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Abstract—The fundamental problem of Zero-Shot Learning
(ZSL) is that the one-hot label space is discrete, which leads
to a complete loss of the relationships between seen and unseen
classes. Conventional approaches rely on using semantic auxiliary
information, e.g. attributes, to re-encode each class so as to
preserve the inter-class associations. However, existing learning
algorithms only focus on unifying visual and semantic spaces
without jointly considering the label space. More importantly,
because the final classification is conducted in the label space
through a compatibility function, the gap between attribute
and label spaces leads to significant performance degradation.
Therefore, this paper proposes a novel pathway that uses the
label space to jointly reconcile visual and semantic spaces
directly, which is named Attributing Label Space (ALS). In the
training phase, one-hot labels of seen classes are directly used as
prototypes in a common space, where both images and attributes
are mapped. Since mappings can be optimized independently,
the computational complexity is extremely low. In addition, the
correlation between semantic attributes has less influence on
visual embedding training because features are mapped into
labels instead of attributes. In the testing phase, the discrete
condition of label space is removed, and priori one-hot labels
are used to denote seen classes and further compose labels of
unseen classes. Therefore, the label space is very discriminative
for the Generalized ZSL (GZSL), which is more reasonable and
challenging for real-world applications. Extensive experiments
on five benchmarks manifest improved performance over all of
compared state-of-the-art methods.

Index Terms—Projection Learning, Generalized Zero-shot
Learning, Label Space.

I. INTRODUCTION

ODELS trained on large-scale labeled images, such as
the deep learning based architectures [1] [2], have great
contribution to recent successes in visual object classification.
However, well-annotated data are not always available in the
training phase. For example, the number of newly defined
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visual concepts or products can grow rapidly, and there are
few labeled images in some classes that rarely occur in nature,
which is called the long-tailed distribution challenging [3].
Another example is the fine-grained image classification [4],
experience-expertsts are required to label images to establish
the specific datasets for learning classifiers.

The semantic representations of classes are introduced to
recognize entirely new classes without additional data labeling,
which is named Zero-Shot Learning (ZSL). Specifically, high
dimensional vectors in the semantic space are regarded as
the prototypes [5] (like to class centers) of classes, and the
semantic relationship between seen and unseen classes are
used. In the training phase, mappings or probability models
are learned from images and prototypes in seen classes to
establish the connection between the visual and semantic
space. In the testing phase, (projected) prototypes of unseen
classes are employed to match images from these classes
via learned models. As an extension, Generalized Zero-Shot
Learning (GZSL) [6] removes the constraint that only the
images in unseen classes are obtained in the testing phase,
in other words, test images can come from either seen or
unseen classes. For practical applications such as annotating
new images, seen classes are often more common than unseen
ones and it is unrealistic to assume that test images can only
be matched with the unseen prototypes. Therefore, GZSL is
more reasonable and challenging for real-world recognition
than ZSL.

To represent the prototypes of classes in the semantic space,
two kind of auxiliary information are often used. Firstly,
labelling high dimension attributes, where each dimension
represents a specific property of the classes. In this way,
learning mappings in the training phase is more like to be
the multi-label problem [7]. Secondly, introducing additional
modal, e.g., the embedding from the texture description of
each class, to be the class center in semantic space. Since
natural language processing techniques such as BERT [8] or
fast-text [9] can be used for extracting sentence embedding, the
second way requires vary little labelled data, which is proper
to produce large scale ZSL. However, texture description is
sometimes not strict and complete, and there may be semantic
loss when embeddings are extracted from textures. Both of
these can introduce ambiguity when models are learned. On
contrast, labelling attributes can make the prototypes be more
discriminative, because each dimension has a clear meaning.
Therefore, most existing methods including this paper focus
on the attribute-based zero-shot classification.

To unify images (or global visual features) and semantic
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Fig. 1: The intuition of our method.
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“cat” and “zebra” are seen classes meanwhile “stride” and “tiger” are unseen classes. In the training

phase, mappings denoted by the solid arrows are learned. In the testing phase, unseen images are projected by the leaerned mappings. (a)
Learning visual-semantic embedding directly, correlations between prototypes may cause ambiguity. (b) Introducing the joint-label space

makes prototypes more discriminative.

attributes into the same space (also called common space),
a group of methods map both visual features and attributes
into a common space, where low-rank condition can be
added to restrict the common space [10] [11]. However, the
optimal projection matrix may be not unique. For example,
we denote matrix P as a linear embedding, which maps
high dimensional vectors (i.e., denote to X; and Xx3) from
the source space to the target space. Specifically, y; = Px;
and y, = Pxy. And then, given arbitrary orthogonal matrix
R, we have zy = RPx; and zo = RPx,. It is easy to
be proved that the Euclidean distance or Cosine distance
between z; and z; are equal that of y; and y,. In addition, to
preserve the structure of visual features in the common space,
graph information, such as adjacent matrices, are generally
considered [12] [13], which introduces large computational
complexity. Besides, most existing methods directly connect
features and attributes where the correlation among attributes
in different classes can result in poor performance [14]. For
example, if monkeys and bears are utilized as seen examples to
train models, the property “brown” and “fur” are very relevant.
As such, unseen animals having white fur such as “polar bears”
may be considered completely different from seen classes.
Consequently, reducing the correlation of classes can improve
the discrimination of prototypes in the common space. Second,
since the final classification is conducted in the semantic space
in most methods, the gap between attributes and labels leads
to significant performance degradation.

In this paper, we propose a novel ZSL framework by defin-
ing a discriminative label space where the final classification
is conducted. In this label space, labels of seen classes are
fixed into one-hot vectors as references to decorrelate features
and attributes. The labels of unseen classes are obtained by
mapping class-level attributes into the label space. Since seen
and unseen class labels are defined in different ways, they are
more robust in the final classification. To train the embedding
from visual space to common space, a linear projection matrix
is learned to avoid over-fitting. To learn the embedding from
semantic space to common space, the attribute and label of

the same seen class are required to reconstruct each other,
because they hold equivalent class information. Since there
is no additional constraint such as graph information, the
computational complexity is very low in the training phase.

An illustration of our method is shown in Figure 1. Assume
“cats” and “zebras” are two seen classes, while “tigers” and
“street crossings” are unseen classes. If the visual-semantic
embedding is learned directly, the correlations between the
prototypes may lead ambiguity when classifying unseen im-
ages. Differently, the prototypes of seen classes are firstly
defined when the label space is used, and then unseen pro-
totypes are learned by their relationship of corresponding
seen prototypes, which can reduce the ambiguity caused by
correlations. For example, both the image and texture de-
scription of the class “street” crossing contain “stripes”; thus,
both their projections in the label space refer to “zebras”.
Similarly, “tigers” refer to both “cats” and “zebras” classes
owing to their “feline” and “stripe” properties, respectively.
More importantly, labels of seen classes are accurately defined
as one-hot vectors; thus, seen and unseen classes in the
label space are more discriminative in GZSL. We conduct
experiments to compare the proposed method with state-of-
the-art baselines under five benchmark datasets with the same
features, splits and evaluation [15]. Results demonstrate the
leading performance of our method in most cases, especially
for the GZSL task.

Existing methods introducing class labels generally use
them as indexes or regularization. For example, labels are
regarded as indexes to the corresponding semantic attributes
[16] [17]. Another way of using the labels is to utilize them in
aregularization to learn parameters [18] [19]. Differently, class
labels in this paper are directly regarded as variables, which
are the targets of the projected visual features and semantic
attributes. Thus, the influence of the class labels is much
stronger than reference methods. A similar work is Indirect
Attribute Prediction (IAP) [20] that establishes a probability
model to predict attributes based on visual features, which
generally requires a lower computational cost than the direct
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attribute prediction [21]. However, labels of seen and unseen
classes are defined in different spaces, which is not appropriate
for the GZSL task. In [19], class labels are introduced to learn
prototypes in the visual space. Labels are employed only as a
constraint, and not as embeddings in this method, where the
correlation between features and attributes still influences the
learning of projections. In this paper, we define a complete
label space, where both seen and unseen class centers are in
the same space like traditional supervised classification. This
paper makes three main contributions.

o Since a label space is employed to jointly connect the
visual and the semantic space, the correlation in visual
and semantic space is reduced in the label space, which
results in performance improvement.

« In the testing phase, seen classes are also fixed to one-
hot vectors, while unseen classes are computed by a
learned model. Therefore, the label space where the final
classification is conducted is robust.

o Detailed comparisons among different frameworks and
mappings are discussed to show the advantages of intro-
ducing and attributing the label space, especially for the
GZSL task.

II. RELATED WORKS
A. Embedding Learning

To train a model from seen classes that can be generalized
to classify unseen classes, visual features, attributes and labels
of seen classes are generally required. In the testing phase, test
features should be classified into the correct classes identified
by their attributes via the learned model. According to whether
or not the label space is introduced as an intermediate space
connecting the visual and semantic space, ZSL methods can be
divided into Direct Visual-Semantic Embedding and Indirect
Visual-Semantic Embedding frameworks.

Direct Visual-Semantic Embedding (DVSE): the DVSE
framework, containing most existing ZSL methods, directly
estimates the conditional distribution or mapping between
visual features and their corresponding attributes. There are
three types of DVSE methods. The first category of methods
train linear or nonlinear mappings, which transform features
from the visual space into the semantic space [20] [22] [23]
[24] [16] [25] [26]. Fig. 2(a) shows an illustration, where
visual features and attributes of seen classes are collected to
train mappings. In the testing phase, the similarity between
images and prototypes of new classes in the semantic space is
measured for classification. The second category of methods
synthesize visual features with attributes [27] [28], which
can reduce the hubness problem when the Nearest Neighbor
(NN) search is used in the visual space for classification
[29]. Alternatively, a supervised classifier can be trained with
synthesized features instead of the NN search [30]. The
pipeline of the second category is reverse is shown in Fig. 2(b).
In the third category of methods, a common space is learned
using features and attributes from seen classes [31] [32] [4]
[33] [10], as shown in Fig. 2(c). To recognize images in unseen
classes, both visual features and attributes are projected into
the common space for NN search. The common space in Fig.

2(c) is represented by the dashed box, which indicates that the
space is totally unknown and must be trained. Notice that, in
Fig. 2(a), (b) and (c), class labels are only used to identify
visual features and attributes in the same class (i.e., the same
color), which are not regarded as variables.

Indirect Visual-Semantic Embedding (IVSE): In this
framework, labels of seen classes are used as intermediates
to connect the visual and semantic space. The independence
of labels in different classes can significantly reduce the
correlation among dimensions in the semantic space, therefore,
the mapping from images to classes is more discriminative.
As illustrated in Fig. 2(d), IAP introduces the labels of
seen classes as intermediate variables between features and
attributes. When new attributes are obtained, the condition
probabilities of attributes and labels in unseen classes are
learned. The online incremental zero-shot learning method was
proposed based on IAP [21], because it requires lower com-
putational cost comparing to the Direct Attribute Prediction
(DAP). Due to labels of seen and unseen classes are defined
in two different spaces, IAP is not appropriate for the GZSL
task.

In the proposed method, the label space is not only intro-
duced to reconcile features and attributes, but also used for
classification. As shown in Fig. 2(e), the label space contains
priori seen labels and projected unseen labels. This is the main
difference between IVSE and ALS. Specifically, labels of seen
classes are fixed as one-hot vectors in the common space, and
are represented by solid stars. Mappings are trained to project
visual features and semantic attributes into their class labels.
After training these mappings, attributes of test classes are
mapped into the common space to act as labels for unseen
classes, which are denoted by dashed stars.

Compared with the TAP method, there are three main
differences. First of all, labels of seen and unseen classes are
defined in the same space, so can be directly generalized to
the GZSL task. Secondly, labels of seen classes are fixed as
one-hot vectors, which are used to compose unseen labels. In
this way, seen and unseen classes can be regarded as “pure
substances” and “mixtures”, which is more discriminative in
the GZSL task. Finally, labels and attributes are required to
reconstruct each other in the training phase, which can reduce
the domain shift problem between seen and unseen attributes.

B. Semantic Representation

There are mainly two ways to obtain the prototypes of
classes in the semantic space for zero shot image classification.
The first way is introducing labelled attributes, and each
dimension of an attribute vector is a specific property. When
these class-level attributes are regarded as class centers in the
semantic space to classify images, it is similar to the multi-
label classification task. In ZSL or GZSL task, it only required
to label once for each class, then hundreds of unlabeled images
can be classified into the new defined class. Even though,
labeling attributes is more expensive than label single image in
establish the dataset, therefore attributed-based ZSL is mainly
used for small or medium datasets, such as Attribute Pascal
and Yahoo (aPY) [34], Animals with Attributes (AWA) [15],
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Fig. 2: Comparison of different ZSL frameworks. (a) Mapping visual features into the semantic space; (b) Mapping semantic attributes into
the visual space (c) Common space embedding; (d) Indirect attribute prediction; (e) Attributing label space.

Caltech-UCSD-Birds (CUB) [35] and SUN attributes (SUN)
[36].

Another way to obtain the semantic representation is us-
ing vocab or sentence embedding extracted from the tex-
ture description of classes. This way is more like to be
a multimodality learning task [37], because measuring the
similarity between visual and semantic spaces requires to align
two modalities. Compared to labeling attributes, it requires
little annotation information to extract semantic embeddings
from pre-trained model using natural language processing
techniques like BERT [8]. Therefore, it is mainly used for
generate large-scale dataset for ZSL, like ImageNet [38].
However, two problems can influence the performance of the
ZSL methods when sentence embeddings are used. Firstly, the
texture description may be not strict or complete, which can
introduce ambiguity. Secondly, there is the information loss
of extracting features compared to directly label the attributes.
Since the classification accuracy of ZSL is much less than that
of supervised image recognition, existing methods including
our work mainly focus on the attribute-based task, which is
easier than using embeddings.

Early works for ZSL and GZSL do not have the same exper-
imental setting thus the comparison results may be reasonable,
therefore, authors in [15] propose a uniform setting and re-
evaluate plenty of methods under their standard. In [15], class
attributes in high dimensional vector are used as the semantic
representations in aPY, AWA, CUB and SUN, meanwhile the
sentence embeddings are regarded as the semantic represen-
tations in ImageNet. To have a fair comparison with existing
methods, we completely follow the experimental settings in
[15], which are described in detail in the Section V.

III. APPROACH

In the zero-shot learning task, we aim to correctly recog-
nize images in unseen classes according to their class-level
attributes, where unseen classes are totally independent from
the training phase.

Assume we have C seen classes to train the model.
The training dataset D, is defined by a series of triplets
(xi,yi,al)N € X, x Yy x A,, where N, is the number
of training samples. X, € R¥*Ns denotes the set of images or
features. Y € {0,1}¢*Ns represents the one-hot class labels,
where one element of each column is 1, while the others are
0. A, € RF*Ns contains training attributes. Note that class-
level attributes are used in this method, which means Y, and
A, are augmented from {0,1}¢*¢ and R** respectively,
by class labels. Moreover, in the training phase, the label
(or common) space only contains C' labels, which can be
denoted as Y € {0,1}“. Two models must be learned to map
features and attributes into the label space, respectively. In
detail, f : x{ — y’ denotes the visual embedding, while
g : ai — y' is the semantic embedding. In the testing
phase, visual and semantic samples of unseen classes are
given, ie., (x,,a’)Y € X, x A,. Since labels of seen and
unseen classes are unified in the same space, the discrete
space Y is extended to Y = RC, which is continuous and
has enough positions to represent the growing number of
unseen classes in the common space. For classification, let
A = (a',...,a% a®T! . a®tV) denote class-level attributes
in C' seen and U unseen classes.

A. Attributing Label Space (ALS)

In this paper, we define the common space as R®, where
labels of seen classes are represented by one-hot vectors to
reduce the correlation between semantic attributes. The loss
function can be written as

Ilr){glf(XS,Ys;P)+g(Ys,As;Q)—|—Q(P,Q), (1
where P and Q are the parameters of the two mappings. €)(.)
is the regularization. In Eq. (1), constraints can be introduced
in regularization term to connect the two mappings.

Visual Embedding: In this paper, visual embedding aims
to map visual features into the neighbors of their prototypes
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in the common space. A direct way of doing this is to train
a classifier like SVM. For each feature, the score of the
corresponding classifier is set to 1 while that of other classifiers
is 0. However, for ZSL, using a classifier is not appropriate for
visual embedding because it induces over-fitting. Specifically,
typical classification methods can correctly map seen features
to their labels. However, in the testing phase, unseen features
are also mapped to those labels, which is meaningless for
ZSL, because test features obviously do not belong to any
known classes. In this method, our embedding only aims to
map features in seen classes to the corresponding one-hot
vectors, according to their class labels. Therefore we simply
let f be a linear projection, where labels of unseen classes are
represented as linear combinations of one-hot vectors, instead
of a one-hot vector itself.

Semantic Embedding: Generally, semantic embedding is
used to adjust the relative positions of prototypes, which
should be the centers of projected features. In this method,
because the correlation among dimensions of semantic space
tend to mislead the visual embedding learning, we regard
the semantic embedding as a decorrelation process. In other
words, attributes in different classes should be more indepen-
dent in the common space. To this end, we directly map an
attribute to the corresponding one-hot vector in the label space.
Besides, since there is a one-to-one correspondence between
an attribute and its class label, we assume that if a semantic
attribute is mapped to a label, then it can also be reconstructed
from the label by inverse operation.

From the above discussion, the objective function of the
proposed method can be defined as

min||PX, — Y,||% +11Ys = QTA|IE + ol [P|[7 + 5l1QI[E

sit. Ay =QYs,,

2
where P € R¢*? and Q € RF*® denote the linear visual em-
bedding and visual embedding, respectively. Here, we simply
use the L2 norm as the regularization of two projections. In
the training phase, P and Q can be optimized individually. Let

the gradient of P for Eq. (2) equal zero, the closed form of
visual embedding is

P =Y. X (X, XT +aD~L. (3)

For semantic embedding Q, we relax the constraint and the
objective function related to Q can be rewritten as

min [|A, — QY[|% + AlIYs — QTA(% + 8lIQlIE, @)

where ) is a weighting coefficient that balances the importance
of the first and second terms. The derivation of Eq. (4) is

MGATQ + Q(YYT + Blexe) = (1+ NA YL, (5)

Eq. (5) is the Sylvester Equation [39], which has the closed
form solution
vec[Q] =[Ic ® (MGAT) + (Y, YT + Bloxe) @ I 7!

vee[(1+ M)A YT, ©

where vec[Q] is the vectorization operation for matrix Q, ®
denotes the Kronecker product and I stands for the k& x k
identity matrix.

Since the main computational cost comes from solving
the Sylvester Equation, the proposed method has similar
computational complexity as SAE [40], which can be trained
very quickly.

B. Classification

In the training phase, the common space Y contains C'
one-hot vectors. When unseen classes are observed in the
testing phase, their attributes are projected into the common
space as labels of unseen classes. Moreover, for real-world
recognition tasks, the number of new classes is unknown, and
even rises over time. To solve this problem, the common space
is extended as ) = R, where infinite prototypes can be
defined in the continuous space. In ZSL, given U attributes of
unseen classes a’ (j € C 4 1,...C + U), their labels in the
common space are represented as

V=Q'al, j=C+1,..,C+U. )

In our method, the classification is based on NN search in the
common space,

U "z

c(x}) = argmind(Pxi, V), j€C+1,.,C+U, (8)
J

where c(x!)) is the class identity of unseen sample x‘, and

d(a,b) denotes the distance between vector a and b.

In the testing phase of GZSL, labels of unseen classes are
similar to those for ZSL. Different from existing methods,
labels of seen classes are denoted as the one-hot vectors. In
this way, labels of GZSL are defined as

Y- ¥/, - J =L..C
g Q'al,

=C+1,...C+U,
where y’ denotes the label of the j-th seen class. The classi-
fication of GZSL is also based on the NN search,

€))

c(x) zargmjind(Pfolg), jel,..,C+U. (10)

As labels of seen classes are exact one-hot vectors in Eq.
(9), the label space is more accurate for representing both seen
and unseen classes. This is the main reason why ALS makes
significant improvement in GZSL. In addition, for human
beings, a general way to define objects in new classes is
to combine properties of known classes [20]. For example,
“motor homes” contain a similar shape and function as both
“motor” and “house”. In other words, meanings are given to
labels of unseen classes in the original label space. In this way,
the model recognizes new classes as analogy of seen classes,
which is more natural. Example from the dataset Animals with
Attributes (AWA) [15] are shown in Figure 3. In detail, six
classes are selected as seen classes that vary in shape, size,
life habit, etc. Thus, each class is assumed to be orthogonal to
the others. The t-SNE result [41] of visual features projected
in the label space is shown, where labels of six seen classes
are fixed to one-hot vectors, which further make up labels of
three unseen classes. Specifically, the unseen object “giraffe”
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Fig. 3: Relationship between six seen and three unseen classes
illustrated by t-SNE. Projected features of seen classes in the common
space are represented by “+”, while the corresponding images are in

@

solid boxes. Features in unseen classes are denoted by “.”, while
images are in dashed boxes. Arrows denote axes in the common
space

can be regarded as the linear combination of “antelope” and
“cow”, because the shape of giraffes is similar to antelopes,
while both giraffes and cows have spots. Similarly, “rat” is
correlated to both “rabbit” and “otter”. In contrast, a “dolphin”
is more similar to a “killer whale” than any other seen classes
so its label is only near to that of the killer whale. Besides,
all unseen labels are far from the “gorilla” since they have
few common attributes. This result verifies our assumption
about the relationship between prototypes of seen and unseen
classes. In Figure. 4, t-SNE projections in the common space
of all 10 unseen classes are shown. In most cases, features and
attributes in same classes are projected into the same regions.
This demonstrates that the label space can efficiently reconcile
visual and semantic spaces.

IV. MODEL ANALYSIS

After establishing the ZSL model, we further analyze dif-
ferent frameworks of learning embeddings for ZSL, where the
direction of inference is discussed in detail. As we mainly
focus on discussing of the framework rather than specific
approaches in this section, linear projections are used for fair
comparison. All comparisons that verify our conclusions in
this section are shown in Section V.

A. Comparison of Different Frameworks

In this paper, different frameworks are discussed and com-
pared. Methods that directly learn mappings between the visual
and semantic spaces belong to the DVSE framework, where
class labels are not introduced. Differently, methods in IVSE
use the labels of seen classes as variables, but the final
classification is not conducted in the label space. In contrast,
the compatibility function of the proposed ALS is directly

* horse
blue whale
sheep
seal
bat
giraffe

©orat

* bobcat

* walrus

* dolphin

Fig. 4: The t-SNE projection of visual features projected in the label

space. Visual points are denoted by “.” and semantic prototypes are

represented by stars.

defined in the label space, where both seen and unseen classes
are unified.
In the DVSE framework, “visual projection” is the direct
method, where the training phase can be defined as
min |[PX, — As || + of [P][% (11)
In the following discussion, Eq. (11) is denoted as “X — A”,
where features are projected into the semantic space for NN
search. A main disadvantage is that visual projection tends to
cause the hubness problem [27], where most projected features
share the same prototype as their nearest neighbor. According
to [42], the reverse process of visual projection can reduce the
hubness problem, i.e.,

min ||X, — PA.[5 + of [P, (12)
which is represented as “X <— A”. As attributes are projected
into the visual space, this is also called “visual synthesis” [30],
where visual features of unseen classes can be synthesized
by their attributes from projection P. However, because the
distribution of visual features in seen and unseen classes are
generally different, unidirectional projections in Egs. (11) and
(12) induce the domain shift problem [43]. To solve this
problem, the “mutual reconstruction” is defined as

min ||X, — PAL[[% + of [PTX, — A, (13)
where visual features and semantic attributes are required to
reconstruct each other with the same parameters P. In [40],
a projection trained by Eq. (13) is proved to be efficient
to reduce the domain shift problem. In addition, the final
classification can be conducted in either the semantic or
visual space, where the corresponding compatibility function
is defined as d(P'x’,a’) or d(x!,Pa’). For convenience of
discussion, they are denoted as “X > A” and “X < A”, where
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A and X mean the classification is implemented in semantic
and visual space respectively.

In our experiments, the classification accuracies of these
four strategies are compared. We find that, X < A is much
better than X — A, while, X < A and X < A are better
than X — A and X < A, respectively. According to related
experiments in Section 4.3, two conclusions are verified. First,
when mutual reconstruction is introduced, the classification
accuracy is generally increased because the domain shift
problem is reduced. Second, the hubness problem can be
reduced when classification is conducted in the visual space.

When the label space is introduced as an intermediate space,
Eq. (11-13) can be respectively modified as

min [[PX, Y| [+l [PI|7 +]1QY, — Al + 5lQII%, (14)
min ||X —PY,|[7 +af [Pl[7 + Y. — QA|I: + A/1QI1%, (15)

min||X; — PYSH% + O‘HPTXS - YSH%«“
PQ . (16)
+11As = QY.lfi + BIIQTA, — Yi|I%.

In Eq. (14), features are projected into the semantic space
via mappings P and Q, denoted by “X — Y — A”. In the
testing phase, the compatibility function is d(QPx’,, a’), which
is defined in the semantic space. After training via Eq. (15),
NN search is implemented in the visual space where attributes
are mapped, and this process is denoted by “X + Y + A”.
Similar to Eq. (13), there are three classification methods when
P and Q are trained via Eq. (16). Specifically, “X < Y « A7
and “X <> Y <> A” denote that the classification is conducted
in the semantic and attribute space, respectively. As such,
prototypes cannot be fixed to one-hot labels, so attributes or
synthesized features are used as prototypes. In detail, compat-
ibility functions are respectively defined as d(QP”x’ ,a’) and
d(x’,,PQTa’). Both these strategies belong to IVSE according
to our definition. Differently, when the label space is directly
used for NN search via Egs. (8) and (10), “X < Y & AV s
a typical model in ALS.

Based on comparisons in our experiments, two conclusions
can be drawn. Primarily, introducing the label space can
decrease the correlation among properties (dimensions) in the
semantic space. Therefore, two projections P and Q are more
discriminative, and projected features from different classes
can be divided easily. This is demonstrated by the fact that
IVSE is better than DVSE in the same cases. Besides, ALS
defines a robust common space where seen prototypes are one-
hot vectors and unseen prototypes are infered by semantic
embedding. In this way, priori knowledge of seen class labels
is used to accurately define the label space, making prototypes
in the common space more discriminative. This is the main
reason that the ALS framework performs much better than
IVSE for the GZSL task. This is verified by the fact that
X < Y < A is much better than X < Y < A and
X <+ Y < A for the GZSL task. Relevant comparisons are
shown in Section V.

B. Comparison of Mappings

After showing the improvements of ALS, the influence of
different projection directions in the ALS framework is also
considered. In this Section, the final classification is conducted
in the label space in all cases.

Our main model is defined as (2), which can be denoted
as “X — Y < A”. As we first discuss the different way
of semantic embeddings, the visual embedding is fixed as
“X — Y”. As attributes of unseen classes are projected
into the label space, there are two different directions, label
synthesis “Y < A” and mutual reconstruction “Y <« A”.
For a given class, the label and class-level attributes hold
the same information when they are used as class centers.
In addition, in the proposed method, semantic meanings are
given to labels. Consequently, it is more reasonable that labels
and attributes in the same class are required to reconstruct
each other. Moreover, because the number of training classes
is generally small, and the distributions between attributes in
seen and unseen classes are very different, the domain shift
problem causes degradation if a mapping from attributes to
labels is trained directly. The mutual reconstruction loss can
prevent the over-fitting in the training phase in this way.

Similarly, the semantic embedding is fixed as “Y <> A” and
different methods of visual embedding are compared: “X —
Y” and “X < Y”. Notice that X <> Y requires labels to
reconstruct visual features, and contains the term

C
WX =PYL[[F =7 Y Ix =Py, (A7)

=1 xieX;

where X, = Ule X{ denotes the partition of features in C'
classes. As y¢ is the one-hot vector indicating the c-th column
P¢, the optimal of P¢ is the mean of features in the c-th class

1 .
Pox= LYk

c
i cXe
x? €XS

(18)

where n. is the number of features in the c-th class. This
means that the label tends to be projected into the center of
features in the visual space, because visual features in one
class are much more diverse than their class labels. According
to Egs. (17) and (18), the reconstruction loss has a lower bound

c
v Y I =X

e=1 xieX:

(19)

When optimizing P, the lower bound can influence the optimal
solution according to the hyper-parameter . In experiments,
we find that « has a negative correlation with the classification
accuracy. Therefore, it may not appropriate to reconstruct
features from a single one-hot label vector. Detailed results
are shown in the next Section, which demonstrate the above
discussions of mapping selection.

C. Analysis of Hubness

Authors in [42] give the theoretical analysis why visual
synthesis is better than visual projection. Specifically, if a
linear embedding is learned via Eq. (11), it can be proved that
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Fig. 5: Illustration of shrinkage. (a) Visual projection; (b) Visual synthesis; (c) Attributing label space.

|[PXs]|% < ||As]|%. This means that the projected points PXj
will be shrunk towards the targets A;. Based on this proof,
the authors draw a conclusion that the influence of shrinkage
will be reduced if the prototypes are in the visual space [42].

In our framework, both the visual features and semantic
attributes are projected into the label space. When the model
is trained via following function,

min [IPXs =Y, ||+l [P+ Y — QA%+ 8]1QllE, (20)

it can be easily proved that ||PX,||% < ||Y||% and ||QA,||% <
|[Y||%. Therefore, there is no direct relationship of value
between ||PX;||% and ||QA,||%. It may be also a way to avoid
the influence of shrinkage, which is shown in Fig. 5. However,
we find it is hard to have a theoretically proof of the relation-
ship in norm in the Eq. (2). Thus, we compute ||Q'A,||% for
all datasets and empirically find that ||Q'A||2 < ||Y||% is
also satisfied.

To further verify the ability of ALS to avoid the hubness
problem, we introduce the “skewness” that measures the
degree of hubness in a nearest neighbor search problem [29]
[27], which is defined as

S, (Nile) — E[Ny)?/C
Var[Ny]3/2

skewness = , 21)
where the Ny, is the discrete distribution of the number Ny (c)
of the times each prototype ¢ found in the top k of the ranking
for test samples. Notice that when k& = 1, N represents the
distribution of the (predicted) labels of the test set. Var[Ny]
is the variance of Nj. In experiments, the comparison of
skewness value in different frameworks are shown to verify
the ability of our method to avoid hubness problem in the
ZSL task.

V. EXPERIMENTS

In our experiments, our method is compared with state-of-
the-art baselines on five benchmark datasets, including four
medium-scale datasets and one very large-scale dataset under
the same settings. To begin with, datasets, splits and other
settings are introduced. Then the proposed method is evaluated

on the medium-scale datasets in detail, including a comparison
of main accuracy with other baselines, discussion on different
frameworks, the computational cost, and the influences on
hyper-parameters. At last, our method is generalized to the
large-scale dataset, which is very challenging for the GZSL
task.

A. Datasets, Evaluations and Baselines

The medium benchmark datasets include Attribute Pascal
and Yahoo (aPY) [34], Animals with Attributes (AWA) [15],
Caltech-UCSD-Birds (CUB) [35] and SUN attributes (SUN)
[36]. The very large-scale dataset is ImageNet 21K. aPY
contains 15,339 images in 32 classes, with 20 seen and 12
unseen classes. Each class corresponds to a 64-dim attribute.
For AWA, the original dataset [20] is not publicly available.
Therefore, images in same classes are re-collected for training
and testing [15]. AWA has a total of 37,322 images and 85-dim
class-level attributes, in which 40 classes are used for training
and 10 for testing. CUB contains 11788 images from 150/50
seen/unseen types of birds, where each type is described by a
312-dim attribute. SUN contains 14,340 images and 102-dim
attributes, where 645 out of 717 classes are used in the training
phase. To split the dataset for training and testing, we follow
the settings in [15], where unseen classes are not included in
the deep neural network training. Therefore, unseen classes are
really “unknown” for the trained model. The 2048-dim feature
of each image is extracted from the 101-layered ResNet [44].
Detailed splits of these datasets are shown in Table I.

The method is also tested on the large-scale dataset Im-
ageNet, which contains 21,841 classes with more than 10
millions images collected from the real-world. In the training
phase, 1K seen classes containing 1.2 million images are
used to learn mappings, where the original ResNet-101 pre-
trained on ImageNet is used to extract the 1024-dim visual
features. In the testing phase, different splits are used as
unseen classes. Particularly, 2-hop/3-hop contains 1,509/7,678
unseen classes that are within two/three tree hops of 1K seen
classes according to the ImageNet label hierarchy [31]. Classes
that contain the top 500/1K/5K maximum images as well
as the top 500/1K/5K minimum images are also used for
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TABLE I: Details of five datasets

Dataset Dim. of No. of No. of No. of No. of

at- seen seen unseen unseen

tributes classes images classes images
SUN 102 645 10320 72 1440
CUB 312 150 7057 50 2967
AWA 85 40 23527 10 7913
aPY 64 20 5932 12 7924
ImageNet 500 1K 1.2M 20K 10M

TABLE II: Comparisons of Zero-Shot Learning (ZSL) on SUN, CUB,
AWA and aPY. We measure the AP of Top-1 accuracy in %.

method SUN CUB AWA aPY
DAP [20] 39.9 40.0 46.1 33.8
IAP [20] 19.4 24.0 359 36.6
CONSE [46] 38.8 343 44.5 26.9
CMT [24] 39.9 34.6 37.9 28.0
SSE [32] 51.5 439 61.0 34.0
LATEM [23] 55.3 49.3 55.8 35.2
ALE [4] 58.1 54.9 62.5 39.7
DEVISE [16] 56.5 52.0 59.7 39.8
SJE [22] 53.7 53.9 61.9 32.9
ESZSL [47] 54.5 53.9 58.6 38.3
SYNC [31] 56.3 55.6 46.6 23.9
SAE [40] 59.7 50.9 66.0 35.1
LESAE [11] 60.0 53.9 68.4 40.8
PSR [48] 61.4 56.0 63.8 38.4
SP-ANE [49] 59.2 55.4 58.5 24.1
ZSKL [50] 60.4 49.3 69.9 41.9
CDL [19] 63.6 54.5 69.9 43.0
MIVSE [17] 43.5 35.7 46.1 32.8
GCN [18] 48.8 48.9 54.6 40.38
ALS 62.0 57.5 66.2 44.5

testing respectively, which are represented as the 500/1K/5K
most/least populated classes in experiments. Finally, all 20K
classes are tested, which is very challenging. For each class,
a 500-dimensional attribute is extracted using the “word-to-
vector” method [45], since ImageNet does not contain attribute
annotations for all classes. Details are shown in [31] and [15].

To evaluate the performance of the methods, the average
of per-class precision (AP) is measured. Specifically, “zsl”
denotes the AP of features classified into unseen classes. In
the GZSL task, test features of unseen classes are classified
into all classes, which is denoted as “ts”. In [15], a subset
of features from seen classes are used for validation, which
are also classified into both seen and unseen classes. The
AP of these features is represented as “tr”. Finally, “H” is
the harmonic mean of ts and tr, which is also introduced to
evaluate the GZSL [15].

For comparison, a number of baselines in the (generalized)
zero-shot learning task are introduced following [15], which
include DAP [20], IAP [20], CONSE [46], CMT [24], SSE
[32], LATEM [23], ALE [4], DEVISE [16], SJE [22], ESZSL
[47], SYNC [31] and SAE [40]. Moreover, recent works such
as LESAE [11], PSR [48], SP-ANE [49], ZSKL [50] and CDL
[19] are also compared. Since recent works are seldom eval-
uated in large-scale dataset ImageNet with standard settings,
we only select the same methods as [15] to be baselines.

B. Main Results

We compare our approach with state-of-the-art baselines
on five medium-scale datasets. In Table II, ZSL classification
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Fig. 7: t-SNE visualization of projections in 50 in CUB dataset.

results are shown, where ‘ALS’ represents the result of our
method. The accuracies of most baselines are tested in same
settings as [15] for fair comparison. The proposed method
achieves state-of-the-art performance on all four datasets,
especially in terms of aPY. In CDL, the class labels are also
introduced to learn a representation of visual features. And
then the representations and semantic attributes are mapped
into a common space. In fact, the pipeline of CDL in the
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ZSL task is similar to the proposed method, and it is the
reason why these two methods achieve comparable accuracies.
However, since we compute the similarity in the label space,
the seen and unseen prototypes can be defined differently like
Eq. (9). On contract, prototypes in seen and unseen classes in
common space are computed in the same way in CDL. This
is the mean reason that our method is better in the GZSL
task. In summary, the model trained using seen data can be
well generalized to unseen classes. An example from the AWA
dataset can be found in Fig. 6, which shows the correlation
between the unseen “dolphin” and forty seen bases in the
label space. Since there are multiple images of dolphins, we
compute the mean of features projected in the label space.
Results show that dolphin has strong correlations with aquatic
animals. More importantly, the projected feature center is
similar to the projected attribute, which demonstrates that the
proposed model can associate the visual and semantic space in
the latent space. To further verify this conclusion, the t-SNE
result of projections in 50 unseen classes in CUB is shown
in Fig. 7, where the colored circles with black border denote
the projected attributes in different classes, and the dots in
different colors denote the projected visual features. Results
show that most of the projected visual features and attributes
are close in the common space.

For the GZSL task, the proposed method significantly im-
proves the ts and H. The average increment of ts value is 11.2.
The H value jointly considers the classification performance of
seen and unseen classes, which can be used as the evaluation
for annotating new objects. Compared with state-of-the-art
methods, the H value is increased by 4.7, 0.5, 8.3 and 11.9
on SUN, CUB, AWA and aPY, respectively. tr reflects the
over-fitting training for seen classes. In Table III, the baselines
with the highest tr generally refer to very low ts and H
values. This means the trained model in these methods cannot
be generalized to new classes. Compared with baselines, the
proposed method achieves leading performance considering in
recognizing both seen and unseen classes.

C. Detailed Evaluation

In this section, detailed results for the model analysis are
shown, where zsl and H represent the performance for the
ZSL and GZSL tasks, respectively. A comparison of Eqs. (11-
13) is shown in the first row of Table IV. Mappings of both
X <> A and X > A are trained via Eq. (13). They implement
classification in the semantic space A and visual space X
respectively. Results demonstrate that X <— A is much better
than X — A, which verifies that visual synthesis can reduce
the hubness problem. In addition, the mutual reconstruction
can reduce the domain shift problem, suggested by the fact
that results of X <> A and X <+ A are better than those of
X — A and X < A respectively. More importantly, compar-
isons between DVSE and IVSE demonstrate an improvement
when label space is introduced, where zsl and H values rise
in most cases. Last but not least, although trained via Eq.
(16), accuracies are different when the final classification is
conducted in each of the three different spaces. ALS, where the
compatibility function is defined in the label space Y, achieves

the best performance in GZSL compared to IVSE methods
X< Y+ Aand X & Y < A. This verifies the advantage
of priori seen labels in generalized zero-shot classification.

The accuracy of different mapping directions are also
shown. The results shown in the first row of Table V verify that
mutual reconstruction between labels and attributes can reduce
the domain shift problem, since the results of X — Y <+ A are
better than that of X — Y < A. In the second row of Table
V, the two visual embedding methods achieve comparable
accuracy, while the visual projection X — Y obtains the
leading performance in most cases. For X <+ Y < A, the
hyper-parameter v in Eq. (17) is set to a very small value,
i.e, from 0.001 to 0.1, according to different datasets. In fact,
v has a negative correlation with accuracy, which means the
reconstruction of visual features can degrade in performance as
~ rises. Since X — Y <> A achieves the leading performance,
its accuracy is recorded as our main result in comparison in
Table III.

Moreover, the comparison between the non-linear embed-
ding and the linear embedding under our ALS framework is
presented in Table VI, where the GZSL accuracies are eval-
uated. Specifically, for visual embedding, we use three Fully
Connected layers which are followed with Batch Normaliza-
tion (BN) [51] and ReL U [52] layers. For semantic embedding,
the Auto-Enocoder structure is introduced, where the codes of
class-level attributes are required to be near to corresponding
class labels as much as possible. The experimental results
show that non-linear embedding achieves higher accuracies
in tr. It is because that the non-linear embedding tends to let
unseen images directly equal to the defined one-hot labels,
which causes overlap between seen and unseen projections in
the common space. In fact, unseen features are mapped among
the one-hot labels (as their linear combinations), not directly
equal to one-hot labels. The results also verify our analysis in
Section III-A.

Finally, to verify the ability of avoiding hubness problem of
different frameworks, we compute the skewness value, where
the distribution of N7 is used. Since the number of samples in
each class in SUN dataset exactly equals to 20, the skewness
value computed via the definition is not a number, because
both the numerator and denominator are 0. Therefore, we use
the variance of the distribution of predicted labels to instead
skewness value in SUN dataset. The results show that the
skewness value of the proposed method is closer to that of
the ground truth in most cases. Notice that the number of
images in each class is not balanced in APY, therefore, the
skewness value of ground truth is the biggest.

D. Influence of Hyper-parameters

In our method, there are three hyper-parameters «, 3 and
A, which balance the influence of the regularization terms in
the objective functions. In this section, the influence of the
hyper-parameters is discussed to demonstrate the robustness
of proposed method. We vary one hyper-parameter at a time,
while fixing the others. The influences of o, 8 and A, for the
four medium-scale datasets are shown in Figure 8. As can be
seen, none of the parameters have a significant influence for
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TABLE III: Generalized Zero-Shot Learning (GZSL) results on SUN, CUB, AWA and aPY. (CMT*: CMT with novelty detection). We

measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H
DAP [20] 4.2 25.1 7.2 1.7 67.9 33 0.0 84.7 0.0 4.8 78.3 9.0
IAP [20] 1.0 37.8 1.8 0.2 72.8 04 0.9 87.6 1.8 5.7 65.6 104
CONSE [46] 6.8 399 11.6 1.6 72.2 3.1 0.5 90.6 1.0 0.0 91.2 0.0
CMT [24] 8.7 28.0 13.3 4.7 60.1 8.7 8.7 89.0 159 109 742 19.0
SSE [32] 2.1 36.4 4.0 8.5 469 144 8.1 82.5 14.8 0.2 78.9 0.4
LATEM [23] 147 28.8 19.5 152 573 240 115 773 200 0.1 73.0 0.2
ALE [4] 21.8 331 263 | 237 628 344 14.0 81.8 239 4.6 73.7 8.7
DEVISE [16] 169 274 209 | 238 53.0 328 17.1 747 27.8 4.9 76.9 9.2
SJE [22] 147 305 19.8 | 23,5 59.2 336 8.0 739 144 3.7 55.7 6.9
ESZSL [47] 11.0 279 1538 126 638 21.0 59 77.8 11.0 24 70.1 4.6
SYNC [31] 7.9 433 134 11.5 709 19.8 10.0  90.5 18.0 7.4 66.3 13.3
SAE [40] 17.8 320 2238 18.8° 585 29.0 16.7 825 278 123 725 209
LESAE [11] 219 347 269 | 243 530 333 | 21.8 706 333 127  56.1  20.1
PSR [48] 208 372 267 | 246 543 339 | 207 738 323 13.5 514 214
SP-ANE [49] 249 386 303 347 706 466 | 233 909 37.1 13.7 634 226
ZSKL [50] 19.8 29.1 236 199 525 289 176 809 29.0 11.9 763 205
CDL [19] 215 347 265 | 235 552 329 | 281 735 40.6 19.8 48.6 28.1
MIVSE [17] 94 23.3 13.4 113 499 184 | 543 873 10.2 10.5 687 182
GCN [18] 127 283 17.5 152 564 240 194 815 313 1.1 75.1 19.4
ALS 415 319 361 | 431 516 469 | 53.8 560 549 | 28.6 655 40.0

TABLE IV: Comparison between DVSE and IVSE frameworks on SUN, CUB, AWA and aPY. We measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Framework Projections zsl H zsl H zsl H zsl H
DVSE X—A 448 162 | 357 214 | 51.8 224 | 29.6 203
X+ A 60.8 242 | 519 300 | 655 377 | 41.7 210

X+ A 535 179 | 364 233 | 57.1  23.1 | 29.0 9.3

XA 61.0 250 | 519 290 | 66.0 294 | 351 219

IVSE X—-Y—A 448 164 | 362 216 | 548 244 | 297 223
X+—Y<+A 612 242 | 524 302 | 659 40.1 | 429 224

X< YA 563 17.6 | 467 238 | 589 36.8 | 33.7 133

XoYeA 60.1 248 | 53.7 331 | 654 369 | 386 259

ALS X< Yo A 61.5 36.1 | 549 404 | 646 539 | 423 388

TABLE V: Comparison of projection selections on SUN, CUB,

AWA and aPY. We measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY
Projections zsl H zsl H zsl H zsl H
X = YA 61.7 356 | 559 46.1 | 593 21.1 | 412 220
X —Y<A 62.0 36.1 | 575 469 | 662 549 | 445 400
XY < A 61.5 351 | 549 404 | 646 539 | 423 388
X—Y < A 620 36.1 | 575 469 | 662 549 | 445 40.0

SUN and aPY. However, the accuracy on CUB decreases as «
rises, while performances on AWA and CUB have a negative
correlation with A.

For the GZSL task, the H value is shown in Fig. (9).
B is very robust for all datasets. Moreover, when A is in
the range [1.0 2.0], the best performance is obtained for all
four datasets. In contrast, accuracies are very different as «
changes. Specifically, the H value of AWA and aPY has a
positive correlation with «, while that of SUN and CUB is
negative. Considering the trade-off in both the ZSL and GZSL
tasks, A\ can be empirically set in the range of [2.0, 4.0],
while 3 is fixed to 1.0. « varies from 1 to 100, according
to different datasets. In Eq (2), the error of ||Px—y||% will get
larger as « rises in «|P||%, which means the projection of
seen classes will leave far away from one-hot labels. In our
ALS framework, the prototypes in seen and unseen classes are

defined in different ways that is show in Eq. (9). In this way,
the improvement of o may increase ts and decrease tr, which
will further cause salient change of the H value. Differently,
semantic embedding Q is constrained by the reconstruction
error, therefore the hyper-parameter 8 or « do not cause such
large variety. Moreover, the harmonic mean H value is a trade-
off between ts and tr, where a maximum is existed in each
dataset. In SUN and CUB, the maximum of H value appears
when « is near to 1. In AWA and APY, the maximum of H
value appears when « is larger than 10.

E. Computational Cost

It is very efficient to train projections in SAE [40], where
the main cost comes from solving the Sylvester Equation.
Specifically, the computational complexity is O(d3k?), where
d and k are the dimensions of the visual and semantic spaces,



IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE VI: Comparison of the linear embedding and non-linear embedding under the ALS framework. We measure the AP of Top-1 accuracy

in %.
SUN CUB AWA aPY
Method ts tr H ts tr H ts tr H ts tr H
Non-linear ALS 2.1 327 0.04 3.1 563 0.04 3.1 834 0.06 53 81.6 0.1
Linear ALS 415 319 361 | 431 516 469 | 538 560 549 | 28.6 655 40.0
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TABLE VII: Comparison of skewness value of different frameworks.

Framework SUN* CUB AWA aPY
X—A 264.7 1.26 1.99 0.46
X+ A 423 0.68 1.17 1.45

X=>Y< A 39.0 0.71 0.62 1.79

ground truth 0 -3.82 0.23 2.62

TABLE VIII: Comparison of computational cost between the pro-
posed method and SAE. We measure time consumption in seconds.

method SUN CUB AWA aPY
SAE 1.97 2.72 2.44 1.64
ALS 1.66 1.07 3.12 1.57

respectively. In the proposed method, the computational com-
plexity for solving Eq. (6) is O(C3k®), where C is the
number of seen classes. In real applications, visual features
are extracted from deep networks, and d is generally bigger
than C'. Therefore, the proposed model is comparable and even
faster than SAE for projection training. The costs for each
dataset are listed in Table VIII. Results show that our method
has similar time consumption with SAE to learn projection
matrices.

F. Large-scale Dataset

Finally, our method is evaluated on the ImageNet 21K
dataset, where the top-10 accuracy is computed. Comparisons
for the ZSL task are shown in Table IX, where we choose
the same baselines as [15]. Our method is better than most
baselines and is comparable to the current state-of-the-art
performance. More importantly, the proposed method achieves
the leading performance in least populated 500/1K/5K classes.
This means that our method is advantageous for annotating
images of objects that are rare in nature, which is the original
intention of ZSL. For the GZSL task, the evaluation of “ts” is
presented in Table X. Results show that the proposed method
achieves state-of-the-art performance in all cases, especially
for 2 hops and most 500/1K unseen classes, where about 3-4
increments are achieved. All results demonstrate the advantage
of our method for GZSL. Since the sentence embedding of
texture description of classes are used, it is different from
the attribute-based ZSL as we mentioned in the Section I
and Section II. This is the reason that the accuracy of our
method is slightly less than that of SYNC [31]. It seems rea-
sonable to consider the feature extracting and visual-semantic
embedding together, which can help the alignment between
different modalities. Graphic Convolutional Network (GCN)
is also proper to mine the semantic relationship between the
prototypes [53], which can be an extension work in the future.
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TABLE IX: Zero-Shot Learning comparisons on ImageNet dataset. We measure AP of Top-10 accuracy in %.

Hierarchy Most populated Least populated All

Method 2 hops 3 hops 500 1K 5K 500 1K 5K 20K
CONSE 27.24 8.97 37.69  27.17 12.05 1794  11.66 4.87 3.97
CMT 10.90 3.33 18.33 12.30 4.87 6.02 3.97 1.92 1.53
LATEM 27.17 7.69 4269 3089 11.02 | 20.89 13.84 5.00 3.07
ALE 27.05 7.43 41.66  30.12  11.08 | 20.38 13.20 4.87 3.07
DEVISE 26.92 7.17 41.41 29.74  10.96 | 20.51 12.94 4.74 2.94
SJE 26.98 6.92 41.02 2884 1076 | 20.12  12.69 4.61 2.94
ESZSL 30.25 7.43 4589 3333 12.17 | 21.53 14.35 5.38 3.71
SYNC 37.05 11.92 51.66 3897 16.66 | 25.12  17.69 6.92 5.25
SAE 22.56 6.66 37.82 2692  10.25 16.92  10.76 4.10 2.94
ALS 34.36 10.60 4970 36.89 1530 | 29.11  18.57 6.96 4.48

TABLE X: Generalized Zero-Shot Learning comparisons on ImageNet dataset. We measure Top-10 accuracy in %.

Hierarchy Most populated Least populated All

Method 2 hops 3 hops 500 1K 5K 500 1K 5K 20K
CONSE 0.86 7.14 23.47 18.38 9.92 0.00 0.00 0.66 3.43
CMT 7.80 2.77 9.65 7.73 3.83 3.37 2.71 1.45 1.25
LATEM 16.99 6.28 23.61 18.65 8.73 8.73 7.60 3.50 2.71
ALE 17.79 6.34 24.93 19.37 9.12 10.38 8.46 3.63 2.77
DEVISE 17.59 6.28 24.66 19.11 8.99 10.11 8.26 3.63 2.71
SJE 17.46 6.21 23.61 18.45 8.79 9.85 8.00 3.50 2.71
ESZSL 19.24 6.81 26.52  20.56 9.72 9.12 7.73 3.76 3.10
SYNC 14.55 5.62 16.33 13.82 7.87 2.77 2.44 1.78 2.64
SAE 13.55 4.82 20.76 16.60 7.60 343 2.57 1.58 2.24
ALS 22.01 7.74 30.53 24.68 11.72 10.53 8.92 4.14 3.68

VI. CONCLUSION

In this paper, we proposed a novel method for (generalized)
zero-shot learning. In the training phase, the seen class label
space was used as the common space, where both visual
features and semantic attributes were projected. To avoid over-
fitting, we trained a linear mapping from visual features to
their labels. The reconstruction loss was introduced to train
the mapping between labels and attributes, which can reduce
the domain shift problem. After training, the label space was
extended to represent unseen classes. Moreover, a detailed
comparison among DVSE, IVSE and ALS frameworks was
discussed to show the advantages of introducing the label
space, where final classification was conducted. Experimental
results showed that our method achieved the leading perfor-
mance in most cases. More importantly, our method achieved
significant improvement in generalized zero-shot learning,
proving it with potential for annotating novel images.
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