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Abstract

Interharmonics present in voltage/current signals affect the measurement

accuracy of power quantities defined in standard IEEE 1459. In this paper, the

measurement errors caused by the measurement time intervals not satisfying

integral multiple periods of interharmonics are discussed. First, the mathemat-

ical models of power quantities between arbitrary frequency components are

constructed. Next, four parameters that affect the power measurement accu-

racy are summarized, which are interharmonic frequency, measurement start

time, voltage/current initial phase angle, and the length of measurement time

intervals. The simulation results and corresponding analysis show the effects of

each parameter on measurement accuracy. In conclusion, the maximum errors

are always caused by interharmonics within particular frequency range which

relates to the length of measurement time interval. Moreover, the relative errors

of power quantities can be restricted within 1%, by using a time interval of 3 s,

even if under the condition of selecting the worst measurement start time.
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1. Introduction

With the increase in complexity of power grids and the extensive use of

various frequency conversion devices, as well as more appearances of nonlinear

fluctuating loads such as electric arc furnaces, induction motors, mine hoist-

s, electric welders, elevators, etc., it is commonly accepted that current and/or5

voltage signals often contain interharmonics of which frequencies are non-integer

multiples of the fundamental frequency [1]-[3]. In addition to the typical prob-

lems of electrical equipment overheating and of shortened service life, inter-

harmonics can cause new problems in the power grid, such as subsynchronous

oscillations, voltage fluctuations and light flicker. Even when their amplitudes10

are low, they may cause many serious problems. Therefore, the accurate mea-

surement of interharmonics has been widely discussed, and many algorithms for

measuring interharmonics have been developed [4]-[8]. However, with regard

to the presence of interharmonics, the measurement of power quantities that

characterize the power flow in the grid has not been studied sufficiently and15

comprehensively.

The problem of power definition and measurement under nonsinusoidal con-

ditions has been a hot topic of international concern for a long time [9]-[15].

The IEEE Working Group issued standard IEEE 1459 [15] in 2010, which cov-

ers the practical definitions of the newly determined power quantities. All of20

them have clear physical meaning and have been verified by experts. Measuring

instruments designed according to these definitions have also been popularized

and applied [16]. In the design of digital meters, it is necessary to sample the

actual voltage and current signals first in a limited period of time. The sam-

pling time length specified in standard IEEE 1459 is the integer multiple of the25

measured signal. Generally, according to the recommendation of IEC standard

61000-4-7, 10 fundamental frequency cycles (50 Hz system, corresponding to a

length of 200 ms) are used [17]. However, if there are interharmonics contained

in the measured signal, the length of the integration interval should be taken

as an integer multiple of the measured signal. However, during the measure-30
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ment of the actual power grid, if there is a time varying load, the period or

frequency of each harmonic and interharmonic cannot be known in advance. In

addition, if at least one of the interharmonic orders is an irrational number,

then the observed waveform is not periodic (it is called nearly periodic). In

such a case, the measurement time interval should be infinitely large to have35

a correct measurement. In modern digital meters, it is generally impossible to

achieve an infinitely long measurement time window. Therefore, in the presence

of interharmonics, the effects caused by the integration intervals on the power

measurement accuracy are totally worthy of discussion.

Power quantities defined in standard IEEE 1459 can be divided into two cate-40

gories by measurement methods. The first group are power quantities, including

active power, reactive power, apparent power and power factor, which should

be measured using the time method. The measurement instrument should be

constructed by the principle of accumulating integration using voltage and cur-

rent sampling values. This is mainly because the frequency domain method45

cannot fulfill accurate measurement and the calculation is very complex. That

is, the error is minimal from the perspective of energy accumulation, and time

domain integration is the easiest way to implement for instrumentation chips.

The measurement errors using the time domain method mainly come from the

truncation of the signal in the integration interval. Another type of power is50

the power quantities that must be calculated by the frequency domain method,

such as the fundamental active power, the fundamental positive sequence active

power, the fundamental apparent power, and the phase shift power factor. The

errors are mainly derived from the truncation errors caused by the finite length

time window and the fence effect of the frequency domain algorithm. There are55

many articles in which the performance of frequency domain analysis algorithms

are analyzed, such as the window interpolation algorithm, the Prony algorith-

m, and the asynchronous sampling algorithm [4]-[5], [18]-[19]. However, the

measurement accuracy of the first group of power quantities is not sufficiently

comprehended [20]-[22], which will be mainly discussed in this paper.60

In [20], the errors introduced 1) when the measurement time interval is
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not an exact multiple of the fundamental period and 2) in the presence of

interharmonics in the voltage and/or current signals have been analyzed and

explicitly calculated. The authors used relatively simple voltage and current

signal models to analyze and calculate these two types of errors. However,65

when it came to the second type of errors, only the effect of the interharmonic

frequency on the errors was analyzed. Other parameters and their effects on

measurement accuracy were not further explored.

In [21], the authors mainly analyzed active power, voltage /current rms val-

ues, apparent power and the power factor of the system in the presence of integer70

harmonics, when the measurement time intervals are not integer multiples of

the fundamental frequency period. The errors introduced by the desynchro-

nization of measurement interval in the presence of 1) harmonics and 2) PLL

affected by time-varying errors have been evaluated. Increased measurement

time (increased number of fundamental frequency cycles included in the integra-75

tion interval) was mentioned for improving the accuracy of power measurement.

However, there is no analysis of the existence of interharmonics.

In [22], the authors mainly analyzed the energy measurement method consid-

ering interharmonics. The calculation formula of electric energy in the presence

of interharmonics have been derived and then simplified by ignoring the power80

loss caused by the interaction of signal components with a frequency difference

greater than 5 Hz. However, the conclusions of [22] were based on the fact that

the measurement integration intervals are fixed to 10 fundamental frequency

cycles (50 Hz system), and the effects of other parameters were not further ex-

plored. In addition, the calculation method adopted by [22] is the frequency85

domain, and the time domain measurement values were regarded as the true

values for measurement accuracy analysis, which is contrary to the definition of

IEEE 1459.

In standard IEEE 1459, there is also a system with nonlinear loads, which

is given to explain the influence of the length of the measurement time window90

[15]. However, interactions of arbitrary frequency components are not analyzed.

In addition, the conclusion is drawn without any analysis of measurement start
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time and initial phases of voltage/current components.

In this paper, four parameters that affect the measurement accuracy of pow-

ers in the presence of interharmonics are summarized. The interaction models95

of arbitrary frequency components are constructed for the first time. Therefore,

the measurement errors of power quantities are further analyzed in order to

propose a method for improving accuracy.

This paper is organized as follows. First, the definitions and measuremen-

t method of active power, rms values, apparent power and power factor are100

introduced in Section 2. Next, the mathematical models of the active power

calculation term and the voltage/current rms value calculation terms between

arbitrary frequency components are constructed in Section 3. Then, sub-items,

which should be included in the true values of power quantities, are also ex-

plained, and the measurement errors of power quantities are further analyzed105

in Section 3. Afterward, the effects of each parameter on the measurement

accuracy of power quantities are shown by the simulation results and corre-

sponding analysis of the calculation example in Sections 4 and 5. Finally, the

main conclusions of this paper are given.

2. Power Definitions and Power Measurement Method in Standard110

IEEE 1459

When designing the digital meters for measuring power quantities according

to standard IEEE 1459, the following mathematical models will be referred to

for the definitions of active power, voltage/current rms values, apparent power

and power factor, and corresponding measurement methods.115

5



Generally, supply voltage and load current have the following form

u(t) = U0 +
√
2U1sin(ωt+ α1) +

H
∑

h=2

√
2Uhsin(hωt+ αh) +

∑

i

√
2Uisin(iωt+ αi)

(1)

i(t) = I0 +
√
2I1sin(ωt+ β1) +

H
∑

h=2

√
2Ihsin(hωt+ βh) +

∑

i

√
2Iisin(iωt+ βi)

(2)

where ω is the power system angular frequency, h is the integer number that

represents the harmonic order, i is the non-integer number that represents the

interharmonic order, U0, I0 are the dc voltage and dc current, and α1, αh, αi,

β1, βh, βi are initial phases of fundamental voltage, the hth harmonic voltage ,

the ith interharmonic voltage, fundamental current, the hth harmonic current,120

and the ith interharmonic current, respectively.

The calculation model of active power specified in standard IEEE 1459 is

P =
1

kT

∫ τ+kT

τ

u(t)i(t)dt (3)

which means, the average value of instantaneous power in interval [τ, τ + kT ]

is the active power, where τ is the measurement start time, τ + kT is the

measurement end time, and kT is supposed to be an integer multiple of the

power system fundamental period.125

The calculation model for the voltage rms value is

U =

√

1

kT

∫ τ+kT

τ

u2(t)dt (4)

The calculation model for the current rms value is

I =

√

1

kT

∫ τ+kT

τ

i2(t)dt (5)

When a digital meter is used for sampling and measuring, the measured

value of active power should be expressed as the following, assuming that the

number of samples in a measurement interval is N . The subscript d stands for
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the quantities measured by means of a digital meter.

Pd =
1

N

N
∑

j=1

u(j)i(j) (6)

The digital measurement of the voltage rms value is

Ud =

√

√

√

√

1

N

N
∑

j=1

u2(j) (7)

The current rms value is measured in a similar way to the voltage rms value,

and the measured result can be expressed as

Id =

√

√

√

√

1

N

N
∑

j=1

i2(j) (8)

The following description of the measurement and calculation of the rms

values will only take the voltage rms value as the example.

Apparent power is defined and measured as the product of voltage rms value

and current rms value

Sd = UdId (9)

The power factor is

PFd =
Pd

Sd

(10)

Equations (6), (7), (8), (9) and (10) can be implemented directly in a digital

meter without any spectral analysis. It should be noted that the number of

sampling points in one fundamental period should be an integer, otherwise the130

error of asynchronous sampling will be introduced into the measurement results.

3. Measurement Errors in the Presence of Interharmonics

In the presence of interharmonics, the measurement time intervals are often

not satisfied with the integer multiple of the voltage/current signals. As a result,

errors are caused in the measurement results of power quantities. Referring to135

(3), (4), and (5), this section first analyzes the sub-items in the measurement
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results of active power and rms values, which are cross products of each fre-

quency component. The analysis results also apply to (6), (7) and (8), because

they are digital measurement schemes of (3), (4) and (5). When the sampling

frequency is high enough, the digital measurement results are consistent with140

the theoretical analysis results. Second, sub-items, which should be included

in the true values of power quantities, are obtained. Finally, the measurement

errors of active power, rms values, apparent power and power factor are cal-

culated. As frequency deviations and frequency oscillations are not taken into

consideration in this paper, there is T = 2π/ω. Based on the above conditions,145

the following equations are derived.

3.1. Calculation Terms of Active Power and RMS Values

Since the integer multiple periods of the fundamental component and the

harmonic components are included in the time interval [τ, τ+kT ], cross products

of fundamental component, dc component and arbitrary harmonics do not bring150

errors to the measurement of power quantities.

As for the interharmonics, the calculation of the active power generated

by the mth voltage interharmonic component interacting with the nth current

interharmonic component can be expressed as

Pmn =
1

kT

∫ τ+kT

τ

√
2Umsin(mωt+ αm)×

√
2Insin(nωt+ βn)dt

=
UmIn
kT

∫ τ+kT

τ

{cos[(m− n)ωt+ αm − βn]− cos[(m+ n)ωt+ αm + βn]}dt

=
UmIn
ωkT

{ sin[ω(m− n)(kT + τ) + αm − βn]

m− n
− sin[(m− n)ωτ + αm − βn]

m− n

− sin[ω(m+ n)(kT + τ) + αm + βn]

m+ n
+

sin[(m+ n)ωτ + αm + βn]

m+ n
}

(11)

The subscript of Pmn means that the active power item is calculated by

cross product of the mth voltage interharmonic component um(t) and the nth

current interharmonic component in(t). The following names are all obedient

to this law.155
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For the convenience of expression, let θ1 = (m − n)ωτ + αm − βn, θ2 =

(m+ n)ωτ + αm + βn. Rewrite (11) as

Pmn =
UmIn
ωkT

{ sin[ω(m− n)kT + θ1]

m− n
− sin(θ1)

m− n

− sin[ω(m+ n)kT + θ2]

m+ n
+

sin(θ2)

m+ n
}

(12)

where θ1 and θ2 are both related to the initial phase of the mth voltage in-

terharmonic component and the initial phase of the nth current interharmonic

component, as well as the start time of the measurement.

(12) can be transformed according to the trigonometric function formula.

There is

Pmn =
2UmIn
ωkT

{
sin[

ω

2
(m− n)kT ]cos[

ω

2
(m− n)kT + θ1]

m− n

−
sin[

ω

2
(m+ n)kT ]cos[

ω

2
(m+ n)kT + θ2]

m+ n
}

(13)

Because of ω = 2πf = 2π/T , (13) can be rewritten in a more compact way

Pmn =
UmInsin[(m− n)πk]cos[(m− n)πk + θ1]

(m− n)πk

− UmInsin[(m+ n)πk]cos[(m+ n)πk + θ2]

(m+ n)πk

= UmIncos[(m− n)πk + θ1]sinc[(m− n)k]

− UmIncos[(m+ n)πk + θ2]sinc[(m+ n)k]

(14)

where sinc(x) = sin(πx)/πx is the normalized sinc function. sinc(x) is an even

function, of which the function value can be the largest when x = 0. Values160

fluctuate and decay as x extends to both sides. When x takes a non-zero integer,

its function value is 0. cos function has its maximum and minimum limits, that

is, cos[(m − n)πk + θ1] ∈ [−1, 1], cos[(m + n)πk + θ2] ∈ [−1, 1], and both of

them fluctuate along the whole scan. As a result, the active power term Pmn is

mainly affected by the sinc function. For fixed m and n , the active power term165

will decrease as k increases. When both (m − n)k and (m + n)k are non-zero

integers, Pmn should be 0. Therefore, when the value of k is a certain positive

integer, the frequency resolution of interharmonics is f/k.
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When (m − n)k = 0, sinc[(m − n)k] = 1. That is, the active power term

generated by the nth voltage interharmonic component interacting with the nth

current interharmonic component can be written as

Pnn = UnIncos(αn − βn)− UnIncos(2nπk + θ2)sinc(2nk) (15)

If 2nk is a non-zero integer, Pnn = UnIncos(αn−βn). In this case, the active

power calculation formula of the nth interharmonic has the same form as the170

active power calculation formula of the fundamental and the integer harmonic

components specified in standard IEEE 1459. If 2nk is not a non-zero integer,

the same conclusion can be drawn when n → ∞ or k → ∞.

We can find that (14) is suitable for any m,n, that is, whether m,n are

integers or not and whether m = n or not, corresponding to arbitrary frequency

components, (14) can be used to analyze the measured value of active power.

However, it should be noted that the active power generated by the dc com-

ponent interacting with the interharmonics needs to be analyzed separately.

Calculation of the active power generated by the voltage dc component inter-

acting with the nth current interharmonic component is taken as an example

P0n =
1

kT

∫ τ+kT

τ

U0 ×
√
2Insin(nωt+ βn)dt

=

√
2U0In
2πnk

{cos[nωτ + βn]− cos[nω(τ + kT ) + βn]}

=

√
2U0In
nπk

sin(nπk + nωτ + βn)sin(nπk)

=
√
2U0Insin(nπk + nωτ + βn)sinc(nk)

(16)

Since sin(nπk+nωτ+βn) ∈ [−1, 1], the active power item P0n is also affected

by the sinc function. For a fixed n, P0n will decrease as k increases. When nk175

is a non-zero integer, P0n should be 0.

Next, the measurement and calculation of rms values will be analyzed. The

voltage rms value is expressed as the example here

U =

√

1

kT

∫ τ+kT

τ

u2(t)dt =

√

∑

m,n

Umn =

√

∑

m 6= n

Umn +
∑

n

Unn (17)
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where

Umn =
1

kT

∫ τ+kT

τ

√
2Umsin(mωt+ αm)×

√
2Unsin(nωt+ αn)dt

= UmUncos[(m− n)πk + θα1]sinc[(m− n)k]

− UmUncos[(m+ n)πk + θα2]sinc[(m+ n)k]

(18)

where θα1 = (m− n)ωτ + αm − αn, θα2 = (m+ n)ωτ + αm + αn.

Besides,

Unn = U2
n − U2

ncos(2nπk + θα2)sinc(2nk) (19)

Similarly, (18) is suitable for any m,n. However, it should be noted that the

voltage rms value generated by the dc component interacting with the interhar-

monics needs to be analyzed separately. The voltage dc component is multiplied

by the nth voltage interharmonic component, and the integral in [τ, τ + kT ] is

U0n =
√
2U0Unsin(nπk + nωτ + αn)sinc(nk) (20)

3.2. True Values of Power Quantities

In order to analyze measurement accuracy of power quantities in the p-

resence of interharmonics, in addition to the measured values, the true values180

should be known. For interharmonics, standard IEEE 1459 only states that the

measurement time interval should contain integer multiples of the periods of the

interharmonics. Based on this, the following is an analysis of which sub-items

should be included in the true values of power quantities.

When the interharmonic frequency in the signal is a determined constant,

in order to obtain the true values of power quantities, an integer multiple of the

signal period should be taken, that is, KT = miTi, where Ti is the period of

each harmonic component, and K and mi are both positive integers. Equations

(3), (4), and (14) - (20) are used to calculate the active power and the voltage

rms value in the integration interval [τ, τ +KT ]. Because both (m− n)K and
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(m+ n)K are integers, there is

Pτ∼ τ+KT = U0I0 + U1I1cos(α1 − β1) +
H
∑

h=2

UhIhcos(αh − βh)

+
∑

i

UiIicos(αi − βi)

(21)

Uτ∼ τ+KT =

√

√

√

√U2
0 + U2

1 +

H
∑

h=2

U2
h +

∑

i

U2
i (22)

(21) and (22) are expressions of the true values of active power and the185

voltage rms value, respectively. Using such a definition, the contribution of each

frequency component in the signal to the amount of power can be clearly seen,

and the characteristics of the circuit can be better reflected when calculating

the apparent power and power factor. Moreover, since the electric energy W is

the energy transmitted from the power source to the load for a period of time,190

this definition does not cause an error in the accurate measurement of W . It is

only necessary to multiply the active power by the corresponding length of time

to obtain W . In addition, (21) and (22) can perfectly conform to the power

decomposition and redefinition in the frequency domain according to standard

IEEE 1459.195

According to the definitions of active power and the voltage rms value in

equations (21) and (22), for the convenience of explanation, the term of equa-

tions (14) and (16) at m 6= n are defined as the cross item of active power,

and the term of equations (18) and (20) at m 6= n are defined as the cross

item of the square of the voltage rms value. Besides, the second sub-items of

equations (15) and (19) are defined as the additional item of active power and

the additional item of the square of the voltage rms value, respectively, that is

Pcro = Pmn, U
2
cro = Umn,m ≥ 0, n ≥ 0,m 6= n (23)

Padd = Pnn − UnIncos(αn − βn),

U2
add = Unn − U2

n,

n>0, n is non-integer

(24)
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In the integration interval [τ, τ + KT ], the calculation of active power can

be decomposed into the average of the active power in i equal length intervals.

Similarly, the calculation of the voltage rms value can be decomposed into the

voltage rms value in i equal length intervals. As the following, where K = ik

Pτ∼ τ+KT =
1

KT

∫ τ+KT

τ

u(t)i(t)dt

=
1

KT
[

∫ τ+kT

τ

u(t)i(t)dt+

∫ τ+2kT

τ+kT

u(t)i(t)dt+ · · · +

∫ τ+KT

τ+(i−1)kT

u(t)i(t)dt]

=
1

KT
(kTPτ∼ τ+kT + kTPτ+kT∼ τ+2kT + · · · + kTPτ+(i−1)kT∼ τ+KT )

=
Pτ∼ τ+kT + Pτ+kT∼ τ+2kT + · · · + Pτ+(i−1)kT∼ τ+KT

i

(25)

Uτ∼ τ+KT =

√

1

KT

∫ τ+KT

τ

u2(t)dt

=

√

1

KT
[

∫ τ+kT

τ

u2(t)dt+

∫ τ+2kT

τ+kT

u2(t)dt+ · · · +

∫ τ+KT

τ+(i−1)kT

u2(t)dt]

=

√

1

KT
(kTU2

τ∼ τ+kT + kTU2
τ+kT∼ τ+2kT + · · · + kTU2

τ+(i−1)kT∼ τ+KT
)

=

√

U2
τ∼ τ+kT + U2

τ+kT∼ τ+2kT + · · · + U2
τ+(i−1)kT∼ τ+KT

i

(26)

Because of the presence of the cross items Pcro and U2
cro, as well as the

additional items Padd and U2
add, there are errors between the measured values

and the true values in each short interval. However, according to equation (21),

(22), (25), (26), cross items and additional items offset to 0 in the process of

aggregation to the long interval [τ, τ + KT ]. The idea that neither the cross200

items nor the additional items should be included in the true values of power

quantities is satisfied.
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3.3. Measurement Errors of Active Power, RMS Values, Apparent Power and

Power Factor

In the integration interval [τ, τ +kT ], the measurement errors caused by the205

time interval kT not satisfying the integer multiple period of the interharmonics

can be expressed as follows.

In fact, the measurement error of active power is the sum of all the cross

items and additional items of active power. The absolute error of active power

eP = Pmeas − P =
∑

(Pcro + Padd) (27)

As for the rms value, the absolute error has the following form

eU2 = U2
meas − U2 =

∑

(U2
cro + U2

add) (28)

If the relative errors are used to indicate the relationship between the mea-

sured values and the true values of active power, voltage rms value and current

rms value, there are

Pmeas = P (1 + εP ) (29)

U2
meas = U2(1 + εU2) (30)

I2meas = I2(1 + εI2) (31)

where P is the true value of active power given by (21), and U is the true value

of voltage rms value given by (22). ε represents the relative error.

Therefore, the measured value of apparent power should be

Smeas = Umeas × Imeas

=
√

U2(1 + εU2)× I2(1 + εI2)

= UI
√

1 + εU2 + εI2 + εU2εI2

(32)

For the power factor, the measured value is

PFmeas = PF
1 + εP√

1 + εU2 + εI2 + εU2εI2

(33)

where PF is the true value of power factor.210
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Thus, when there are interharmonics contained in the voltage and current

signals, errors will be caused in the measurement of active power and the rms

value because the measurement time interval kT does not satisfy the integer

multiple period of the interharmonics. This will in turn lead to inaccurate

measurement of apparent power and power factor.215

4. Parametric Analysis

In this section, parametric analysis of the formulas developed in the previous

section is reported with reference to the interharmonics frequency m and n, the

length of integration intervals that refer to the cycle number k, the start time

of measurement τ , and the initial phases of the voltage and current signals.220

4.1. Sensitivity to Interharmonics Frequency

The relationship of the cross item Pmn [see (14)] versus n, and Umn [see

(18)] versus n, are separately shown in Figures 1 and 2 (m = 1, n ∈ [0.5, 1.5]),

using the length of integration interval as the parameter. For the length of in-

tegration interval, one fundamental frequency cycle, the basic 10 fundamental225

frequency cycles (50 Hz system, corresponding to the length of 200 ms), and

the very short time interval (3 s, corresponding to 150 fundamental frequency

cycles for 50 Hz system), introduced by standard IEC 61000-4-7, are adopted to

conduct the comparative analysis [17]. These three different lengths separately

stand for the quick response time, the basic measurement time interval and the230

aggregation of basic time intervals. In addition, the reason for calculating the

cross item Pmn generated by the fundamental voltage interacting with the nth

current interharmonic component, and the cross item Umn generated by the fun-

damental voltage interacting with the nth current interharmonic component, is

that the amplitude of the fundamental voltage is large, and the corresponding235

error is more significant. According to the standard IEEE 519 for the inter-

harmonics limits at a point of common coupling (PCC), the amplitude of the

nth interharmonic component is considered as 2% of the fundamental amplitude
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[23]. However, if the measurement is made at the user, the amplitude of the

interharmonics will be larger, which leads to larger errors in the measurement240

of active power and rms values.

Figure 1: The cross item of active power Pmn [see (14)] versus current interharmonic frequency

order n. The amplitude of the nth current interharmonic component is 2%pu. Three curves

represent the integration intervals using different lengths, which are 1 cycle, 200 ms and 3 s.

Start time τ = 0s, m = 1, α1 = 30◦, βn = 0◦ are selected.

From Figures 1 and 2, we can see that the values of cross item Pmn and Umn

increase when n is closer to 1. These maximum values can reach the same order

of magnitude of the current interharmonics amplitude. When | m−n | becomes

larger, values of the cross items decline. It can be noted that for the integration245

interval of 200 ms, when n ∈ (0.9, 1.1), the values of Pmn and Umn are all

larger. For the integration interval of 3 s, a similar conclusion can be drawn

from the small figure shown in Figures 1 and 2. Combined with equations (14)

and (18), it can be seen that, in general, the cross items of (m−n) ∈ (−1/k, 1/k)

cannot be ignored. In addition, it should be noted that when m = n = 1, the250

fundamental active power or the square of the fundamental voltage rms value

are represented, and there is no error between the measured value and the true

value. The value at this point is 0.

Next, Pnn [see (15)] and Unn [see (19)] are analyzed. The relationship of the
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Figure 2: The cross item of the square of the voltage rms value Umn [see (18)] versus voltage

interharmonic frequency order n. The amplitude of the nth voltage interharmonic component

is 2%pu. Three curves represent the integration intervals using different lengths, which are 1

cycle, 200 ms and 3 s. Start time τ = 0s, m = 1, α1 = 30◦, αn = 0◦ are selected.

additional items of Pnn and Unn versus n, are separately shown in Figures 3255

and 4 (n ∈ (0, 1]). We can see that these two items are very large when n → 0.

The maximum error can reach the same magnitude order of the interharmonics.

When n increases, these errors rapidly decline. Similarly, combined with equa-

tions (15) and (19), more consideration should be given to the interharmonic

components of n ∈ (0, 1/2k) with respect to Pnn and Unn.260

The grid often has strict requirements for the dc component at a point of

common coupling (PCC). However, on the load side, a large dc component may

be generated due to the presence of many electrical equipment such as half-

wave rectification. The relationship of the cross item P0n [see (16)] versus , and

U0n [see (20)] versus n, are separately shown in Figures 5 and 6 (n ∈ (0, 1]).265

Similarly, combined with equations (16) and (20), more consideration should be

given to the interharmonic components of n ∈ (0, 1/k) with respect to P0n and

U0n.

In the above analysis, in addition to the frequency change of the interhar-

monics, the length of integration interval is also considered as a parameter. We270
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Figure 3: The additional item of active power Pnn [see (15)] versus interharmonic frequency

order n. The amplitude of the nth voltage and current interharmonic component is 2%pu.

Three curves represent the integration intervals using different lengths, which are 1 cycle, 200

ms and 3 s. Start time τ = 0s, αn = 30◦, βn = 0◦ are selected.

Figure 4: The additional item of the square of the voltage rms value Unn [see (19)] versus

voltage interharmonic frequency order n. The amplitude of the nth voltage interharmonic

component is 2%pu. Three curves represent the integration intervals using different lengths,

which are 1 cycle, 200 ms and 3 s. Start time τ = 0s, αn = 30◦ are selected.
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Figure 5: The cross item of active power P0n [see (16)] versus current interharmonic frequency

order n. The amplitude of voltage dc component is 1%pu while the amplitude of the nth

current interharmonic component is 2%pu. Three curves represent the integration intervals

using different lengths, which are 1 cycle, 200 ms and 3 s. Start time τ = 0s, βn = 0◦ are

selected.

Figure 6: The cross item of the square of the voltage rms value U0n [see (20)] versus voltage

interharmonic frequency order n. The amplitude of voltage dc component is 1%pu while the

amplitude of the nth voltage interharmonic component is 2%pu. Three curves represent the

integration intervals using different lengths, which are 1 cycle, 200 ms and 3 s. Start time

τ = 0s, αn = 0◦ are selected.
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can see that the measurement errors caused by interharmonics can be greatly

mitigated when the interval length is 3 s (corresponding to 150 fundamental fre-

quency cycles for the 50 Hz system). However, the maximum measurement error

is consistent in the integration intervals of different lengths. There is only the dif-

ference between interharmonic components in the range of (m−n) ∈ (−1/k, 1/k)275

or n ∈ (0, 1/k), and these interharmonics are still very worthy of attention, espe-

cially the interharmonics near the fundamental component and integer harmonic

components with large amplitude, which have great impacts on the accuracy of

power measurement. The complete parametric analysis of the length of integra-

tion intervals will be shown in section 4.3.280

4.2. Sensitivity to the Measurement Start Time and Initial Phases of Voltage

and Current

The relationship of the cross item Pmn versus the measurement start time

τ , and Umn versus τ , are separately shown in Figures 7(a) and 7(b) (m =

1, n = 0.99, α1 = 30◦, βn = 0◦, 10 fundamental frequency cycles length of285

integration interval). We can find that the values of Pmn and Umn exhibit

sinusoidal fluctuations when the measurement start time τ changes. Moreover,

other cross items and additional items have similar change pattern to Pmn and

Umn.

The relationship of the cross item Pmn versus the initial phases αm and βn290

is shown in Figure 8 (m = 1, n = 0.99, the measurement start time τ = 0s,

10 fundamental frequency cycles length of integration interval). The variation

ranges of αm and βn are (−π, π], respectively. We can find that the unpre-

dictable initial phases also have great impacts on the value of the cross item

Pmn. When the initial phases of the frequency components are different, dif-295

ferent measurement results will be obtained. In addition, other cross items and

additional items have similar change pattern to Pmn.

From what has been discussed above, we can safely draw the conclusion that

different measurement results may be obtained for the same voltage and current

signal using a time window of the same length, because the measurement start300
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(a) (b)

Figure 7: The cross item Pmn (a) and Umn (b) versus the measurement start time τ . m =

1, n = 0.99. The amplitude of the current interharmonic component is 2%pu. α1 = 30◦, βn =

0◦ are selected. Length of integration intervals is 10 fundamental frequency cycles (200 ms).

time is random during the power measurement. In addition, the initial phases

of each frequency component can also affect the measurement results.

4.3. Sensitivity to the Length of Integration Intervals

In general, the length of integration intervals can be represented by the

number of fundamental frequency cycles k during the measurement. In Figure305

9 (a)-(f), the maximum values of the cross items Pmn and Umn, the maximum

values of the additional items of Pnn and Unn, as well as the maximum values

of the cross items P0n and U0n versus k, are separately shown. For each k, the

maximum values are obtained under 50,000 numerical simulation tests. During

the tests, the mth and nth frequency components correspond to those in Figures310

1-6, respectively, the initial phase angles of each voltage and current component

change in the range of (−π, π], and the measurement start time is selected in

the range of 0 ∼ 20s randomly.

From Figure 9, we can see that increasing the length of integration intervals

cannot reduce the maximum errors of cross items and additional items. Some315

interharmonics of specific frequency can always cause large measurement errors.

However, from the analysis above, these maximum errors are always caused by

interharmonics in the range of (m−n) ∈ (−1/k, 1/k) or n ∈ (0, 1/k). Moreover,
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Figure 8: The cross item Pmn versus the initial phases αm and βn. m = 1, n = 0.99. The

amplitude of the current interharmonic component is 2%pu. Start time τ = 0s is selected.

Length of integration intervals is 10 fundamental frequency cycles (200 ms).

(a) (b) (c)

(d) (e) (f)

Figure 9: The maximum measurement errors versus the length of integration intervals.

22



when k increases, interharmonics contained in these ranges are less. In addition,

the positive and negative errors may cancel each other out in the presence of320

many interharmonics of different frequencies. In this way, it will show that the

total measurement error gradually decreases as the length of the integration

interval increases. The simulation example given in the next section will specify

this situation.

5. Simulation Test325

This test is to calculate the active power, voltage and current rms values,

apparent power and power factor of the system with the nonlinear loads given

in standard IEEE 1459. The signal model is given in (1) and (2), in which the

phasors of the studied signal are summarized in Table 1. The measurement and

calculation method is regulated in Section 2. In order to indicate the difference330

between the measured values of power quantities at different measurement start

times, the sliding time windows are used on both current and voltage signals,

and the sliding step is one sampling time interval. The measured values of

each power quantity when time window slides are shown in Figure 10. The

relationship of maximum relative errors of each power quantity versus the length335

of time windows is shown in Figure 11 (measurements start at different times).

As can be seen from Figure 10, when the measurement start time is different,

the measured power values change. This shows that the random measurement

start time will also cause more uncertainty in the measurement results when340

measuring the power quantities of an actual signal.

In Figure 11, when the length of the measurement time interval is 10 fun-

damental frequency cycles (50 Hz system, corresponding to a length of 200

ms), the maximum relative error of active power is 7.51%, and the maximum

relative errors of the voltage rms value and current rms value are 0.43% and345

5.49%, respectively. Besides, the maximum relative error of apparent power

is 5.31% and the maximum relative error of the power factor is 2.63%. As a
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Table 1: Phasors of the Studied Signal

h Uh
6 αh(V) Ih 6 βh(A)

0.0217 3.5× 10−4 6 − 90.0 1.48 6 80.2

0.0433 1.4× 10−3 6 − 107.3 2.26 6 − 8.4

0.957 0.16 6 − 75.5 0.92 6 − 173.5

0.978 0.56 6 − 97.2 2.24 6 − 193.2

1.0 70.71 6 − 7.2 70.716 − 42.4

1.022 0.46 6 − 82.9 1.75 6 − 178.9

1.043 0.35 6 − 104.3 0.91 6 − 202.3

3.0 5.02 6 − 76.0 19.096 18.3

4.268 0.95 6 176.4 5.43 6 − 87.0

5.0 3.18 6 − 114.0 7.64 6 − 15.8

7.0 2.33 6 − 142.0 3.68 6 − 43.2

9.0 1.13 6 − 165.0 1.41 6 − 69.0

Figure 10: Smoothed power quantities versus the time for three different values of time window

length kT , k = 1, k = 10, k = 150.
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Figure 11: The maximum relative errors of active power, voltage rms value, current rms value,

apparent power and power factor versus the length of measurement time intervals.

comparison, when the length of the measurement time interval is 150 funda-

mental frequency cycles (50 Hz system, corresponding to a length of 3 s), the

measurement relative errors of the above power quantities can be reduced by350

one order of magnitude, and all of these relative errors are controlled within

1%. The maximum relative errors of active power, voltage rms value, current

rms value, apparent power, and power factor are 0.60%, 0.03%, 0.44%, 0.43%,

and 0.21%, respectively. Moreover, when the length of the measurement time

interval increases to 3000 fundamental frequency cycles (50 Hz system, corre-355

sponding to a length of 1 min), the measurement relative errors of the above

power quantities can be reduced by four orders of magnitude. Therefore, the

length of the measurement time interval can be appropriately selected accord-

ing to the interharmonic content and the measurement accuracy requirement

during the power measurement.360

It can also be noticed that the measurement accuracy of each power quantity

is very high when the length of the measurement time interval is 45, 46 or

90 ∼ 93 fundamental frequency cycles, even higher than the measurement

accuracy when the time interval contains 150 fundamental frequency cycles.

This is because in such conditions, the sinc function of theoretical formulas365
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equals to 0 or nearly equals to 0. However, this phenomenon does not have

regularity. For different voltage and current signals, it is difficult to determine

the length of the measurement time interval in which the measurement error is

close to 0 when the interharmonics contained is different. Therefore, the length

of the measurement time interval of 3 s or 1 min should generally be used to370

improve the power measurement accuracy.

When the sampling frequency is high enough, the actual measurement results

are consistent with the theoretical analysis results. In simulation tests of this

paper, a high sampling frequency should be adopted, that is, the errors caused

by sampling frequency can be ignored.375

6. Conclusion

The interharmonics present in the voltage and current signals affect the

measurement accuracy of the power quantities defined in standard IEEE 1459.

In this paper, the mathematical models of the active power calculation term and

the voltage and current rms value calculation terms between arbitrary frequency380

components are constructed for the first time, and the power measurement errors

affected by four parameters are analyzed. The simulation results show the

influence of each parameter on the measurement accuracy of power quantities.

The interharmonics near the fundamental component and integer harmonic

components with large amplitude have great impacts on the accuracy of power385

measurement. Increasing the length of integration intervals cannot reduce the

maximum errors of cross items and additional items. These maximum errors

are always caused by interharmonics in the range of (m − n) ∈ (−1/k, 1/k)

or n ∈ (0, 1/k). However, when k increases, interharmonics contained in these

ranges are less. In addition, the positive and negative errors may cancel each390

other out because of the presence of many interharmonics of different frequencies

in the actual signals. In this way, it will show that the total measurement error

gradually decreases as the length of the integration interval increases. When the

length of the measurement time interval is 150 fundamental frequency cycles
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(50 Hz system, corresponding to a length of 3 s), the measurement relative395

errors of active power, voltage and current rms value, apparent power and power

factor can all be reduced by one order of magnitude, and all of these relative

errors are controlled within 1%. Moreover, when the length of the measurement

time interval increases to 3000 fundamental frequency cycles (50 Hz system,

corresponding to a length of 1 min), the measurement relative errors of the above400

power quantities can be reduced by four orders of magnitude. Therefore, the

length of the measurement time interval can be appropriately selected according

to the interharmonic content and the measurement accuracy requirement during

the power measurement.

From the practicality of measurement, parameters such as initial phase an-405

gle and measurement start time are random and unpredictable. Although they

have a large influence on the measurement accuracy, due to the existence of un-

certainty, it is difficult to ensure the condition of satisfying the minimum error

during measurement. Therefore, it is generally impossible to improve the pow-

er measurement accuracy by changing the measurement start time. However,410

for any signal and measurement started at any time, as long as the length of

the measurement integration interval is long enough, the power and rms value

measurement errors can be restricted within the required range, even if under

the condition of selecting the worst measurement start time.
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