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Abstract

We analyze Chandra observations of the hot atmospheres of 40 early spiral and elliptical galaxies. Using new
temperature, density, cooling time, and mass profiles, we explore relationships between their hot atmospheres and
cold molecular gas. Molecular gas mass correlates with atmospheric gas mass and density over four decades from
central galaxies in clusters to normal giant ellipticals and early spirals. The mass and density relations follow power
laws: µ M Mmol X

1.4 0.1 and µ M nmol e
1.8 0.3, respectively, at 10 kpc. The ratio of molecular gas to atmospheric gas

within a 10 kpc radius lies between 3% and 10% for early-type galaxies and between 3% and 50% for central
galaxies in clusters. Early-type galaxies have detectable levels of molecular gas when their atmospheric cooling
times fall below ∼1 Gyr at a radius of 10 kpc. A similar trend is found in central cluster galaxies. We find no
relationship between the ratio of the cooling time to free-fall time, tc/tff, and the presence or absence of molecular
clouds in early-type galaxies. The data are consistent with much of the molecular gas in early-type galaxies having
condensed from their hot atmospheres.

Unified Astronomy Thesaurus concepts: Galaxy kinematics (602); Galaxy dynamics (591)

1. Introduction

Elliptical galaxies were historically thought to be devoid of
gas. However, modern studies have shown that many early-
type galaxies (ETGs) contain gas at broad range of tempera-
tures. Most abundant are the hot, 10-million-degree atmo-
spheres observed in X-rays (Forman et al. 1985; Trinchieri &
Fabbiano 1985; Mathews & Brighenti 2003; Kim & Fabbiano
2015). Their X-ray luminosity scales with temperature as
LX∝T4.5 (Boroson et al. 2011; Kim & Fabbiano 2013; Babyk
et al. 2018a), indicating a strong link between atmospheric
luminosity and halo mass (Forbes et al. 2017). Their hot
atmospheres likely formed primarily from cool gas that
accreted early and was heated to the virial temperature by
shocks and by gas expelled from stars (Goulding et al. 2016).

Ellipticals and early spirals contain modest levels of
molecular and atomic hydrogen. Dust is commonly seen in
the form of clouds and lanes near to the nucleus (Sadler &
Gerhard 1985; Goudfrooij et al. 1994; van Dokkum &
Franx 1995). Dust is usually associated with larger quantities
of cold atomic and molecular gas (Combes et al. 2007). Thirty
to forty percent of ETGs contain detectable levels of molecular
gas (Combes et al. 2007; Salomé et al. 2011; Young et al.
2011). Infrared and radio observations indicate that a minority
of systems with relatively large amounts of molecular gas form
stars at rates of 

- M0.1 yr 1 or so (Combes et al. 2007;
Shapiro et al. 2010; Ford & Bregman 2013).

Neutral hydrogen is less abundant than molecular hydrogen
in ETGs. In a study of 33 ETGs from the SAURON sample, H I
is detected at a level of 106Me in two-thirds of field galaxies.
Detections plunge to 10% in cluster galaxies (Oosterloo et al.
2010; Pulatova et al. 2015). Like galaxies detected in CO, fast-
rotating galaxies are more likely to harbor H I than slow

rotators. Detection is a strong function of environment. Isolated
galaxies are more likely to harbor H I than those in clusters.
This implies that galaxies are either stripped of their H I or are
unable to accrete material from their surroundings within
clusters, or both. However, the prevalence of dynamically
young H I structures connecting to disks suggests that at least
some gas is accreted externally (Oosterloo et al. 2010).
The origin of cold gas in ETGs has been debated for

decades. Its origin is key to understanding how ETGs formed
and coevolved with massive nuclear black holes, why so few
are experiencing significant levels of star formation, and if or
how they are maintained by active galactic nucleus (AGN)
feedback (Kormendy & Ho 2013). The absence of correlation
between molecular gas mass and the host’s stellar mass is
inconsistent with mass loss from stars in the galaxy (Combes
et al. 2007). However, the similarity between nebular gas
metallicities, which are likely associated with molecular clouds,
and stellar metallicity in four ETGs is consistent with an
internal origin including stellar mass loss and/or cooling from
the hot atmosphere but is inconsistent with having accreted
from other galaxies (Griffith et al. 2019). On the other hand,
counterrotation between stars and cold gas found in some
systems and the prevalence of molecular gas in fast rotators
(Young et al. 2011) may imply an external origin, perhaps due
to mergers of gas-rich companions.
Taking a fresh approach, Werner et al. (2014) studied [C II]

157 μm, [O I] 63 μm, and [O Ib] 145 μm emissions in eight
giant ellipticals and BCGs. They compared this emission to
their atmospheric properties. This microwave line radiation
emerges from warm molecular, neutral, or ionized gas at a
temperature of ∼100 K that is associated with nebular
emission. Comparing the molecular gas emission to their
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atmospheric properties, Werner found stronger emission lines
in systems with lower atmospheric gas entropy and shorter
cooling times. In newer work, Lakhchaura et al. (2018) found a
similar connection between nebular emission and cooling hot
atmospheres, indicating a close connection between the hot
atmosphere and molecular gas.

In this respect, ETGs appear similar to brightest cluster
galaxies (BCGs), but scaled down to much lower molecular gas
masses. BCGs, the elliptical-like galaxies at the centers of
clusters, often contain reservoirs of cold molecular gas with
masses lying between 109Me and several × 1011Me

(Edge 2001; Salomé & Combes 2003). The molecular gas
masses correlate with nebular emission (Edge 2001), which is
known to be associated with so-called cool cores, the cooling
central regions of galaxy cluster atmospheres (Hu et al. 1985;
Heckman et al. 1989; Crawford et al. 1999; Cavagnolo et al.
2008; McDonald et al. 2010). Like nebular emission and star
formation (Rafferty et al. 2008), molecular gas is known to
form in systems when the cooling time of the hot atmosphere
falls below a cooling time threshold of ∼109 yr within an
altitude of approximately 10 kpc (Pulido et al. 2018). The
existence of this threshold, in addition to other trends between
molecular gas mass and atmospheric mass and density (Pulido
et al. 2018), indicates that molecular gas condensed out of the
hot atmospheres.

Atacama Large Millimetre Array (ALMA) has observed
nearly a dozen central galaxies in groups and clusters (David
et al. 2014; McNamara et al. 2014; Russell et al. 2014, 2016,
2017a, 2017b; Tremblay et al. 2016; Vantyghem et al. 2016,
2017; Simionescu et al. 2018). ALMA images show that much
of the molecular gas lies outside of the nucleus in most
systems. The gas appears in wisps and filaments traveling at
slower velocities than the average speeds of the stars.
Circumnuclear disks are rare. In many systems the molecular
gas lies below and appears to have been drawn up behind the
rising X-ray bubbles, as was noted in Perseus a decade ago
(Fabian et al. 2003; Hatch et al. 2006; Salomé et al. 2011;
Hlavacek-Larrondo et al. 2015; Yang & Reynolds 2016). This
suggests two scenarios: preexisting molecular gas is drawn up
by the bubbles, or low-entropy, keV atmospheric gas is drawn
up behind the bubbles and cools in their wakes (Salomé et al.
2011).

Recognizing the difficulty of lifting high-density molecular
clouds, McNamara et al. (2016) proposed that the keV gas
becomes thermally unstable and cools behind the bubbles when
the ratio of the cooling time to the timescale to fall back to the
galaxy approaches unity, tc/tI  1. The infall time is
determined by the lesser of the free-fall and terminal speeds
of the thermally unstable gas. This model emerged from
ALMA observations and early observations of the Perseus
Cluster (Russell et al. 2017a). Furthermore, Chandra observa-
tions have shown that atmospheric gas is lifted behind rising
X-ray bubbles with displaced masses comparable to the
molecular gas masses of their hosts (Fabian et al. 2002;
Simionescu et al. 2010; Gitti et al. 2011; Werner et al. 2012;
Kirkpatrick & McNamara 2015). Thermally unstable cooling in
uplifted gas is seen in simulations (Revaz et al. 2008; Li &
Bryan 2014).

This model implies a tight link between molecular gas and
AGN feedback where the same process that heats and stabilizes
the atmosphere creates its own cold fuel that feeds the AGN

(Gaspari et al. 2012). The self-generation of cold gas would
sustain radio mode feedback (McNamara et al. 2016).
How molecules residing in the atmospheres of ETGs formed

is poorly understood. They may have arrived externally via
mergers or inflowing cold filaments. They may have condensed
internally from a combination of thermalized stellar ejecta and
their hot atmospheres. Molecular cloud formation in disk
galaxies is thought to be catalyzed primarily on dust grains (Le
Bourlot et al. 2012). However, unshielded dust may be
sputtered away in the harsh atmospheric environment of ETGs
(Draine & Salpeter 1979), making it difficult to survive a
merger and perhaps more difficult to form from cooling
atmospheres. Nevertheless, despite the harsh atmospheric
conditions, dust features are prevalent in ETGs, particularly
in systems rich in molecular clouds (Russell et al. 2019;
Werner et al. 2019). Upward of 1010 Me of molecular gas is
observed in BCGs (Edge 2001) which could not have
originated in mergers (Pulido et al. 2018). Molecular clouds
are apparently able to form and survive in these systems despite
harsh atmospheric environments.
Here we analyze the thermodynamic properties of the hot

atmospheres of 40 ETGs from Chandra archival data.
Temperature, density, entropy, cooling time, mass, and free-
fall time profiles are measured. The onset of thermally unstable
cooling is investigated in the context of the molecular gas
reservoirs and their role in the AGN feedback. Archival ALMA
data are used to examine the molecular gas structure in some
systems. We combine this study with the Pulido et al. (2018)
sample of cluster BCGs with molecular gas to study trends
between normal ellipticals and central galaxies in clusters over
a large range in halo mass and molecular gas mass.
The paper is organized as follows. In Section 2 we describe

our sample and data reduction of the Chandra observations. In
Section 3 we present physical characteristics of the targets,
including temperature, density, entropy, cooling, mass, and
free-fall time profiles. In Section 4 we study tc/tff to explore
recently presented theoretical models of thermally unstable gas.
In Section 5 we present correlations between molecular gas
mass and X-ray gas properties. Conclusions are presented in
Section 6.
We adopt the following cosmological parameters: H0=

70 km s−1 Mpc−1, ΩΛ=0.7, and ΩM=0.3.

2. Sample and Data Reduction

2.1. Sample Selection

Our sample was selected from Babyk et al. (2018a), which
includes 94 relatively nearby ETGs (brightest group galaxies,
and early spiral galaxies) observed with the Chandra X-ray
Observatory. The sample is intended to investigate X-ray
scaling relations, structural properties, and dynamical proper-
ties of ETGs over a large range in mass (Hogan et al.
2017a, 2017b; Main et al. 2017; Pulido et al. 2018). The
challenge of assembling spatially resolved profiles of lower-
mass early-type systems concerns low count rates and
relatively short exposure times. Previous studies focused on
the 10–15 brightest galaxies and groups (see, e.g., Werner et al.
2013). Recently, Lakhchaura et al. (2018) presented the spatial
analysis of 49 ETGs. Here we examine 40 ETGs with a
sufficient number of photon events to extract at least four
concentric annular bins. The sample spans temperatures of
∼0.2–2.5 keV, X-ray luminosities of LX∼1037–1042 erg s−1,
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and radio luminosities of LR∼1035–1042 erg s−1 corresp-
onding to estimated jet powers of Pjet∼1040–1045 erg s−1.
Redshifts lie in the range of z∼0.001–0.032.

Interpreting trends based on archival analyses can be
perilous owing to the poorly defined selection function. The
targets tend to be relatively bright in X-rays and were selected
for observation based on heterogeneous criteria. This concern is
lessened to some degree by cross-correlating the X-ray
observations with molecular gas data taken from the
ATLAS3D catalog, which has a well-defined selection function.
ATLAS3D molecular gas masses and upper limits were
measured with single-dish IRAM observations (Young et al.
2011). The ATLAS3D objects were then cross-correlated with
the ETGs in Babyk et al. (2018a, 2018b) to form the sample
presented here. The ATLAS3D is a complete sample of ETGs
brighter than MK=−21.5 within a distance of 42Mpc (Young
et al. 2011).

Single-dish CO measurements from Edge (2001), subse-
quently analyzed by Pulido et al. (2018), form the cluster
central galaxy sample that we compare to the ETG sample. The
Edge sample selected central galaxies in cooling cores with Hα
emission above LHα=1039 erg s−1. Thus, the Edge selection
differs from ATLAS3D, which will limit the conclusions that
can be drawn. Nevertheless, the samples combined allow us to
examine, for the first time, relationships between molecular gas
and hot atmospheres over a wide range of halo mass. This is a
significant step. Other studies have focused on the relationship
between molecular gas and the stellar content and their
dynamics (Young et al. 2008; Emsellem et al. 2001, 2011),
or the relationship between atmospheric properties, the stars,
and the central black hole (Ma et al. 2014). This study extends
our work on central galaxies in clusters, whose molecular gas is
closely tied to their atmospheres (Edge et al. 2002; David et al.
2014, 2017; McNamara et al. 2014; Russell et al. 2014, 2015,
2017a; Tremblay et al. 2016; Vantyghem et al. 2017, 2018;
Pulido et al. 2018), to lower-mass atmospheres and their parent
halos.

Table 1 lists the sample, including target name, coordinates,
Chandra observational ID, cleaned exposure time, morph-
ology, galaxy classification, redshift, angular and luminosity
distance, foreground hydrogen column density taken from
Dickey & Lockman (1990), and radio flux. Properties are taken
from NED,9 SIMBAD,10 and HyperLEDA11 databases. We
found a slight discrepancy in morphological definition between
NED and SIMBAD. For example, NGC 507 and NGC 4382
are classified as SA0 galaxies in NED and S0 in SIMBAD. Our
sample includes 11 BCGs. The angular and luminosity
distances were defined using their redshift for the cosmology
described above and, for some Virgo galaxies, using the
surface brightness fluctuations (Mei et al. 2007; Cappellari
et al. 2011).

2.2. Data Processing

Data reduction was done using CIAO version 4.8 and CALDB
version 4.7.1 (see Hogan et al. 2017a; Babyk et al. 2018a for
more details). Chandra observations were downloaded from
the HEASARC12 archive. Data processing of the event lists

was performed with a custom-made pipeline XPIPE (Fruscione
et al. 2006). The reprocessing and rescreening of data by
creating new bad pixel files and level 2 event files were achieved
using the chandra_repro task. The correction of time-
dependent gain was applied using the acis_process_
events task. Background flares were flagged and removed
using the lc_clean task provided by M. Markevitch.
Periods of anomalously high backgrounds were excluded.
Cosmic-ray afterglows were removed using the acis_detect_
afterglow task. Multiple observations were reprojected to
the position of the observation with the longest exposure time.
Each observation was processed with the appropriate blank-sky
background file, which was normalized and reprojected to the
corresponding position. Each observation includes a 0.3–6.0 keV
energy band. For multiple observations, the images were summed
and backgrounds were subtracted. The wavdetect routine was
applied to detect and remove point sources.

2.3. Spectral Extraction and Modeling

Source and background spectra were extracted individually
for each observation. The ancillary response and response
matrix files were generated using the MKWARF and MKA-
CISRMF tools. The spectra were grouped with at least 20 counts
per energy bin using the FTOOLS task GRPPHA. Corrections for
chip gaps and the area lost to point sources were corrected
using exposure maps.
Spectral analysis was done with XSPEC version 12.9.1

(Arnaud 1996). The spectral fitting included an absorbed,
single-temperature, multicomponent model PHABS*(APEC+PO
+MEKAL+PO) to correct for unresolved, low-mass X-ray
binaries (LMXBs), active binaries (AB), and cataclysmic
variables (CVs). The APEC component (Smith et al. 2001)
describes the emission of hot gas, while the first PO and set of
MEKAL+PO models (Mewe et al. 1986; Kaastra & Mewe 1993;
Liedahl et al. 1995) fit the possible contribution of the X-ray
emission of LMXBs and AB+CV sources, respectively. The
hydrogen column density, NH, was fixed as given in Table 1.
Metallicity in the APEC model was fixed at 0.5 Ze. We also

perform the spectral fitting with free NH. We find that the best-
fit NH for about 40% our sample is higher by a factor of 1.5–2
compared to those obtained by Dickey & Lockman (1990) and
is in agreement with more recent measurements of Kalberla
et al. (2005). However, the best-fit temperature and normal-
ization are unaffected by this discrepancy. The parameters of
additional spectral components that were added to represent the
emission of LMXBs and stellar sources emission were fixed
(see, e.g., Babyk et al. 2018a, for more details of the presented
spectral model, and Boroson et al. 2011; Wong et al. 2014, for
other multicomponent spectral models). The spectra were fitted
in the 0.3–6.0 keV energy range, which provides an optimal
ratio of the galaxy and background flux for Chandra
observations. Multiple spectra for the same annulus were fitted
simultaneously. Uncertainties were determined using XSPEC
error quoted for 1σ confidence. Quoted uncertainties are
statistical.

3. Galaxy Properties

Here we present profiles of temperature, density, cooling,
mass, and free-fall time for the range of radii ∼0.1–50.0 kpc.
Analysis of entropy profiles is presented in Babyk et al.
(2018b). The multicomponent spectral model described above

9 https://ned.ipac.caltech.edu/
10 http://simbad.u-strasbg.fr/
11 Lyon-Meudon Extragalactic Database.
12 http://heasarc.gsfc.nasa.gov/
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Table 1
Early-type Galaxies/Faint Groups Sample

Name R.A. Decl. ObsIDs Exposure Type BCG z DA DL NH 1.4 GHz Flux
(J2000) (J2000) (ks) (Mpc) (Mpc) (1020 cm2) (mJy)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

IC 1262 17:33:02.022 +43:45:34.51 6949,
7321,
7322

36.02,
34.98, 35.17

E √ 0.032649 133.0 141.8 2.47 16.4±1.0

IC 1459 22:57:10.608 −36:27:43.997 2196 45.14 E3 0.006011 25.503 25.8 1.19 1279.7±45.2
IC 4296 13:36:39.053 −33:57:57.30 2021,

3394
19.27, 20.78 E 0.012465 52.358 53.7 4.11 546.6±17.8

NGC 315 00:57:48.883 +30:21:08.812 4156 39.49 E 0.016485 68.816 71.1 5.87 772.1±25.3
NGC 499 01:23:11.459 +33:27:36.30 10536 18.33 E 0.014673 61.423 63.2 5.26 62.7±1.9

10865 5.12
10866 8.01
10867 7.02

NGC 507 01:23:39.950 +33:15:22.22 317 40.30 E √ 0.016458 68.706 71.0 5.32 61.7±2.5
NGC 533 01:25:31.432 +01:45:33.57 2880 28.40 E3 0.018509 77.025 79.9 3.12 28.6±1.0
NGC 708 01:52:46.482 +36:09:06.53 2215,

7921
28.75,
108.63

E √ 0.016195 67.635 69.8 5.37 65.7±2.3

NGC 720 01:53:00.523 −13:44:19.25 7372 49.13 E5 0.005821 24.704 25.0 1.55 96.2±3.4
7062 22.12
8448 8.06
8449 18.91

NGC 741 01:56:20.959 +05:37:43.77 2223 28.14 E0 0.018549 77.186 80.1 4.47 478.8±16.2
NGC 1316 03:22:41.789 −37:12:29.52 2022 21.21 E 0.005871 24.914 25.2 1.92 254.7±9.9
NGC 1332 03:26:17.321 −21:20:07.33 2915,

4372
4.10, 16.38 S0 0.005084 21.601 21.8 2.29 4.6±0.5

NGC 1399 03:38:29.083 −35:27:02.67 9530 56.98 E1 √ 0.004753 20.205 20.4 1.31 208.0±6.9
NGC 1404 03:38:51.917 −35:35:39.81 16233 91.94 E1 0.006494 27.531 27.9 1.35 3.9±0.6

16231 56.09
16232 64.03
16234 84.64

NGC 1407 03:40:11.904 −18:34:49.36 14033 50.26 E0 0.005934 25.179 25.5 5.41 87.7±3.5
NGC 1550 04:19:37.921 +02:24:35.58 5800,

5801
44.55, 44.45 E2 √ 0.012389 52.045 53.3 11.2 16.6±1.6

NGC 3091 10:00:14.125 −19:38:11.32 3215 27.34 E3 √ 0.013222 55.473 56.9 4.75 2.5±0.5
NGC 3923 11:51:01.783 −28:48:22.36 9507 80.90 E4 0.005801 24.620 24.9 6.29 31.2±1.1
NGC 4073 12:04:27.059 +01:53:45.65 3234 25.76 E √ 0.019584 81.364 84.6 1.90 17.1±1.0
NGC 4104 12:06:38.910 +28:10:27.17 6939 34.86 S0 √ 0.028196 115.60 122.2 1.68 7.3±0.5
NGC 4125 12:08:06.017 +65:10:26.88 2071 52.97 E6 0.004523 19.234 19.4 1.86 24.9±1.2
NGC 4261 12:19:23.216 +05:49:29.695 9569 102.24 E2 0.007378 31.236 31.7 1.56 4066.7±124.0
NGC 4325 12:23:06.672 +10:37:17.05 3232 28.30 E4 √ 0.025714 105.80 111.3 2.18 4.1±0.5
NGC 4374 12:25:03.743 +12:53:13.19 5908,

6131
44.04, 35.81 E1 0.003392 16.422 18.1 2.58 27.5±2.0

NGC 4382 12:25:24.053 +18:11:27.89 2016 29.33 S0 0.002432 16.265 17.7 2.51 8.0±0.5
NGC 4472 12:29:46.798 +08:00:01.48 11274 39.67 E2 0.003272 15.621 17.1 1.65 219.9±7.8
NGC 4552 12:35:39.8 +12:33:23 13985 49.41 E 0.001134 15.523 16.1 2.56 100.1±3.0

14358 49.41
14359 47.11

NGC 4636 12:42:49.867 +02:41:16.01 3926,
4415

67.26, 66.17 E0 0.003129 13.335 13.4 1.83 77.8±2.8

NGC 4649 12:43:40.008 +11:33:09.40 8182,
8507

45.87, 15.73 E2 0.003703 15.767 15.9 2.13 29.1±1.3

NGC 4696 12:48:49.277 −41:18:39.92 1560 21.20 E1 √ 0.009867 41.613 42.4 8.07 24.4±6.0
NGC 4782 12:54:35.698 −12:34:06.92 3220 49.33 E0 0.015437 64.545 66.6 3.56 3.1±0.4
NGC 5044 13:15:23.969 −16:23:08.00 17195 77.01 E0 √ 0.00928 39.173 39.9 5.03 34.7±1.1

17196 85.80
17653 32.46
17654 24.01
17666 82.79

NGC 5353 13:53:26.7 +40:16:59.0 14903 37.20 S0 0.007755 32.813 33.3 0.98 40.5±1.3
NGC 5813 15:01:11.265 +01:42:07.09 12952 140.00 E1 0.006525 27.662 28.0 4.23 14.8±1.0

12951 71.95
12953 31.76
13246 45.02
13247 34.08
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was applied, and the output temperature and normalization
parameter of the APEC model were extracted. The X-ray
emission from each extraction annulus includes emission from
other hotter annuli at higher altitudes. Therefore, the emission
must be “deprojected” to isolate the emission in the desired
annulus from emission from overlying layers. For this the
model-independent DSDEPROJ routine (Russell et al. 2008) was
adopted. The deprojected spectra were then fitted using the
multicomponent model mentioned above in the same way as
projected spectra.

3.1. Temperature, Density, and Cooling Time Profiles

In the left panels of Figure 1 we plot temperature profiles
before (top) and after (bottom) deprojection. For clarity we plot
profiles using four colors. Dark-blue lines show profiles with
average temperature in the range of 0.2–0.5 keV; light-blue,
0.5–1.0 keV; orange, 1.0–1.5 keV; and red, 1.5–2.5 keV. Error
bars are omitted for clarity. The projected and deprojected
temperature profiles show significant variations. Galaxies with
average temperatures below 1.5 keV tend to rise in temperature
toward their centers. This may be due to shock activity, which

raises the entropy of the central atmospheres of ellipticals and
some BCGs (Werner et al. 2012). Flat temperature profiles are
seen in others. The red temperature profiles indicate systems
with sharp temperature increases (by a factor of 1.5 and higher
within just several kiloparsecs) beyond ∼10 kpc. Such a quick
rise is probably associated with the hot intracluster medium
since this rise is only observed in BCGs.
Density profiles were constructed using the spectral temp-

erature and normalization (N) parameters. The projected and
deprojected electron number density profiles were derived as

( ) ( )p
= +n D z

N

V
1 10

4 1.2
, 1e A

7

where the factor of 1.2 was defined using the ionization ratio
ne/np, V is the volume of concentric annular region in cm3, DA

is the angular diameter distance, and N is the normalization,
which is proportional to the integrated emission measure.
Density profiles follow ne∝r− β, with β≈1.0–2.0. The
middle panels of Figure 1 show the radial distribution of
projected and deprojected electron densities. Density profiles

Table 1
(Continued)

Name R.A. Decl. ObsIDs Exposure Type BCG z DA DL NH 1.4 GHz Flux
(J2000) (J2000) (ks) (Mpc) (Mpc) (1020 cm2) (mJy)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

13255 43.34
NGC 5846 15:06:29.253 +01:36:20.29 7923 85.25 E √ 0.00491 20.867 21.1 4.24 21.0±1.3
NGC 6338 17:15:23.0 +57:24:40.0 4194 44.52 E5 0.027303 112.10 118.3 2.55 57.0±1.8
NGC 6482 17:51:48.833 +23:04:18.88 3218 10.03 E 0.013129 55.091 56.5 8.04 3.2±0.1
NGC 6861 20:07:19.482 −48:22:12.94 11752 88.89 SA0 0.009437 39.826 40.6 4.94 40.7±2.0
NGC 7618 23:19:47.212 +42:51:09.65 16014 121.00 E 0.017309 72.164 74.7 11.9 38.3±2.0
UGC 408 00:39:18.578 +03:19:52.87 11389 93.80 SAB 0.014723 61.628 63.5 2.80 980.0±30.9

Figure 1. Projected (top) and deprojected (bottom) temperature, density, and cooling time profiles (from left to right) for the entire sample of low-mass systems. For
clarity we plot temperature profiles using four colors. Dark-blue temperature curves show profiles with average temperature in the range of 0.2–0.5 keV; light-blue,
0.5–1.0 keV; orange, 1.0–1.5 keV; and red, 1.5–2.5 keV. Density profiles are indicated by shape. Those characterized by power laws of the form β=1.5–2.0 are
indicated in black. Density profiles with cores, β=1.0–1.5, are indicated in green. We removed error bars for clarity.
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are indicated by shape. Those characterized by power laws of
the form β=1.5–2.0 are indicated in black. Profiles with
cores, β=1.0–1.5, are indicated in green. The galaxies with
X-ray power-law density profiles (black lines) correspond to
lower temperature atmospheres with T=0.3–1.0 keV. Core
profiles in green are associated with hotter atmospheres
T1 keV. The central projected densities are 10%–30%
higher than deprojected profiles.

The hot atmosphere radiates its thermal energy on the
cooling timescale given by

( )
( )=

L
»t

n n Z T

PV

L

3P

2 ,

3

2
. 2

e X
c

H

This is the thermal energy of the gas, Ethermal=PV, divided by
the energy lost per unit volume. Here Λ(Z, T) is the cooling
function that depends on metallicity and temperature.
P=2nekBT is the pressure, and LX is the X-ray luminosity.
First, we extracted X-ray flux of the galaxies by integrating the
multicomponent model between the 0.1 and 100 keV energy
band. Then, an estimated X-ray flux was used to derive the
bolometric X-ray luminosity as p= ´L D4 fluxX L

2 . The
projected and deprojected cooling time profiles are shown in
the right panels of Figure 1. The cooling time of the entire
sample lies below tc  109 yr at 10 kpc. The largest cooling
time is 14.04±2.31 Gyr within the innermost region
(∼4.05 kpc) in UGC 408, while the lowest one is about
0.01 Gyr at 0.1 kpc in the IC 1459 and NGC 1332 targets.

3.2. Mass and Free-fall Time Profiles

3.2.1. The Gas and Total Mass

We use assumptions of hydrostatic equilibrium and spherical
symmetry of hot gas in the gravitational potential (see, e.g.,
Navarro et al. 2010; Babyk & Vavilova 2012, 2013; Babyk
et al. 2014; Vavilova et al. 2015; Babyk 2016) to calculate the

total mass profiles. The derived temperature and density
profiles were used to estimate projected and deprojected total
mass as

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

m
= - +M r

k T r r

G m

d n

d r

d T

d r

ln

ln

ln

ln
, 3T

eB

p

where μ=0.62 is the mean particle mass in units of proton
mass, kB is the Boltzmann constant, G is the gravitational
constant, and mp is the proton mass. The projected and
deprojected total mass profiles for the entire sample of low-
mass systems are given in the left panels of Figure 2. The two
sets of mass profiles are consistent with one another, and they
show a scatter of ∼20% in mass at a fixed radius. The total
mass spans a range of ∼109–1013Me and ∼0.1–50.0 kpc in
radius.
We derive gas mass profiles by integrating the gas density

over the radius. The results of this integration are shown in the
middle panels of Figure 2 for both projected and deprojected
profiles. The gas mass profiles are similar, showing a scatter of
only ∼15%. The gas mass spans six decades, ∼105–1011 Me.
The gas fractions are small, about 1% at 10 kpc.

3.2.2. Free-fall Time

One aim of this paper is to understand the effect of mass in
regulating the balance between cooling and heating in galaxy
and cluster cores. We examine the role of mass in two ways.
First, we evaluate correlations between molecular gas mass and
the mass of various components of ETGs, such as atmospheric
gas mass, stellar mass, and total mass within a given radius.
Second, we look at acceleration, which is related to mass. The
free-fall time profiles are useful because they are relevant to
thermally unstable cooling of hot atmospheres. We derive free-
fall time profiles using the total mass profiles to calculate
acceleration, g=(GM)/r2, as

( ) ( )=t r r g2 . 4ff

Figure 2. Projected (top) and deprojected (bottom) total and gas mass profiles with the free-fall time profiles for the entire sample of low-mass systems. We removed
error bars for clarity.
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Free-fall time profiles of the form (Equation (4)) can be directly
compared to previous results in clusters. The right panels of
Figure 2 show the projected and deprojected free-fall time
profiles. They are consistent with each other, showing only
∼14% variation at 10 kpc. Free-fall time profiles have been
measured for a large number of central galaxies in clusters
(Hogan et al. 2017a, 2017b; Main et al. 2017; Pulido et al.
2018). These studies found, as we do here, a small variance in
the free-fall time profiles. Furthermore, their values at 10 kpc,
;5×107 yr, found in cluster central galaxies are close to those
found here for ETGs. This demonstrates that the mass profiles
of BCGs and ETGs are similar in their inner few tens
of kiloparsecs.

4. Thermally Unstable Atmospheric Cooling

Hot atmospheres are expected to become thermally unstable
to linear density perturbations, when the ratio of the cooling
time to free-fall time, tc/tff, falls below unity (Nulsen 1986;
Pizzolato & Soker 2005; McCourt et al. 2012). Hydrodynami-
cal simulations of three-dimensional atmospheres apparently
show that this instability criterion threshold may rise well
above unity. Studies have claimed that thermally unstable
cooling ensues from linear perturbations when tc/tff falls below
10, fueling a self-regulating feedback loop (McCourt et al.
2012; Sharma et al. 2012; Gaspari & Churazov 2013; Li et al.
2015). However, later simulations by Choudhury & Sharma
(2016) do not confirm the theoretical basis for the tc/tff<10
criterion. Furthermore, using a small number of systems,
McNamara et al. (2016) showed that the observed ratio of tc/tff
is driven by the numerator, tc, while the denominator, tff, adds
noise (see Section 5.4 for more details). Since then, larger
samples have been analyzed, paying careful attention to
systematic biases, spanning a large range of halo mass.
Analyses of tc/tff profiles of clusters and their BCGs performed
by Hogan et al. (2017b) and Pulido et al. (2018) showed no
evidence that tc/tff falls significantly below 10. They found that
tc/tff lies between 10 and 30 in systems with star formation and
molecular clouds, with no indication that lower values of tc/tff
correlated with higher star formation rates or molecular gas
masses. Consistent with Voit et al. (2015, 2019), they found a
floor at tc/tff ∼ 10 rather than a threshold. While this floor may
well be physically significant, they found that the range of tc/tff
values can be explained as an observational selection effect,
raising uncertainty in its interpretation.

In Figure 3 we plot profiles of the deprojected ratio tc/tff. We
find that the minima all lie between 10 and 30. While a few
values dip below 10, these departures are consistent with
measurement noise. Plotted in blue are the tc/tff profiles for
systems with CO detections. Plotted in green and red are CO
upper limits below 108 and 107 Me, respectively. The systems
with CO detections do not segregate from those with CO upper
limits. However, those that contain detectable levels of CO
preferentially show lower cooling times, a topic discussed
below.

5. Molecular Gas Distribution

The primary aim of this study is to understand the origin of
molecular gas in the cores of low- and high-mass systems.
Archival ALMA data are available for five galaxies in our
sample, which we analyze here. We use previously published

cold gas mass measurements for clusters and ETGs to explore
possible relationships between atmospheric properties and
molecular gas, as found in earlier studies of cluster central
galaxies (Cavagnolo et al. 2008; Rafferty et al. 2008; Voit &
Donahue 2015; Pulido et al. 2018). As most CO measurements
of ETGs have yielded upper limits, we use the survival statistic
to examine our relations. We also use a β-model (Cavaliere &
Fusco-Femiano 1978; Babyk 2012; Babyk & Del Popolo 2014)
fitting to calculate density and gas mass profiles of those
galaxies with known masses of cold gas but with X-ray data too
poor to construct spatially resolved gas mass profiles. The
objects whose X-ray masses were estimated using the β-model
are listed in Table 2. We follow Babyk et al. (2018a) to fit the
X-ray surface brightness profiles and to estimate the total and
gas mass profiles.

5.1. ALMA Data Reduction

We analyzed archival ALMA data for five galaxies from our
sample. IC 1459, NGC 1332, and NGC 6861 were observed in
ALMA band 6 to cover the CO (2–1) line emission, while NGC
1407 and NGC 4696 were observed in band 3 to cover the CO
(1–0) line emission. A description of observational parameters
is given in Table 3. The data were processed in CASA version
4.7.2 using the ALMA pipeline reduction scripts. We applied
continuum phase self-calibration to each data set, which
improved the image quality. The continuum for each galaxy
was imaged using natural weighting. To isolate the molecular
line emission, the continuum was subtracted using uvcont-
sub. The continuum-subtracted measurement sets were imaged
using natural weighting for better sensitivity with 20 km s−1

channels. Integrated line emission maps were produced by
integrating over all the channels containing line emission.
For NGC 4696, the spectrum was fitted with a single

Gaussian profile to get line intensity. For NGC 1332 and NGC
6861, spectra were integrated numerically and the errors in the
line intensity (σI) were estimated using the formula given in
Young et al. (2011) as

⎛
⎝⎜

⎞
⎠⎟( ) ( )s n s= D +N

N

N
1 , 5I

b

2 2 2
1

1

Figure 3. Deprojected tc/tff profiles for the entire sample of ETGs. Error bars
are deleted for clarity. Blue profiles are objects with CO detection. Red and
green profiles are upper limits.

7

The Astrophysical Journal, 887:149 (17pp), 2019 December 20 Babyk et al.



Table 2
Early-type Galaxies of ATLAS3D Sample

Name R.A. Decl. ObsIDs Exposure Type z DA DL NH kT ( )Mlog mol 1.4 GHz Flux
(J2000) (J2000) (ks) (Mpc) (Mpc) (1020 cm2) (keV) (Me) (mJy)
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

IC 1024 14:31:27.221 +03:00:32.78 14901 20.07 S0 0.004933 20.96 21.2 2.55 0.46±0.11 8.61±0.02 24.7±1.2
NGC 1266 17:45:35.288 −46:05:23.71 19498 80.06 Sb 0.007238 30.65 31.1 5.18 0.80±0.03 7.58±0.01 115.6±3.5
NGC 2768 09:11:37.504 +60:02:13.95 9528 65.46 E6 0.004513 19.19 19.4 3.87 0.35±0.02 7.64±0.07 14.5±0.6
NGC 3245 10:27:18.385 +28:30:26.63 2926 9.76 Sab 0.00423 13.827 13.9 2.08 0.55±0.11 7.27±0.12 6.7±0.5
NGC 3599 11:15:26.949 +18:06:37.43 9556 20.16 S0 0.002799 11.93 12.0 1.42 0.36±0.05 7.36±0.08 2.3±0.4
NGC 3607 11:16:54.657 +18:03:06.51 2073 39.00 E 0.003142 13.39 13.5 1.48 0.59±0.11 7.42±0.05 6.9±0.4
NGC 3619 11:19:21.621 +57:45:27.66 19320 9.97 S0 0.005204 22.107 22.3 74.7 0.36±0.14 8.28±0.05 5.6±0.5
NGC 3665 11:24:43.630 +38:45:46.05 3222 18.19 S0 0.006901 29.23 29.6 2.06 0.30±0.05 8.91±0.02 112.2±3.7
NGC 4036 12:01:26.891 +61:53:44.52 6783 15.13 Sa 0.00462 19.64 19.8 1.89 0.46±0.07 8.13±0.04 11.6±0.5
NGC 4203 12:15:05.054 +33:11:50.40 10535 42.18 Sa 0.003623 15.429 15.5 1.19 0.28±0.03 7.39±0.05 6.1±0.5
NGC 4283 12:20:20.769 +29:18:39.16 7081 112.14 E 0.003522 15.0 15.1 1.77 0.35±0.04 7.10±0.09 385.0±11.6
NGC 4459 12:29:00.026 +13:58:42.89 11784 30.18 S0 0.003976 16.92 17.1 2.67 0.54±0.08 8.24±0.02 2.7±0.6
NGC 4476 12:29:59.081 +12:20:55.21 3717 20.83 S0 0.006565 27.83 28.2 2.54 0.35±0.05 8.05±0.04 245.6±8.7
NGC 4477 12:30:02.172 +13:38:11.19 9527 38.18 S0 0.004463 18.98 19.2 2.63 0.34±0.02 7.54±0.06 6.2±0.5
NGC 4526 12:34:03.029 +07:41:56.90 3925 44.11 S0 0.002058 16.5 17.5 1.65 0.37±0.02 8.59±0.01 12.0±0.5
NGC 4596 12:39:55.954 +10:10:34.18 11785 31.38 Sa 0.006311 27.76 27.1 1.98 0.27±0.05 7.31±0.09 3.4±0.6
NGC 4710 12:49:38.958 +15:09:55.76 9512 30.16 S0 0.003676 15.65 15.8 2.15 0.64±0.06 8.72±0.01 18.7±1.0
NGC 5866 15:06:29.561 +55:45:47.91 2879 27.43 Sab 0.002518 14.9 15.2 1.45 0.41±0.08 8.47±0.01 21.8±1.1
NGC 7465 23:02:00.952 +15:57:53.55 14904 30.06 Sb 0.006538 27.71 28.1 6.03 0.45±0.10 8.79±0.02 19.1±1.1
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Table 3
ALMA Observational Parameters and Results

Galaxy Obs. tobs Synthesized Frequency Bandwidth Velocity PI SCO(2−1) SCO(1−0) Mmol

Date Beam Range Resolution
(min) (arcsec×arcsec) (GHz) (GHz) (km s−1) (Jy km s−1) (Jy km s−1) (107 Me)

IC 1459 2016 Apr 11 11.6 1.04×0.80 225.6–244.5 5.9 2.56 Prandoni Isabella <0.35 L <0.08
NGC 1332 2014 Sep 1 22.3 0.32×0.24 226.4–246.1 5.9 1.28 Barth Aaron 38.72±0.31 L 6.04±0.05
NGC 1407 2016 May 3 15.0 1.50×1.08 112.1–115.3 4.9 81.14 Hodges-Kluck Edmund L <1.56 <1.06
NGC 4696 2016 Jan 27 77.7 2.29×1.74 99.3–115.0 7.6 5.22 Hamer Stephen L 3.07±0.26 5.79±0.41
NGC 6861 2014 Sep 1 23.9 0.37×0.28 225.5–245.1 5.9 1.28 Barth Aaron 89.91±1.62 L 48.72±0.87
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where Δν is the velocity channel width, σ is the rms noise per
channel, N1 is the number of channels containing line emission,
and Nb is the number of channels used to measure the baseline.
For sources in which we do not detect any line emission, 3σ
upper limits on integrated line intensities were estimated by
extracting the spectrum within a 2 kpc ×2 kpc box centered at
the optical centroid of the galaxies and following McNamara &
Jaffe (1994),

( )n
s

D =
D

D D
-S

V

V V

3
Jy km s , 6CO

ch

ch

1

where sch is the rms noise per channel in units of Jy; ΔV is the
expected FWHM of the line, which we assume to be
200 km s−1; and ΔVch is the velocity channel width.

The molecular gas mass is calculated using integrated CO
(1–0) line intensity as given in Solomon & Vanden Bout
(2005) and Bolatto et al. (2013),
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where SCOΔν is the flux density expressed in Jy km s−1, DL is
the luminosity distance in Mpc, and z is the redshift of the
galaxy. Here we have assumed the Galactic CO-to-H2

conversion factor XCO=2×1020 cm−2 (K km s−1)−1 and a
constant CO (2–1)/CO (1–0) flux density ratio of 3.2 to
convert CO (2–1) flux densities into estimated CO (1–0)
values. The measured molecular gas mass values and upper
limits are given in Table 3. Our derived cold gas masses are
consistent with Boizelle et al. (2017) measurements.

Besides five ALMA molecular gas mass measurements, we
also use previously published results of Young et al. (2011), Su
& Irwin (2013), Boizelle et al. (2017), and Pulido et al. (2018)
that have been obtained for galaxies related to the ATLAS3D

survey, individual ETGs, and galaxy clusters, including their
BCGs. The ATLAS3D survey is a volume-limited sample of
260 ETGs that is widely used to study ETG formation and
evolution. This sample was observed in CO J=1–0 and 2–1
using the IRAM 30 m telescope (Young et al. 2011), and 65%
of them were observed in H I using the Westerbork Synthesis
Radio Telescope (Morganti et al. 2006; Serra et al. 2012). CO
emission was detected in 56 targets (∼22%). Here we use 33
CO detections and upper limits of the ATLAS3D survey. The
clusters and their BCGs in Pulido et al. (2018) were observed
in CO using the IRAM telescope as well.

5.2. –M Mmol X Relation

We plot molecular gas mass versus X-ray atmospheric gas
mass in Figure 4. X-ray masses are derived within 10 kpc. This
radius was chosen for two reasons. First, we wish to obtain a
representative mass for the central galaxy that avoids the
uncertainties associated with effective radius measurements.
Second, thermodynamic parameters for cluster atmospheres,
such as cooling time and entropy, have been reported at this
radius to avoid resolution biases when comparing distant to
nearby clusters (Rafferty et al. 2008). While this is not an issue

for the ETGs studied here, it often is when comparing them to
their distant cluster counterparts. In the nearest galaxies we
have the opposite issue. Gas mass profiles extend out to only a
few kiloparsecs before falling off the ACIS camera. In these
instances, we have extrapolated their profiles using the linear
slope of the last 5 points in log-log space. The BCGs
represented as black circles in Figure 4 are taken from Pulido
et al. (2018). The remaining points refer to the ETGs analyzed
here. The morphological type of each galaxy is indicated: blue
circles correspond to ellipticals, magenta circles correspond to
S0/lenticular galaxies, and the yellow circles represent early
spirals. Galaxies with recognizable disks are plotted with large
shaded diamonds surrounding their native symbol.
Accounting for both detections and upper limits, a trend

between molecular gas mass and atmospheric mass is found
with correlation coefficient 0.76. The coefficient rises to 0.87
when the disk-like objects are excluded. The cold gas masses of
galaxies with disks, ∼107–109 Me, lie an order of magnitude
above those without a clear disk, ∼106–108 Me.
Figure 4 clearly shows an increase in scatter about the mean

relationship in the lower-mass ETGs compared to the BCGs.
While much is likely real mass variance, other factors may
contribute, the most important being variance in the CO optical
depth (Crocker et al. 2012). CO optical depth depends on the
gas metallicity and the dynamical state of the gas (Alatalo et al.
2013). Different studies have also adopted different Galactic
CO-to-H2 conversion factors from those used in Pulido et al.
(2018), Boizelle et al. (2017), and Young et al. (2011)
depending on perceived conditions in the gas. However, these
differences are generally a factor of a few or so, while the
molecular gas mass at a given X-ray atmospheric gas mass in
Figure 4 spans more than two orders of magnitude. Therefore,
most of the scatter in the relationship is intrinsic.
A linear fit to the Mmol−MX relation was performed using

only detections of cold gas masses. A bivariate correlated error
and intrinsic scatter (BCES) routine (Akritas & Bershady 1996)
was used to perform linear modeling in log space. Parameter
errors are determined using 10,000 iterations of Monte Carlo

Figure 4. Relation of cold molecular gas mass to X-ray gas mass. The
morphological type of each galaxy is indicated: blue circles correspond to
ellipticals, magenta circles correspond to S0/lenticular galaxies, and yellow
circles represent early spirals. Galaxies with recognizable disks are plotted with
large shaded diamonds surrounding their native symbol.
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bootstrap resampling. Using the BCES routine, we found
µ M Mmol X

1.4 0.1.
The best fit is shown in Figure 4 as a black solid line.

Although a clear dependence of Mmol on MX is found for
clusters (BCGs), little correlation is found for the ETGs alone.
Furthermore, the scatter about the mean of the ETGs exceeds
that of the BCGs by a factor of 2. The relation between cold gas
mass and X-ray mass for clusters alone follows the steeper
form, µ M Mmol X

1.6 0.1. To explore this relationship further, we
include the molecular mass upper limits using survival analysis.

5.2.1. Survival Analysis

Survival analysis is a powerful tool to estimate the likelihood
and form of a relationship by evaluating both detections and
upper limits (Feigelson & Nelson 1985; Isobe et al. 1986;
Schmitt 1985). The likelihood is expressed as
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where ti=min(xi, ci), xi are the detected values, ci are the
upper limits, and δi is 0 for upper limits and 1 for detections.
The fi and Si are the likelihoods for detections and upper limits,
respectively. In the case of normal (Gauss) distribution, the
likelihood for the detected values can be expressed as
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where x and σ are the detected values of molecular gas mass
and their errors, while μ is an assumed model of fitting. The
likelihood for upper limits, S(x), can be expressed as
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where erf is the error function, ( ) ò=
p
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2
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case of Equation (10) we use ( )=x upper limit i and
( )s = upper limit 3i . We assume σ as (upperlimit)i/3 since

our upper limits were defined for the 3σ confidence level.
For the model, μ, we use the power law of the form of

( )´
a

A x

x0
. We find a slightly shallower relation, µMmol

MX
1.37 0.21, than those obtained with the BCES routine that

included only detections. The fit is presented in Figure 4 as a
dashed line. Galaxies with gas disks have the largest residuals.
Two disk systems are shown in Figure 5. Avoiding these
points, the Mmol−MX relation follows a steeper relation with
less scatter, µ M Mmol X

1.48 0.15.
Fits were calculated separately for the ETGs and cluster

central galaxies. Including cluster central galaxies alone, we
find µ M Mmol X

1.51 0.13. For ETGs we find µ M Mmol X
0.48 0.81.

The ETGs alone reveal no correlation, implying two possibi-
lities: either the molecular gas in ETGs is unrelated to
atmospheric gas, or the range of molecular gas mass and
atmospheric mass in the ETG sample is too limited relative to
the variance to reveal the true underlying relationship. Statistics
alone will not discriminate between these possibilities.
However, other factors argue in favor of a physical trend from
centrals in clusters to ETGs.

First, molecular gas-rich galaxies all have similarly short
atmospheric cooling times lying below 1 Gyr at 10 kpc (see
below), while gas-poor systems have atmospheric cooling
times exceeding 1 Gyr at 10 kpc. This is true in both ETGs and
cluster centrals, where molecular gas masses are too high to
have arrived in mergers.
Second, the ratio between atmospheric gas mass and

molecular gas mass of the two populations is similar.
Figure 6 shows the mass ratios of molecular to atmospheric
gas for both cluster centrals and ETGs within a 10 kpc radius,
where most molecular gas lies. This ratio lies between 10% and
20% on average but with large variance. The distribution of
upper limits is broadly consistent with the detections, indicating
that they are likely within factors of several of their true values.
This level of concordance would be difficult to understand if

the origins of molecular clouds in BCGs and ETGs were
dramatically different. For example, if the cold gas arrived
exclusively by mergers or filaments, there is no obvious reason
the atmospheric mass would exceed the molecular gas masses
by such a large factor. Nevertheless, this figure indicates that

Figure 5. HST (F814W) linear grayscale images of NGC 1332 (top) and NGC
6861 (bottom) overlaid with ALMA CO (2–1) emission line contours from
integrated intensity maps. In both images, contours start at the 3σ level and
increase linearly.
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additional CO measurements are needed to convert the upper
limits into detections before drawing firm conclusions about the
relationships between cold gas and atmospheric cooling
in ETGs.

5.3. Density, Temperature, and Luminosity

The dependence of molecular gas mass on atmospheric
temperature, electron density, entropy, luminosity, and the
minimum value of the tc/tff ratio is investigated here. The top
panel of Figure 7 shows molecular gas mass versus mean
atmospheric gas temperature. The trend indicates that higher-
temperature systems generally host more massive reservoirs of
cold gas. This trend is not surprising, as it indicates that hotter,
and hence more massive, systems attract and retain more
massive molecular gas reservoirs. The scatter in molecular gas
mass at a given temperature spans roughly two decades,
indicating that mass alone does not determine the level of the
molecular gas reservoir.

An indication that atmospheric gas density is a significant
factor is shown in the bottom panel of Figure 7. The figure
shows a trend between molecular gas mass and atmospheric
gas density measured at an altitude of 10 kpc. This trend was
found by Pulido et al. (2018) for cluster central galaxies. Their
data are plotted to the upper right in Figure 7. The trend
extends to ETGs, plotted to the lower left, albeit with greater
scatter than the cluster central galaxies. It is not clear whether
the greater scatter is intrinsic or due to the large number of
upper limits.

A linear fit to the Mmol–ne relation was performed using
survival statistics. We find that this relation follows a power-
law scaling as µ M nmol e

1.8 0.2. The scatter of the Mmol–ne
relation is 0.34 dex, while the correlation coefficient is 0.86.
The fit is shown as a dashed line in Figure 7. Separate analyses
were performed for the clusters and ETGs alone. The cluster
central (black points) relation follows a power-law scaling as

µ M nmol e
2.2 0.4. This is slightly steeper compared to the full

Mmol–ne relation. However, both are consistent within their
uncertainties. In the case of low-mass systems (blue, magenta,
and yellow points), we find µ M nmol e

1.5 1.1, which is shallower
than both the entire sample and cluster central galaxies alone.
However, the slope of the Mmol–ne relation for ETGs is

consistent, within uncertainties, with the full sample. The
scatter of the Mmol–ne relation for BCGs is 0.24 dex, while for
low-mass systems it is 0.56 dex.
The Mmol−LX relation for the entire sample was constructed.

The X-ray luminosity within 10 kpc was computed as
p=L D f4X L

2
X, where fX is the X-ray flux obtained from

spectral fitting. The Mmol−LX relation is shown in Figure 8.
The survival fit for the entire sample yields µ M Lmol X

1.3 0.2.
The scatter is only 0.25 dex, demonstrating a tight dependence.
The separate fits for the ETGs and cluster central galaxies alone
yield µ M Lmol X

0.5 0.8 and µ M Lmol X
1.2 0.1, respectively.

Therefore, the trends are consistent with each other, albeit
with large scatter in the ETGs. The Mmol−LX relation for ETGs
alone is consistent with O’Sullivan et al. (2018), who likewise
found no clear correlation between CO emission and the
absence or presence of a hot intragroup medium.

5.4. Discussion

5.4.1. Does Molecular Gas Fuel Radio/AGN Feedback?

Maintaining balance between heating and cooling of hot
atmospheres across a large range of halo mass requires a
reliable fuel supply to the AGN. Bondi accretion of the hot
atmosphere onto the central black hole would be a feasible fuel

Figure 6. Fraction of molecular gas mass in X-ray gas mass for both high- and
low-mass systems. The X-ray gas mass is taken at 10 kpc.

Figure 7. Molecular gas mass vs. temperature (top panel) and electron density
at 10 kpc (bottom panel). TheMmol–T relation includes the spectral temperature
measurements presented in Table 2.

12

The Astrophysical Journal, 887:149 (17pp), 2019 December 20 Babyk et al.



supply in ETGs (Allen et al. 2006; Hardcastle et al. 2006;
Rafferty et al. 2006; Narayan & Fabian 2011). However, Bondi
accretion would be unable to fuel the most powerful AGN
(Russell et al. 2013) in cluster central galaxies (Hardcastle et al.
2006; Rafferty et al. 2006; McNamara et al. 2011). The CO
detections and upper limits in cluster central galaxies and ETGs
are easily sufficient to fuel radio AGNs. But no trend between
molecular gas and radio AGN power has been found.

Using a recent X-ray cavity analysis, we adopt the scaling
relation between radio power and AGN jet power (Cavagnolo
et al. 2010) to explore this trend. Radio power was calculated
using the relation

( ) ( )p n= +n
a

n
-P D z S4 1 , 11L

2 1
00 0

where nS 0 is the flux density at the observed frequency ν0, z is
the redshift, DL is the luminosity distance, and α is the radio
spectral index. The radio flux densities, nS 0, were taken from
the NRAO VLA Sky Survey (NVSS; Condon et al. 1998). We
found no radio fluxes for 22 galaxy clusters. We assume
spectral index α=0.8 and ν0=1.4 GHz. We estimate the
AGN mechanical power in BCGs to be 1043–1045 erg s−1,
which is two to three orders of magnitude higher than those in
the ETG sample.

The correlation between molecular gas mass and radio jet
power is presented in Figure 9. A weak trend over five decades
in molecular gas mass and nearly six decades in jet power is
found. The scaling is nearly linear, following µ M Pmol jet

0.8 0.1

with a standard deviation of 1.21 dex. However, the correlation
coefficient 0.64 indicates that the trend is at best marginally
significant. For a given molecular gas mass, one finds roughly
three decades of variation in jet power, and conversely so. A
similar variance was noted by McNamara et al. (2011) in
cluster central galaxies alone.

To further evaluate the degree of correlation between these
quantities, we explore the influence of the D2 factor on both
axes. We generated random redshift, distance, and flux data
sets with the correct spread given by error bars over the
observed range. We recovered the scatter in the observed
Mmol–Pjet relation, but the simulated slope, 1.0±0.03, was
steeper than the observed slope 0.8±0.1, at about the
2σsignificance level. This result is consistent with the

correlation coefficient, which indicated only marginal
significance.
One would naively expect a large scatter and hence a weak

correlation between jet power and the level of the molecular
gas reservoir. Only a tiny fraction of the molecular gas
reservoirs shown in Figure 9 would be required to fuel the
AGN at the levels observed in this figure (McNamara et al.
2011). Furthermore, the molecular gas is distributed on much
larger scales than the central black hole’s sphere of influence.
Thus, the timescale for most of the molecular gas to accrete
onto the central black hole dramatically exceeds the age of the
AGN. Only the mass on small scales is currently participating
in fueling the AGN. Therefore, the trend indicates that systems
that on average have higher AGN jet power also contain larger
molecular gas reservoirs available to fuel the AGN.
Correlations between jet power, atmospheric gas mass within

10 kpc, total mass within 10 kpc, and total mass within R2500

are explored in Figure 10. Weak correlations are found between
AGN jet power and both atmospheric gas mass (correlation
coefficient 0.48) and total mass, M2500 (correlation coefficient
0.44). M2500 for the ETGs was determined using the M2500−T
scaling relation of Vikhlinin et al. (2006). This approach was
adopted because we are unable to trace the gas density and
temperature out to this distance for the nearest galaxies. In
contrast, cluster central masses, M2500, can be measured
directly (Hogan et al. 2017b; Pulido et al. 2018). The
extrapolation to R2500 contributes scatter to the ETG measure-
ments. However, a correlation between molecular gas mass and
total mass within R2500 is apparent. In contrast, no correlation is
found between AGN jet power and total mass within 10 kpc.
The absence of correlation is likely due to the dominant stellar
component in the total mass within 10 kpc, which would not
participate in fueling the AGN. It is interesting, nevertheless,
that M2500 and the atmospheric gas are correlated with AGN jet
power.
These trends are consistent with the large-scale mass

dependence of AGN power in systems with central cooling
times shorter than 1 Gyr (Main et al. 2017) in clusters. This
new result extends Main’s to ETGs. This correlation indicates
that AGN power, which emerges from processes near to the
event horizon, is regulated by conditions on vastly larger
scales.

Figure 8. Molecular gas mass vs. X-ray luminosity defined at 10 kpc. The
Mmol−LX relation is fitted by a power-law model using survival analysis.

Figure 9. Relation of cold molecular gas mass vs. AGN jet power. The dashed
line corresponds to the survival fitting.
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5.4.2. Cold Gas in Early-type Galaxies

While the origin of molecular gas in BCGs is almost
certainly cooling from the hot atmosphere, its origin in ETGs is
less clear. Internal origins include stellar ejecta and atmospheric
cooling, or externally accreted gas from mergers of gas-rich
galaxies. We discuss these ideas in turn.

5.5. Atmospheric Cooling

Using the Herschel Space Observatory, Werner et al. (2014)
showed that the molecular cooling lines of [C II] and [O I]
correlate with nebular emission in some ETGs. The systems
with nebular emission demonstrate flatter entropy profiles than
those without nebular emission, tentatively connecting the cold
gas to cooling from the hot atmospheres. They also found that
thermally unstable systems indicated by the “Field Criterion”
are likely to have [C II] emission from warm molecular gas.
This again is consistent with cooling from the hot atmosphere.
Similar results have been found in cluster BCG atmospheres
(Cavagnolo et al. 2008; Rafferty et al. 2008; Voit et al. 2008).

The Werner et al. (2014) study was extended to 49 nearby
elliptical galaxies by Lakhchaura et al. (2018), who found a
similar connection between nebular emission and cooling hot
atmospheres, indicating a common origin between the hot
atmosphere and molecular gas. Lakhchaura’s sample signifi-
cantly overlaps our own. The correlations we find here between
the thermodynamic properties of hot atmospheres and CO
mass, in combination with the Werner and Lakhchaura results,
point to cooling from hot atmospheres as a significant, perhaps
the most significant, source of molecular gas in ETGs.

The presence or absence of a significant molecular gas signal
in cluster central galaxies is closely tied to cooling time. Systems
with atmospheric cooling times at roughly 10 kpc in altitude that

lie below ∼109 yr are likely to be detected (Pulido et al. 2018).
Those with longer cooling times are not. A similar trend is found
using the entropy parameter. This condition is tested in ETGs in
Figure 11. This figure shows that systems with shallower
entropy profiles and lower entropy at 10 kpc, shown in blue, are
detected with CO masses exceeding 108Me. Their entropies at
10 kpc are in the range of 10–30 keV cm2, consistent with
central galaxies in clusters that are rich in molecular gas. Objects
with restrictive CO upper limits that lie at or below 107Me,
shown in red, have entropies lying above 40 keV cm2. Systems
with less restrictive upper limits that lie below 108Me, shown in
green, have similarly high entropy. The entropy profiles
presented here are consistent with Werner et al. (2014).
The middle panel of Figure 11 shows a similar trend in

atmospheric cooling time. Systems with atmospheric cooling
time at 10 kpc that lie below ∼1 Gyr are detected in CO. This
segregation continues inward to approximately 1 kpc, where all
profiles merge. This merging could be real, or it may be the
consequence of our inability to resolve the gas temperature in
the inner bins (see Hogan et al. 2017a, for detailed discussion).
In fact, there is nothing special about 10 kpc. It is approximately
the radius at which the cooling time and entropy parameters can
be resolved in cluster centrals. Presumably in those systems, like
these, the profiles remain segregated as they move inward.
Nevertheless, the profiles show that the atmospheric cooling
time in systems with significant molecular gas lies below that in
systems without molecular gas over most of the volume within
10 kpc. Like cluster centrals with large molecular gas masses,
short cooling times in the atmospheres of normal ellipticals
apparently correlate with significant levels of molecular gas.
Free-fall time profiles are shown in the right panel. All are

similar and reveal little scatter at 10 kpc. Nevertheless, dividing
the cooling time and free-fall time profiles only scatters the

Figure 10. X-ray gas mass, total mass, and M2500 vs. the radio AGN jet power (from left to right).

Figure 11. Entropy, cooling, and free-fall time profiles of low-mass systems with/without evidence of CO detection and H2 gas. The systems, shown in blue, are
detected with CO masses exceeding M108 , while shown in red and green are upper limit detections with CO masses below 107 and 108, respectively. Red and blue
power-law fits (dashed lines) are performed using the BCES routine. Dashed–dotted lines correspond to the crossing between the best-fitting lines with observations at
10 kpc.
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trend in Figure 3. The free-fall time adds no leverage; the tc/tff
ratio plays no obvious role. While the sample is admittedly
small, this diagram shows that tc is an effective indicator for the
presence of cold molecular gas. Similar trends are found in
cluster central galaxies (Hogan et al. 2017b; Pulido et al. 2018;
Babyk et al. 2018b). This result implicates the hot atmosphere
in the production of molecular clouds in ETGs, presumably
through cooling.

Finally, three systems in Figure 4 have elevated levels of
molecular gas relative to their atmospheric masses. All three
are early spirals, and their gas lies in rotating disks. Molecular
disks are often attributed to high angular momentum mergers,
and this may be true. However, an internal atmospheric origin
cannot be ruled out.

Werner et al. (2014) and Negri et al. (2014) pointed out that
thermally unstable cooling may be enhanced in rotating
atmospheres. Rotation reduces the effective gravity and thus
prevents a thermally unstable parcel of gas from sinking to its
equilibrium position. This would lead to unstable cooling on
nonradial orbits. If the cooling gas is unable to shed its angular
momentum, it would settle into a molecular disk (see also
Sobacchi & Sormani 2019). Molecular clouds are observed
preferentially in fast-rotating ETGs (Davis et al. 2019). If the
atmospheres and stars are corotating, thermally unstable
cooling may be enhanced, leading to the observed correlation.

5.6. Merger Origin

Molecular and atomic gas clouds in ETGs are commonly
attributed to mergers. Davis et al. (2011) compared the angular
momentum vectors of the cold gas and stars in ATLAS3D

galaxies and attributed their misalignments to oblique-angle
mergers. These studies and others (Young 2002; Young et al.
2008; Crocker et al. 2011) have argued that cold clouds
forming from debris lost from stars should share the stellar
angular momentum vector. Misaligned vectors would indicate
an external origin.

Using a simple model prescription incorporating a variety of
physical processes including mergers and feedback, Davis et al.
(2019) estimated the gas-rich merger rate of ellipticals in the
local universe. They concluded that mergers are likely the
primary source of cold gas in ETGs. In their model,
atmospheric cooling, stellar mass loss, and other sources
contribute less to the cold gas budget. Their conclusion is based
in part on the absence of correlation between stellar mass and
molecular clouds, as would be expected if cold clouds
condensed from stellar ejecta.

Misaligned angular momenta need not in themselves imply
an external origin for cold gas. Semianalytic models of galaxies
evolving in a Lambda-CDM cosmology (Lagos et al. 2015)
indicate that the high fraction of misaligned gas disks in the
ATLAS3D catalog may be caused by angular momentum
misalignments between cooling hot atmospheres, stars, and
dark matter halos. Their simulations further indicated that the
frequency of mergers at the low redshifts found in the
ATLAS3D sample, ∼40%, is too low to account for the high
incidence of cold gas, whose angular momentum is misaligned
with the stars. In a related study, Lagos et al. (2014) concluded
that most neutral gas (atomic + molecular) in nearby ETGs
likely cooled from their hot atmospheres.

5.7. Stellar Ejecta

Spitzer and Herschel observations of ETGs reveal the
presence of polycyclic aromatic hydrocarbon, warm and cold
H2, and dust (see Werner et al. 2014, and references therein).
The presence of polycyclic aromatic hydrocarbon and dust in
the cold gas clouds indicates that some fraction of the cold gas
originated from stellar mass loss (Werner et al. 2014).
However, Goulding et al. (2016) showed that while the
thermalization of stellar ejecta (mass loss, supernovae) is a
significant source of atmospheric gas (see also Pellegrini et al.
(2018), their data are inconsistent with a stellar mass-loss origin
alone.
In summary, the origins of cold gas in ETGs are poorly

understood. They may acquire their molecular clouds at some
level by all three mechanisms. Occasional mergers would be an
appealing mechanism to explain the scatter in the trends
presented here. However, the trends themselves indicate that
condensation from hot atmospheres is a significant source of
cold gas in ETGs.

5.8. Neutral Hydrogen in Hot Atmospheres

This study is focused on molecular gas owing to the
availability of CO measurements for large numbers of cluster
centrals and nearby ETGs. Nevertheless, H I is crucial to the
picture. Studies have shown that ETGs tend to be under-
abundant in H I compared to spirals (Young & Knezek 1989;
Young & Scoville 1991; Sage 1993; Obreschkow 2008;
Oosterloo et al. 2010). Although the variance is large, the
relatively low average abundance of H I implies a rapid
transition of cold atomic clouds to molecular clouds in hot
atmospheres. This transition may be related to high atmo-
spheric gas pressures found in giant ellipticals and cluster
centrals.
Elmegreen (1993) showed that H I in diffuse interstellar

clouds should transform rapidly into H2 when clouds are
shielded from strong ultraviolet radiation and experience high
ambient pressure. Assuming that diffuse, nongravitating clouds
have an internal density that scales with ambient pressure, the
clouds will quickly transform their H I into H2. Blitz &
Rosolowsky (2004, 2006) examined this conjecture in a sample
of nearby disk galaxies. They found that the ratio of atomic to
molecular gas rises from well below unity to nearly 100 as the
external pressure rises from ∼104 to ~10 cm K6 3 . This trend
correlates almost linearly with ambient pressure.
Atmospheres are volume-filling, so they are likely to be in

pressure contact with molecular clouds. The atmospheric
pressures observed in this sample would place them on the
high end of the Blitz–Rosolowsky correlation, consistent with
the relatively low abundance of H I in these systems. This issue
will be explored in a future work.

6. Conclusions

The thermodynamic properties of the hot atmospheres and
molecular gas content of 40 ETGs observed with Chandra and
the ATLAS3D project were analyzed. Their properties were
compared to those of central cluster galaxies rich in molecular
gas. Our conclusions are summarized as follows:

(i) Molecular gas mass is correlated with atmospheric gas
mass, atmospheric density, and atmospheric X-ray
luminosity over five decades in molecular gas mass,
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from ETGs to central cluster galaxies. The most distant
outliers are early-type disk galaxies, which have higher
levels of molecular gas compared to those without
molecular disks.

(ii) The ratio of cold molecular gas to hot atmospheric gas
within 10 kpc of the galaxy is similar over a broad range
in halo mass, from giant ellipticals to central cluster
galaxies, and lies between 10% and 20%.

(iii) Molecular gas in ETGs is found preferentially in systems
when the cooling time of their hot atmosphere lies below
∼109 yr at an altitude of 10 kpc. This “cooling time
threshold” is similar to what is found in cluster central
galaxies.

This study indicates a relationship between the molecular gas
content of ETGs and their hot atmospheres. The apparent
continuity between the molecular gas content and atmospheric
properties of cluster central galaxies, which are almost certainly
due to cooling, likewise suggests that some or most of the
molecular gas in ETGs cooled from their atmospheres. Taking
different approaches, Werner et al. (2014) and Lakhchaura
et al. (2018) reached similar conclusions.

Nevertheless, the connection between hot atmospheres and
molecular gas in ETGs is not as strong as it is for central
galaxies in clusters. This is largely due to lower gas masses and
poorer detection statistics. Additional data from ALMA and
other cold gas tracers are needed to further explore this
conjecture.

B.R.M. acknowledges support from the Natural Sciences and
Engineering Research Council of Canada. H.R.R. acknowl-
edges support from an STFC Ernest Rutherford Fellowship.
A.C.E. acknowledges support from STFC grant ST/P00541/1.
B.R.M. thanks Leo Blitz for an insightful discussion during a
visit to the Flatiron Institute. We thank the referee for
comments that significantly improved the paper. The scientific
results reported in this article are based on observations made
by the Chandra X-ray Observatory and have made use of
software provided by the Chandra X-ray Center (CXC) in the
application packages CIAO, ChIPS, and Sherpa. This paper
makes use of the following ALMA data: #2013.1.00229.S,
#2015.1.00989.S, #2015.1.01198.S, and #2015.1.01572.S.
ALMA is a partnership of ESO (representing its member
states), NSF (USA), and NINS (Japan), together with NRC
(Canada), MOST and ASIAA (Taiwan), and KASI (Republic
of Korea), in cooperation with the Republic of Chile. The Joint
ALMA Observatory is operated by ESO, AUI/NRAO,
and NAOJ.

ORCID iDs

Iu. V. Babyk https://orcid.org/0000-0003-3165-9804
B. R. McNamara https://orcid.org/0000-0002-2622-2627
P. E. J. Nulsen https://orcid.org/0000-0003-0297-4493
A. C. Edge https://orcid.org/0000-0002-3398-6916

References

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Alatalo, K., Davis, T. A., Bureau, M., et al. 2013, MNRAS, 432, 1796
Allen, S. W., Dunn, R. J. H., Fabian, A. C., Taylor, G. B., & Reynolds, C. S.

2006, MNRAS, 372, 21

Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis
Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco, CA:
ASP), 17

Babyk, I. 2012, JPhSt, 16, 1904
Babyk, I. 2016, ARep, 60, 542
Babyk, I., & Del Popolo, A. 2014, BaltA, 23, 9
Babyk, I. V., McNamara, B. R., Nulsen, P. E. J., et al. 2018a, ApJ, 857, 32
Babyk, I. V., McNamara, B. R., Nulsen, P. E. J., et al. 2018b, ApJ, 862, 39
Babyk, I. V., & Vavilova, I. B. 2012, OAP, 25, 119
Babyk, I. V., & Vavilova, I. B. 2013, OAP, 26, 175
Babyk, Y. V., Del Popolo, A., & Vavilova, I. B. 2014, ARep, 58, 587
Blitz, L., & Rosolowsky, E. 2004, ApJL, 612, L29
Blitz, L., & Rosolowsky, E. 2006, ApJ, 650, 933
Boizelle, B. D., Barth, A. J., Darling, J., et al. 2017, ApJ, 845, 170
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207
Boroson, B., Kim, D.-W., & Fabbiano, G. 2011, ApJ, 729, 12
Cappellari, M., Emsellem, E., Krajnovic, D., et al. 2011, MNRAS, 413, 813
Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M. 2008, ApJL,

683, L107
Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J., et al. 2010, ApJ,

720, 1066
Cavaliere, A., & Fusco-Femiano, R. 1978, A&A, 70, 677
Choudhury, P. P., & Sharma, P. 2016, MNRAS, 457, 2554
Combes, F., Young, L. M., & Bureau, M. 2007, MNRAS, 377, 1795
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693
Crawford, C. S., Allen, S. W., Ebeling, H., Edge, A. C., & Fabian, A. C. 1999,

MNRAS, 306, 857
Crocker, A., Krips, M., Bureau, M., et al. 2012, MNRAS, 421, 1298
Crocker, A. F., Bureau, M., Young, L. M., & Combes, F. 2011, MNRAS,

410, 1197
David, L. P., Lim, J., Forman, W., et al. 2014, ApJ, 792, 94
David, L. P., Vrtilek, J., O’Sullivan, E., et al. 2017, ApJ, 842, 84
Davis, T. A., Alatalo, K., Sarzi, M., et al. 2011, MNRAS, 417, 882
Davis, T. A., Greene, J. E., Ma, C.-P., et al. 2019, MNRAS, 486, 1404
Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Draine, B. T., & Salpeter, E. E. 1979, ApJ, 231, 438
Edge, A. C. 2001, MNRAS, 328, 762
Edge, A. C., Wilman, R. J., Johnstone, R. M., et al. 2002, MNRAS, 337, 49
Elmegreen, B. G. 1993, ApJ, 411, 170
Emsellem, E., Cappellari, M., Krajnović, D., et al. 2011, MNRAS, 414, 888
Emsellem, E., Greusard, D., Combes, F., et al. 2001, A&A, 368, 52
Fabian, A. C., Celotti, A., Blundell, K. M., Kassim, N. E., & Perley, R. A.

2002, MNRAS, 331, 369
Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2003, MNRAS, 344, L43
Feigelson, E. D., & Nelson, P. I. 1985, ApJ, 293, 192
Forbes, D. A., Alabi, A., Romanowsky, A. J., et al. 2017, MNRAS, 464, L26
Ford, H. A., & Bregman, J. N. 2013, ApJ, 770, 137
Forman, W., Jones, C., & Tucker, W. 1985, ApJ, 293, 102
Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, Proc. SPIE, 6270,

62701V
Gaspari, M., Brighenti, F., & Temi, P. 2012, MNRAS, 424, 190
Gaspari, M., & Churazov, E. 2013, A&A, 559, A78
Gitti, M., Nulsen, P. E. J., David, L. P., McNamara, B. R., & Wise, M. W.

2011, ApJ, 732, 13
Goudfrooij, P., de Jong, T., Hansen, L., & Norgaard-Nielsen, H. U. 1994,

MNRAS, 271, 833
Goulding, A. D., Greene, J. E., Ma, C.-P., et al. 2016, ApJ, 826, 167
Griffith, E., Martini, P., & Conroy, C. 2019, MNRAS, 484, 562
Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2006, MNRAS, 370, 1893
Hatch, N. A., Crawford, C. S., Johnstone, R. M., & Fabian, A. C. 2006,

MNRAS, 367, 433
Heckman, T. M., Baum, S. A., van Breugel, W. J. M., & McCarthy, P. 1989,

ApJ, 338, 48
Hlavacek-Larrondo, J., McDonald, M., Benson, B. A., et al. 2015, ApJ, 805, 35
Hogan, M. T., McNamara, B. R., Pulido, F., et al. 2017a, ApJ, 837, 51
Hogan, M. T., McNamara, B. R., Pulido, F. A., et al. 2017b, ApJ, 851, 66
Hu, E. M., Cowie, L. L., & Wang, Z. 1985, ApJS, 59, 447
Isobe, T., Feigelson, E. D., & Nelson, P. I. 1986, ApJ, 306, 490
Kaastra, J. S., & Mewe, R. 1993, A&AS, 97, 443
Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
Kim, D.-W., & Fabbiano, G. 2013, ApJ, 776, 116
Kim, D.-W., & Fabbiano, G. 2015, ApJ, 812, 127
Kirkpatrick, C. C., & McNamara, B. R. 2015, MNRAS, 452, 4361
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Lagos, C. d. P., Davis, T. A., Lacey, C. G., et al. 2014, MNRAS, 443, 1002
Lagos, C. d. P., Padilla, N. D., Davis, T. A., et al. 2015, MNRAS, 448, 1271

16

The Astrophysical Journal, 887:149 (17pp), 2019 December 20 Babyk et al.

https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0003-3165-9804
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0002-2622-2627
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://orcid.org/0000-0002-3398-6916
https://doi.org/10.1086/177901
https://ui.adsabs.harvard.edu/abs/1996ApJ...470..706A/abstract
https://doi.org/10.1093/mnras/sts299
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1796A/abstract
https://doi.org/10.1111/j.1365-2966.2006.10778.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.372...21A/abstract
https://ui.adsabs.harvard.edu/abs/1996ASPC..101...17A/abstract
https://ui.adsabs.harvard.edu/abs/2012JPhSt..16.1904B/abstract
https://doi.org/10.1134/S1063772916040028
https://ui.adsabs.harvard.edu/abs/2016ARep...60..542B/abstract
https://doi.org/10.1515/astro-2017-0169
https://ui.adsabs.harvard.edu/abs/2014BaltA..23....9B/abstract
https://doi.org/10.3847/1538-4357/aab3c9
https://ui.adsabs.harvard.edu/abs/2018ApJ...857...32B/abstract
https://doi.org/10.3847/1538-4357/aacce5
https://ui.adsabs.harvard.edu/abs/2018ApJ...862...39B/abstract
https://ui.adsabs.harvard.edu/abs/2012OAP....25..119B/abstract
https://ui.adsabs.harvard.edu/abs/2013OAP....26..175B/abstract
https://doi.org/10.1134/S1063772914090017
https://ui.adsabs.harvard.edu/abs/2014ARep...58..587B/abstract
https://doi.org/10.1086/424661
https://ui.adsabs.harvard.edu/abs/2004ApJ...612L..29B/abstract
https://doi.org/10.1086/505417
https://ui.adsabs.harvard.edu/abs/2006ApJ...650..933B/abstract
https://doi.org/10.3847/1538-4357/aa8266
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..170B/abstract
https://doi.org/10.1146/annurev-astro-082812-140944
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..207B/abstract
https://doi.org/10.1088/0004-637X/729/1/12
https://ui.adsabs.harvard.edu/abs/2011ApJ...729...12B/abstract
https://doi.org/10.1111/j.1365-2966.2010.18174.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413..813C/abstract
https://doi.org/10.1086/591665
https://ui.adsabs.harvard.edu/abs/2008ApJ...683L.107C/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...683L.107C/abstract
https://doi.org/10.1088/0004-637X/720/2/1066
https://ui.adsabs.harvard.edu/abs/2010ApJ...720.1066C/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...720.1066C/abstract
https://ui.adsabs.harvard.edu/abs/1978A&A....70..677C/abstract
https://doi.org/10.1093/mnras/stw152
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.2554C/abstract
https://doi.org/10.1111/j.1365-2966.2007.11759.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.377.1795C/abstract
https://doi.org/10.1086/300337
https://ui.adsabs.harvard.edu/abs/1998AJ....115.1693C/abstract
https://doi.org/10.1046/j.1365-8711.1999.02583.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.306..857C/abstract
https://doi.org/10.1111/j.1365-2966.2011.20393.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.1298C/abstract
https://doi.org/10.1111/j.1365-2966.2010.17537.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.1197C/abstract
https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.1197C/abstract
https://doi.org/10.1088/0004-637X/792/2/94
https://ui.adsabs.harvard.edu/abs/2014ApJ...792...94D/abstract
https://doi.org/10.3847/1538-4357/aa756c
https://ui.adsabs.harvard.edu/abs/2017ApJ...842...84D/abstract
https://doi.org/10.1111/j.1365-2966.2011.19355.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.417..882D/abstract
https://doi.org/10.1093/mnras/stz871
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.1404D/abstract
https://doi.org/10.1146/annurev.aa.28.090190.001243
https://ui.adsabs.harvard.edu/abs/1990ARA&A..28..215D/abstract
https://doi.org/10.1086/157206
https://ui.adsabs.harvard.edu/abs/1979ApJ...231..438D/abstract
https://doi.org/10.1046/j.1365-8711.2001.04802.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328..762E/abstract
https://doi.org/10.1046/j.1365-8711.2002.05790.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.337...49E/abstract
https://doi.org/10.1086/172816
https://ui.adsabs.harvard.edu/abs/1993ApJ...411..170E/abstract
https://doi.org/10.1111/j.1365-2966.2011.18496.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414..888E/abstract
https://doi.org/10.1051/0004-6361:20000523
https://ui.adsabs.harvard.edu/abs/2001A&A...368...52E/abstract
https://doi.org/10.1046/j.1365-8711.2002.05182.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.331..369F/abstract
https://doi.org/10.1046/j.1365-8711.2003.06902.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.344L..43F/abstract
https://doi.org/10.1086/163225
https://ui.adsabs.harvard.edu/abs/1985ApJ...293..192F/abstract
https://doi.org/10.1093/mnrasl/slw176
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464L..26F/abstract
https://doi.org/10.1088/0004-637X/770/2/137
https://ui.adsabs.harvard.edu/abs/2013ApJ...770..137F/abstract
https://doi.org/10.1086/163218
https://ui.adsabs.harvard.edu/abs/1985ApJ...293..102F/abstract
https://doi.org/10.1117/12.671760
https://ui.adsabs.harvard.edu/abs/2006SPIE.6270E..1VF/abstract
https://ui.adsabs.harvard.edu/abs/2006SPIE.6270E..1VF/abstract
https://doi.org/10.1111/j.1365-2966.2012.21183.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424..190G/abstract
https://doi.org/10.1051/0004-6361/201322295
https://ui.adsabs.harvard.edu/abs/2013A&A...559A..78G/abstract
https://doi.org/10.1088/0004-637X/732/1/13
https://ui.adsabs.harvard.edu/abs/2011ApJ...732...13G/abstract
https://doi.org/10.1093/mnras/271.4.833
https://ui.adsabs.harvard.edu/abs/1994MNRAS.271..833G/abstract
https://doi.org/10.3847/0004-637X/826/2/167
https://ui.adsabs.harvard.edu/abs/2016ApJ...826..167G/abstract
https://doi.org/10.1093/mnras/sty3405
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484..562G/abstract
https://doi.org/10.1111/j.1365-2966.2006.10615.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.370.1893H/abstract
https://doi.org/10.1111/j.1365-2966.2006.09970.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.367..433H/abstract
https://doi.org/10.1086/167181
https://ui.adsabs.harvard.edu/abs/1989ApJ...338...48H/abstract
https://doi.org/10.1088/0004-637X/805/1/35
https://ui.adsabs.harvard.edu/abs/2015ApJ...805...35H/abstract
https://doi.org/10.3847/1538-4357/aa5f56
https://ui.adsabs.harvard.edu/abs/2017ApJ...837...51H/abstract
https://doi.org/10.3847/1538-4357/aa9af3
https://ui.adsabs.harvard.edu/abs/2017ApJ...851...66H/abstract
https://doi.org/10.1086/191081
https://ui.adsabs.harvard.edu/abs/1985ApJS...59..447H/abstract
https://doi.org/10.1086/164359
https://ui.adsabs.harvard.edu/abs/1986ApJ...306..490I/abstract
https://ui.adsabs.harvard.edu/abs/1993A&AS...97..443K/abstract
https://doi.org/10.1051/0004-6361:20041864
https://ui.adsabs.harvard.edu/abs/2005A&A...440..775K/abstract
https://doi.org/10.1088/0004-637X/776/2/116
https://ui.adsabs.harvard.edu/abs/2013ApJ...776..116K/abstract
https://doi.org/10.1088/0004-637X/812/2/127
https://ui.adsabs.harvard.edu/abs/2015ApJ...812..127K/abstract
https://doi.org/10.1093/mnras/stv1574
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.4361K/abstract
https://doi.org/10.1146/annurev-astro-082708-101811
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..511K/abstract
https://doi.org/10.1093/mnras/stu1209
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.1002L/abstract
https://doi.org/10.1093/mnras/stu2763
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.1271L/abstract


Lakhchaura, K., Werner, N., Sun, M., et al. 2018, MNRAS, 481, 4472
Le Bourlot, J., Le Petit, F., Pinto, C., Roueff, E., & Roy, F. 2012, A&A,

541, A76
Li, Y., & Bryan, G. L. 2014, ApJ, 789, 153
Li, Y., Bryan, G. L., Ruszkowski, M., et al. 2015, ApJ, 811, 73
Liedahl, D. A., Osterheld, A. L., & Goldstein, W. H. 1995, ApJL, 438, L115
Ma, C.-P., Greene, J. E., McConnell, N., et al. 2014, ApJ, 795, 158
Main, R. A., McNamara, B. R., Nulsen, P. E. J., Russell, H. R., &

Vantyghem, A. N. 2017, MNRAS, 464, 4360
Mathews, W. G., & Brighenti, F. 2003, ARA&A, 41, 191
McCourt, M., Sharma, P., Quataert, E., & Parrish, I. J. 2012, MNRAS,

419, 3319
McDonald, M., Veilleux, S., Rupke, D. S. N., & Mushotzky, R. 2010, ApJ,

721, 1262
McNamara, B. R., & Jaffe, W. 1994, A&A, 281, 673
McNamara, B. R., Rohanizadegan, M., & Nulsen, P. E. J. 2011, ApJ, 727, 39
McNamara, B. R., Russell, H. R., Nulsen, P. E. J., et al. 2014, ApJ, 785, 44
McNamara, B. R., Russell, H. R., Nulsen, P. E. J., et al. 2016, ApJ, 830, 79
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144
Mewe, R., Lemen, J. R., & van den Oord, G. H. J. 1986, A&AS, 65, 511
Morganti, R., de Zeeuw, P. T., Oosterloo, T. A., et al. 2006, MNRAS, 371, 157
Narayan, R., & Fabian, A. C. 2011, MNRAS, 415, 3721
Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21
Negri, A., Posacki, S., Pellegrini, S., & Ciotti, L. 2014, MNRAS, 445, 1351
Nulsen, P. E. J. 1986, MNRAS, 221, 377
Obreschkow, D. 2008, in AIP Conf. Ser. 1035, The Evolution of Galaxies

through the Neutral Hydrogen Window, ed. R. Minchin & E. Momjian
(Melville, NY: AIP), 33

Oosterloo, T., Morganti, R., Crocker, A., et al. 2010, MNRAS, 409, 500
O’Sullivan, E., Combes, F., Salomé, P., et al. 2018, A&A, 618, A126
Pellegrini, S., Ciotti, L., Negri, A., & Ostriker, J. P. 2018, ApJ, 856, 115
Pizzolato, F., & Soker, N. 2005, ApJ, 632, 821
Pulatova, N. G., Vavilova, I. B., Sawangwit, U., Babyk, I., & Klimanov, S.

2015, MNRAS, 447, 2209
Pulido, F. A., McNamara, B. R., Edge, A. C., et al. 2018, ApJ, 853, 177
Rafferty, D. A., McNamara, B. R., & Nulsen, P. E. J. 2008, ApJ, 687, 899
Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J., & Wise, M. W. 2006, ApJ,

652, 216
Revaz, Y., Combes, F., & Salomé, P. 2008, A&A, 477, L33
Russell, H. R., Fabian, A. C., McNamara, B. R., & Broderick, A. E. 2015,

MNRAS, 451, 588
Russell, H. R., McDonald, M., McNamara, B. R., et al. 2017a, ApJ, 836, 130
Russell, H. R., McNamara, B. R., Edge, A. C., et al. 2013, MNRAS, 432, 530
Russell, H. R., McNamara, B. R., Edge, A. C., et al. 2014, ApJ, 784, 78
Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2016, MNRAS, 458, 3134
Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2017b, MNRAS, 472, 4024

Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2019, MNRAS,
490, 3025

Russell, H. R., Sanders, J. S., & Fabian, A. C. 2008, MNRAS, 390, 1207
Sadler, E. M., & Gerhard, O. E. 1985, MNRAS, 214, 177
Sage, L. J. 1993, A&A, 272, 123
Salomé, P., & Combes, F. 2003, A&A, 412, 657
Salomé, P., Combes, F., Revaz, Y., et al. 2011, A&A, 531, A85
Schmitt, J. H. M. M. 1985, ApJ, 293, 178
Serra, P., Oosterloo, T., Morganti, R., et al. 2012, MNRAS, 422, 1835
Shapiro, K. L., Falcón-Barroso, J., van de Ven, G., et al. 2010, MNRAS,

402, 2140
Sharma, P., McCourt, M., Quataert, E., & Parrish, I. J. 2012, MNRAS,

420, 3174
Simionescu, A., Tremblay, G., Werner, N., et al. 2018, MNRAS, 475, 3004
Simionescu, A., Werner, N., Forman, W. R., et al. 2010, MNRAS, 405, 91
Smith, G. P., Kneib, J.-P., Ebeling, H., Czoske, O., & Smail, I. 2001, ApJ,

552, 493
Sobacchi, E., & Sormani, M. C. 2019, MNRAS, 486, 205
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
Su, Y., & Irwin, J. A. 2013, ApJ, 766, 61
Tremblay, G. R., Oonk, J. B. R., Combes, F., et al. 2016, Natur, 534, 218
Trinchieri, G., & Fabbiano, G. 1985, ApJ, 296, 447
van Dokkum, P. G., & Franx, M. 1995, AJ, 110, 2027
Vantyghem, A. N., McNamara, B. R., Edge, A. C., et al. 2017, ApJ, 848, 101
Vantyghem, A. N., McNamara, B. R., Russell, H. R., et al. 2016, ApJ, 832, 148
Vantyghem, A. N., McNamara, B. R., Russell, H. R., et al. 2018, ApJ, 863, 193
Vavilova, I. B., Bolotin, Y. L., Boyarsky, A. M., et al. 2015, Dark

Matter: Observational Manifestation and Experimental Searches (Kiev:
Akademperiodyka)

Vikhlinin, A., Kravtsov, A., Forman, W., et al. 2006, ApJ, 640, 691
Voit, G. M., Babul, A., Babyk, I., et al. 2019, BAAS, 51, 405
Voit, G. M., Cavagnolo, K. W., Donahue, M., et al. 2008, ApJL, 681, L5
Voit, G. M., & Donahue, M. 2015, ApJL, 799, L1
Voit, G. M., Donahue, M., O’Shea, B. W., et al. 2015, ApJL, 803, L21
Werner, N., Allen, S. W., & Simionescu, A. 2012, MNRAS, 425, 2731
Werner, N., McNamara, B. R., Churazov, E., & Scannapieco, E. 2019, SSRv,

215, 5
Werner, N., Oonk, J. B. R., Sun, M., et al. 2014, MNRAS, 439, 2291
Werner, N., Urban, O., Simionescu, A., & Allen, S. W. 2013, Natur, 502, 656
Wong, K.-W., Irwin, J. A., Shcherbakov, R. V., et al. 2014, ApJ, 780, 9
Yang, H.-Y. K., & Reynolds, C. S. 2016, ApJ, 818, 181
Young, J. S., & Knezek, P. M. 1989, ApJL, 347, L55
Young, J. S., & Scoville, N. Z. 1991, ARA&A, 29, 581
Young, L. M. 2002, AJ, 124, 788
Young, L. M., Bureau, M., & Cappellari, M. 2008, ApJ, 676, 317
Young, L. M., Bureau, M., Davis, T. A., et al. 2011, MNRAS, 414, 940

17

The Astrophysical Journal, 887:149 (17pp), 2019 December 20 Babyk et al.

https://doi.org/10.1093/mnras/sty2565
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.4472L/abstract
https://doi.org/10.1051/0004-6361/201118126
https://ui.adsabs.harvard.edu/abs/2012A&A...541A..76L/abstract
https://ui.adsabs.harvard.edu/abs/2012A&A...541A..76L/abstract
https://doi.org/10.1088/0004-637X/789/2/153
https://ui.adsabs.harvard.edu/abs/2014ApJ...789..153L/abstract
https://doi.org/10.1088/0004-637X/811/2/73
https://ui.adsabs.harvard.edu/abs/2015ApJ...811...73L/abstract
https://doi.org/10.1086/187729
https://ui.adsabs.harvard.edu/abs/1995ApJ...438L.115L/abstract
https://doi.org/10.1088/0004-637X/795/2/158
https://ui.adsabs.harvard.edu/abs/2014ApJ...795..158M/abstract
https://doi.org/10.1093/mnras/stw2644
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.4360M/abstract
https://doi.org/10.1146/annurev.astro.41.090401.094542
https://ui.adsabs.harvard.edu/abs/2003ARA&A..41..191M/abstract
https://doi.org/10.1111/j.1365-2966.2011.19972.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3319M/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3319M/abstract
https://doi.org/10.1088/0004-637X/721/2/1262
https://ui.adsabs.harvard.edu/abs/2010ApJ...721.1262M/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...721.1262M/abstract
https://ui.adsabs.harvard.edu/abs/1994A&A...281..673M/abstract
https://doi.org/10.1088/0004-637X/727/1/39
https://ui.adsabs.harvard.edu/abs/2011ApJ...727...39M/abstract
https://doi.org/10.1088/0004-637X/785/1/44
https://ui.adsabs.harvard.edu/abs/2014ApJ...785...44M/abstract
https://doi.org/10.3847/0004-637X/830/2/79
https://ui.adsabs.harvard.edu/abs/2016ApJ...830...79M/abstract
https://doi.org/10.1086/509598
https://ui.adsabs.harvard.edu/abs/2007ApJ...655..144M/abstract
https://ui.adsabs.harvard.edu/abs/1986A&AS...65..511M/abstract
https://doi.org/10.1111/j.1365-2966.2006.10681.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.371..157M/abstract
https://doi.org/10.1111/j.1365-2966.2011.18987.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.3721N/abstract
https://doi.org/10.1111/j.1365-2966.2009.15878.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402...21N/abstract
https://doi.org/10.1093/mnras/stu1834
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445.1351N/abstract
https://doi.org/10.1093/mnras/221.2.377
https://ui.adsabs.harvard.edu/abs/1986MNRAS.221..377N/abstract
https://ui.adsabs.harvard.edu/abs/2008AIPC.1035...33O/abstract
https://doi.org/10.1111/j.1365-2966.2010.17351.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.409..500O/abstract
https://doi.org/10.1051/0004-6361/201833580
https://ui.adsabs.harvard.edu/abs/2018A&A...618A.126O/abstract
https://doi.org/10.3847/1538-4357/aaae07
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..115P/abstract
https://doi.org/10.1086/444344
https://ui.adsabs.harvard.edu/abs/2005ApJ...632..821P/abstract
https://doi.org/10.1093/mnras/stu2556
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.2209P/abstract
https://doi.org/10.3847/1538-4357/aaa54b
https://ui.adsabs.harvard.edu/abs/2018ApJ...853..177P/abstract
https://doi.org/10.1086/591240
https://ui.adsabs.harvard.edu/abs/2008ApJ...687..899R/abstract
https://doi.org/10.1086/507672
https://ui.adsabs.harvard.edu/abs/2006ApJ...652..216R/abstract
https://ui.adsabs.harvard.edu/abs/2006ApJ...652..216R/abstract
https://doi.org/10.1051/0004-6361:20078915
https://ui.adsabs.harvard.edu/abs/2008A&A...477L..33R/abstract
https://doi.org/10.1093/mnras/stv954
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451..588R/abstract
https://doi.org/10.3847/1538-4357/836/1/130
https://ui.adsabs.harvard.edu/abs/2017ApJ...836..130R/abstract
https://doi.org/10.1093/mnras/stt490
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..530R/abstract
https://doi.org/10.1088/0004-637X/784/1/78
https://ui.adsabs.harvard.edu/abs/2014ApJ...784...78R/abstract
https://doi.org/10.1093/mnras/stw409
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.3134R/abstract
https://doi.org/10.1093/mnras/stx2255
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.4024R/abstract
https://doi.org/10.1093/mnras/stz2719
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3025R/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3025R/abstract
https://doi.org/10.1111/j.1365-2966.2008.13823.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.390.1207R/abstract
https://doi.org/10.1093/mnras/214.2.177
https://ui.adsabs.harvard.edu/abs/1985MNRAS.214..177S/abstract
https://ui.adsabs.harvard.edu/abs/1993A&A...272..123S/abstract
https://doi.org/10.1051/0004-6361:20031438
https://ui.adsabs.harvard.edu/abs/2003A&A...412..657S/abstract
https://doi.org/10.1051/0004-6361/200811333
https://ui.adsabs.harvard.edu/abs/2011A&A...531A..85S/abstract
https://doi.org/10.1086/163224
https://ui.adsabs.harvard.edu/abs/1985ApJ...293..178S/abstract
https://doi.org/10.1111/j.1365-2966.2012.20219.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422.1835S/abstract
https://doi.org/10.1111/j.1365-2966.2009.16111.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.2140S/abstract
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.2140S/abstract
https://doi.org/10.1111/j.1365-2966.2011.20246.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.3174S/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.3174S/abstract
https://doi.org/10.1093/mnras/sty047
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.3004S/abstract
https://doi.org/10.1111/j.1365-2966.2010.16450.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405...91S/abstract
https://doi.org/10.1086/320557
https://ui.adsabs.harvard.edu/abs/2001ApJ...552..493S/abstract
https://ui.adsabs.harvard.edu/abs/2001ApJ...552..493S/abstract
https://doi.org/10.1093/mnras/stz792
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486..205S/abstract
https://doi.org/10.1146/annurev.astro.43.051804.102221
https://ui.adsabs.harvard.edu/abs/2005ARA&A..43..677S/abstract
https://doi.org/10.1088/0004-637X/766/1/61
https://ui.adsabs.harvard.edu/abs/2013ApJ...766...61S/abstract
https://doi.org/10.1038/nature17969
https://ui.adsabs.harvard.edu/abs/2016Natur.534..218T/abstract
https://doi.org/10.1086/163463
https://ui.adsabs.harvard.edu/abs/1985ApJ...296..447T/abstract
https://doi.org/10.1086/117667
https://ui.adsabs.harvard.edu/abs/1995AJ....110.2027V/abstract
https://doi.org/10.3847/1538-4357/aa8fd0
https://ui.adsabs.harvard.edu/abs/2017ApJ...848..101V/abstract
https://doi.org/10.3847/0004-637X/832/2/148
https://ui.adsabs.harvard.edu/abs/2016ApJ...832..148V/abstract
https://doi.org/10.3847/1538-4357/aad2e0
https://ui.adsabs.harvard.edu/abs/2018ApJ...863..193V/abstract
https://doi.org/10.1086/500288
https://ui.adsabs.harvard.edu/abs/2006ApJ...640..691V/abstract
https://doi.org/10.1055/a-0836-2596
https://ui.adsabs.harvard.edu/abs/2019BAAS...51c.405V/abstract
https://doi.org/10.1086/590344
https://ui.adsabs.harvard.edu/abs/2008ApJ...681L...5V/abstract
https://doi.org/10.1088/2041-8205/799/1/L1
https://ui.adsabs.harvard.edu/abs/2015ApJ...799L...1V/abstract
https://doi.org/10.1088/2041-8205/803/2/L21
https://ui.adsabs.harvard.edu/abs/2015ApJ...803L..21V/abstract
https://doi.org/10.1111/j.1365-2966.2012.21245.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.2731W/abstract
https://doi.org/10.1007/s11214-018-0571-9
https://ui.adsabs.harvard.edu/abs/2019SSRv..215....5W/abstract
https://ui.adsabs.harvard.edu/abs/2019SSRv..215....5W/abstract
https://doi.org/10.1093/mnras/stu006
https://ui.adsabs.harvard.edu/abs/2014MNRAS.439.2291W/abstract
https://doi.org/10.1038/nature12646
https://ui.adsabs.harvard.edu/abs/2013Natur.502..656W/abstract
https://doi.org/10.1088/0004-637X/780/1/9
https://ui.adsabs.harvard.edu/abs/2014ApJ...780....9W/abstract
https://doi.org/10.3847/0004-637X/818/2/181
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..181Y/abstract
https://doi.org/10.1086/185606
https://ui.adsabs.harvard.edu/abs/1989ApJ...347L..55Y/abstract
https://doi.org/10.1146/annurev.aa.29.090191.003053
https://ui.adsabs.harvard.edu/abs/1991ARA&A..29..581Y/abstract
https://doi.org/10.1086/341648
https://ui.adsabs.harvard.edu/abs/2002AJ....124..788Y/abstract
https://doi.org/10.1086/529019
https://ui.adsabs.harvard.edu/abs/2008ApJ...676..317Y/abstract
https://doi.org/10.1111/j.1365-2966.2011.18561.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.414..940Y/abstract

	1. Introduction
	2. Sample and Data Reduction
	2.1. Sample Selection
	2.2. Data Processing
	2.3. Spectral Extraction and Modeling

	3. Galaxy Properties
	3.1. Temperature, Density, and Cooling Time Profiles
	3.2. Mass and Free-fall Time Profiles
	3.2.1. The Gas and Total Mass
	3.2.2. Free-fall Time


	4. Thermally Unstable Atmospheric Cooling
	5. Molecular Gas Distribution
	5.1. ALMA Data Reduction
	5.2. Mmol–MX Relation
	5.2.1. Survival Analysis

	5.3. Density, Temperature, and Luminosity
	5.4. Discussion
	5.4.1. Does Molecular Gas Fuel Radio/AGN Feedback?
	5.4.2. Cold Gas in Early-type Galaxies

	5.5. Atmospheric Cooling
	5.6. Merger Origin
	5.7. Stellar Ejecta
	5.8. Neutral Hydrogen in Hot Atmospheres

	6. Conclusions
	References



