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Abstract
The Goldstein-Taylor equations can be thought of as a simplified version of a BGK system,
where the velocity variable is constricted to a discrete set of values. It is intimately related to
turbulent fluid motion and the telegrapher’s equation. A detailed understanding of the large
time behaviour of the solutions to these equations has beenmostly achieved in the case where
the relaxation function, measuring the intensity of the relaxation towards equally distributed
velocity densities, is constant. The goal of the presentedwork is to provide a generalmethod to
tackle the question of convergence to equilibriumwhen the relaxation function is not constant,
and to do so as quantitatively as possible. In contrast to the usual modal decomposition of
the equations, which is natural when the relaxation function is constant, we define a new
Lyapunov functional of pseudodifferential nature, one that is motivated by themodal analysis
in the constant case, that is able to deal with full spatial dependency of the relaxation function.
The approach we develop is robust enough that one can apply it to multi-velocity Goldstein-
Taylor models, and achieve explicit rates of convergence. The convergence rate we find,
however, is not optimal, as we show by comparing our result to those found in [8].
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1 Introduction

The object of this work is the large time analysis of theGoldstein-Taylor equations on the one-
dimensional torus T, i.e. on [0, 2π ] with periodic boundary conditions, and for t ∈ (0,∞):

∂t f+(x, t) + ∂x f+(x, t) = σ(x)

2
( f−(x, t) − f+(x, t)),

∂t f−(x, t) − ∂x f−(x, t) = −σ(x)

2
( f−(x, t) − f+(x, t)),

f±(x, 0) = f±,0(x),

(1)

where f±(x, t) are the density functions of finding an element with a velocity±1 in a position
x ∈ T at time t > 0. The function σ ∈ L∞+ (T) := {

f ∈ L∞(T)
∣∣ essmin f > 0

}
is the

relaxation coefficient, and f±,0 are the initial conditions. Since (1) is mass conserving, its
steady state is of the form

f±,∞(x) := f∞ , x ∈ T ; f∞ := 1

2
( f+,0 + f−,0)avg,

with the notation

havg := 1

2π

∫ 2π

0
h(x)dx . (2)

The Goldstein-Taylor model was originally considered as a diffusion process, resulting as
a limit of a discontinuous randommigration in 1D, where particles may change direction with
rate σ . It appeared in the context of turbulent fluid motion and the telegrapher’s equation,
see [15,22], respectively. (1) can also be seen as a special 1D case of a BGK-model (named
after the three physicists Bhatnagar, Gross, and Krook [9]) with a discrete set of velocities.
Such equations commonly appear in applications like gas and fluid dynamics as velocity
discretisations of various kinetic models (e.g. the Boltzmann equation). The mathematical
analysis of such discrete velocity models has a long standing tradition, see [10,18] and
references therein.

Although the Goldstein-Taylor equation is very simple, it still exhibits an interesting
and mathematically rich structure. Hence, it has been attracting continuous interest over the
last 20 years. Most of its mathematical analyses was devoted to the following three topics:
scaling limits, asymptotic preserving (AP) numerical schemes, and large time behaviour. In a
diffusive scaling, the Goldstein-Taylormodel can be viewed as a hyperbolic approximation to
the heat equation [21]. Various AP-schemes for this model in the stiff relaxation regime (i.e.
for σ → ∞) were constructed and analyzed in [4,16,17]. Since the large time convergence of
solutions to (1) towards its unique steady state is also the topic of this work, we shall review
the related literature in more detail:

Analytically, the main difficulty of (1) is with its hypocoercivity, as defined in [24]: More
specifically, the relaxation operator on the r.h.s. is not coercive on T × R

2. Hence, for each
fixed x , the r.h.s. by itself would drive the system to its local equilibrium, generated by the
kernel of the relaxation operator, span{(11

)}, but the local mass (density) might be different
at different positions. Convergence to the global equilibrium ( f∞, f∞)T only arises due to
the interplay between local relaxation and the transport operator on the l.h.s. of (1).

The Goldstein-Taylor model was also considered in the analysis of [5], if one chooses the
velocity matrix to be V = diag(1,−1) and the relaxation matrix A(x) to be

A(x) = σ(x)

2

(
1 −1

−1 1

)
≥ 0.
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Exponential convergence to the steady state is then proved in the aforementioned work for
the system (1)with inflow boundary conditions. Such boundary conditions make the problem
significantly easier than in the periodic set-up envisioned here, in particular it allows for σ(x)
to be zero on a subset of T, an issue that proves to be far more difficult in our setting.
In [12] the authors proved polynomial decay towards the equilibrium, allowing σ(x) to vanish
at finitely many points.
In [23] the author proved exponential decay for solutions to (1) for a more general σ(x) ≥ 0.
That work is based on a (non-local in time) weak coercive estimate on the damping.
All of the papers mentioned so far did not focus on the optimality of the (exponential) decay
rate. Using the equivalence between (1) and the telegrapher’s equation, the authors of [8]
have shown that this optimal decay rate, μ(σ), is the minimum of σavg and the spectral gap
of the telegrapher’s equation (excluding the case when some of those eigenvalues with real
part equal to μ(σ) are defective). The precise value of this spectral gap, however, is hardly
accessible - even for simple non-constant relaxation functions σ(x) (see e.g. Appendix A).
Moreover, it is based on the restrictive requirement f±,0 ∈ H1(T), and cannot be extended
to other discrete velocity models in 1D. The reason for the latter is that [8] heavily relies on
the equivalence of (1) to the telegrapher’s equation.

The issues above motivated our subsequent analysis: We introduce a method for L2–
initial data that can be extended to other discrete velocity BGK-models (as illustrated below
for a 3−velocities system), and that yields sharp rates for constant σ . Moreover, and most
importantly, it is applicable in the general non-homogeneous σ ∈ L∞+ (T) case and yields in
these cases an explicit, quantitative lower bound for the decay rate. In this case, however, it
will not achieve an optimal rate of convergence1 to the appropriate equilibrium of the system.
The method to be derived here will use a Lyapunov function technique in the spirit of the
earlier works [1,2,13,24].

This paper is structured as follows: In §2 we give the analytical setting of the problem
and present our main convergence result (Theorem 1). In §3 we recall some analytical
results which will be needed in the analysis that will follow, and explore some properties of
the entropy functional Eθ and the anti-derivative of functions on T, defined in (4) and (5),
respectively. § 4 is devoted to the case where σ(x) = σ is constant, which will motivate our
more general approach: Based on amodal decomposition of the Goldstein-Taylor system and
its spectral analysis we derive the entropy functional Eθ , first on a modal level and then as a
pseudo-differential operator in physical space. We conclude by proving part (a) of our main
theorem. Continuing to §5, we will prove, using a perturbative approach to the problem, part
(b) of our main theorem. The robustness of our method will be shown in §6 where we use it
to obtain an explicit rate of convergence for a 3−velocities Goldstein-Taylor model. Finally,
in Appendix A we discuss a potential way to improve the technique from §5, and explicitly
show the lack of optimality of it for a particular case of σ(x).

2 The Setting of the Problem andMain Results

To better understand the Goldstein-Taylor system, (1), one starts by recasting it in the macro-
scopic variables

u := f+ + f−, v := f+ − f−,

1 At least compared to the H1-result in [8].
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representing the spatial (mass) density and the flux density, respectively. The macroscopic
variables yield the following system of equations on T × (0,∞):

∂t u(x, t) + ∂xv(x, t) = 0,

∂tv(x, t) + ∂xu(x, t) = −σ(x)v(x, t),

u(., 0) = u0 := f+,0 + f−,0, v(., 0) = v0 := f+,0 − f−,0 ,

(3)

whose theory of existence and uniqueness is straightforward (since the r.h.s. is a bounded
perturbation of the transport operator; see §2 in [12] or, more generally, [20]). Moreover,
when one tries to understand the qualitative behaviour of (3), one notices that the equation
for u speaks of “total mass conservation” (upon integration over the spatial interval (0, 2π)),
while the equation for v predicts a strong decay to zero for the function. This means, at least
intuitively, that the difference between f+ and f− should go to zero, and that their sum retains
its mass. As the main driving force of the equation is a transport operation on the torus, we
will not be surprised to learn that the large time behaviour of u (and since v should go to zero,
of f+ and f− as well) is convergence to a constant. All of this has been verified in several
cases, most generally in [8].

We now set the framework that will assist us in the investigation of the large time behaviour
of (3), in a relatively general case. The natural Hilbert space to consider this problem is
L2(T)⊗2, with the standard inner product for each component:

〈 f1, f2〉 := 1

2π

∫ 2π

0
f1(x) f2(x)dx,

where the bar denotes complex conjugation. Since (1) and (3) are (only) hypocoercive, the
symmetric part of their generators (i.e. the operators on their r.h.s.) are not coercive on
L2(T)⊗2. Hence, the standard L2–norm cannot serve as a usable Lyapunov functional. As
is typical for hypocoercive equations (see [1,13,24]), a possible remedy to this problem is
to consider a “twisted” norm (often also referred to as entropy functional), constructed in a
way that this functional strictly decays along each trajectory (u(t), v(t)).
The following functional, which will be our entropy functional, is not an ansatz, and its origin
will be derived in §4. Moreover, we will show that it will yield the sharp exponential decay
for constant σ , when one chooses θ = θ(σ ) appropriately.

Definition 1 Let f , g ∈ L2 (T) and let θ > 0 be given. Then we define the entropy Eθ ( f , g)
as

Eθ ( f , g) := ‖ f ‖2 + ‖g‖2 − θ

2π

∫ 2π

0
Re
(
∂−1
x f (x)g(x)

)
dx . (4)

Here, the anti-derivative of f is defined as

∂−1
x f (x) :=

∫ x

0
f (y)dy −

(∫ x

0
f (y)dy

)

avg
, (5)

with the average defined in (2). The normalization constant in (5) is chosen such that
(∂−1

x f )avg = 0.

Several recent studies (like [1,13]) considered the Goldstein-Taylor system with constant
σ . This case can be investigated fairly easy as one is able to utilise Fourier analysis in this
setting, and construct a Lyapunov functional as a sum of quadratic functionals of the Fourier
modes. However, the moment we change σ(x) to a non-constant function - even to one that
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is natural in the Fourier setting, such as sine or cosine - the Fourier analysis becomes nigh
impossible to solve.
The main idea that guided us in our approach was to re-examine the case where σ is constant
and to recast themodalFourier normby using a pseudo-differential operator, without needing
its modal decomposition. This functional, which is exactly Eθ for particular choices of
θ = θ(σ ), can then be extended to the case where σ(x) is not constant, yielding quantitative
estimates for the convergence. As the nature of this approach is perturbative, our decay rates
are not optimal. Themethodology itself, however, is fairly robust, and is viable in other cases,
such as the multi-velocity Goldstein-Taylor model (as we shall see).

The main theorem we will show in this paper, with the use of the vector notation

f (t) :=
(
f+(t)

f−(t)

)
, f0 :=

(
f+,0

f−,0

)
, (6)

is the following:

Theorem 1 Let u, v ∈ C([0,∞); L2 (T)) be mild2 real valued solutions to (3) with initial
datum u0, v0 ∈ L2 (T). Denoting by uavg = (u0)avg we have:

a) If σ(x) = σ is constant we have that:

If σ 
= 2 then

Eθ(σ )

(
u(t) − uavg, v(t)

) ≤ Eθ(σ )

(
u0 − uavg, v0

)
e−2μ(σ)t

where

θ (σ ) :=
{

σ, 0 < σ < 2
4
σ
, σ > 2

, μ (σ ) :=
{

σ
2 , 0 < σ < 2
σ
2 −

√
σ 2

4 − 1, σ > 2
,

and if σ = 2 then for any 0 < ε < 1

E 2(2−ε2)
2+ε2

(
u(t) − uavg, v(t)

) ≤ E 2(2−ε2)
2+ε2

(
u0 − uavg, v0

)
e−2(1−ε)t .

Consequently if σ 
= 2
∥∥∥ f (t) −

(
f∞
f∞

)∥∥∥ ≤ Cσ

∥∥∥ f0 −
(
f∞
f∞

)∥∥∥e−μ(σ)t , (7)

where

Cσ :=
⎧
⎨

⎩

√
2+σ
2−σ

, 0 < σ < 2
√

σ+2
σ−2 , σ > 2

, f∞ = uavg
2

, (8)

and the decay rate μ(σ) is sharp.
For σ = 2 we have that

∥∥∥ f (t) −
(
f∞
f∞

)∥∥∥ ≤
√
2

ε

∥∥∥ f0 −
(
f∞
f∞

)∥∥∥e−(1−ε)t . (9)

b) If σ(x) is non-constant such that

0 < σmin := inf
x∈T σ(x) < sup

x∈T
σ(x) =: σmax < ∞,

2 We use mild solution in the termonology of semigroup theory [20].
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then by defining

θ∗ := min

(
σmin,

4

σmax

)
(10)

and

α∗ := α∗ (σmin, σmax) :=

⎧
⎪⎪⎨

⎪⎪⎩

σmin

(
4+2

√
4−σ 2

min−σminσmax

)

4+2
√
4−σ 2

min−σ 2
min

, σmin < 4
σmax

σmax −√σ 2
max − 4, σmin ≥ 4

σmax

(11)

we have that

Eθ∗
(
u(t) − uavg, v(t)

) ≤ Eθ∗
(
u0 − uavg, v0

)
e−α∗t ,

and as result

∥∥∥ f (t) −
(
f∞
f∞

)∥∥∥ ≤
√
2 + θ∗
2 − θ∗

∥∥∥ f0 −
(
f∞
f∞

)∥∥∥e− α∗
2 t , (12)

with f∞ defined in (8).

Part (a) of this theoremwill be proved in §4.4, and Part (b) in §5. In many of the proofs which
will eventually lead to the proof of this theorem we will assume that (u, v) is a classical
solution, pertaining to u0, v0 in the periodic Sobolev space H1(T). The general result will
follow by a simple density argument.

Remark 1 It is simple to see that if σ(x) satisfies the conditions of (b), then, as σmin and σmax

approach a positive constant σ 
= 2, we find that

θ∗ → min

(
σ,

4

σ

)
, and α∗ →

{
σ − √

σ 2 − 4, σ > 2

σ, σ < 2
,

recovering the results of part (a) of the above theorem.
In addition, one should note that when σmin > 4

σmax
we have that

α∗ (σmin, σmax) = 2μ (σmax) ,

where μ (σ) was defined in part (a) of the Theorem. This validates the intuition that, if σmax

is “large enough”, the convergence rate of the solution can be estimated using the “worst
convergence rate”, corresponding to μ (σmax) of the σ(x) = σ case.
Lastly, one notices that when σmin = 4

σmax

σmin

(
4 + 2

√
4 − σ 2

min − σminσmax

)

4 + 2
√
4 − σ 2

min − σ 2
min

= σmax −
√

σ 2
max − 4,

which shows the continuity of α∗ on the curve that stitches the two formulas in (11).
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3 Preliminaries

In this short section we will remind the reader of a few simple properties of functions on the
torus, as well as explore properties of the anti-derivative function, ∂−1

x f , and our functional
Eθ ( f , g). Most of the simple proofs of this section will be deferred to Appendix B.

We begin with the well known Poincaré inequality:

Lemma 1 (Poincaré Inequality) Let f ∈ H1
per (T) with favg = 0. Then

‖ f ‖ ≤ ∥∥ f ′∥∥ . (13)

Next we focus our attention on some simple, yet crucial, properties of the anti-derivative
function which was defined in (5).

Lemma 2 Let f ∈ L1 (T). Then:

i)
(
∂−1
x f

)
avg = 0.

ii) ∂−1
x f is differentiable a.e. on [0, 2π ] and ∂x

(
∂−1
x f

)
(x) = f (x) a.e.

iii) If in addition f is differentiable we have that ∂−1
x (∂x f ) (x) = f (x) − favg.

iv) If, in addition, we have that favg = 0, then ∂−1
x f is a continuous function on the torus,

and

̂
∂−1
x f (k) =

{
f̂ (k)
ik , k 
= 0

0, k = 0
. (14)

Remark 2 (ii), (iv), and the fact that f is a function on the torus, imply that if favg = 0 we
are allowed to use integration by parts with ∂−1

x f (x) on this boundaryless manifold without
qualms.

The last simple lemma in this revolves around our newly defined functional, Eθ .

Lemma 3 Let f , g ∈ L2 (T) be such that favg = 0 and let θ ∈ R be given. Then the entropy
Eθ ( f , g), defined in (4), satisfies

Eθ ( f , g) ≤
(
1 + |θ |

2

) (‖ f ‖2 + ‖g‖2) . (15)

If in addition |θ | < 2 we have that

Eθ ( f , g) ≥
(
1 − |θ |

2

) (‖ f ‖2 + ‖g‖2) . (16)

In particular, if 0 ≤ θ < 2 we have that
(
1 − θ

2

) (‖ f ‖2 + ‖g‖2) ≤ Eθ ( f , g) ≤
(
1 + θ

2

) (‖ f ‖2 + ‖g‖2) . (17)

Lastly, we shall prove the following theorem, which (finally) brings the system (3) into
play, and on which we will rely on frequently in our future estimation.

Proposition 1 Let u, v ∈ C([0,∞); L2 (T)) be (real valued) mild solutions to (3)with initial
datum u0, v0 ∈ L2 (T). Then for any θ ∈ R

d

dt
Eθ

(
u(t) − uavg, v(t)

) = −θ
∥∥u(t) − uavg

∥∥2 + 1

2π

∫ 2π

0
(θ − 2σ(x))v(x, t)2dx
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+ θ

2π

∫ 2π

0
σ(x)∂−1

x

(
u(x, t) − uavg

)
v(x, t)dx − θ

(
v(t)avg

)2
,

(18)

where

uavg = 1

2π

∫ 2π

0
u0(x)dx = 1

2π

∫ 2π

0
u(x, t)dx, ∀t > 0. (19)

Proof We begin by noticing that the validity of (19) follows immediately from the fact that
u is a mild solution and the conservation of mass property of the system (3). Moreover, one
can see that replacing (u(t), v(t)) by

(
u(t) − uavg, v(t)

)
yields an equivalent solution (up to

a constant shift in the initial data) to the system of equations, with the additional condition
that the average of the first component is zero for all t ≥ 0. With this observation in mind,
we can assume without loss of generality that uavg = 0.

Using the Goldstein-Taylor equations we see that

d

dt
‖u(t)‖2 = 2 〈u, ∂t u〉 = −2 〈u, ∂xv〉 .

d

dt
‖v(t)‖2 = 2 〈v, ∂tv〉 = −2 〈v, ∂xu + σv〉 .

Since

〈u, ∂xv〉 + 〈v, ∂xu〉 = 1

2π

∫ 2π

0
∂x (uv) (x, t)dx = 0 ,

we see that

d

dt

(‖u(t)‖2 + ‖v(t)‖2) = − 1

π

∫ 2π

0
σ(x)v(x, t)2dx . (20)

We now turn our attention to the mixed term of Eθ (u, v):

d

dt

θ

2π

∫ 2π

0
∂−1
x u(x, t)v(x, t)dx

= θ

2π

∫ 2π

0
∂−1
x (∂t u) (x, t)v(x, t)dx + θ

2π

∫ 2π

0
∂−1
x u(x, t)∂tv(x, t)dx

= − θ

2π

∫ 2π

0
∂−1
x (∂xv) (x, t)v(x, t)dx

− θ

2π

∫ 2π

0
∂−1
x u(x, t)[∂xu(x, t) + σ(x)v(x, t)]dx .

Using points (ii) and (iii) of Lemma 2, together with Remark 2, we find that the above equals

− θ

2π

∫ 2π

0

(
v(x, t) − v(t)avg

)
v(x, t)dx + θ

2π

∫ 2π

0
u(x, t)2dx

− θ

2π

∫ 2π

0
σ(x)∂−1

x u(x, t)v(x, t)dx .

Subtracting this from (20) (as there is a minus in definition (4)) yields (18). ��
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4 Constant Relaxation Function

In recent years, the investigation of the Goldstein-Taylor model onTwith constant relaxation
function σ was frequently tackled with a modal decomposition in the Fourier space w.r.t.
x . This approach allows for an extension to other discrete velocity models and even some
continuous velocities models [1], but is not suitable for the non-homogeneous case.
Before beginning with our investigation we review a few recent results:
In [13, §1.4] exponential convergence to equilibrium was shown, but without the sharp rate.
In [1, §4.1] a hypocoercive decay estimate of the form

∥∥∥ f (t) −
(
f∞
f∞

)∥∥∥
L2

≤ c e−μt
∥∥∥ f0 −

(
f∞
f∞

)∥∥∥
L2

,

with the vector notation from (6) and the sharp rate

μ(σ) =
{

σ
2 , 0 < σ < 2
σ
2 −

√
σ 2

4 − 1, σ > 2

was obtained (see also Fig. 1 below). A further study on the minimal constant c in the above
was provided in [3, Th. 1.1].

With these results in mind, we turn our attention to the following (recast) Goldstein-Taylor
equation with a constant relaxation rate:

∂t u(x, t) = −∂xv(x, t),

∂tv(x, t) = −∂xu(x, t) − σv(x, t) .
(21)

In order to be able to discover our entropy functional, we shall consider the straightforward
modal analysis in detail. This will allow us to obtain not only explicit decay rates for each
Fouriermode, but also an “optimal Lyapunov functional” for such givenmode, withwhichwe

Fig. 1 The exponential decay rate, μ (σ), of the solution pair (u(t) − uavg, v(t)) grows linearly until σ = 2
where the defectiveness appears (hence the circle). From that point onwards the decay rate decreases, and is

of order O
(
1
σ

)

123



41 Page 10 of 35 A. Arnold et al.

will then be able to construct a non-modal entropy functional in terms of a pseudo-differential
operator as defined in (4).
As was mentioned in §2, this will give us intuition to the large time behaviour of the equation
in several cases even when σ(x) is not constant.

4.1 Fourier Analysis and the Spectral Gap

One natural way to understand the large time behaviour of (21) relies on a simple Fourier
analysis together with a hypocoercivity technique that was developed by Arnold and Erb in
[6]. We begin with the former, and focus on the latter from the next subsection onwards.
Using the Fourier transform on the torus (i.e. in the spatial variable), we see that (21) is
equivalent to infinity many decoupled ODE systems:

d

dt

(
û(k)
v̂(k)

)
= −

(
0 ik
ik σ

)(
û(k)
v̂(k)

)
:= −Ck

(
û(k)
v̂(k)

)
, k ∈ Z. (22)

The eigenvalues of the matrices Ck ∈ C
2×2 are given by

λ±,k := σ

2
±
√

σ 2

4
− k2, k ∈ Z,

and as such:

– Invariant space: For k = 0 we find that λ−,0 = 0 and λ+,0 = σ . In fact, as

C0 =
(
0 0
0 σ

)
(23)

we can conclude immediately that û(0, t) = û0(0) and v̂(0, t) = v̂0(0)e−σ t , correspond-
ing to the mass conservation of the original equation and the rapid decay of the difference
between the masses of f− and f+.

– Case I: For 0 < |k| < σ
2 one finds two real eigenvalues, whose minimum is

λ−,k = σ

2
−
√

σ 2

4
− k2 = 2k2

σ + √
σ 2 − 4k2

,

i.e. the large time behaviour of û(k) and v̂(k) is controlled by e
−
(

σ
2 −
√

σ2
4 −k2

)
t
.

– Case II: For 0 < |k| = σ
2 ∈ N the two eigenvalues coincide and are equal to σ

2 .Moreover,
that eigenvalue is defective (i.e. corresponds to a Jordan block of size 2) and the large
time behaviour of û(k) and v̂(k) is controlled by (1 + t) e− σ

2 t .
– Case III: For |k| > σ

2 , one finds two complex conjugate eigenvalues, whose real part

equals σ
2 . Thus the large time behaviour of û(k) and v̂(k) is controlled by e− σ

2 t .

From the observations above, we notice that as long as we subtract û(0), i.e. as long as we
remove the initial total mass from the original solution, all the modes converge exponentially
to zero. Their rates have a sharp, and uniform-in-k lower bound that depends on σ . This
spectral gap of (21) will be denoted by μ (σ).
Case I, i.e. 0 < |k| < σ

2 , is themost “difficult case” as the real part of the eigenvalues depends
on k. However, one notices that the lower eigenvalue, λ−,k , increases with k, which implies
that, if there are k−s such that 0 < |k| < σ

2 , the slowest possible convergence will be given
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Fig. 2 The eigenvalues λ±,k of Ck , |k| ∈ N for σ = 5. The spectral gap is μ = (5 − √
21)/2

by λ−,±1. As we need to compare the decay rates of all modes simultaneously, we find that
it is enough to consider the following possibilities:

– 0 < σ < 2:We only have possibilities of Case III, implying that all modes are controlled
by e− σ

2 t .
– σ = 2: We have possibilities of Case III, as well as defectiveness in k = ±1 (Case

II). This means that the modes are controlled by (1 + t) e−t . If one searches for a pure
exponential control, the best rate one would find is e−(1−ε)t for any given fixed ε > 0.

– σ > 2: We have possibilities from Cases I and III, and potentially Case II. All the modes

that correspond to Case I are controlled by e
−
(

σ
2 −
√

σ2
4 −1

)
t
, while those that correspond

to Case III are controlled by e− σ
2 t . If Case II is realised, i.e. σ

2 ∈ N \ {1}, we find that the
modes k = ± σ

2 are controlled by (1 + t) e− σ
2 t . In total, thus, all the modes are controlled

by e
−
(

σ
2 −
√

σ2
4 −1

)
t
, a decay rate that is realised on the k = ±1 modes, and the coefficient

in the exponent is the spectral gap of the Goldstein-Taylor system (21).

An illustration of the eigenvalues of the matricesCk for |k| ∈ N and σ = 5 can be viewed
in Fig. 2.
Before we turn our attention to properly consider these cases and “uncover” our spatial
entropy, we remind the reader of the hypocoercivity technique which will allow us to trans-
form the spectral information of Ck into a an appropriate, twisted norm with which we will
show the desired decay of the k-th mode.

4.2 Hypocoercivity andModal Lyapunov Functionals

In the previous subsection we have concluded that, barring the zero mode, all the Fourier
modes of (22) decay exponentially (excluding potentially those with |k| = σ

2 where a poly-
nomial correction is required). The lack of positive definiteness of the governing matrix, Ck ,
stops us from seeing this behaviour in the Euclidean norm onC

2. However, by modifying the
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norm with the help of another, closely related, positive definite matrix Pk , one can construct
a new Lyaponov functional, which is equivalent to the Euclidean norm, that decays with the
expected exponential rate (at least for a non-defective Ck).
This is exactly the idea thatmotivatedArnold andErb, andwhich is expressed in the following
theorem (see [6], [1, Lemma 2]):

Theorem 2 Let the matrix C ∈ C
n×n be positive stable (i.e. have only eigenvalues with

positive real parts). Let

μ = min {Re λ | λ is an eigenvalue of C} .

Then:

i) If all eigenvalues with real part equal to μ are non-defective, there exists a Hermitian,
positive definite matrix P such that

C∗P + PC ≥ 2μP. (24)

ii) If at least one eigenvalue with real part equal to μ is defective, then for any ε > 0, one
can find a Hermitian, positive definite matrix Pε such that

C∗Pε + PεC ≥ 2 (μ − ε)Pε , (25)

where C∗ denotes the Hermitian transpose of C.

We remark that the matrices P and Pε are never unique.
One can utilise the theorem in the following way: Assuming the eigenvalues associated to
C’s spectral gap, μ, are non-defective, then by defining the norm

‖y‖2P := 〈y,Py〉 = y∗Py,

one sees that, if y(t) solves the ODE ẏ = −Cy, then

d

dt
‖y‖2P = − 〈y, (C∗P + PC

)
y
〉 ≤ −2μ ‖y‖2P , (26)

resulting in the correct decay rate. The same approachworks in the second case of Theorem 2.
Besides the general idea of this methodology, Arnold and Erb have given a recipe (one that
was later extended in [7] to defective cases, using a time dependent matrix P) to finding the
matrices P and Pε :
Assuming that C is diagonalisable, and letting {ωi }i=1,...,n be the eigenvectors of C∗, the
matrix P > 0 can be chosen to be

P =
n∑

i=1

biωi ⊗ ω∗
i , (27)

for any positive sequence {bi }i=1,...,n . The above formula remains true, for a particular choice
of {bi }i=1,...,n , in the case whereC is not diagonalisable. In that case we also need to augment
the eigenvectors with the generalised eigenvectors. We refer the interested reader to Lemma
4.3 in [6]. Moreover, for n = 2, the case we shall need below, and C non-defective, all
matrices P satisfying (24) are indeed of the form (27), see [3, Lemma 3.1].

We now turn our attention back to the Fourier transformed Goldstein-Taylor system (22)
and determine the modal Lyapunov functionals using the above recipe. A short computation,
where the weights b1, b2 are chosen such that both diagonal elements of P are 1, finds the
following matrices (For Case III we also require b1 = b2, as this minimises the number of
the resulting admissible matrices Pk satisfying (24).):

123



Large time convergence of the non-homogeneous... Page 13 of 35 41

– Case I: 0 < |k| < σ
2 . In this case we have:

P(I )
k :=

(
1 − 2ki

σ
2ki
σ

1

)
, (28)

– Case II: |k| = σ
2 ∈ N. As this case fosters defective eigenvalues, we will only consider

the case σ = 2 (as was mentioned beforehand), and state the matrix corresponding to
k = ±1 and a given fixed ε > 0:

P(I I )
ε,±1 :=

(
1 ∓ i(2−ε2)

2+ε2

± i(2−ε2)

2+ε2
1

)

(29)

– Case III: |k| > σ
2 . In this case we have:

P(I I I )
k :=

(
1 − iσ

2k
iσ
2k 1

)
(30)

For each mode k 
= 0, its modal Lyapunov functional will be given by
∥∥(û(k,t)

v̂(k,t)

)∥∥2
Pk
, where

the matrix Pk is chosen according to the above three cases. In Case II, the parameter ε > 0
can be chosen arbitrarily small.

4.3 Derivation of the Spatial Entropy E�(u, v)

The goal of this subsection is twofold: Finding a modal entropy to our system, and translating
it to a spatial entropy that is modal-independent.
To begin with we shall define a modal entropy to quantify the exponential decay of solutions
to (22) towards its steady state:

û∞(k) =
{
û0(k = 0) = (u0)avg, k = 0
0, k 
= 0

; v̂∞(k) = 0 , k ∈ Z . (31)

Since the matrix C0 from (23) has no spectral gap, the mode k = 0 plays a special role, and
hence will be treated separately.
Once found, we will want to relate that modal-based entropy to the spatial entropy Eθ from
Definition 1, which is not based on a modal decomposition. To this end we already remark
that the off-diagonal factors ik in (28) and 1/ik in (30) correspond in physical space, roughly
speaking, to a first derivative and an anti-derivative, respectively.

As in §4.1 we shall distinguish three cases of σ :
0 < σ < 2 :All modes k 
= 0 satisfy |k| > σ

2 , and hence are of Case III. We recall from §4.1
that all modes decay here with the sharp rate σ

2 . For a modal entropy to reflect this decay, we

hence have to use for each mode a Lyapunov functional
∥∥(û(k,t)

v̂(k,t)

)∥∥2
Pk
, where Pk satisfies the

inequality (24) with μ = σ
2 . Pk = P(I I I )

k is the most convenient choice.
We define the modal entropy for any {̂u(k), v̂(k)}k∈Z such that û(0) = 0 as

E (̂u, v̂) :=
∑

k∈Z\{0}

∥∥∥∥

(
û(k)
v̂(k)

)∥∥∥∥

2

P(I I I )
k

+
∥∥∥∥

(
û(0)
v̂(0)

)∥∥∥∥

2

(32)

=
∑

k∈Z

(
|̂u(k)|2 − σ Re

(
û(k)

ik
v̂(k)

)
+ |̂v(k)|2

)
, (33)
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where we used the convention û(0)
0 = 0. The mode k = 0 was included since û(0, t) =

û(0) = 0 and v̂(0, t) = v̂(0)e−σ t . Using Plancherel’s equality, and (iv) from Lemma 2, we
find that

E (̂u, v̂) = Eσ (u, v) , (34)

which shows why we consider the spatial entropy functional from Definition 1 in this case.
We note that, since uavg(t) is conserved, part (iv) of Lemma 2, explains why we have chosen
to use the anti-derivative of u, and not of v.
σ > 2 : This situation is more complicated than the previous one, as we have a mixture of at
least two of the aforementioned three cases: finitely many k−s in Z for which 0 < |k| < σ

2
(i.e. Case I), Case II for two k−s if σ

2 ∈ N, while the rest satisfy |k| > σ
2 (i.e. Case III).

Following the above methodology to construct the modal entropy, we would need to use
a combination of P(I )

k and P(I I I )
k , given by (28) and (30), and potentially a matrix for the

defective modes. This is feasible on the modal level, but does not easily translate back to
the spatial variables. It would yield a complicated pseudo-differential operator “inside” the
spatial entropy.

Recalling the discussion from §4.1 we see that the overall decay rate, μ = σ
2 −

√
σ 2

4 − 1
is only determined by the modes k = ±1. Since all the other modes decay faster, we are
not obliged to use “optimal” modal Lyapunov functionals for these higher modes. This
gives some leeway for choosing the matrices Pk , |k| > 1. Moreover, using these “optimal”
functionals will result in worsening of (i.e. enlargement of) the multiplicative constant in the
L2 hypocoercive estimation (7). Due to these reasons we will use the matrix

Psuff
k := P(I I I )

k

(
σ → 4

σ

)
=
(
1 − 2i

kσ
2i
kσ 1

)
> 0 (35)

when k 
= 0, which satisfies Psuff±1 = P(I )
±1 for the crucial lowest modes. It also satisfies

the following result, which implies exponential decay of all modal Lyapunov functionals∥∥(û(k,t)
v̂(k,t)

)∥∥2
Psuff
k

, k 
= 0 with rate 2μ = σ − √
σ 2 − 4.

Lemma 4 Let σ > 2. Then

C∗
kP

suff
k + Psuff

k Ck − 2μPsuff
k ≥ 0 ∀ k 
= 0 .

The proof of this lemma is straightforward3. Proceeding like in (32) we define the modal
entropy for any {̂u(k), v̂(k)}k∈Z such that û(0) = 0:

E (̂u, v̂) :=
∑

k∈Z\{0}

∥∥∥∥

(
û(k)
v̂(k)

)∥∥∥∥

2

Psuff
k

+
∥∥∥∥

(
û(0)
v̂(0)

)∥∥∥∥

2

.

Due to (34) and (35) it is related to the spatial entropy functional from Definition 1 as

E (̂u, v̂) = E 4
σ

(u, v) .

σ = 2 : Just like in the previous case, the lowest frequency modes k = ±1 control the large
time behaviour. However, the matrices C±1 are now defective, which leads to a (purely)
exponential decay rate reduced by ε.

3 In a sense, the same computation that shows this inequality is embedded in the proof of the exponential
decay of Eθ in the next subsection.
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We proceed similarly to the case σ > 2 and define for some ε > 0:

Psuff
ε,k = P(I I I )

k

(

σ → 2
(
2 − ε2

)

2 + ε2

)

=
⎛

⎝
1 − i

(
2−ε2

)

k(2+ε2)
i
(
2−ε2

)

k(2+ε2)
1

⎞

⎠ > 0 , (36)

which satisfies Psuff
ε,±1 = P(I I )

ε,±1 for the crucial lowest model. It also satisfies the following

result, which implies exponential decay of all modal Lyapunov functionals
∥∥(û(k,t)

v̂(k,t)

)∥∥2
Psuff

ε,k
,

k 
= 0 with rate of at least 2μ = 2(1 − ε).

Lemma 5 Let σ = 2. Then

C∗
kP

suff
ε,k + Psuff

ε,k Ck − 2μPsuff
ε,k > 0 ∀ k 
= 0 .

Proceeding like in (32) we define the modal entropy for any {̂u(k), v̂(k)}k∈Z such that û(0) =
0:

E (̂u, v̂) :=
∑

k∈Z\{0}

∥∥∥∥

(
û(k)
v̂(k)

)∥∥∥∥

2

Psuff
ε,k

+
∥∥∥∥

(
û(0)
v̂(0)

)∥∥∥∥

2

.

Due to (34) and (36) it is related to the spatial entropy functional from Definition 1 as

E (̂u, v̂) = E 2(2−ε2)
2+ε2

(u, v) .

4.4 The Evolution of the Spatial Entropy E�

In the previous subsection we have shown how, depending on the value of σ , the entropies
Eσ , E 4

σ
and E 2(2−ε2)

2+ε2

are the correct candidates to show the exponential convergence to equi-

librium. A closer look at (26) shows that eachmodal Lyapunov functional
∥∥(û(k,t)

v̂(k,t)

)∥∥2
Pk

decays
exponentially, and hence also the spatial entropy Eθ . Recalling the decay rates presented in
§4.3 for the three regimes of σ , confirms that we have actually already proved most of part
(a) of Theorem 1. However, as our main goal is to consider these functionals in the spatial
variable alone (i.e. without a modal decomposition), we shall show how one achieves the
correct convergence result following a direct calculation. This will also serve as a preparation
for §5.

Theorem 3 Under the same conditions of Theorem 1 with σ(x) = σ , one has that

i) If 0 < σ < 2 then

Eσ

(
u(t) − uavg, v(t)

) ≤ Eσ

(
u0 − uavg, v0

)
e−σ t .

ii) If σ > 2 then

E 4
σ

(
u(t) − uavg, v(t)

) ≤ E 4
σ

(
u0 − uavg, v0

)
e
−
(
σ−√

σ 2−4
)
t
.

iii) If σ = 2 then for any 0 < ε < 1

E 2(2−ε2)
2+ε2

(
u(t) − uavg, v(t)

) ≤ E 2(2−ε2)
2+ε2

(
u0 − uavg, v0

)
e−2(1−ε)t .
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Proof In order to prove this theorem we shall obtain differential inequalities for Eθ , from
which we will conclude the desired result by a simple application of Gronwall’s inequality.
Using Proposition 1 we find that:
If 0 < σ < 2 :

d

dt
Eσ

(
u(t) − uavg, v(t)

) = −σ
∥∥u(t) − uavg

∥∥2 − σ ‖v(t)‖2

+ σ 2

2π

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx − σ

(
v(t)avg

)2

= −σ Eσ

(
u(t) − uavg, v(t)

)− σ
(
v(t)avg

)2 ≤
−σ Eσ

(
u(t) − uavg, v(t)

)
.

Note that, since vavg(t) = (v0)avg e−σ t , we can compute Eθ

(
u(t) − uavg, v(t)

)
explicitly.

If σ > 2 :
d

dt
E 4

σ

(
u(t) − uavg, v(t)

) = − 4

σ

∥∥u(t) − uavg
∥∥2 −

(
2σ − 4

σ

)
‖v(t)‖2

+ 4

2π

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx − 4

σ

(
v(t)avg

)2

≤ −
(
σ −

√
σ 2 − 4

)
E 4

σ

(
u(t) − uavg, v(t)

)

+
(

σ −
√

σ 2 − 4 − 4

σ

)∥∥u(t) − uavg
∥∥2

+
(
4

σ
− σ −

√
σ 2 − 4

)
‖v(t)‖2

+ 4

2π

(

1 − σ − √
σ 2 − 4

σ

)∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx .

The desired inequality, d
dt E 4

σ
≤ −(σ − √

σ 2 − 4
)
E 4

σ
, is valid if and only if

4

2π

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx

≤
(
σ −

√
σ 2 − 4

) ∥∥u(t) − uavg
∥∥2 +

(
σ +

√
σ 2 − 4

)
‖v(t)‖2 .

(37)

Cauchy-Schwarz inequality, together with Poincaré inequality (Lemma 1) and Lemma 2,
imply that

4

2π

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx

≤ 4
∥∥u(t) − uavg

∥∥ ‖v(t)‖
= 2

(√
σ −

√
σ 2 − 4

∥∥u(t) − uavg
∥∥
)(√

σ +
√

σ 2 − 4 ‖v(t)‖
)

.

Together with the fact that 2 |ab| ≤ a2 + b2 this shows (37), concluding the proof in this
case.
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If σ = 2 :
d

dt
E 2(2−ε2)

2+ε2

(
u(t) − uavg, v(t)

)

= −2
(
2 − ε2

)

2 + ε2

∥∥u(t) − uavg
∥∥2 − 2

(
2 + 3ε2

)

2 + ε2
‖v(t)‖2

+ 1

2π
· 4
(
2 − ε2

)

2 + ε2

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx − 2

(
2 − ε2

)

2 + ε2

(
v(t)avg

)2

≤ −2 (1 − ε) E 2(2−ε2)
2+ε2

(
u(t) − uavg, v(t)

)− 2ε

(
1 − 2ε

2 + ε2

)∥∥u(t) − uavg
∥∥2

− 2ε

(
1 + 2ε

2 + ε2

)
‖v(t)‖2 + 1

2π
· 4ε

(
2 − ε2

)

2 + ε2

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx .

Like before, the desired inequality will follow if

1

2π
· 2
(
2 − ε2

)

2 + ε2

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx

≤
(
1 − 2ε

2 + ε2

)∥∥u(t) − uavg
∥∥2 +

(
1 + 2ε

2 + ε2

)
‖v(t)‖2 .

This is valid since

1

2π
· 2
(
2 − ε2

)

2 + ε2

∫ 2π

0
∂−1
x

(
u(x, t) − uavg

)
v(x, t)dx

≤ 2
√
4 + ε4

2 + ε2

∥∥u(t) − uavg
∥∥ ‖v(t)‖

= 2

(√

1 − 2ε

2 + ε2

∥∥u(t) − uavg
∥∥
)(√

1 + 2ε

2 + ε2
‖v(t)‖

)

≤
(
1 − 2ε

2 + ε2

)∥∥u(t) − uavg
∥∥2 +

(
1 + 2ε

2 + ε2

)
‖v(t)‖2 ,

where we used Cauchy-Schwarz inequality, Poincaré inequality, and Lemma 2 again.
The theorem is now complete. ��
As the last part of this section, we finally prove part (a) of Theorem 1:

Proof of part (a) of Theorem 1 The decay estimates of Eθ(σ ) are already shown in Theorem 3.
To show (7) and (9) we recall that

f+ = u + v

2
, f− = u − v

2
,

and

‖ f ‖2 + ‖g‖2 ≤ 2

2 − θ
Eθ ( f , g) , Eθ ( f , g) ≤ 2 + θ

2

(‖ f ‖2 + ‖g‖2)

for 0 < θ < 2 and favg = 0, according to Lemma 3. Thus, using the definition of f∞ from
(8) we see that

‖ f+(t) − f∞‖2 + ‖ f−(t) − f∞‖2
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= 1

2

∥∥u(t) − uavg
∥∥2 + 1

2
‖v(t)‖2 ≤ 1

2 − θ
Eθ

(
u(t) − uavg, v(t)

)

≤ 1

2 − θ
Eθ

(
u0 − uavg, v0

)
e−2μ(σ)t ≤ 1

2
· 2 + θ

2 − θ

(∥∥u0 − uavg
∥∥2 + ‖v0‖2

)
e−2μ(σ)t

= 2 + θ

2 − θ

(∥∥ f+,0 − f∞
∥∥2 + ∥∥ f−,0 − f∞

∥∥2
)
e−2μ(σ)t ,

which shows the result for the appropriate choices of θ(σ ) and μ(σ). For σ = 2 we choose

θ(2) = 2
(
2 − ε2

)

2 + ε2
, μ(2) = 1 − ε .

The sharpness of the decay rate for σ 
= 2 can be verified easily on the first mode, e.g. for
u0 = 0, v0 = eix . ��
With the constant case fully behind us, we can now focus on the case where σ(x) is a
non-constant function.

5 x−Dependent Relaxation Function

The large time behaviour of solutions to the Goldstein-Taylor equation (1), or equivalently
its recast form (3), becomes increasingly harder to understand, if the relaxation function,
σ(x), is not a constant. However, as shown in §4, we have managed to find a potential spatial
entropy that captures the exact behaviour of the decay to equilibrium. The idea that we will
employ in this section is to use the same type of entropy to try and estimate the convergence
rate even when σ(x) is not constant. This is, as mentioned in the introduction, a perturbative
approach - yet the methodology, and ideas, are robust enough to deal with more complicated
systems, as will be shown in the next section.

A fundamental theorem to establish our main result, Theorem 1 (b), is the following:

Theorem 4 Let u, v ∈ C([0,∞); L2 (T)) bemild solutions to (3)with initial datum u0, v0 ∈
L2 (T). Denoting by uavg = (u0)avg we have that for any given 0 < α, θ < 2 the conditions

α < θ, θ + α < 2σmin (38)

and

sup
x∈T
(
θ2 (σ (x) − α)2 − 4 (θ − α) (2σ(x) − θ − α)

) ≤ 0, (39)

imply that

Eθ

(
u(t) − uavg, v(t)

) ≤ Eθ

(
u0 − uavg, v0

)
e−αt , t ≥ 0. (40)

Proof Using (18) from Proposition 1, and the fact that θ
(
v(t)avg

)2 ≥ 0, we find that

d

dt
Eθ

(
u(t) − uavg, v(t)

) ≤ − αEθ

(
u(t) − uavg, v(t)

)− (θ − α)
∥∥u(t) − uavg

∥∥2

− 1

2π

∫ 2π

0
(2σ(x) − θ − α)v(x, t)2dx

+ θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x

(
u(x, t) − uavg

)
v(x, t)dx .

(41)
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The proof of the theorem will follow from the above inequality if we can show that

θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x

(
u(x, t) − uavg

)
v(x, t)dx

≤ (θ − α)
∥∥u(t) − uavg

∥∥2 + 1

2π

∫ 2π

0
(2σ(x) − θ − α)v(x, t)2dx .

(42)

Due to condition (38) we have that

inf
x∈T (2σ(x) − θ − α) = 2σmin − θ − α > 0.

Hence, we obtain with Cauchy-Schwarz, Young’s inequality |ab| ≤ a2
θ

+ θb2
4 , and the

Poincaré inequality, (13), that
∣∣∣∣

θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x

(
u(x, t) − uavg

)
v(x, t)dx

∣∣∣∣

≤ θ

2π

∫ 2π

0

√
2σ(x) − θ − α |v(x, t)| |σ(x) − α|√

2σ(x) − θ − α

∣∣∂−1
x

(
u(x, t) − uavg

)∣∣ dx

≤ θ

2π

(∫ 2π

0
(2σ(x) − θ − α) v(x, t)2dx

) 1
2

(∫ 2π

0

(σ (x) − α)2

2σ(x) − θ − α

(
∂−1
x

(
u(x, t) − uavg

))2
dx

) 1
2

≤ 1

2π

∫ 2π

0
(2σ(x) − θ − α)v(x, t)2dx

+ 1

2π

∫ 2π

0

θ2 (σ (x) − α)2

4 (2σ(x) − θ − α)

(
∂−1
x

(
u(x, t) − uavg

))2
dx

≤ 1

2π

∫ 2π

0
(2σ(x) − θ − α)v(x, t)2dx + sup

x∈T

(
θ2 (σ (x) − α)2

4 (2σ(x) − θ − α)

)
∥∥u(t) − uavg

∥∥2 .

(43)

The above implies that (42) will be valid when

sup
x∈T

θ2 (σ (x) − α)2

4 (2σ(x) − θ − α)
≤ θ − α,

which is equivalent, due to the positivity of the denominator, to (39). The proof is thus
complete. ��
Remark 3 It is worth to note that the conditions expressed in (38) are crucial in our estimation.
Indeed, they tell us that

(θ − α)
∥∥u(t) − uavg

∥∥2 and
∫ 2π

0
(2σ(x) − θ − α)v(x, t)2dx

are non-negative. If one part of the condition would not be true, we would be able to “cook”
initial data such that the mixed u–v–term in (42) is zero, and the above terms add up to
something strictly negative - breaking the functional inequality we are aiming to attain.

The next step towards proving part (b) in Theorem 1 is to look for θ and α such that conditions
(38) and (39) are satisfied.
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We recall the definition of θ∗ from Theorem 1:

θ∗ := min

(
σmin,

4

σmax

)
,

which in a sense captures the “worst possible” behaviourwhen comparingσ(x) to the constant
case (with σ 
= 2). We show the following:

Lemma 6 Assume that 0 < σmin < σmax < ∞, where σmin and σmax were defined in
Theorem 1. Then

α∗ := α∗ (σmin, σmax) :=

⎧
⎪⎪⎨

⎪⎪⎩

σmin

(
4+2

√
4−σ 2

min−σminσmax

)

4+2
√
4−σ 2

min−σ 2
min

, σmin < 4
σmax

σmax −√σ 2
max − 4, σmin ≥ 4

σmax

is such that θ∗ and α∗ satisfy conditions (38) and (39).

Proof Clearly, since

θ∗ ≤
{

σmin, σmin < σmax ≤ 2
4

σmax
, σmax > 2

we always have that 0 < θ∗ < 2.
We continue by considering condition (39), and finding appropriate parameters which will
give condition (38) automatically. Denoting by

f (α, θ, y) := θ2 (y − α)2 − 4 (θ − α) (2y − θ − α)

for (α, θ) that satisfy condition (38) and y ∈ [σmin, σmax], we find that for fixed α and θ , f
is an upward parabola in y whose non-positive part lies between its roots

y± (α, θ) := α + 2 (θ − α)

θ2

(
2 ±

√
4 − θ2

)
.

Thus, condition (39) is satisfied if and only if

y− (α, θ) ≤ σmin, and σmax ≤ y+ (α, θ) .

A simple calculation shows that for 0 < θ < 2

y− (α, θ) ≤ σmin ⇔ α ≤
θ
(
2
√
4 − θ2 − (4 − σminθ)

)

2
√
4 − θ2 − (4 − θ2

) =: γmin (θ) ,

σmax ≤ y+ (α, θ) ⇔ α ≤
θ
(
2
√
4 − θ2 + (4 − σmaxθ)

)

2
√
4 − θ2 + (4 − θ2

) =: γmax (θ) .

This means that, if we choose α (θ) for a fixed θ so that condition (39) is valid, we must have
that

α (θ) ≤ min (γmin (θ) , γmax (θ)) .

One can continue and show that (see Appendix B):

(i) For θ ≤ σmin and 0 < θ < 2 we have that γmax (θ) ≤ γmin (θ).
(ii) For θ ≤ 4

σmax
and 0 < θ < σmax we have that 0 < γmax (θ) < θ .
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With these observations we deduce that for any

θ ∈ (0, θ∗] =
(
0,min

(
σmin,

4

σmax

)]
∩ (0, 2)

we have θ < σmax and hence

γmax(θ) = min (γmin(θ), γmax(θ)) and γmax (θ) < θ.

Hence, the pair (θ, α = γmax(θ)) satisfies not only condition (39) but also

γmax(θ) + θ < 2θ ≤ 2θ∗ ≤ 2σmin and γmax (θ) < θ,

i.e. condition (38). We conclude that θ and α = γmax (θ) satisfy both desired conditions, for
any θ ∈ (0, θ∗].
Noticing that

γmax
(
θ∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σmin

(
2
√
4 − σ 2

min + (4 − σmaxσmin)

)

2
√
4 − σ 2

min + (4 − σ 2
min

) , σmin <
4

σmax

8
σmax

√
4 − 16

σ 2
max

2
√
4 − 16

σ 2
max

+ 4 − 16
σ 2
max

, σmin >
4

σmax

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= α∗ (σmin, σmax) ,

we conclude the proof. ��
Remark 4 The choice ofα∗ (σmin, σmax) = γmax (θ∗) is not accidental. Indeed, one can easily
show that

d

dθ
γmax (θ) = 8 − 2σmaxθ

(
4 − θ2

) 3
2

,

and as such

max
θ∈(0,θ∗] γmax (θ) = γmax

(
θ∗) .

As the parameter α∗ = γmax (θ∗) corresponds to the decay rate of our entropy according to
Theorem 4, our choice of α∗ (σmin, σmax) was motivated by maximising the decay rate that
is possible with our methodology.

We now posses all the tools which are required to prove part (b) of Theorem 1.

Proof of part (b) of Theorem 1 The convergence estimation for Eθ∗
(
u(t) − uavg, v(t)

)
fol-

lows immediately from Theorem 4 and Lemma 6. To obtain (12) we use Lemma 3 in a
similar fashion to the way we proved part (a). ��

6 Convergence to Equilibrium in a 3−Velocity Goldstein-Taylor Model

The Goldstein-Taylor model can be thought of as a simplification of the BGK equation [1,9]

∂t f (x, v, t) + v · ∇x f (x, v, t) − ∇x V (x) · ∇v f (x, v, t)

= M(v)

∫
f (x, v, t)dv − f (x, v, t),
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where the variable v is now in the discrete velocity space {v1, . . . , vn}, the variable x is in
the torus T, and the potential V (x) is zero. The r.h.s. of the above BGK equation corresponds
to a projection onto the Maxwellian M(v); in the discrete velocity case this Maxwellian is
replaced by a constant matrix that determines the large time behaviour of the new model.
Under the natural physical assumption of symmetry in the velocities (i.e.

∑n
i=1 vi = 0) and

the expectation that the solutions will converge towards a state that is equally distributed in
v and constant in x 4, we find one potential multi-velocity extension of the Goldstein-Taylor
model on T × (0,∞):

∂t

⎛

⎜
⎝

f1(x, t)
...

fn(x, t)

⎞

⎟
⎠+ V

⎛

⎜
⎝

f1(x, t)
...

fn(x, t)

⎞

⎟
⎠ = σ(x)

⎛

⎜
⎝

⎛

⎜
⎝

1
n
...
1
n

⎞

⎟
⎠⊗ (1, . . . , 1) − I

⎞

⎟
⎠

⎛

⎜
⎝

f1(x, t)
...

fn(x, t)

⎞

⎟
⎠ , (44)

with the the diagonal matrix V := diag[v1, . . . , vn], and the discrete velocities

{v1, . . . , vn} =
{{−k + 1

2 , . . . ,− 1
2 ,

1
2 , . . . , k − 1

2

}
, n = 2k

{−k, . . . ,−1, 0, 1, . . . , k} , n = 2k − 1
, n ∈ N, n ≥ 2.

The matrix on the r.h.s. of (44) takes the form

Q = 1

n

⎛

⎜⎜⎜
⎝

1 − n 1 . . . 1
1 1 − n . . . 1
...

...
...

...

1 1 . . . 1 − n

⎞

⎟⎟⎟
⎠

which has (1, 1, . . . , 1)T in its kernel, and A = {(ξ1, . . . , ξn)T ∈ R
n | ∑n

i=1 ξi = 0
}
as its

n − 1 dimensional eigenspace corresponding to the eigenvalue λ = −1. This corresponds
to the conservation of total mass, and the fact that differences such as

{
fi − f j

}
i, j=1,...,n

converge to zero. For more information we refer the interested reader to [1].
In this section we will consider a simple 3−velocity Goldstein-Taylor model, which is gov-
erned by the following system of equations on T × (0,∞)

∂t f1(x, t) + ∂x f1(x, t) = σ(x)

3
( f2(x, t) + f3(x, t) − 2 f1(x, t)) ,

∂t f2(x, t) = σ(x)

3
( f1(x, t) + f3(x, t) − 2 f2(x, t)) ,

∂t f3(x, t) − ∂x f3(x, t) = σ(x)

3
( f1(x, t) + f2(x, t) − 2 f3(x, t)) .

(45)

Much like our Goldstein-Taylor equation, (1), we can recast the above with the variables

⎛

⎝
u1
u2
u3

⎞

⎠ =
⎛

⎜
⎝

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6

− 2√
6

1√
6

⎞

⎟
⎠

⎛

⎝
f1
f2
f3

⎞

⎠ , (46)

4 If one wants to approximate the BGK equation with a Maxwellian relaxation function, then the column
vector ( 1n , . . . , 1

n )T inside the relaxation matrix would have to be replaced by a discrete Maxwellian, as was
done [2, §4.2].
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which yields the following set of equations:

∂t u1(x, t) +
√
2

3
∂xu2(x, t) = 0,

∂t u2(x, t) +
√
2

3
∂xu1(x, t) + 1√

3
∂xu3(x, t) = −σ(x)u2(x, t),

∂t u3(x, t) + 1√
3
∂xu2(x, t) = −σ(x)u3(x).

(47)

The orthogonal transformation (46) has a strong geometrical reasoning behind it, as it diag-
onalises the appropriate “interaction matrix”, Q. It is also worth to mention that much like
(3), this transformations brings us to the macroscopic variables. Indeed, up to some scaling
u1 is the mass, u2 is the flux, and u3 is a linear combination of the kinetic energy and the
mass.

Following our intuition we expect that by denoting

u∞ := 1

2
√
3π

∫

T

(
f1,0(x) + f2,0(x) + f3,0(x)

)
dx,

we will find that

u1(t, x)
t→∞−→ u∞, u2(t, x)

t→∞−→ 0, u3(t, x)
t→∞−→ 0.

To prove this result we shall introduce an appropriate Lyapunov functional. To find this
functional, we have two options, even for the simple case of constant σ (which is our base
case): Proceeding as in § 4.2, we could use a modal decomposition of (47) and the (optimal)
positive definite matrices Pk to construct an entropy functional with sharp decay, and then
rewrite it in physical space, using pseudo-differential operators. This construction, which is
analogous to the construction of Eθ ( f , g) from (4), can become extremely cumbersome in
dimension 3 and higher.
As a simpler alternative we shall hence rather follow the strategy from [1, §4.3] and [2, §2.3]:
In Fourier space, the system matrix of (47) reads as

Ck =

⎛

⎜⎜
⎝

0
√

2
3 ik 0

√
2
3 ik σ 1√

3
ik

0 1√
3
ik 0

⎞

⎟⎟
⎠ .

We note that, for k 
= 0, the hypocoercivity index5 of Ck , as well as of (47) is one, since this
index is always bounded from above by the kernel dimension of the symmetric part of the
generator, cf. [2]. For such index-1 problems, Theorem 2.6 from [2] shows that the choice

Pk =
⎛

⎝
1 λ

ik 0
− λ

ik 1 0
0 0 1

⎞

⎠ k 
= 0,

with an appropriate λ ∈ R, always yields a (simple) Lyapunov functional for (47), typically
with a sub-optimal decay rate. Much like in § 5, this guides us to the definition of our
functional, expressed in the following theorem:

5 This index characterises the degree of degeneracy of ODE or PDE-evolution equations, cf. [2].
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Theorem 5 Let u1, u2, u3 ∈ C([0,∞); L2 (T)) be mild real valued solutions to (47) with
initial datum u1,0, u2,0, u3,0 ∈ L2 (T). Denoting by

Eθ ( f , g, h) := ‖ f ‖2 + ‖g‖2 + ‖h‖2 − θ

2π

∫ 2π

0

(
∂−1
x f (x) g(x)

)
dx,

we have that

Eθ (u1(t) − u∞, u2(t), u3(t)) ≤ Eθ

(
u1,0 − u∞, u2,0, u3,0

)
e−αt , t ≥ 0, (48)

for any θ > 0 and α > 0 such that
√
2

3
θ + α < 2σmin, α ≤

√
2

3
θ, (49)

and
⎛

⎝sup
x∈T

θ2 (σ (x) − α)2

8σ(x) − 4
√

2
3θ − 4α

⎞

⎠+
(
sup
x∈T

θ2

12 (2σ(x) − α)

)
≤
√
2

3
θ − α. (50)

Remark 5 For 0 < θ < 2,Eθ ( f , g, h) is equivalent to ‖ f ‖2+‖g‖2+‖h‖2. Indeed, following
Lemma 3 we see that
(
1 − |θ |

2

) (‖ f ‖2 + ‖g‖2)+ ‖h‖2 ≤ Eθ ( f , g, h) ≤
(
1 + |θ |

2

) (‖ f ‖2 + ‖g‖2)+ ‖h‖2 .

Proof of Theorem 5 We start by noticing that the transformation

u1 → u1 − u∞, u2 → u2, u3 → u3

keeps (47) invariant, so we may assume, without loss of generality, that u∞ = 0. This,
together with the equation for u1(x, t) implies that

(u1(t))avg = (u1,0
)
avg = u∞ = 0.

Next, we compute the time derivatives of the L2 norms and obtain:

d

dt

(‖u1(t)‖2 + ‖u2(t)‖2 + ∥∥u3(t)2
∥∥) = − 1

π

∫ 2π

0
σ(x)u2(x, t)

2dx

− 1

π

∫ 2π

0
σ(x)u3(x, t)

2dx .

(51)

Continuing, we see that

d

dt

∫ 2π

0
∂−1
x u1(x, t)u2(x, t)dx = 2π

√
2

3

((
u2(t)avg

)2 − ‖u2(t)‖2
)

+ 2
√
2π√
3

‖u1(t)‖2

+ 1√
3

∫ 2π

0
u1(x, t)u3(x, t)dx

−
∫ 2π

0
σ(x)∂−1

x u1(x, t)u2(x, t)dx,
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where we used Lemma 2. As such, together with (51), we conclude that

d

dt
Eθ (u1(t), u2(t), u3(t))

= − 1

2π

∫ 2π

0

(

2σ(x) −
√
2

3
θ

)

u2(x, t)
2dx

− 1

π

∫ 2π

0
σ(x)u3(x, t)

2dx −
√
2

3
θ ‖u1(t)‖2 −

√
2

3
θ
(
u2(t)avg

)2

− θ

2
√
3π

∫ 2π

0
u1(x, t)u3(x, t)dx + θ

2π

∫ 2π

0
σ(x)∂−1

x u1(x, t)u2(x, t)dx .

(52)

Thus

d

dt
Eθ (u1(t), u2(t), u3(t)) = −αEθ (u1(t), u2(t), u3(t)) + Rθ,α,σ (t)

with

Rθ,α,σ (t) := − 1

2π

∫ 2π

0

(

2σ(x) −
√
2

3
θ − α

)

u2(x, t)
2dx

− 1

2π

∫ 2π

0
(2σ(x) − α) u3(x, t)

2dx −
(√

2

3
θ − α

)

‖u1(t)‖2

−
√
2

3
θ
(
u2(t)avg

)2 − θ

2
√
3π

∫ 2π

0
u1(x, t)u3(x, t)dx

+ θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x u1(x, t)u2(x, t)dx .

(53)

To conclude the proof it is enough to show that under conditions (49) and (50) we have that
Rθ,α,σ (t) ≤ 0. We will, in fact, show the stronger statement:

∣∣∣∣−
θ

2
√
3π

∫ 2π

0
u1(x, t)u3(x, t)dx + θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x u1(x, t)u2(x, t)dx

∣∣∣∣

≤ 1

2π

∫ 2π

0

(

2σ(x) −
√
2

3
θ − α

)

u2(x, t)
2dx

+ 1

2π

∫ 2π

0
(2σ(x) − α) u3(x, t)

2dx +
(√

2

3
θ − α

)

‖u1(t)‖2 .

(54)

Similarly to the techniques we have used in the proof of part (b) of Theorem 1, and using the
positivity of the coefficients in the last two terms (which follows from (49)), we see that

∣∣∣∣
θ

2π

∫ 2π

0
(σ (x) − α) ∂−1

x u1(x, t)u2(x, t)dx

∣∣∣∣

≤ θ

2π

∫ 2π

0

|σ(x) − α|
√

2σ(x) −
√

2
3θ − α

∣∣∂−1
x u1(x, t)

∣∣ ·
√

2σ(x) −
√
2

3
θ − α |u2(x, t)| dx
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≤
⎛

⎝sup
x∈T

θ2 (σ (x) − α)2

8σ(x) − 4
√

2
3θ − 4α

⎞

⎠ ‖u1(t)‖2 + 1

2π

∫ 2π

0

(

2σ(x) −
√
2

3
θ − α

)

u2(x, t)
2dx,

and that
∣∣∣∣

θ

2
√
3π

∫ 2π

0
u1(x, t)u3(x, t)dx

∣∣∣∣ ≤
θ

2π

∫ 2π

0

|u1(x, t)|√
6σ(x) − 3α

√
2σ(x) − α |u3(x, t)| dx

≤
(
sup
x∈T

θ2

12 (2σ(x) − α)

)
‖u1(t)‖2 + 1

2π

∫ 2π

0
(2σ(x) − α) u3(x, t)

2dx .

Thus, one sees that (54) holds when
⎛

⎝sup
x∈T

θ2 (σ (x) − α)2

8σ(x) − 4
√

2
3θ − 4α

⎞

⎠+
(
sup
x∈T

θ2

12 (2σ(x) − α)

)
≤
√
2

3
θ − α,

which is (50). The proof is complete. ��
While we have elected not to optimise the choice of α (as in §5), we can still infer the
following, simpler yet far from optimal, corollary:

Corollary 1 Let θ > 0 and α > 0 be such that
√
2

3
θ + α < 2σmin, α ≤

√
2

3
θ

and

θ2σ 2
max

8σmin − 4
√

2
3θ − 4α

+ θ2

12 (2σmin − α)
≤
√
2

3
θ − α. (55)

then

Eθ (u1(t) − u∞, u2(t), u3(t)) ≤ Eθ

(
u1,0 − u∞, u2,0, u3,0

)
e−αt .

In particular, for

α := min

(
σmin

2
,

3σmin

9σ 2
max + 1

)

we have that E√
6α decays exponentially to zero with rate α.

Proof Since α < 2σmin ≤ σmax + σmin we see that

α − σmax < σmin ≤ σ(x) < σmax + α,

implying that (σ (x) − α)2 ≤ σ 2
max for any x ∈ T. Using this with additional elementary

estimation on the denominator of the expressions that appear in (50), we see that (49) and
(50) are valid. As such the first statement of the corollary follows from Theorem 5.
To show the second part of the corollary we notice that with the choice θα := √

6α and
α ≤ σmin

2
√
2

3
θα + α = 3α < 2σmin, α ≤ 2α =

√
2

3
θα,
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giving us (49). Using the inequalities

8σmin − 4

√
2

3
θα − 4α ≥ 2σmin, and 2σmin − α ≥ 3

2
σmin

for the l.h.s. of (55), we see that

θ2ασ 2
max

8σmin − 4
√

2
3θα − 4α

+ θ2α

12 (2σmin − α)
≤ (9σ 2

max + 1
) α2

3σmin
.

Thus, since
√

2
3θα − α = α, the desired condition (55) is valid when

α ≤ 3σmin

9σ 2
max + 1

,

which concludes the proof. ��
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Appendix A: Lack of Optimality

In this appendix we will briefly discuss the lack of optimality of our decay rate for non-
homogeneous σ(x) in comparison to that given in [8]. We will even go one step further
and show how one can improve our general methodology in simple cases, though even this
improvement will fall short of the optimal convergence rate.

As one simple example we will explore the following relaxation function:

σ(x) :=
{
1, 0 < x ≤ π

4, π < x ≤ 2π
, (56)

which is motivated by the fact that for this function σmin = σmax
4 , and so the choice of θ∗ = 1

in our main Theorem 1 (b) comes “from both directions”.
Before we start with a more structured discussion, we would like to explain how one can
improve the techniquewedeveloped in §5.Acrucial point in the investigation of the behaviour
of Eθ∗ was to find, and close, a linear differential inequality for this entropy, as can be seen in
the proof of Theorem 4. One of the final steps in this proof, appearing in (43), was to combine
Poincaré inequality with an L∞ estimation on the mixed term of ∂−1

x

(
u − uavg

)
and v, to
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show the non-positivity of an appropriate “remainder”. The use of these two inequalities is
somewhat crude (yet due to that, quite general), and one can imagine that replacing these two
estimations with an inequality that is more L2 based would improve the range of validity of
the theorem. One idea that comes to mind is aweighted Poincaré inequality, i.e. an inequality
of the form

∫ 2π

0

(
f (x) − favg

)2
ω(x)dx ≤ C2

∫ 2π

0

(
f ′(x)

)2
dx . (57)

for a given weight ω(x) ≥ 0 and constant C . Denoting by6

Cω := inf

{
C > 0

∣∣∣
∫ 2π

0

(
f (x) − favg

)2
ω(x)dx ≤ C2

∫ 2π

0

(
f ′(x)

)2
dx, ∀ f ∈ H1(T)

}
,

we can replace condition (39) of Theorem 4 with the improved condition

θ2

4
C2

ω ≤ θ − α, where ω(x) = (σ (x) − α)2

2σ(x) − θ − α
. (58)

(58) will be explicitly derived in §1.
From this point onwards the appendix will proceed as follows: First we will show how

one can find the optimal weighted Poincaré constant, and compute it in some simple cases,
which we will then use in the case were σ(x) is given by (56) to obtain an improvement of
our current rate of convergence to equilibrium. Next we will compute the optimal rate given
by [8], and conclude a lack of optimality by comparing the rate we achieved in our main
theorem, the improved rate we have found, and the optimal rate of [8].

Weighted Poincaré Inequality

The problem of finding a weighted Poincaré inequality and its associated sharp constant can
be recast as a constrained variational problem. We define the functional

F : D := H1 (T) → R,

where H1 (T) is the Sobolev space of real valued periodic functions, by

F (u) :=
∫ 2π

0

(
u′(x)

)2
dx,

and denote by

cmin := inf

{
F (u)

∣∣∣ u ∈ D,

∫ 2π

0
u(x)2ω(x)dx = 1,

∫ 2π

0
u(x)dx = 0

}
. (59)

Even though the minimization set is not convex, standard techniques from Calculus of Vari-
ation (see for instance [14, Sect. 8]) show that if ω is bounded then the infimum is attained
(the conditions on ω can be weakened).
One can easily check that in that case

C2
ω = 1

cmin
.

6 Note that by definition, and by Lemma 1, Cω ≤ √‖ω‖∞, and as such we will automatically get an
improvement to condition (39).
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Finding a minimiser to the problem (59) amounts to solving the following constrained Euler-
Lagrange equation on T

u′′(x) + λu(x)ω(x) − τ = 0, (60)

considered in weak form, with two Lagrange multipliers λ > 0 and τ ∈ R. Integrating (60)
against u shows that

λ = F (u), (61)

which we will use shortly.
Since ω ∈ L∞(T), we find that u ∈ H2(T) ↪→ C1(T). When ω is piecewise constant,

the ODE (60), now in strong form, can be solved explicitly. This shows that in these cases
the minimiser of F is actually unique.

As we shall see in §1 below, the relevant weight functions we require for our improved
study are closely related to σ(x). With (56) in mind, we shall consider weights of the form:

ω(x) :=
{

ω1, 0 < x ≤ π

ω2, π < x ≤ 2π
.

Hence, the solution to the Euler-Lagrange equation (60) is given by

u(x) =
{
c1 sin

(√
λω1x

)+ c2 cos
(√

λω1x
)+ τ

λω1
, 0 < x < π

c3 sin
(√

λω2x
)+ c4 cos

(√
λω2x

)+ τ
λω2

, π < x < 2π

=:
{
u1(x), 0 < x < π

u2(x), π < x < 2π
,

(62)

and it satisfies the following C1-matching conditions and constraints:

u1(0) = u2 (2π) ,

u1(π) = u2(π),

u′
1(0) = u′

2(2π),

u′
1(π) = u′

2(π),
∫ π

0
u1(x)dx +

∫ 2π

π

u2(x)dx = 0,

∫ π

0
ω1u1(x)

2dx +
∫ 2π

π

ω2u
2
2(x)dx = 1.

(63)

The first five equations correspond to the linear set of equations:

M(λ)

⎛

⎜⎜⎜⎜
⎝

c1
c2
c3
c4
τ

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
0

⎞

⎟⎟⎟⎟
⎠

,

where the matrix M (λ) is
⎛

⎜⎜⎜
⎝

0 1 − sin
(
2π
√

λω2
) − cos

(
2π
√

λω2
) ω2−ω1

λω1ω2
sin
(
π
√

λω1
)

cos
(
π
√

λω1
) − sin

(
π
√

λω2
) − cos

(
π
√

λω2
) ω2−ω1

λω1ω2√
ω1 0 −√

ω2 cos
(
2π
√

λω2
) √

ω2 sin
(
2π
√

λω2
)

0√
ω1 cos

(
π
√

λω1
) −√

ω1 sin
(
π
√

λω1
) −√

ω2 cos
(
π
√

λω2
) √

ω2 sin
(
π
√

λω2
)

0
1−cos

(
π
√

λω1
)

√
ω1

sin
(
π
√

λω1
)

√
ω1

cos
(
π
√

λω2
)−cos

(
2π
√

λω2
)

√
ω2

sin
(
2π
√

λω2
)−sin

(
π
√

λω2
)

√
ω2

π
(
ω2+ω1

)
√

λω1ω2

⎞

⎟⎟⎟
⎠

.
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As we are looking for a non-zero solution to the above equation, we must have that
det (M(λ)) = 0. In (63), the last condition on u1 and u2 merely acts as normalisation,
and doesn’t help in finding λ. Hence, due to (61), we find that

cmin (ω1, ω2) = min {λ > 0 | det (M(λ)) = 0} .

This is how we can find cmin, and consequently Cω, explicitly (numerically in many cases).

ImprovedMethodology

We return now to the proof of the differential inequality (41) that governs the evolution of
Eθ , which is essentially based on the estimate (43). Choosing θ∗ = 1 and σ(x) as in (56)
and using the weight

ωα(x) := (σ (x) − α)2

2σ(x) − 1 − α
=
{
1 − α 0 < x ≤ π

(4−α)2

7−α
π < x ≤ 2π

,

which appears in the penultimate line of (43), we see that by using the previously discussed
weighted Poincaré inequality instead of the last step of (43), we obtain from (41) and (43):

d

dt
E1
(
u(t) − uavg, v(t)

) ≤ − αE1
(
u(t) − uavg, v(t)

)

−
(

1 − α − C2
ωα

4

)
∥∥u(t) − uavg

∥∥2 .

(64)

We will maximise the decay rate α, satisfying

0 < α ≤ 1 − C2
ωα

4
< 1 (65)

(so that the second term in (64) is non-positive) by a processes of iteration: Guessing the

starting value α0 := α∗ (1, 4) = 2
(
2 − √

3
)
(the rate one obtains from our main Theorem 1,

cf. (11)) we follow the process described in the previous subsection and find the weighted
Poincaré constant C2

ωα0
= 1.12013..., which indeed satisfies (65).

We proceed and create a sequence {αn}n∈N0 , defined recursively, so that each αn improves
upon the previous step by taking its “optimal” value, i.e.

αn := 1 −
C2

ωαn−1

4
, n ∈ N,

as long as (65) is still satisfied for this choice. A change of α implies a change of our weight
function ωα(x), yet these new weights are still of the form given in our previous subsection.
As such we are able to compute the appropriate Cωαn

′s, and to show that this sequence
converges to the improved decay rate7

αmax ≈ 0.7234.

7 This process was dealt with numerically.
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Comparison of Convergence Rates

The optimal rate8 of exponential convergence to the Goldstein-Taylor equation, (1), was
found by Bernard and Salvarani in [8]. Taking into account the different scaling of the torus
T in our paper, this convergence rate is given by

αBS := 1

π
min

(
‖σ̃‖

L1
(

T

2π

) , D̃(0)

)

where

σ̃ (ξ) := πσ (2πξ) , ξ ∈ T

2π
,

and D̃(0) is the spectral gap of the telegrapher’s equation, see [8, Proposition 3.5], [19,
Theorem 2]. More precisely,

D̃(0) := inf

{
Re λ j

∣∣ λ j ∈
(
spectrum of Aσ̃ =

(
0 −1

−∂xx 2σ̃

)
in H2 ⊕ H1

)
\ {0}

}
.

We note that, for σ̃ constant and in Fourier space, the matrix

(
0 −1
k2 2σ̃

)
is related to Ck from

(22) by a simple similarity transformation.
Following on our choice for σ(x) from (56), we see that

σ̃ (ξ) =
{

σ1 := π, 0 < ξ ≤ 1
2

σ2 := 4π, 1
2 < ξ ≤ 1

, (66)

and as such ‖σ̃‖
L1
(

T

2π

) = 5π
2 .

The calculation of D̃(0) is more involved. According to [19], the spectrum of Aσ̃ , besides
potentially {0}, is discrete and the real part of its eigenvalues must lie in (0, 2 ‖σ̃‖∞]. A more
detailed investigation of the spectrum can be found in [11].
The eigenvalue problem

Aσ̃

(
u
v

)
= γ

(
u
v

)
,

with γ 
= 0, is equivalent to the set of equations

v′′(ξ) = γ (γ − 2σ̃ (ξ)) v(ξ), v(ξ) = −γ u(ξ).

To find D̃(0) it is sufficient to consider only eigenvalues with Re γ ∈ (0, 2σ1) = (0, 2π),
since this complex strip already includes one (real) eigenvalue as we shall see below. With
the notation τ1,2(γ ) := √γ (2σ1,2 − γ ), which may have to be considered as a complex root,
the solution of the ODE is of the form

v(ξ) =
{
A1 cos(τ1(γ ) ξ) + B1 sin(τ1(γ ) ξ), 0 < ξ ≤ 1

2

A2 cos(τ2(γ ) ξ) + B2 sin(τ2(γ ) ξ), 1
2 < ξ ≤ 1

.

8 at least for H1-initial data
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With C1–matching conditions at ξ = 0 and ξ = 1
2 , the coefficients satisfy the following

system of linear equations:

M(γ )

⎛

⎜⎜
⎝

A1

B1

A2

B2

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠

where the matrix M(γ ) is given by
⎛

⎜⎜⎜⎜
⎝

1 0 − cos (τ2(γ )) − sin (τ2(γ ))

0 1 τ2(γ )
τ1(γ )

sin (τ2(γ )) − τ2(γ )
τ1(γ )

cos (τ2(γ ))

cos
(

τ1(γ )
2

)
sin
(

τ1(γ )
2

)
− cos

(
τ2(γ )
2

)
− sin

(
τ2(γ )
2

)

sin
(

τ1(γ )
2

)
− cos

(
τ1(γ )
2

)
− τ2(γ )

τ1(γ )
sin
(

τ2(γ )
2

)
τ2(γ )
τ1(γ )

cos
(

τ2(γ )
2

)

⎞

⎟⎟⎟⎟
⎠

.

The requirement that

det (M(γ )) = − sin

(
τ1(γ )

2

)
sin

(
τ2(γ )

2

)(

1 +
(

τ2(γ )

τ1(γ )

)2
)

+2
τ2(γ )

τ1(γ )

(
cos

(
τ1(γ )

2

)
cos

(
τ2(γ )

2

)
− 1

)
= 0 (67)

yields the wanted eigenvalues γ ∈ C with Re γ ∈ (0, 2π).
In our case, i.e. when σ̃ (x) is given by (66), we find (numerically) that the minimal real

part of the non-zero eigenvalues found from (67) is approximately 2.72831, which implies
that D̃(0) ≈ 2.72831. Thus, the optimal decay rate given by [8] is

αBS ≈ 1

π
min

(
5π

2
, 2.72831

)
≈ 0.86845.

Summarising, we now have three convergence rates for the case

σ(x) =
{
1, 0 ≤ x ≤ π

4, π < x ≤ 2π
:

– Rate from our main Theorem 1: α∗ = 4 − √
12 ≈ 0.5359.

– Rate from our improved technique in §1: αmax ≈ 0.7234.
– Rate from the work of Bertrand and Salvarani: αBS ≈ 0.86845.

This shows, as expected, the lack of optimality in our technique.

Appendix B: Deferred Proofs

Proof of Lemma 1 While the proof is standard, we show it here for completion and to fix the
sharp constant. Denoting the k−th Fourier coefficient of f by

f̂ (k) := 1

2π

∫ 2π

0
f (x)e−ikxdx

we find that

f̂ ′(k) = ik f̂ (k) (68)
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for all k ∈ Z (including k = 0). The condition favg = 0 is equivalent to f̂ (0) = 0 and as
such, using Plancherel’s equality, we find that

‖ f ‖2 =
∑

k∈Z

∣∣ f̂ (k)
∣∣2 =

∑

k∈Z\{0}

∣∣ f̂ (k)
∣∣2

=
∑

k∈Z\{0}

∣∣ f̂ ′(k)
∣∣2

k2
≤

∑

k∈Z\{0}

∣∣ f̂ ′(k)
∣∣2 =

∑

k∈Z

∣∣ f̂ ′(k)
∣∣2 = ∥∥ f ′∥∥2 ,

completing the proof. ��
Proof of Lemma 2 Since for any function h ∈ L1 (T)

(
h − havg

)
avg = 0 ,

we conclude (i) from the definition of ∂−1
x f (x). To show (ii) we invoke the fundamental

theorem of calculus (the version from Lebesgue theory), and to show (iii) we notice that if
f is differentiable

∂−1
x (∂x f ) (x) =

∫ x

0
∂y f (y)dy − 1

2π

∫ 2π

0

(∫ x

0
∂y f (y)dy

)
dx

= f (x) − f (0) − 1

2π

∫ 2π

0
( f (x) − f (0)) dx = f (x) − favg.

Lastly, we notice that the continuity of ∂−1
x f (x) as a function on the interval [0, 2π] is a

standard result from Analysis. To conclude the continuity on the torus, though, we must also
show that ∂−1

x f (0) = ∂−1
x f (2π). This is equivalent to

0 =
∫ 0

0
f (x)dx =

∫ 2π

0
f (x)dx = 2π favg,

which is exactly the additional assumption. In addition, (14) for k 
= 0 follows immediately
from (68) and (ii). For k = 0 we use

̂
∂−1
x f (0) = (∂−1

x f
)
avg = 0,

according to (i). The proof is thus complete. ��
Proof of Lemma 3 We will establish that

∣∣∣∣
θ

2π

∫ 2π

0
∂−1
x f (x)g(x)dx

∣∣∣∣ ≤
|θ |
2

(‖ f ‖2 + ‖g‖2)

from which (15), (16) and (17) all follow. Indeed, using the Cauchy-Schwarz inequality, the
Poincaré inequality – which is valid since (∂−1

x f )avg = 0 - and part (ii) of Lemma 2 we
conclude that

∣∣∣∣
θ

2π

∫ 2π

0
∂−1
x f (x)g(x)dx

∣∣∣∣ ≤ |θ | ∥∥∂−1
x f

∥∥ ‖g‖ ≤ |θ |
2

(∥∥∂−1
x f

∥∥2 + ‖g‖2
)

≤ |θ |
2

(∥∥∂x
(
∂−1
x f

)∥∥2 + ‖g‖2
)

= |θ |
2

(‖ f ‖2 + ‖g‖2) .

The proof is thus completed. ��
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Proof of (i) and (ii) within the proof of Lemma 6 To show (i) we notice that γmax (θ) ≤ γmin (θ)

if and only if

2
√
4 − θ2 + (4 − σmaxθ)

2 + √
4 − θ2

≤ 2
√
4 − θ2 − (4 − σminθ)

2 − √
4 − θ2

which is equivalent to

2 (8 − θ (σmin + σmax)) +
√
4 − θ2 θ (σmax − σmin) ≤ 4

(
4 − θ2

)
,

or

2 (σmax + σmin − 2θ)

σmax − σmin
≥
√
4 − θ2.

The above inequality is easily satisfied when θ ≤ min (σmin, 2) as in this case

2 (σmax + σmin − 2θ)

σmax − σmin
≥ 2 (σmax − σmin)

σmax − σmin
= 2 ≥

√
4 − θ2.

(ii) is trivial, since θ < σmax holds if and only if γmax(θ) < θ . ��
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