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Abstract: Recently, image-based scene parsing has attracted increasing attention due to its wide application. However, conven-
tional models can only be valid on images with the same domain of the training set, and are typically trained using discrete and
meaningless labels. Inspired by the traditional zero shot learning methods which employ an auxiliary side information to bridge
the source and target domains, we propose a novel framework called Semantic Combined Network (SCN), which aims at learning
a scene parsing model only from the images of the seen classes while targeting on the unseen ones. In addition, with the assist
of semantic embeddings of classes, our SCN can further improve the performances of traditional fully supervised scene parsing
methods. Extensive experiments are conducted on the dataset Cityscapes, and the results show that our SCN can perform well on
both Zero Shot Scene Parsing (ZSSP) and Generalized ZSSP (GZSSP) settings based on several state-of-the-art scene parsing
architectures. Furthermore, we test our model under the traditional fully supervised setting and the results show that our SCN can
also significantly improve the performances of the original network models.

1 Introduction

In the last few decades, image-based scene analysis has become one
of the fundamental tasks of computer vision. It can be used in a large
number of applications such as image editing and autonomous navi-
gation, and attracts an increasing number of researchers to endeavor
in it. The purpose of this task is to classify each pixel in the image by
assigning discrete tag to it. Near recently, due to the rapid develop-
ment of deep Convolutional Neural Networks (CNNs) [1, 2], many
efforts have been devoted to employ CNNs to improve the perfor-
mance of scene parsing, such as Fully Convolutional Network (FCN)
[3], Pyramid Scene Parsing Network (PSPNet) [4] and Seman-
tic Image Segmentation with Deep Convolutional Nets (DeepLab)
[5], which can significantly outperform traditional feature extraction
methods such as Conditional Random Field (CRF) [6].

However, in the era of big data, an increasing number of new
scene categories are emerging. The traditional full supervision scene
analysis methods are suffering from a serious problem, i.e., when
a new category of image appears, the model should be retrained
by adding the samples of the new class. For example, if we have
trained a fully supervised model with the images captured from a
town scene, when the model is applied in a city scene, there will
be many unseen categories such as ‘skyscraper’, which makes the
model inoperable. Therefore, we need to acquire a large number of
images from the new categories and combine them into the original
data set to train a new model, which is a labor cost and difficult to be
implemented.

Conventional Zero Shot Learning (ZSL) [7–10] is inspired by the
behavior of our human beings that when we meet new categories, we
always employ some intermediate information to build up a bridge
from seen to unseen categories. Therefore, some semantic vectors
such as attribute annotated by experts [11], have been utilized as the
auxiliary information to achieve the purpose of recognizing novel
categories. As shown in Fig.1(b), following the same strategy of
conventional ZSL, Zero Shot Scene Segmentation (ZSSS) is first
proposed by [12], which aims to train models only dependent on the
annotated data within seen classes, but can be applied on a disjoint
dataset of unseen classes. In addition, inspired by conventional Gen-
eralized Zero Shot Learning, as shown in Fig.1(c), in this paper we

introduce a more realistic task Generalized ZSSP (GZSSP), which
enlarges the search spaces into both seen and unseen classes.

Moreover, most of the state-of-the-art scene parsing networks
adopt the same strategy that the labels of all pixels are discrete and
barely have relations to each other. The labels used during training
are always integers, e.g., the category ‘person’ is annotated as 1, and
‘rider’ is 2. With such operation, it can be easily found that the dif-
ference between the label ‘person’ and the label ‘rider’ is same as
that between ‘person’ and ‘building’. However, we all know that the
difference between ‘person’ and ‘rider’ is much smaller than that
between ‘person’ and ‘building’ in realistic scenarios. Therefore, we
argue that the labels are related, which should be adopted in scene
parsing networks.

In order to solve the aforementioned problem, we propose a novel
deep architecture called Semantic Combined Network (SCN), which
combines the word embedding of classes into classification net-
works. Specifically, we no longer consider labels as meaningless
values, but instead exploit a higher-dimensional attribute vector for
each label, such as Word2Vec [13], which allows us to be able to
work on both ZSSP and GZSSP settings at the same time. There-
fore, employing the relationship between classes is much better to
improve the performance of the corresponding original network. In
this paper, based on several state-of-the-art architectures such as
FCN, PSPNet and DeepLab, we utilize the proposed SCN to solve
both ZSSP and GZSSP tasks. During the experiments, we randomly
split the classes of Cityscapes[14] into two disjoint parts, including
seen classes and unseen classes, and conduct extensive experiments
on them. Besides, due to the combination of semantic information,
we also test our SCN under the traditional fully supervised setting.
The contributions of this work are as follows,

• We propose a novel and effective Semantic Combined Network
(SCN), which integrates the labels’ semantic embeddings into scene
parsing network to solve the more challenging task, Zero-Shot Scene
Parsing (ZSSP);
• Inspired by GZSL, we introduce a more realistic task, Generalized
Zero-Shot Scene Parsing (GZSSP), which enlarges the search space
from seen classes to all classes;

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 1



Seen  train   :     Road     Car     People     Sky
 &test       Building     Traffic Sign     Tree

(a) Traditional Scene Parsing

Unseen(test) :        People        Car 
 Building

(b) Zero shot Scene
Parsing

Input Image Seen (train):        Road        Traffic Sign
Tree         Sky

(b) Zero Shot Scene Parsing

Seen (train):        Road        Traffic Sign
Tree          Sky

All Classes (test):       Road      Car       People 
        Tree       Sky         Building      Traffic Sign 

(c) Generalized Zero Shot Scene Parsing

Fig. 1: An illustration of task ZSSP and our introduced Generalized ZSSP (GZSSP).

• Instead of directly employing meaningless and unrelated labels,
we combine the semantic information of each class into several
state-of-the-art networks, and make them feasible for new ZSSP and
GZSSP tasks;
• Extensive experiments are conducted on all the three settings,
including ZSSP, GZSSP and conventional fully supervised learn-
ing, and the experimental results show that our SCN can not only
well solve the tasks of ZSSP and GZSSP, but also significantly
improve the performance of the state-of-the-art methods under the
conventional supervised setting.

The main content of this paper is organized as follows: In section
2 we briefly introduce the existing methods for Scene Parsing and
ZSL. Section 3 describes the proposed method in detail. Section 4
gives the experimental results of comparison with existing meth-
ods for ZSSP, GZSSP, and traditional scene parsing. Finally, we
conclude this paper in section 5.

2 Related work

2.1 Scene parsing and Semantic segmentation

Scene parsing, based on semantic pixel-wise segmentation, is an
ongoing hot topic research [15–17]. Conventional methods often
utilize contextual information of raw data or hand-craft feature for
scene parsing, such as Conditional Random Field (CRF) [6], which
combines multi-scale component to refine the performance. Based
on CRF, Lucchi et al. [18] tried to make full use of global image-
level prior to scene parsing. Based on some early efforts such as
VGG [19], GoogLeNet [20], AlexNet on object classification with
CNNs, FCN [3] replaces the last fully-connected layer of them with
series of deconvolution layers to classify each pixel, and achieves
great success. After realizing CNNs have such great potential and
effect in this field, a large number of researchers have been endeav-
oring in it. Some works such as DilateNet [21] and DeepLab [5] are
dedicated to enlarging the receptive field of convolutional layers to
improve the performance, and PSPNet [4] has made a big progress
by integrating the contexts of different scales. To refine the results,
some methods such as Deeplab [5] and CRFasRNN [22] enhance
the post-processing of the networks to improve the segmentation
accuracy.

2.2 Zero Shot Learning (ZSL)

Zero-shot learning can be simply classified into Inductive ZSL and
Transductive ZSL. Inductive ZSL methods are only trained with
labeled seen data and unlabeled unseen data is strictly inaccessible,
while transductive ZSL, which is first proposed by Y. Fu et al.[23],

learns a model with both labeled seen and unlabeled unseen data.
For inductive ZSL, since the visual attribute learning proposed by
[11], many researchers conduct their work on establishing a visual to
attribute projection to find the relationship between seen and unseen
classes. Early efforts like DAP [24] learns probabilistic attribute
classifiers to predict the label. ALE [25], SJE [26], and DEVISE[27]
project features into a semantic embedding space by employing
bilinear compatibility functions. CONSE [28] and Semantic Sim-
ilarity Embedding (SSE) [29] exploit seen classes to improve the
performance and reduce the usage of manual attributes by con-
structing the attributes of unseen classes. Near recently, Long et al.
[30, 31] propose a generative framework that constructs a projection
from attributes of seen classes to visual features, and then utilize
the attributes of unseen classes to synthesize unseen visual features,
finally a supervised model is trained for all classes. For transductive
ZSL, semi-supervised framework [32] learns a multi-class classifica-
tion model on all classes jointly with both labeled data and unlabeled
data as input. In [33] Song et al. designed two independent objective
functions for seen data and unseen data respectively, and integrates
them into a whole framework during training phase so as to employ
the powerful feature extraction ability of deep architecture.

2.3 Generalized Zero Shot Learning (GZSL)

ZSL assumes that the ascription of test data is known in advance,
thus search space of the nearest neighbour can be restricted on only
unseen classes. Chao et al. [34] firstly argued that under more prac-
tical situations, the convention ZSL is unreasonable, because we
cannot obtain the knowledge whether the test data belongs to unseen
classes or seen classes beforehand in most circumstances. There-
fore, they propose the new task—Generalised ZSL, which assumes
that the search space of the nearest neighbour should be extended
to both seen and unseen classes. Recently, Zhang et al. in [35] con-
sidered GZSL problem as a triple verification problem and a novel
optimization of regression and compatibility function is proposed
to solve this problem. Subsequently, Xian et al. [36] put forward
a new standard split of several popular datasets for GZSL testing,
and release a benchmark of some recent ZSL methods, which makes
the later researchers more convenient and has greatly promoted the
development of ZSL.

2.4 Semantic Embeddings

Current ZSL methods always rely on the intermediate attributes,
which represent the semantic embeddings of both seen and unseen
classes. Conventional attributes [37, 38] are usually annotated by
experts with real values. This type of annotation needs experts’ prior
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Fig. 2: An illustration of the framework of our proposed network. Besides the traditional CNN based scene parsing architectures, we add
another branch to extract semantic information of labels to meet the ZSSP and GZSSP task. In the Word2Vec part, we employ an open-source
pre-trained word embedding model to directly extract the word vectors for each class as the input to the following computation. During attribute
map construction, the inner product of a pixel’s visual attribute and each class’s semantic attribute are calculated to generate the similarity of
this pixel to all classes.

knowledge, and will cost a lot of manpower. Therefore, recent meth-
ods such as Attributes2Classname [39] start to use Word2Vec [13] to
automatically generate attributes based on the dataset ’WikiPedia’.
However, this type of textual description often leads to serious per-
formance degradation because it is not directly related to the visual
appearance. Another semantic attribute representation is based on
similarity, which can be annotated by humans [40, 41] or the textual
descriptions [29, 42].

3 Methodology

In this section, we will firstly give the definitions of our tasks on
three different settings, including ZSSP, GZSSP and fully supervised
learning, and then describe the proposed SCN in details.

3.1 Problem Definitions

3.1.1 Preliminaries: Given a set of images X , including train-
ing part Xs ∈ RH×W×Ns and testing part Xr ∈ RH×W×Nr , and
all the classes of the images are denoted as D = S ∪ U , where S =
{1, ..., s} represents the set of seen classes, and U = {s+ 1, ..., s+
u} stands for the set of unseen classes. To fulfill the requirement of
the tasks, we divide all the image pixels into four parts: training pix-
els of seen classes in Xs are represented by Xs

s and test pixels of
seen classes in Xr are denoted as Xr

s . Similarly, the training pixels
in unseen classes are denoted as Xs

u and the test pixels of unseen
classes are represented as Xr

u. Now, we can formally describe the
scene parsing tasks with the following three types:

3.1.2 Zero Shot Scene Parsing (ZSSP): In ZSSP task, the
given data only includes the pixels Xs

s of seen classes in Xs and
their corresponding labels S during training, we need to train a func-
tion Fz : Xs

s → S, which can be transferred to unseen classes to
predict the labels of Xr

u. It should be noted that the search space is
restricted on unseen classes only.

3.1.3 Generalized ZSSP (GZSSP): Similar as ZSSP, only
Xs

s is given for GZSSP task in training phase to learn a function
Fg : Xs

s → D to predict the labels of both Xr
s and Xr

u. In addition,
different from ZSSP, we are supposed to be ignorant of whether the
test pixel belongs to seen classes or unseen classes, so the search
scope of this task should be conducted on both seen and unseen
classes.

3.1.4 Traditional Fully supervised scene parsing: Given the
pixels Xs = Xs

s ∪Xs
u of all classes and their corresponding labels

D, the purpose of this task is to train an optimal projection model
Ff : Xs → D to assign each pixel with a label, and then the trained
model can be applied on test data Xr .

3.2 Model Architecture

Since our SCN can be compatible with many architectures such as
FCN, for the sake of simplicity of description, we here first take FCN
as an example, and the extensions on PSPNet and DeepLab will be
described later. The whole architecture of our proposed SCN is illus-
trated in Fig.2. Since SCN adopts the semantics of labels, we divide
our framework into two parts, one is Feature Extraction Network
(FEN) to extract the high dimensional feature from input images,
another is Semantic Embedded Network (SEN), which is exploited
to compute the semantic embeddings from labels and generate the
category probability.

3.2.1 FEN: In our framework, as shown in the gray block of
Fig.2, an image x is firstly input into the Feature Extraction Network
(FEN) to generate a high dimensional features for each pixel. Here,
the FEN can be replaced by many other scene parsing networks, such
as FCN, PSPNet and DeepLab, by removing the final softmax layer.

In FEN, the input images x ∈ Xs first pass through a VGG
module and generate small scale feature, and then several decon-
volutional blocks are added to scale the feature map to the same size
as the input image, where the channel number equals the number of
categories. Additionally, in order to obtain image information with
different resolutions, some skip connections are added in the FEN,
which can be seen in the gray block of Fig. 2. We first de-convolute
the last layer of VGG into the same size of ‘conv4’, and then add
the result and ‘conv4’ in element-wise to generate ‘deconv4’, which
is subsequently de-convoluted into the same size of ‘conv3’, and
added by ‘conv3’ in element-wise to get ‘deconv3’. Subsequently,
the ‘deconv3’ is up-sampled and convoluted to get the feature map
with the same size as the original input image. For the convenience
of being replaced by FCN or other architectures, we add an extra
convolutional layer to generate the final coarse-category prediction
map with the same channels as the number of categories. The final
prediction map is denoted as F .

3.2.2 SEN: SEN, the critical part of our network, is designed to
extract the deep discriminative semantic representation information
of labels to assist the classification of our method. The blue block in
Fig.2 is the framework of our SEN, which can be divided into two
parts, one is utilized to extract semantic information of labels and
another is for generating the image semantics in our network.
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In the first part, once we have obtained the ground-truth of the
images, we will know the exact name of each category. Through
the procedure of Word2Vec, which is a network pre-trained from
large text corpora, we can obtain a M -dimensional vector by taking
a label name as input. Therefore, for every single class k ∈ D, we
can generate a M -dimensional vector vk by Word2Vec, and finally
achieve an M × (s+ u) dimensional semantic matrix VD for all
classes.

In the second part, in order to make the coarse-category map to
be consistent with dimension of the extracted semantic vectors, we
convolute the coarse-category prediction map F , which is the final
output of FEN with s+ u channels, with a kernel ω to generate a
high dimensional semantic map SD , where, the dimensionality of
ω is (s+ u)× 3× 3×M , and SD has its dimensionality of H ×
W ×M .

So far, each pixel in image has an M -dimensional vector to rep-
resent its deep semantic information. Thus, the probability of each
pixel xij belongs to a certain category can be calculated by applying
an Inner Product and Softmax, which can be represented as,

pijk =
ePijk∑

c∈D ePijc
, (1)

where, pijk is the probability of the pixel xij belongs to the kth

class. Pijk is the {i, j, k}th entry of the matrix P = SDVD .

3.3 Settings

3.3.1 ZSSP Setting: It is noteworthy that the pixel of unseen
classes should not be included during ZSSP training. Since Xs

s and
Xs

u might be found in the same image, we construct a mask to
block the pixels belong to unseen classes when calculation the cross
entropy loss to fulfill this task. We only choose the part of seen
classes of semantic matrix S for train, and denote it as SS ∈ RM×s,
which is subsequently multiplied with the semantic embeddings VS
of seen classes. We use the same formula as Eq. 1 to calculate
the probability of each pixel by replacing c ∈ D and P = SDVD
with c ∈ S and P = SSVS respectively. And the cross-entropy loss
function can be defined for ZSSP task as follows,

Lz(Xs
s , Y

s
s )

=−
∑

x∈Xs
s

∑
i,j∈x&c∈S

(yijclogpijc + (1− yijc)log(1− pijc)),

(2)
where, Y s

s is the corresponding label ofXs
s .

During testing, we extract unseen classes semantics, and denote
them as a matrix VU ∈ RM×u. Given a test pixel x̂ij in an image
x, we take x to pass through our SCN, where the word semantics
uses VU , and obtain the final probability pijc of the pixel x̂ij for all
unseen classes U . The prediction of ZSL is calculated as,

ŷij = argmax
c∈U

pijc. (3)

For the seen part of test images Xr
s , we can easily predict their

labels with the same process of fully supervised task.

3.3.2 GZSSP Setting: In ZSSP setting, we previously assume
that the test images can be divided into seen part and unseen part,
thus for the unseen part, we just need to find the nearest neigh-
bour only on unseen classes. However, ZSSP is usually unreasonable
in realistic scenarios because we cannot know whether the pixel
belongs to seen or unseen classes in advance. Therefore, general-
izing the classification on all classes is necessary, and we call this
task GZSSP. In this task, we calculate three metrics, test seen accu-
racy acctr , test unseen accuracy accts and harmonic accuracy H .
acctr and accts represents class mean average precision from test
seen data and test unseen data respectively, and H is defined as,

H =
2× acctr × accts
acctr + accts

. (4)

3.3.3 Fully Supervised Scene Parsing Setting: For the tra-
ditional fully supervised scene parsing setting, the sample pixels of
both seen classes and unseen classes can be obtained during training,
and we also train the whole framework using cross-entropy loss. The
loss function can be represented as follow,

Lf (Xs, Y s)

=−
∑

x∈Xs

∑
i,j∈x&c∈D

(yijclogpijc + (1− yijc)log(1− pijc)),

(5)
where, Y sis the corresponding label of Xs, and yijc is cth entry of
the one-hot vector label of pixel xij .

During testing, we predict the label of a pixel x̂ij ∈ Xr by
finding its nearest class based on the probability of different class
embeddings, which can be easily generated from the last layer of
our SCN with an argmax method,

ŷij = argmax
c∈D

pijc. (6)

3.4 Other types of FEN

Since our SCN is an extended architecture based on conventional
deep scene parsing models by adopting the word semantic embed-
dings, thus it is convenient to substitute the FEN with other scene
parsing frameworks such as PSPNet and DeepLab, and the replaced
models can be found in Fig. 3, where SE represents Semantic
Embedded. For the SCN with PSPNet architecture, the upper branch
in Fig. 3, we calculate the final model loss after the inner product of
feature semantics and word embeddings of classes. And the lower
branch in Fig. 3 is SE-Deeplab, instead of fusing all four atrous
convolution layers directly to generate a prediction map, we project
them to semantic space and then fuse the output results, which is
multiplied by the word embeddings afterwards to yield the class
probability of each pixel.

4 Experiments

4.1 Dataset

We employ the dataset Cityscapes[14] in our experiments.
Cityscapes is a semantic urban scene parsing dataset, and it is
released recently for pixel-wise scene parsing and instance anno-
tation. The dataset is comprised of a large, veritable set of stereo
video sequences, among which there are 5,000 images annotated
with pixel-level high quality annotations. In the dataset, there are
19 predefined categories containing both stuff and objects. In our
experiment, 3,475 images are assigned as train set and the left 1525
images are treated as test set. For the tasks of ZSSP and GZSSP,
we randomly pick 5 classes as unseen classes and the remaining 14
as seen classes, and the results recorded in Tab.1 and Tab.2 are the
average values of 10 executions.

4.2 Evaluation Metrics

For evaluation, there are four kinds of metrics used in our scene pars-
ing experiments. For evaluating the precision of the tasks ZSSP and
GZSSP, mean Average Precision (mAP), pixel-wise accuracy (Pixel
Acc.), and H , which is introduced above, are employed in our exper-
iments. Besides, for traditional fully supervised scene parsing task,
we utilize the mean of class-wise intersection over union (mIoU).

4.3 Implementation Details

Since details are always important for training a neural network,
we describe the settings of our SCN in this paragraph. Besides,
for the convenience of description and comparison, we name our
frameworks as SE-FCN (SE for Semantic Embedded), SE-PSP and
SE-Deeplab respectively.
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Fig. 3: An illustration of task ZSSP and our introduced Generalized ZSSP (GZSSP).

Fig. 4: Visual results of Zero Shot Scene Parsing. The rows from top to bottom are the prediction with SE-FCN, SE-DeepLab, and SE-PSPNet
respectively.

We train our models with SEN fixed and FEN fine-tuned. Noted
that during the experiment of SE-FCN, because the size of the orig-
inal image is 1024× 2048, we need 1024× 2048× 300× 4 bytes
to store the generated matrix of feature semantics, which is too big
for a single GPU such as GTX 1080Ti. Therefore, We resize the
original input images to 1/2 of their original height and width by
bi-linear interpolation, which might leads to performance degrada-
tion for information loss during interpolation, but we still observe
a significant performance improvement comparing to their original
methods, which can prove the effectiveness of our architecture.

In addition, we use a constant learning rate, which is set to
1× 10−4, and the iteration time is set to 10K for SE-FCN and 6K
for SE-PSP and SE-Deeplab. We use Adam optimizer for SE-FCN
and the momentum is set to 0.9, while SE-PSP and SE-Deeplab use
Momentum optimizer and the momentums are both set to 0.9. Due
to the limited physical memory on our GPU card, we set the batch-
size to 1 during training. Hyper-parameter that controls the weight
of regularization in SE-PSP and SE-Deeplab is set to 0.4, which is
the same as that in the original PSPNet and Deeplab.

4.4 Zero Shot Scene Parsing (ZSSP)

In this section, we mainly focus on the performance of our SCN
on the setting of ZSSP. Here, we do not compare with other ZSL
methods on this task, because our concentration is not focused on
the design of ZSL algorithms but the application scenario of ZSSP
task, and this method can be considered as a baseline for coming
researchers.

In our experiment, since there is not a standard public split
for seen-unseen classes, we random-repeatedly choose 5 classes
as unseen classes, which are not employed during the following
training phase. We calculate the averages of mAP and PA of 10 exe-
cutions, and record the average of them in Tab. 1, and the visual
results are shown in Fig. 4. It should be noted that since we have
random-repeatedly pick out 5 classes as unseen classes, thus the
unseen classes in each raw in Fig. 4 may be different. In addi-
tion, the same experiment setting and calculation is exploited in the
experiments for GZSSP in the following section.

As shown in Tab. 1, we classify the pixels into 5 unseen cate-
gories, and the results obtained by different structures have only a
little difference. Among them, SE-Deeplab has the best classification
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Fig. 5: Some examples of our Generalized Zero Shot Scene Parsing. The first and second row are predictions from SE-PSP, and the last row is
from SE-Deeplab.

(a) Image (c)PSP (d)SE-PSP(b) Ground Truth

Fig. 6: Visual results of our SE-PSP compared with the original ones.

Table 1 Experiment of SCN for ZSSP with 5 unseen classes. Bold font is for
the best result.

Method PA (%) mAP (%)
SE-FCN 85.91(±6.2) 53.93(±3.0)
SE-PSP 90.41(±1.8) 59.76 (±1.5)

SE-Deeplab 91.54(±1.2) 62.58(±0.7)

result, and can reach 62.58% for mAP, and it also has the smallest
fluctuation range for the different splits of unseen classes.

Since there is a big unbalance between the number of pixels of
each category, which often leads to poor predictions in a category
with fewer pixels, and finally causes the degradation of the all class
mAP value. However, although mAP in Tab. 1 is not so high, our
method can still make a good prediction. As shown in Fig. 4, we
can find that although there is some noise in prediction, our method
classifies most of the pixels correctly, e.g., ‘terrain’ and ‘rider’ in
the first row, ‘rider’ and ‘building’ in the second row, and ‘car’ and
‘sidewalk’ in the last one.

Table 2 Average Result of SCN for GZSSP with 5 unseen classes. Bold font is for
the best result.

Method ts(%) tr(%) H
SE-FCN 42.83 54.98 48.15
SE-PSP 42.74 68.90 52.76

SE-Deeplab 45.03 64.35 52.98

Table 3 Pixel Accuracy of each unseen classes under GZSSP setting on SE-Deeplab
Category Building Wall Terrain Rider Car

Accuracy(%) 83.30 11.65 17.32 52.03 62.90

4.5 Generalized Zero Shot Scene Parsing (GZSSP)

GZSSP is a more practical task in realistic scenarios. We use the
same settings as that in ZSSP, but different searching strategies for
classification. In ZSSP, the search range is fixed on 5 unseen classes,
while in GZSSP it is relaxed to all 19 classes. Since H is calculated
by ts and tr, here we directly compute the final average results of ts
(short for accts), tr (short for acctr) and H , which are recorded in
Tab. 2, and show the visual category maps in Fig. 5.

From Tab. 2, we can discover that our SCN can obtain good
results on both ts and tr, which lead to good result on H . Specif-
ically, SE-DeepLab has the best unseen classes prediction accuracy
and SE-PSP predicts seen classes better. SE-PSP and SE-Deeplab
have similar overall performance in this task with around 52.8%
on H . Since different classes have different numbers of pixels in
Cityscapes, especially ‘road’ and ‘building’ are much more than the
others, it will encourage the prediction to be shifted to them during
testing, and leads to degradation of mAP, which is the main problem
we met in our GZSSP experiment.

In addition, from Fig. 5, we can observe that our SCN can well
recognize the unseen class data even though the searching range
is expanded to all classes. In the third column, there are some
mis-predictions on the boundary of objects, e.g., the border of the
‘building’ is misclassified as ‘tree’, which is caused by the contextual
information and convolution.

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015



(a) Image (b)Deeplab (c)SE-Deeplab(b) Ground Truth

Fig. 7: Visual results of our SE-DeepLab compared with the original ones.

Table 4 Comparison of Class-wise scene parsing between FCN and SE-FCN, PSP and SE-PSP, Deeplab and SE-Deeplab on IoU(The bold fonts in the table indicate
the superiority of our results).

Method(%) Road Swalk Build Wall Fence Pole Tlight Sign Veg. terrain
FCN 96.12 72.00 86.41 26.03 33.11 41.60 36.25 56.21 88.03 49.71

SE-FCN 97.23 78.77 89.02 38.94 42.55 51.74 51.34 65.72 90.14 56.80
PSP 97.55 81.67 89.97 47.95 57.31 51.83 60.08 72.53 90.09 58.95

SE-PSP 97.64 82.41 91.25 52.83 59.55 54.64 66.35 74.21 91.17 61.47
Deeplab 97.70 82.20 90.38 49.26 58.54 49.72 60.13 71.61 90.64 63.01

SE-Deeplab 97.88 83.57 91.12 52.58 61.28 53.99 63.51 73.74 91.23 63.68
Method(%) Sky Person Rider Car Truck Bus Train Mbike Bike MIoU

FCN 91.56 59.38 22.39 87.23 28.05 48.52 31.43 20.91 56.21 54.27
SE-FCN 93.02 69.84 38.78 91.20 40.43 52.73 38.68 38.06 66.84 62.73

PSP 90.40 74.71 57.71 92.75 63.04 78.04 59.37 55.21 72.83 71.16
SE-PSP 91.67 77.97 60.17 93.72 72.73 81.69 64.90 61.89 74.64 74.26
Deeplab 91.64 75.34 57.08 92.92 62.20 69.98 46.42 58.00 71.94 70.46

SE-Deeplab 92.45 77.48 58.65 93.52 67.54 81.47 60.29 61.97 73.50 73.66

Table 5 Comparison of our SCN and original networks for classifying 19
classes. Bold font is for the best result.

Method(%) Pixel Acc. mAP mIoU
FCN 92.28 63.67 54.27

SE-FCN 94.05 71.74 62.73
PSP 94.77 79.76 71.16

SE-PSP 95.24 84.40 74.26
Deeplab 94.89 81.12 70.46

SE-Deeplab 95.33 83.39 73.66

To further illustrate the detailed performance of each category,
in Tab. 3, we list the results of SE-Deeplab in one split of unseen
classes, which includes ‘Building’, ‘Wall’ ‘Terrain‘ ‘Rider’ ‘Car’.
We can clearly see that the Pixel Accuracy of ‘Building’ is high
while the result of ‘Wall’ is much lower, which is caused by that
‘Building’ and ‘Wall’ are belong to the construction and the seman-
tics of ‘Building’ and ‘Wall’, directly annotated by word concept,
are quite similar, and lead to a bad result on ‘Wall’. Another cat-
egory that need to be paid close attention is ‘Terrain’, here we also
present the accuracy of seen class ‘Vegetation’, which is 96.8%. This
phenomenon is caused by the problem of domain shift, which means
that trained classifier usually prefer seen classes to unseen classes
since the unseen images cannot guide the training process.

4.6 Fully Supervised Scene Parsing

The experimental results are recorded in Tab. 5, from which it can
be clearly observed that our SCN outperforms the corresponding
original networks. As described above, due to information loss dur-
ing resizing image, original FCN only get 54.27% for mIoU, but

under the same condition our proposed SE-FCN still can get 62.73%,
which is a large boost over the original one, and can prove that our
network can still preserve the semantic features of each category
although under low resolution condition. Concretely, we improves
1.77%, 8.07%, and 8.46% for PA, mAP and mIoU respectively. We
also conduct experiments for SE-PSP and SE-Deeplab, and improve
0.47% and 0.32% for PA, 4.64% and 3.1% for mAP, 2.42% and
2.37% for mIoU respectively.

We also calculate the three metrics of each class and illustrate
them in Tab. 4 to compare with that of the original methods. As it can
be seen, the proposed SCN improves the accuracy on every single
category. By combining semantic information, some categories have
large difference with others in word concepts are improved a lot,
for example ‘rider’, ‘truck’, and ‘bus’ have less similarity to other
categories in word concept are better classified.

Additionally, we also show some visual results in Fig. 6 and Fig.
7. In the first row of Fig. 6, ‘bicycle’ has large semantic difference to
‘pole’, therefore, it can be segmented better. In the second and third
row, ‘truck’ has more unique semantic information, and our network
can predict it more confidently. In the first row of Fig. 7, the leg
of ‘person’ on the right side is predicted as ‘car’ by Deeplab while
our method can correctly classify it. In the second row, our result of
‘pole’ above the sign on the middle of image is more precise, and the
‘building’ on the right side can be predicted better too. In the third
row, the ‘rider’ on the right of the image is much better classified by
our SCN than the original one does.

4.7 Computational Time Analysis

In this section, we test our the computational time of our proposed
SCN, and the results are recorded in Tab. 6 and Tab. 7, where all the
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Table 6 Computational time of our SCN during training phase, and the measurement
unit is second (s).

Settings (SE-)FCN (SE-)PSP (SE-)Deeplab
Traditional 21104 14570 15486

ZSSP&GZSSP 25697 14722 15924
Fully 27988 15377 16424

Table 7 Computational time of testing one figure of our SCN, and the measurement
unit is second (s).

Setting (SE-)FCN (SE-)PSP (SE-)Deeplab
Traditional 0.326 0.740 0.802

ZSSP 0.362 0.744 0.809
GZSSP 0.371 0.754 0.814
Fully 0.446 0.767 0.822

experimental results are obtained by utilizing only one single GPU
— NVIDIA GTX 1080Ti. To be specific, the values in Tab. 6 are
the computational times of total training phase, and those in Tab. 7
are the times of testing one single image, it is noted that we test all
three models with the input dimension of 1024× 2048. It is known
that the smaller image is input the faster computational speed can
be obtained. For example, in autonomous navigation, smaller image
such as 512× 256 is enough in most circumstances, and the com-
putational time can be reduced to its 1/16, which is sufficient for
real-time application. Furthermore, in order to make a comparison
with traditional architectures, we also test the training time of orig-
inal FCN, PSPNet and Deeplab, and the results are shown in the
first line of Tab. 6, from which it can be clearly seen that our SCN
costs a little more time than the original ones due to the fact that
semantic embeddings are combined in by exploiting matrix multi-
plication, and the dimension of which is 300× 19 for each pixel in
our network.

5 Conclusion

In this paper, we have proposed a novel and effective network SCN,
which combines deep discriminative semantic information from
labels with traditional scene parsing architectures to meet the ZSSP
setting and the GZSSP tasks, which are challenging tasks of recog-
nizing unseen samples, and the results of our experiments can verify
the effectiveness of our proposed method on both ZSL and GZSL
settings. Moreover, we also test our method under the fully super-
vised setting with the utilization of semantic information, our model
can recognize scene like a human, and also boost the performance
over the original ones that only use visual features. At last, we com-
pute the training and testing time of our model and the results show
that our method can be suitable for real-time tasks in some realistic
scenarios.
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