also explicitly choose
the basepoints {x;} and paths {7;} necessary to define twisted homology for disconnected
manifolds, as discussed in Section 3.

L7 N

# Kn_1

FicURrk 4. A Kirby diagram for U.

Let U’ be Mg x [0, 1] with (N —1) 0-framed 2-handles attached along ‘longitudes of K;.” A
schematic of a relative Kirby diagram for U’ is given by the black and blue curves of Figure 4.
Note that we depict each K; as the boundary of a Seifert surface GG;, and hence K = #filK
as the boundary of hfilGi. Since repeatedly sliding the black O-framed curve over the blue
curves gives the standard surgery diagram for Y’, we have 0, (U’) = Y’ := #¥ My, Now
let U” be Y’ x [1, 2] together with (IV — 1) 3-handles attached along 2-spheres (whose outline
is indicated in green in Figure 4) so that 0, U" =Y = |_|fi1 Mg, Let U =U" vy U".

We now consider the points, arcs, and closed curves shown in Figure 5.
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FIGURE 5. Basepoints x;, arcs k;, and meridians p; for ¢ = 1,..., N and
closed curves §; for j =1,...,m in M.
Note that the curves ¢; for j = 1,...,m form a normal generating set for the first commu-

tator subgroup of m (Mg, xn), when suitably based using the arcs ;.
The attaching regions for the 2-handles of U’ avoid

N N-1 m
UuKiu U Ki U UéjCMK,
i=1 i=1 j=1

and so the points z} := x; x {1}, arcs &} := x; x {1}, and loops . := pk, x {1} and
;= 0;x {1} liein 0,U" =Y" foralli=1,...,N and j = 1,...,m. Similarly, the attaching
regions for the 3-handles of U” avoid

N m
<U“/Kz v U5;> cY,

i=1 j=1
and so the loops ., = py, x {2} and 07 := ¢} x {2} liein 0,U" =Y foralli=1,...,N
and j =1,...,m. For each ¢ = 1,... N we have an inclusion-induced map

i ﬂ-l(MKi7x’/i X {2}) - 7[‘1(U”,l‘3\7) by 8 — H; ’ (."L‘; x [172]) B (:L’; x [152]) ’?;
Let U = U’ Uy U”, and note that we also have an inclusion-induced map
v:m(U”,2ly) > mU.zn) by v (zn x [0,1]) -7+ (zn x [0,1]).
In the language of Section 3, ¢ o ¢; is induced by the path from zy to z] given by
7 = (zy x [0,1]) - &5 - (2} x [1,2]).
We return to using the notation from Section 5 in order to state and prove the following.

Proposition 8.1. Let K = #f\ilK,; and U be the standard cobordism from My to |_|f\i1 Mg,
as above. Let p € N and choose maps x;: H1(X2(K;)) — Zp for i = 1, ..., N, so
(xi)¥y: Hi(Z2(K)) — Zyp. Let ug, be the preferred meridian for K and fori =1, ..., N
let /‘/I/(i be the preferred meridian for K;. Then the map

f{;z)]\;1 : 7T1(MK,$N) — 7 X Zp
extends uniquely to a map F: m(U,zN) — Z x Zp. Also, the composition
i F
fi: Wl(MKw'x; X {2}) = 7r1(U”>xlN) - 7Tl(va .%'N) — 7L x ZZ’

satisfies f; = fifl
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Proof. Notice that m (U) = m1(Mk)/{Aky,s---,Aky_,y- Therefore, since each Ag, bounds
a subsurface of ¥ ;G; and hence lies in 71 (M. )@, the map f(I; N extends uniquely as
i)i=1

desired.
Observe that for all i = 1,..., N we have

(ealphe) = - (ah x [1,2]) - e, - (@ [1.2) - )
:L(Hg./’L,Ki ;;)
= (xn x [0,1]) - &; ',U/Ki Hjm = pky € (U, zN).

Therefore
filwk,) = Flpry) = f{;i)zz_vzl(ﬂKN) = (t,0) = fXi(uk,) € Zx Ly,

For each i = 1,... N, every element v € m(Mk,,x!

) can be written as v = (M’I’Q)E(%)a
for some element a € 71(Mf;,=?)(!). Moreover, the collection of &7 corresponding to K; in

Figure 5 normally generate 71 (Mg, , x} YD Tt therefore suffices to check that f; agrees with

51 on pfy K, (as done above) and on the collection of (5;-’ corresponding to Kj.

Supposing that d7 corresponds to K;, we have that

(6(0)) = ol - (o x [1.2]) -6 - < (L2 - )
= (,.{ 5/ )
(zn x [0,1]) - K} - 0} - k] - (xn x [0,1])
= ri0jR; € m (U, zN).

Now fix a lift Zx of 2y to ]\4?(7 the double cover of Mg . Since x does not lie in a tubular
neighborhood of K, we can think of Zx as lying in E% < ¥3(K) as well. The inclusion
induced maps Mx — U and Mg, — U induce isomorphisms on first homology, and so the
double cover U? is a cobordism from Mf{ to |_|fi1 Mlg(l For each 7« = 1, ..., N, lifting the
arc

ki (i x [0,1]) - (2 x [1,2])

to U? starting at Zx gives a preferred basepoint 507 in M% . As before, we also think of this
basepoint as lying in E% < Yo(K;). We can therefore speak of the lift 4 of a curve y based
at Ty (respectlvely7 " ) to Yo(K) (respectively, 3o(K;)) by choosing the lift with basepoint
Zn (respectively, 2)

Remark 8.2. A choice of basepoint is technically always necessary to define ff , though
this was suppressed in Section 5 in our discussion of the connected case, where it was less
important.

Therefore

Fi(87) = F(ridjri) = f{yn (kidj5i) = (0, (xi ) (mid;i)).-
Similarly,
FEHE7) = (0,:(3))).

It therefore only remains to show that

(xi)niy (Rds77) = xi(00).
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First, note that Xk(/%) = 0 unless k = i. Also, the homology class of /%5\3%1 in
N
Hi(22(K;)) € @ Hi(322(K;)) = Hi(Z2(K)
i=1

is exactly the same as that of 5?-’ in Hy(X2(K;)), and so we have that
Xi(ridi77) = xi(07). O

We note for later use that the inclusion induced maps Mg — U and Mg, — U give
isomorphisms on first homology, and that Hy(U) = Z" and H3(U) = Z".

9. Proof of Theorem 6.1

Since the proof of Theorem 6.1 is rather long, for the reader’s convenience we outline the
main steps of the argument, with references to key results from elsewhere in the paper.

(1) (Proposition 9.1.) Construct a 4-manifold V' with boundary 0V = Mg such that
the inclusion induced map Hy(My) — Hy(V) is an isomorphism and Hy(V) = Z%.
Let U denote the standard cobordism between My and Y := |_|ZAL 1 M, discussed in
Section 8 and let Z := V Uy, U. Note for later use that Ho(Z) = Z2+N~1 and
x(Z) = 2g.

(2) (Propositions 8.1 and 9.2.) Show that we can choose maps x;: Hi(Mk,) — Z,
such that the corresponding map ¢: ]_[,fil m(Mk,) — ZxZ, extends to a map
Q: m(Z) — Z x Zpe for some a > 1 and such that at least n := %
nonzero.

(3) (Claim 9.4.) Show that for some 1 < i < N and 1 < j < r, the element [1,0] ®
[ng ] does not map to 0 in H{(Z). This step, which contains much of the technical
work of the theorem, crucially relies on our assumption that for every nontrivial
x: Hi(32(R) — Z, we know that the collection {[1,0] ® [7/]} generates HfofX(R)
and that the order of H 16 RA (R) is relatively prime to Ag(t).

(4) (Last two paragraphs of Section 9.) Construct a local coefficient derived series repre-
sentation 7 (Y) — A extending over m(Z) and bound the L(?) p-invariant p (Y, A)
in two different ways to get a contradiction. Essentially, since x(Z) = 2¢g and our rep-
resentation extends over m(Z), Theorem 4.6 implies that |p®)(Y; A)| is small, while
our assumptions on \po(Jij )| together with Step 3, Proposition 4.4, and Proposition 5.1

of the y; are

will imply that |p(® (Y, A)]| is very large.
We now prove the two propositions crucial to Steps 1 and 2, respectively.

Proposition 9.1. Let N € N be arbitrary and K = #Y ,K; be a knot with g4(K) < g.
Then there exists a compact connected 4-manifold V' such that, letting U denote the standard
cobordism between My and Y := UfilMKi from Section 8, Z := U U, V satisfies:

(i) 0Z =Y,

(i) Ho(Z) = Z29"N=1 and

(iii) x(Z) = 29.
Proof. Let F' be a locally flat surface embedded in D* with 0F' = K and g(F') = g.
Following [Cha08, Proposition 5.1, we construct a topological 4-manifold V' with boundary
0V = Mg, Hi(Mg) — Hy(V) an isomorphism, and Hy(V) = Z%, as follows. Let X =
Xo(K) denote the O-trace of K, the 4-manifold obtained from D* by attaching a O-framed
2-handle along a neighborhood of K. Let F' be the closed surface in X obtained by taking
the union of F” with a core of the 2-handle. Note that since F is locally flat it has a normal
bundle by [FQ90, Section 9.3]. Observe that F'- F = 0, and so v(F) =~ F x D?. Now, let
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V= (X~Nv(F))vayr) H x S1, where H is any handlebody with 0H = F. A Mayer-Vietoris
argument shows that Hy(V) = Z, with generator a meridian to F, and that Hy(V) =~ Z%.
Note that by Poincaré duality and universal coefficients, we have

H3(V) =~ HY(V, My) =~ Hom(H,(V, Mk),Z) =~ Hom(0,Z) = 0.

So in particular the Euler characteristic of V' is x(V) =1—-1+2g—0+ 0 = 2g.
Let U be the standard cobordism between My and |_|Z]i 1 Mk, discussed rather extensively
in Section 8. Now let Z = V Uy, U, as illustrated schematically in Figure 6.

M#ﬁvlei

N
| | Mk, =Y
i=1

FIGURE 6. A schematic diagram of Z = U u, V.

Note that Ho(Z) =~ Z* @®ZN "1, and the inclusion induced map Hy(Mg) — Hy(Z) is an
isomorphism, as are each of the maps H;(Mg,) — Hi(Y) — Hi(Z) fori =1,...,N. Also,
H3(Z) = ZN~1 and Hy(Z) = 0. So the Euler characteristic of Z is

xX(Z)=1-14(29+N—-1)— (N —-1)) = 2g. O
Proposition 9.2. Let R be a ribbon knot and p be a prime, and let mgp denote the generating

rank of the p-primary part of H1(32(R)). Fiz N € N, and for each i = 1,...,N let K; be
a knot obtained by infection along an unlink {n’ };7:1 in the complement of R such that each
0’ represents an element of 7T1(MR>(1). Let K = #,filKi, and suppose that My bounds a
compact connected 4-manifold V' such that Hi(My) — H1 (V') is an isomorphism.
Then there exist x;: Hi(X2(R)) — Zyp, for i =1,...,N such that:

(a) at least M of the x; are nonzero, and
(b) for some a > 0, there exists a map m (V') — Z % Zye such that the composition m (Mg ) —

(V) = Z x Zya is given by the post-composition of f®N i with the inclusion Z x Z,, —

i=1X;
7 x Zpa .

Proof. For convenience, let n = M. There is a canonical identification Hy (M%) =~

Z.®H,(X2(K)), and so given any (XlKl)fV:l we obtain not just a map x: Hi(2¥2(K)) — Z,
but also a map x: H 1(M12() — 7, by sending the Z coordinate to zero. Since the inclusion
H{(Mg) — Hy(V) is an isomorphism, it therefore suffices to show that there are homomor-
phisms (x®)N.,: Hi(X2(R)) — Zp, at least n of which are nonzero, such that the map

X = (XlKl)f\; HI(MIQ() — Zyp

extends over Hi(V?), perhaps after expanding its codomain to Zipa for some a > 0. Note
that ¥ extends over Hq(V?) up to enlarging its codomain if and only if ¥ vanishes on

H = ker(Hy (M%) 25 Hy(V?)).

The group of characters THy (M%) — Z, is isomorphic to Hy(39(K),Z,), which is in turn
congruent to (Z;”R)N , where we recall that mp denotes the generating rank of the p-primary
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part of Hy(32(R)). The subgroup of characters vanishing on H is in bijective correspondence
with (THy(M%)/H) ® Zy.
Note that My is a homology S' x S? with g-rk(THy(M?) ® Z,) = mrN Therefore, by

Proposition 7.6, the p-primary part of T Hy (M?2)/H has generating rank at least M =

n. Therefore THy(M7)/H has a subgroup isomorphic to Z. Our desired result now follows
from a linear algebra argument (see the proof of [KL05, Theorem 6.1]): every subgroup of Zéw
isomorphic to Zf; (0 < ¢ < M) has an element at least ¢ of whose coordinates are nonzero. [J

Now we prove Theorem 6.1.

Proof of Theorem 6.1. Suppose for the sake of contradiction that there is some locally flat
surface F' embedded in D* with 0F' = K and g(F') = g. Let U,V, and Z be as in Propo-
sition 9.1. Note that as discussed in Section 8 we have a standard choice of basepoints and
paths inducing inclusion maps; for the rest of the proof, these choices will remain fixed though
not explicitly discussed.

We pause to establish notation. For a knot J in S, we denote its exterior by E;. For a
manifold X with H;(X) = Z, we denote its canonical double cover by X?2. The choice of a
meridian p; determines a splitting m1 (M) =~ Z x A(J), where A(J) denotes the Alexander
module of J. Note that H;(32(J)) is naturally identified with A(J)/{t + 1), and so a map
x: Hi1(22(J)) = Z, induces a map

Form(My) S Zx A(J) — Z x Hy (S9(J) 22% 7.x 7,

Note that in the setting of Proposition 9.1, since Hy(Mg) — H1(Z) =~ Z is an isomorphism,
Z also has a canonical double cover Z2. Tt is easy to check that Z2 = V2 U M2 U? and that
N
= |_|i:1 MIQQ
For each ¢« = 1,..., N, we have a canonical, linking form—preserving identification of
Hy(¥2(K;)) with Hy(¥2(R)) coming from the degree one maps E ;; — Eunknot- Given a map

x*: Hi(22(R)) — Z, we will use X% to denote the corresponding map from H;(32(K;)) —
Zy, and vice versa. We will also always identify H;(X2(K)) with (—Bf\il Hy(X2(K;)) in the
canonical, linking form—preserving way.

Define n := m (Note that with x (V) = 2g this agrees with the definition of n used
above.) We wish to show that there exist x*: Hi(X2(R)) — Z,, for i = 1,..., N, such that

at least n of the Xz are nonzero and for some a > 0, there exists a map m1(Z) — Z X Zye

such that the composition 71 (Mg,) ~= m1(Z) — Z % Zye is given by the postcomposition

of f x; with the inclusion Z x Z;, < Z x Zpe. Henceforth, we will implicitly take the usual

1nclu81on of Zy in Zpa without further comment.

We will accomplish this in a somewhat indirect fashion, by focusing on constructing an
appropriate map on (Mg ) which extends over 7 (U) and (V') separately. By Proposi-
tion 8.1, given any choice of x%, ..., xR : H1(Z2(R)) — Z,, the map f(X‘,K’i)N cm(Mg) —

7 1=1

7 x 7y, extends uniquely to a map F': m(U) — Z x Z,, such that when we consider the com-
position
Fouvouv:m(Mg,) = Z X Zp,

we have Floro; = fxgi. By applying Proposition 9.2 to our K and V' and extending over U

as discussed above, we obtain x = (x¥, ..., x¥) with at least % =: n of the y; nonzero
together with a map F': m1(Z) — Z x Zpe such that the composition

1 (Mg,) =5 11(Z) — Z % Lipa
is given by f K;
As descrlbed in Section 5, we have a fixed map 0: Z x7;(X2(K)) — GL2(Q(&)[tH]). By
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post-composing F' and each foi with this map, we obtain

b =00F:m(Z)—> GL2(Q(§p“)[til])a
¢i =00 f xi: m(Mg,) — GLa(Q(&)[t]).
We let

N N
o=]To [ [m(Mk,) — GLy(Q(&e) [
i=1 i=1

For convenience, let F = Q(&pa), S = F[t*1], Q = F(t), and S/p be shorthand for S/{(p(t))
for any polynomial p(t) € S. Since our infection curves «; live in the second derived subgroup
of Mg,, the degree one maps f;: E i Funknot give us an identification

d) N ¢ >~ N eofo’S
fo: HY(Y,S) = @ H{'(Mk,,S) = P H, ™ (Mpg)
i=1 i=1

where the maps x7: Hy(39(R)) — Z, <> Zpe are as above. We now work towards proving
the following claim.

Claim 9.3.

H:= & Hfﬁl(MKl) is not contained in ker(Hf’(Y;F[til]) — HY(Z,F[t*1])).
{ixft#0}

Proof of Claim 9.5. First, note that H has generating rank at least [k/dRr], since for some

o [k/dR]
nontrivial xo: Hi(22(R)) — Z, there is a submodule of H isomorphic to (Hf Fxo (MR)) "
Note that if XlR = ( then

ool +1
H, ™" (Mg) = Ag(R) ®qp=1] F[t*].

We therefore have that
HY(Y, 8) = (Ag(R) @qpey FItH )Y F @ H

where k > % is the number of nonzero XZR'

We now compute the rank of Hy(Z;Q). We can immediately see that HY(Z;Q))
Hg(Y; Q) = 0, since HY(Z) and Hg)(Y) are annihilated by t — 1. Note that for each i =
1,..., N the inclusion map Y; — Z induces an isomorphism on Hy(—;Z) and Hi(—;Z).
By the proof of [FP12, Proposition 4.1], modified to use only a partial chain contraction
for C2(Z,Y;; Q) in degrees 0,1, as in [COT03, Proposition 2.10], this implies that the map
H{'(Yi;Q) — HE(Z;Q) is onto. We have already observed that H{*(Y;) is a torsion S-
module and so Hf” (Y;; Q) = 0; it follows that H(Z;Q) = 0 as well. Consideration of the
long exact sequence of the pair (Z,Y) then allows us to conclude that H{(Z,Y;Q) = 0. By
Poincaré-Lefschetz duality, universal coefficients, and the long exact sequence of (Z,Y) with
Q-coefficients we have that

H$(Z:Q) ~ Hy(Z,Y;Q) =~ Hom(HY (Z,Y;Q), Q) = 0.

lle

Finally, since Z is a topological 4-manifold and hence homotopy equivalent to a finite CW
complex with cells of dimension at most 3 (see the proof of Theorem 4.6 for references for this
fact), we have that H;-I)(Z;F(t)) = 0 for all j > 4. Re-computing x(Z) with Q-coefficients,
we obtain

29 = x(Z) =0—0+dimg Hy (Z;Q) — 0+ 0 = dimg Hy (Z; Q).
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We now return to working with S = F[t*!]-coefficients and consider the long exact sequence
of Proposition 3.3

o HY(Y) B HY(2) 25 B (2,Y) S B (V) > B (2) 25 HE(Z,Y) -
Suppose now for a contradiction that H < ker(i;). Since
ker(i1) = Im(0) = Hy (Z,Y)/ker(0) = Hy (Z,Y)/Im(j2) = (S* ©@ THy (Z,Y)) /Im(j2),

it follows that (529 @ THy (Z,Y)) /Im(j2) has a submodule H' isomorphic to H.

By applying Lemma 7.4 with A = H$(Z,Y), B = Im(jz), and C = H’ we obtain
that THY (Z,Y)/(Im(j2) n THS(Z,Y)) contains a submodule H” of generating rank at
least [k/dr] — 2g and of order which divides the order of H' and so is relatively prime
to Ag. Since Im(ja|7) € Im(j2) N THS(Z,Y), it follows immediately that coker(ja|7) =
TH(Z,Y)/Im(ja|7) contains a submodule of generating rank at least [k/dg] — 2g and of
order relatively prime to Ag.

As argued above, we have that H?(Z,Y;Q) = 0, i.e. that H(Z,Y) is torsion, and so we
can apply Lemma 7.5 to conclude that

coker(ja|7)) = ker(j1|7) = ker(j1) = Im(iy).

Therefore Im(i1) has a submodule of generating rank at least [k/dr| — 2¢g and of order that
W and N > W, we obtain that
[k/dr] —2g > 0 and so there is a submodule of Im(é;) isomorphic to S/s for some nontrivial
polynomial s relatively prime to Ag. This is our desired contradiction, since H < ker(iy)
also implies that Im(i1) is a quotient of (Ag(R) ®qi+1 ]F[til])ka, which has order AN "
and therefore cannot contain a submodule isomorphic to S/s. This completes the proof of
the claim. g

is relatively prime to Ag. Since k = n =

Claim 9.4. For some 1 <i < N and 1 < j <r, the element [1,0] ® [nf] does not map to 0
in HY(Z).

Proof of Claim 9.4. Observe that since the longitude /\(775 ) of nf is in the second derived
subgroup of 71 (Mg) it must lift to a curve lf in the cover ]/\Z;g of Mg determined by ¢;. (In
fact, it lifts to Z x Zye copies — pick one.) Since whenever XzR # 0 we have that the collection
{[1,0] ® [lj]}’f | generates Hli(MR) our argument that H < ker(i1) in fact implies that for

at least one ¢ and j with 1 <7 < N and 1 < j < r, we have ;([1,0] ® [lf]) #0in HY(Z).
This completes the proof of Clalm 9.4 and of Step 3. U

We are now ready to complete the proof of Theorem 6 1 as described in Step 4, by
constructing a new representation of 71(Y) and bounding p (Y ¥) in two different ways to
derive a contradiction. Let

v m(Y) = m(Z) = A= m(2)/m(2) g, 0

be the map induced by inclusion. Since A is amenable and in D(Z,) [Chal4a, Lemma 4.3] and
1 evidently extends over 71(Z), Theorem 4.6 and the fact from Step 1 that Ho(Z) = 729N -1
tells us that

0P (Y, ¢)| < 2dimg, Ha(Z,Z,) = 2(2g + N — 1), (4)
Let (ig,jo) be the maximal tuple (with respect to the lexicographic orderlng) such that

[1, 0]®[lf] does not map to 0 in H{?(Z). Proposition 5.1 implies that A( Z0) ¢ m(Z )%Z . Q)"
pa
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L () #0
0, Y(A() =0

Moreover, Proposition 4.5 tells us that, letting 53 (¥) = { , we have

=

N
PP (Y, ) = Zp (MR, (1) |Mpy ) = 2( @) (Mg, y?) + Z(V Po(Jf)). (5)

Since |p?) (Mg, ¢?)| < Cg for all i, the tuple (g, jo) is maximal such that 53 (¢) # 0, and Jz-jo0
satisfies

' io—1 7 jo—1
oo ()] > 2(2g + N = 1) + NCr+ Y > loo(J)l + X loo(J)],
k=1 ¢=1 (=1
Equation 5 gives the desired contradiction with Equation 4, which completes the proof of
Theorem 6.1. O

10. Height four gropes

In Proposition 10.7 below, we will show the following: the knot K in Section 6.2 bounds a
framed grope of height 4 embedded in D*. For the reader’s convenience, we begin by recalling
the definition of a (capped) grope, a certain type of 2-complex.

Definition 10.1 (Grope of height h [FQ90, COTO03]). A capped surface, or a capped grope of
height 1, is an oriented surface of genus g > 0 with nonempty connected boundary, together
with discs attached along the 2¢g curves of a standard symplectic basis for the surface. The
discs are called caps. If G is a capped grope of height h — 1, then a 2-complex obtained by
replacing each cap of G with a capped surface is called a capped grope of height h. A grope of
height h is obtained by removing caps from a capped grope of height h. It is also called the
body of the capped grope. The initial surface that the inductive construction starts with is
called the base surface, and the boundary of a grope, G, is the boundary of its base surface.

A (capped) grope defined above is often called disc-like. An annulus-like (capped) grope
is defined in the same way, starting from a base surface with two boundary components.

Remark 10.2. It is not a priori obvious that a 2-complex G known to be a grope has a
well-defined height, but it is true. For the reader’s convenience, we give a quick argument.
Let 7 < G be the singular set of the grope union its boundary, i.e. the 1-complex consisting
of the points where G is not locally homeomorphic to an open disc. Then G\ 7 consists of a
collection of open surfaces, many of which are planar. Removing the subset of G correspond-
ing to the non-planar surfaces (the interior of the ‘top stage’ of G) gives a new grope with
a strictly smaller singular set; we can then repeat the above procedure. In this perspective,
the height of a grope is exactly the number of such steps needed to reduce the grope to a
circle. We leave to the reader the analogous argument that the height of a capped grope is
well-defined, as well as the intrinsic definition of the ith stage of a grope, 1 < i < h.

A (capped) grope admits a standard embedding in the upper half 3-space R3 = {z > 0}
which takes the boundary to R2. Compose it with Ri — Ri, take a regular neighborhood
in ]R4 , and possibly perform finitely many plumbings. An embedding of the result in a 4-
mamfold is called an immersed framed (capped) grope. If no plumbing is performed, then we
say that it is embedded. Often we will regard an immersed/embedded (capped) grope as a
2-complex, but it is always assumed to be framed in this sense. In addition, we assume that
each intersection in an immersed capped grope is always between a cap and a surface in the
body, following the convention of [CK16]. Note that in a simply connected 4-manifold, an
embedded grope without caps can be promoted to an immersed capped grope.
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Returning to our case, recall that the knot K in Section 6.2 is the connected sum of satellite
knots. We will use the following terminology and results from [Chal4b, CK16], which also
consider link versions.

Definition 10.3 (Satellite capped grope [Chal4db, Definition 4.2], [CK16, Definition 4.2]).
Suppose K is a knot in S3 and « is an unknotted circle in S? disjoint from K. Let E, be
the exterior of «, and let A, be a zero linking longitude on 0F,. A satellite capped grope
for (K, «) is a disc-like capped grope G immersed in E, x I such that the boundary of G is
Aa X 0, the body of G is disjoint from K x I, and the caps are transverse to K x I.

Definition 10.4 (Capped grope concordance [CK16, Definition 4.3]). A capped grope con-
cordance between two knots J and .J’ is an annulus-like capped grope immersed in S3 x I
such that the base surface is bounded by J x 0 U —J’ x 1.

Proposition 10.5 ([CK16, Section 4.1]). Suppose that there is a satellite capped grope of
height h for (K,«) and a capped grope concordance of height ¢ between two knots J and J'.
Then there is a capped grope concordance of height h + £ between the satellite knots Ko (J)
and Kq(J').

The height h + ¢ capped grope concordance in Proposition 10.5 is obtained by a “product”
construction described in [CK16, Definition 4.4]. The last ingredient we need is the following
result from [COTO3].

Proposition 10.6 ([COT03, Remark 8.14]). A knot in S® with trivial Arf invariant bounds
a capped grope of height two immersed in D*.

We can now prove the following.

Proposition 10.7. Let K = #}" | Ry+ o (JF,J7) be a connected sum of satellite knots,
where (R,at,a™) is as in the right of Figure 3 and {J;",J7} | a collection of knots with
vanishing Arf invariant. Then K bounds an embedded grope of height 4 in D*.

Proof. First, note that it suffices to show that each Ra+7a7(Ji+, J; ) bounds an embedded
grope of height 4, since we can then take the boundary connected sum of such gropes to
obtain one with boundary K. We therefore show that under the hypothesis that Arf(J*) =
Arf(J~) = 0 the knot R,+ ,~(J",J~) bounds a grope of height 4.

Observe that the curve o~ in Figure 3 bounds a disjoint capped grope of height two
embedded in S3, where the body surfaces are disjoint from the knot R but the caps are allowed
to intersect R. This is a geometric analogue of the commutator relation o~ = [f, 2] where
the curves 81 and s shown in the left of Figure 3 are again commutators in the fundamental
group.

Indeed, in the planar diagram in the right of Figure 3, the bounded region enclosed by o~
is the projection of an obviously seen embedded disc which intersects R in four points, and
by tubing on this disc, one obtains a genus one surface, shown in red in Figure 7, which is
disjoint from R. This surface is the base surface of the promised height two grope bounded
by a~. The curves 1 and By are parallel to standard basis curves of the base surface, and
they bound disjoint genus one surfaces obtained by tubing the obviously seen discs along the
knot R, as illustrated in Figure 7. Attach them to the base stage surface to obtain a height
two grope.

Note that all the surfaces used above are disjoint from the other curve a*, so by performing
the satellite construction, we obtain a height two grope in S3 \ R, . (JT) bounded by .
Identify S3 with S2 x 0 = S3 x I, push the interior of the grope into the interior of S3 x I,
and add caps using the simple connectedness of S3 x I as noted above. Apply general
position to make the caps transverse to R, (J*) x I, to obtain a satellite capped grope
for (R, (J1),a7).
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FIGURE 7. An embedded height 2 grope with boundary o~ in S% (R U a™).

Since the knot J~ has trivial Arf invariant, J~ bounds a capped grope of height two in D?,
by Proposition 10.6. Remove, from D*, a small open 4-ball which intersects the capped grope
in an unknotted 2-disc lying in the interior of the base surface, to obtain a capped grope
concordance of height two between J~ and the trivial knot. By Proposition 10.5 and the
above paragraph, the satellite knot R+ o~ (J*,J7) = (Ra+(J7))a-(J7) is height 4 capped
grope concordant to the knot R,+(J"). Forget the caps of this capped grope concordance,
and attach a slicing disc for the knot R,+(J*1), to obtain a grope of height 4 bounded
by Ry+ o (J7,J7). a

Remark 10.8. A similar argument shows the existence of a bounding grope of height 4
for the simpler example in Section 6.1. In this case, the height two surfaces constructed by
“tubing along the knot R” in the 3-space are not disjoint, but the intersection can be removed
by pushing the surfaces into 4-space. We omit the details.
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