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Abstract

We study the multitime distribution in a discrete polynuclear growth model or,
equivalently, in directed last-passage percolation with geometric weights. A for-
mula for the joint multitime distribution function is derived in the discrete setting.
It takes the form of a multiple contour integral of a block Fredholm determinant.
The asymptotic multitime distribution is then computed by taking the appropriate
KPZ-scaling limit of this formula. This distribution is expected to be universal
for models in the Kardar-Parisi-Zhang universality class. © 2021 The Authors.
Communications on Pure and Applied Mathematics published by Wiley Period-
icals LLC.

1 Introduction

Decorate the points of Z? with independent and identically distributed random
weights w(m, n) that are nonnegative. Associated to this random environment is a
growth function G as follows. For every m,n > 1,

(1.1) G(m,n) = max{G(m — 1,n),G(m,n — 1)} + w(m,n)

with boundary conditions G(m,0) = G(0,n) = 0 for m,n > 0. The function
grows out from the corner of the first quadrant along up-right directions, so it is a
model of local random growth.

Consider weights chosen according to the geometric law: for some 0 < g < 1,

Prlw(m,n) = k] = (1 — q)¢* fork > 0.

The subject of this article is the calculation, and then a derivation of the asymp-
totic value, of the multipoint probability

(1.2) Pr[G(ml,nl) <a1,G(ma,n2) <as,...,G(mp,np) < ap],

where m1 < my < -+ < mp and ny < np < -+ < np. In the asymptotic
derivation the parameters m1, n, and a are scaled according to Kardar-Parisi-Zhang
(KPZ) scaling [25/[26]]. This means that for a large parameter 7, the my’s, ng’s,
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and ap’s are written (ignoring rounding) as
2
ng =t T —c1xp (4 T)3,
2
(1.3) mg = tgT + c1xp (1 T)3,
1
ar = cate T 4 c3& (. T)3.

The ¢;s are constants that depend on ¢ and will be specified in Section[2| They are
determined from the macroscopic behaviour of G(m,n). The parameters above
are 0 <t <fp < -+ <lp, X1,X2,....Xp € R,and £1,&,...,&, € R. One is
interested in the large 7" limit of (1.2) with this scaling.

In Theorem[2.2] we provide the asymptotic distribution function of G under KPZ
scaling (I.3). Theorem {.12] provides an expression for the distribution function
(I.2). Theorem [2.2]is based on an asymptotical analysis of the latter. The calcu-
lations leading to Theorem [4.12] contained in Section [3]and Section 4} should be
more broadly applicable.

The probability (1.2) is expressed in terms of a (p — 1)-fold contour integral
of a Fredholm determiant involving an n, x n, matrix with a p x p block struc-
ture. This structure persists in the large 7" limit, and the limiting multipoint prob-
ability is expressed by such an integral of some Fredholm determinant over H =
L*R<g) ® - ® L*(R<) @ L2(Rsy).

p—1

Interpretation as a growing interface and a nonequilibrium system. The growth
model (I.T) has several interpretations. It can be seen as a randomly growing
Young diagram, or as a totally asymmetric exclusion process, or yet a directed
last passage percolation model, also as a kind of first-passage percolation model
(with nonpositive weights), a system of queues in tandem, and a type of random
polymer at zero temperature. A natural interpretation is as a randomly growing
interface called discrete polynuclear growth, which we explain.

Rotating the first quadrant 45 degrees, define a function A (x, z) by

: 1 f—xa1
h(x,t):G( txt adul )

2 ’ 2
where x + ¢ is odd, |x| < ¢ and A(x,0) = 0. Extend /(x,?) to x € Z by linear
interpolation. Then (I.)) leads to the rule (see [21]]), that

hix,t +1) = max{h(x — 1,1). h(x, ), h{x + 1,6)} + n(x,t + 1).

The n(x, t) are independent and identically distributed with the geometric law if
X + t is odd and |x| < ¢, and O otherwise. This is an instance of the discrete
polynuclear growth model; see [27]. If we extend /s (x, ¢) to every x € R by linear
interpolation, then s(x,¢) can be thought of as the height above x at time ¢ of a
randomly growing interface.
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Theorem [2.2] considers the rescaled process
hQ2e1x(tT)3,2tT) — cat T
c3(tT)3

and provides its joint distribution at the points (x1, 1), ..., (xp, p) in the large-T
limit. Since the times are distinct, it does not provide all the asymptotic finite-
dimensional distributions of Hr, although those could be obtained by considering
limits in the time parameters. There is in fact a limit function H(x, ¢) that is con-
tinuous almost surely (see [29]]), which means that in principle the aforementioned
distributions do determine the law of H. As can be seen from (1.3) and (1.4), we
study time-time distributions of Hr in the (1, 1)-direction. In other directions we
expect the distributions to become asymptotically independent since nontrivial spa-
tial correlations only occur at a scale of 72/3. Therefore we look in the so-called
characteristic direction; see [16] for further discussion on this.

By rescaling variables in the kernel from Theorem [2.2]it may be seen that for
every A > 0, H(x, A¢) has the same distribution as H(x, ¢) as functions of x and ¢.
If we define A(x,7) = tY/3H(t~2/3x,1) + t~1x2, then this means that

A7 AW A0 R A1),

The relation above is known as KPZ scale invariance, which, in this context, makes
the polynuclear growth model a part of the KPZ universality class. The latter is a
collection of 1+1 dimensional statistical mechanical systems whose fluctuations
demonstrate the scale invariance above. Within the KPZ universality class lies
the Airy, process (see [9,[21,]31]] for reference), which represents asymptotic spa-
tial fluctuations in x of the height function at a fixed time 7. So A(x,t) may be
thought of as the space-time surface sketched out by a growing Airy interface.
Some surveys that discuss these topics in depth are [|5,(7,[32,40]], and [36]] is a nice
introduction to the growth model.

The papers [/1}/64{10,/18[29]] have recently studied various aspects of limit distri-
butions in the KPZ universality class. Here we find for the first time a full multitime
distribution function in the KPZ-scaling limit. A multitime distribution function is
actually derived in [[1]] for the related continuous time TASEP in a periodic set-
ting, and the asymptotic limit is computed in the relaxation time scale, when the
TASEP is affected by the finite geometry. It is not obvious how to get the asymp-
totic result of the present paper from theirs, since it means computing asymptotics
in a situation where the TASEP is not affected by the finite geometry. However,
after the completion of this work, the paper [28|] derived the multitime distribution
for the continuous time TASEP in the infinite geometry. The relation between the
formulas before the limit in [[1,28]] and the one in this paper is not clear so far.

The present paper generalizes previous work on the two-time distribution in
[24]]. The two-time distribution has also been investigated in the theoretical physics
literature; see [11-13]] and references there. Moreover, correlation function of the
two-time distribution has been studied in [2}/17]]. The multitime distribution for this

(1.4) Hr(x,t) =
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growth model under a different asymptotic scaling, related to the slow decorrela-
tion phenomenon, has been studied in [4,[8,[16L/19]. Finally, see the paper [37] for
some nice experimental work involving growth interfaces in liquid crystal.

Remarks. The formula for the limiting distribution function for H(x, 7) in Theo-
rem|2.2|is rather complicated. It is built from kernels given by compositions of Airy
functions, which thus generalizes the Airy kernel. In the two-time case it is possi-
ble to rewrite the formula in such a way that the limits t,/t; — 1 and £, /t; — 00
may be studied in detail; see [23[]. It would be interesting to do the same for the
Fredholm determinant in Theorem[2.2] so that these types of limits can be analyzed
in the multitime case as well. The distribution can in fact be computed numerically
starting from the formula in Theorem [2.2]in the two-time case (see [15])), which
shows that, although complicated, the formula is useful nonetheless.

In this paper we study the case of geometrically distributed weights w(m, n).
The case of exponentially distributed weights can be obtained by taking the ap-
propriate limit (g — 1) in the discrete formula. Similarly, the Brownian directed
polymer model can be obtained as a limit. The asymptotic analysis is completely
analogous. We expect the limiting multitime formula in Theorem [2.2] to be uni-
versal within a large class of models. It should be possible to study the limit of
Poissonian last-passage percolation (Poissonized Plancherel) (¢ — 0) from our
formula in Theorem [4.12] but this would entail taking a limit to an infinite Fred-
holm determinant before the large-time asymptotics are computed.

2 Statement of Results

In order to state the theorems we have to introduce notation. There is quite a bit
of notation throughout the article, so in the following, we introduce notation for
both the statement of theorems and those that recur.

2.1 Some Notation and Conventions

Consider times 0 < f1 < fr < -+ < I, points x1,Xx2,...X, € R, and
£1,&,....& € R. Introduce the scaling constants
1 1 _1 2
co=q 3(1+ /93, ca=q 1+ /g3,
1 1
@1 N a1+ )

= ’ C3_ ’
1—-./4q 1—-./4q

where ¢ is the parameter of the geometric distribution. We will investigate the
asymptotics of the probability distribution given by (I.2)) under the scaling (I.3).

Delta notation. For integers 0 < k1 < kp < p, and y being m, n, or a from

(L.3), define
(2.2) Ap, koY = Vip — Yk, and  Agy = yp — yr_q.
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Also, define
Akl,kzt =lg, — g, and  Apt =l —

2 2
Ix 3 Ix 3
A xX=x 2 —x ! and Apx = Ap_q X,

klskZ kZ(Aklskzt) kl(Akl’th k k 1,k ’

(2.3)

Lol

1

tx 3 Ik

Ag, dr€ = Skz(Ak zk t) —Skl(Ak 1k t) and  Apé = Ap_y i€
1,2

1,2
By convention, yo = 0 for y = n,m,a,t,x,&. To understand (2.3) note that it
is such that Ag, 1,1 = (Mg, o) T — €1 Ak, 1o X (A, kot T)?/3, and similarly for
the differences between my.’s and ay’s. We will also use the shorthand
Ak1,k2(y1’ e yé) = (Akl,k2y1’ R Akl,kzye)v
Ar(yheyh = (Bt Ay,

Block notation. The matrices that appear will have a p x p block structure with
the rows and columns partitioned according to

{1,2,....0p0 = (0.n1] U (n1,n2] U--- U (np_1,np).

The following notation will help us with calculations that depend on this structure.
Fory =m,n,a, set
2.4 J’(kz = yrr.lin{r,p—l} %fk € (Np—1,n.],
r* =min{r,p—1} if 1l <r < p.
Forann, xnp matrix M,1 <i,j <np,and 1 <r,s < p, write
M(r,i;s, j) = Yiem,_1,n,],jens_r.ns]y - M. J).

This is the p x p block structure of M according to the partition of rows and
columns above.
Suppose 1 <i < n,. For

F=(e10....6p-1) €{1.2}?"" and 0= (0).....0,_1) € (C\0)?",

define the following quantities.

p—1
2.5) 6%y =[] 6 =",
k=1
r—1 p—1
O(r | ) = 1_[ 9,3_8"’ l_[ 9,;_8"’ forl <r < p.
k=1 k=r

Observe that 6% (i) = 0(r | €) for every i € (n,—1,n,], so these are block func-
tions. Denote by € the following:

k—1
k
e =(2,...,2,1,...,1) forl <k <p.
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For these we define
O | k) =00 | &) = (1 =1 pr=p-2y) - 0(r | 1),

(2.6) )
l<k<min{r,p—1}, 1=<r<p.

We may set ©(r | k) to be zero otherwise. Let us also set
Zmin{kz,p—l} .
(—1D)Fk1ka] = (—])=k=maxtlk} °% for 0 < ky < ko < p.
It will be convenient to write (—1)%%1-k2] . (—1)* as (—1)¥k1-k21F%,
Define also the indicators functions

1 if ¢ = 1 mod 2,
@7) felx) = § fe=0 2 E = O
x>0y ife =2mod 2.

Complex integrands. Define, forn,m,a € Z and w € C \ {0,1 —gq, 1},
wn(l _ w)a—i—m

(2.8) G*(w|n,m,a) = eyl
(1-1%)

as well as the function
G*(w | n,m,a)

G*(l —ﬂ|n,m,a)'

The number we = 1 — ,/q is the critical point around which we will perform
steepest descent analysis. During the asymptotical analysis it will be convenient to
write in terms of G rather than G*. Consider also the following function ¢ that
will become the asymptotical value of G:
(2.10)

2

t
G(w|t,x, &)= exp{§w3 +t3xw2—téf§w} forw e Candt, x,& € R,

2.9) Gw|n,m,a) =

Contour notation. We will always denote the contour integral

1
ﬁ/dz as %dz
14 14

There will be two types of contours in our calculations: circles and vertical lines.
Throughout, y, denotes a circular contour around the origin of radius » > 0 with
counterclockwise orientation. Also, y,(1) is such a circular contour around 1. A
vertical contour through d € R oriented upwards is denoted ;.

Conjugations. Throughout the article p will denote a sufficiently large constant
used with a conjugation factor. Its value will depend only on the parameters ¢, #,
X, and &x. It will be convenient to not state the value of u explicitly, although in

the upcoming theorem it suffices to consider
maxy {xkt,f/g'} — ming {xkt,f“}

ming {(Ag1)1/3}
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Define, with ¢o given by (2.1)),
vy = coT1/3.

Let us introduce discrete conjugation factors, which will be needed for asymptoti-
cal analysis. Recall n(k), m(k), and a(k) from (2.4). For 1 < k < np,
(n(k)—k)

(2.11) c(k)y = G*(1— /q | k,m(k),a(k)) -e" 1
Finally, set

(@) —i) = () —Jj)
i .

vr

(2.12) c(i,j)=-exp

2.2 Statement of Main Theorem

For p > 1 consider the Hilbert space
H=L*R<)® @& L*(Reo) ®L*(R>p).

p—1

A kernel F on H has a p x p block structure, and we denote by F(r, u;s,v) its
(r, s)-block. So

F(u,v):|:

F(lLu;1,v) - F(l,u;p,v)}
PXp

F(pui1,v) = F(pu; p.v)
Recall the function ¢ from (2.10)), the notation r* = min{r, p— 1}, and s* from
(2.4).

DEFINITION 2.1. The following basic matrix kernels over H will constitute a final
kernel.

(1) Letd; > 0and D > 0. Define
Flplp](r,u;s,v)

% Ap(t, x, Liv—z,u
— 1{r=p}eﬂ(v—u) ¢ d ¢ de (ZP | Ap(t, x éG_))e
I'p

g(gl | As*,p(laxvé)) (zp — zl)

I_g,

Recall I'; is a vertical contour oriented upwards that intersects the real axis
atd.
(2) Let0 < d; < ds. For0 <k < p, define

Flkklol(r,u;s,v) = 1{s<k<r*}e”(”_”) ¢ d

|
95 it (61 — o)~ tef2vmhu
G| Dieps (1,6, 8) 9 (82 | Aselt,x,8)

1

T g,
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(3) Let0 <d3z <drand D > 0. For0 < k < p, define
Flpklp] (r,u:5,0) = Lipe p sk < pye @

$ ae § acidaz,
T4, F*d:; I'p
G(zp | Ap(t.x.6))(zp — L2) 71 (L2 — {3)Lebav—2ru
G2 | Mg, p(t.x. )9 (83 | Agi(t,x.8))
(4) Let0 < dy.d3 < ds. For0 <kqi,ky < p, define

Flky,k1,k212] (r,u; 8, v)

= 1ig, <r, s<kp<kpye @™

$ ac § i b az
g r g,

I—Ld:;

1= (G- §‘3)_1e§30—§1u
g(é‘l | Akl,r*(l,x,é))g(zz | Akz,k1(tax,g))g(§3 | As,kz(t,x,%'))'

The upcoming kernels are determined in terms of integer parameters 0 <
ki < ky < p and a vector parameter £ = (e1,...,8p—1) € {1,2}P7L.
Given k1, kp, and &, consider any set of distinct positive real numbers Dy
for integers k € (k1, k2] that satisfy the following pairwise ordering:

(2.13) Dy < Dy if e = | while Dy > Dy y if e = 2.

It is easy to see, for instance by induction, that it is always possible to order
distinct real numbers such that they satisfy these constraints imposed by &.
An explicit choice would be

Dy =27 and Dyyq = Dy + (1) F12F,
Denote the contour
f‘Dg =I'py 4 XX Tpy,.
(5) Letd; > 0. Define
Felkal (1 k211, us 5, v)

= Vg, <, smko<p. ks <k} 95 At 95 Az, 41 dZk,

1—‘*‘11 FDg

[Ty <kier @2k | Bex,9) Tk, <koait, (T — Zar) eV 51H
G0 ] Mgy (%, ) @k 11 = 1) '
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(6) Let dy,dr > 0. Define

FE[ky ol ko] (7,155, v)

= Lip, < 5% kg ky <k} O 95 diy 95 At QO dzg,41---dzk,

Fa, I—a, f‘Ds

[y <tk & (2 | Akt %, 8) Ty <kocky 2k — Zp) B2 700
Gy [ Dy o (3.6 G (02 | Age sy (. %.)) Gy 41 — C0) (y — C2)

(7) Let 0 < dq,ds < dp and recall k1 < k,. Define

F&lk1 ko ks (k1,k2]](r, us s, v)

T ol 95 dt, 95 it 95 dts 5£dzk1+1---dzk2
Fa Ta, Fay f‘Dg

[Tk, <k<tr, 9 (2 | Akt x.6)) Ty <t<kr @k — 2k )™ (G2 — t3)"eSsvhn
G| Ay (3. 6) G (2| Ay ey (1.3, 6)) G (83 | Ay (1%, 6)) (k41— §1) (2k, —82)
When the conjugation constant w is sufficiently large, these kernels decay rapidly

to be of trace class, which will be a by-product of the proof of Theorem [2.2]
(Specifically, their entries are bounded by quantities of the form

e~ A (—u)e™Y Ai(v)

where Al is the Airy function.)

Using these basic kernels we compose five others as weighted sums. Let 6y, ...,
6p—1 be nonzero complex numbers and 8 = (01,...,60,—1). Recall (r | &) and
O(r | k) from (2.5) and (2.6), respectively. Define the following kernels over H:

FOGCusv)y= > (1+0( | k) (14 0k |5)) Fleklel(ru:s. v).

0<k=<p

F(l)(r,u;s,v) = Z Or | k) - Flk.k1o](r,u;s,v).
0<k=p

FOGuisvy= Y 00 k) (1+ 0k ]|5)): Flerkikolo](russ, v).
0<kiy,k2<p

In the following, the variables k1,k3,k3 € {0,..., p} and € € {1, Pt They
satisfy

k1 < ko and given k1, k2,

& =2 if g =1if
(2.14) i <max{k,1} arbitrary 1 or 2 i>min{ks,p—1}
—— ——

™l

= (2,...,2, Emax{ky,1}+ - - - » Emin{ks, p—1}» 1,...,1 )
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Recall the notation (—1)®%1-%21 following (2.6). Define

FO(ru;s,v) = Z (=Rl Ho=0r L 9(r | &)

kl akz ag
satisfy

X [FElk 1k deal] + FElkrkalter o] + Lk, = pot. ko= p3 F L2101 (7, 13 5, ).

F(4)(r,u;s, v) = Z (_])s[kl.k2]+1{k2=17} -0(r | &) x

kl akZak3a €
satisfy (2.14)

[(1 + O3 | $)) FE k1 ko kslter ko]
~ty=p.ks=p-13 (1 + O(p | ) FE[k1,,0-11K1,5]]
+ Yy < p, ka=p3 (1 + O (k2 | s))Fg[kl,k2|(k1,k2]]

+ Lk = p—1,ko=p} (1 + Ok3 | $)) F[p.k3lp]

— Lk =p—1 ka=pks=p—13 (1 + O(p | S))F[p,p—llp])](r,u;s, v).
Finally, define the kernel
(2.15) F0)=—-F® 4 r L @ _p® _ &)

THEOREM 2.2. Consider the function G(m,n) from (1.1). Let ny, my, and ay, be
scaled according to (1.3)) with respect to parameters T, ty, xi, and &. Suppose
p = 2. Then,

lim [G(my,n1) <ai,...,G(mp,np) < apl
T—o00
det(/ + F(0))y
=@Qdo ~--¢d0 _
;6 T G-

where y; is a counterclockwise circular contour around the origin of radius r > 1
and F(0) is from (2.13). Moreover, the limit defines a consistent family of proba-
bility distribution functions.

When p = 2 this theorem agrees with the two-time distribution function from
[24]. In this case the only nonzero component of F () is F @, whose nonzero
basic kernels are F[0](0,1]], £[2]2] and F¥[0,2/(0,2]] for ¢ = 1, 2. Our other theorem
that presents a similar expression for the probability (I.2)) is stated as Theorem
M.12] towards the end of Section 4]

2.3 Discussion of Results

Single-point law. When p = 1 there is a simpler approach for the single-point
limit as explained in Section[d.3] where we express Pr[G(m, n) < a] as a Fredholm
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determinant of a matrix whose entries are in terms of a double contour integral.
More precisely, Pr[G(m,n) < a] = det(I + M) with

S G*(z|n—im.a—1)
M(l,])_¢d§ iﬁ) dZG*(é-|n—]—|—1,m,(l—1)(Z_€)
144 yr(1

Here 1 <i,j <nandtheradiisatisfyt <1—, /g <1—r <1l—gq.
An asymptotical analysis of it leads to

lim Pr(G(mi.n1) <ai] =det( — K)p2®_,)-
T—o0

Lv—zu
(2.16) where K(u’v):¢d§¢dzg(z|t1,x1»§1)_e
I'p

G| tx, &) z—C

r_a
One may observe that

2
3

_1
2.17) 95 d29(z | t,x,E)e ™ = (733 FEHT 30X Aje 4 (2 4 43y,
I'p

Using this, as well as

95 JED(C | 1.x.6) Y = 3£dzf4(z . E)e
) Ta

and that
o0
(z,—z)—lzf dre*=3),
0

we find that
P B | o . 2 : 2
X “)Z3K(t3u,t3v):f AAAIE +x2 +u+ DAIE+x2+v+ 1)
0
= Kai(E +x2 4+ u, £+ x% +v).

This implies that det(/ — K)z2g_) equals Foue(§ + x?), where Fgug is the
distribution function of the GUE Tracy-Widom law from [38]]. The single point
law recovers a result from [20]].

Kernels expressed in terms of Airy function. The kernels in Definition[2.Tjmay be
written as products of more basic ones. Consider the following kernel for x, £ € R
andt > 0:

’d[l"x’ E](u, U) = ¢ dw %(w | [’x,%‘)ew(u_v)
2.18) ?

=1 AI( HE S u))e%xzﬂ(“f%(”‘“)).
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We will show how to write FE [k1,k2|(k1,k2]] using 7 and the others are done
similarly. Observe (wy —w) ™! = [5° d A e Awi—w2)sen(Bwi—w2))  Ag a result,
o0 E-
(Zk —2k41) 1 = / d Xy eM D @kpi=zk)
0

o
(Zhy+1 — L)'= /0 d/\kle)“"’l@l_z"’ﬁl), forky < k < ks,

0
(zh, —8) 7' = / d gy eth2G2k)
0
Let us set &, = 1 and g, = 2 in the following. Then we see that

FE[ky dea |k o1) (7105 5, )

= Ly <y o el /
{ki<r*,s*<ka, k1<ka} [0,00) k1421

[T 4

ki<k=<k;

¢ dé‘l g(;l | Akl,r*(t’xaS))_leél(kkl_u)

Ffdl
_1 .
¢ d@z g(iz | As*’kz(t,x,é')) eé'z(ll\z—i-v)
g,
l_[ Az g(zk | Ap(t, x, g)) 2RI Ak (=) 24 ]
kl<k§k2f‘1)k

We can evaluate the ¢-integrals by changing variables { — —( as in the single
time discussion. Let us consider also the reflection R for which R - K(u,v) =
K(—u,v). We have K((—1)%u, (—1)¥'v) = REKR® (u,v). Then we find that

FElky Jeal(ky Ko1](F 13 5, v)

= Lgiey <1+, 5% <ka, ko <kaye™ 7 /
[0,00)1K142]

[ dx

ki1<k<ka
‘Q{[Akl,r*[v _Akl,r*x’ Akl,r*g] (7.4, A'k])

[T R o [Ar(t,x OIR™ gy, g)
ki1<k<k>

X R”Q{[AS*,/CQZ’ _AS*,kzx’ AS*,kz%—] (A'kz’ l)).
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We note that R® yoR® = y., where the latter is from (2.7). Therefore,

Fg[kl,k2|(k1 K2]](r,u; s, v)
= Lty <rtsv <ka ey <kt [k, et =Dy pox. Ay 110 R
] #18k % O)xe, o [A, (0, x. )] x0 R
k1<k<k>
X A [Agx jeots —Dgx o, X, Agx i, §] (U, V).

We now express all of the matrix kernels from Definition [2.1]like the above. We
will omit the conjugation factor e =% and the variables u, v from these expres-
sions. Let us also use the shorthand A, (¢, —x,§) = (Agpt. —Agpx, Ay p§).
We then have the following:

Flplp](r.s) = 1yp=py RA[Ap(t. x,8)] Yo R F[As= p(t, —x.§)],
Flek@](r;s) = Vs<k<pry & [Dg (8, —x,8)] x1 A [As i (8, =X, §)].
Flpklpl(r,s) = Lp=p, s<k<p} R [Dp(t,x,8)] Yo R A p(t, —x,§)]
x X0 [As i (t.—x,§)].
Flli ki kol @](r;s) = Ligy <p, s<ko<ky} [Aky e (8, —x,8)] X1
X A [Apy oy (6 =%, 8)] Yo & [As i, (1, —x, 8)].

Felkr|Ger k2]](r:8) = Ly <r*, smka<p, ky <ka} @ [Dgey (8, =X, §)] Yo R

< ] 18501 ke, Ak, (0. x.OIR.
ki1<k<ka

Felky ko ksl (e k2] (738) = Vi) <r*, s<ks<ko, by <ka} @ [Dfey p+ (1, —X, )] xoR

X l_[ %[Ak([’xvé)] XSkM[Akz(t’va)]XOR-
k1<k<ko

3 Discrete Considerations: Multipoint Distribution function

In this section we derive a determinantal expression for the probability in (1.2).
As G(m, n) depends only on the values of G to the left or below (m, n), the joint
law of G(my,n1),...,G(mp,np) depends on the restriction of G to [0, mp] x
[0, 7p].

Let us set N = np throughout this section. Define the vector

G(m) = (G(m,1),G(m,2),...,G(m,N)) form > 0.

The process G(m) is a Markov chain by definition. It turns out to have an explicit
transition rule.
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3.1 Markov Transition Rule
Let V be the finite difference operator actingon f : Z — C as

3.1 Vi) = flx+1) = f(x).

The operator has as inverse given by

(32) V) =)0 o).
y<x

valid so long as f vanishes identically to the left of some integer. This will be the

case for functions that we consider. Since V f and V! f are then also functions

of the same type, we may consider integer powers of V acting on such functions.
Define the negative binomial weight

—1
Wy (x) = (x +Z1 )(1 —q)"q" 1gx>0y form > 1landx € Z.

This is the probability of observing the m™ head at x 4 m tosses of a coin that
lands heads with probability 1 —gq. It is a probability density, being the (0, x)-entry
—m
of (I — 14 v) ™",
Define also
Wy = {(x1,....xn) € ZV 1 x; < -+ < xy},
noting that G takes values in Wy .
PROPOSITION 3.1. The process é(m) is a Markov chain with transition rule

(33) Pr[é(m) =y | é(ﬁ) = X] = det(Vj_i u)m_e(yj - xi))i,j
for everyx,y € Wy and m > £.

The proposition is proved in [22] following the paper [39] by Warren. It is
related to determinantal expressions for nonintersecting path probabilities that ap-
pear in Karlin-McGregor or Lindstrom-Gessel-Viennot-type arguments. The paths
in this case are trajectories of the components of é(m) The transition matrix of
this chain turns out to be intertwined with a Karlin-McGregor-type matrix by way
of an RSK mechanism, which allows calculation of the former. The papers [[14,30]
also give a systematic exposition to such computations.

Remark 3.2. Formula (3.3)) has very similar structure to Schiitz-type formulas [3]

34,(35]] for the transition rule of G. Schiitz’s formula for the N -particle continuous
time TASEP X(¢) is

Pr(X(r) = y | X(0) = x] = det(V/ " F,(5; — X)),

where F(x) = e;t!t . 14x>0; is the Poisson density. Here the finite difference

operator V means V f(x) = f(x) — f(x + 1), and its inverse is V™! f(x) =
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Zny f(y). Particle locations are ordered such that x; > x» > --- > xpy; we let
Xj = XnN+1—j, and likewise for y.

A similar formula holds for the discrete-time N -particle TASEP with sequen-
tial updates (see [[14}33]]), where the rightmost particle attempts to jump first with
probability g, followed by the particle to its left, and so on. The transition rule
above is then modified by replacing F;(x) with the binomial density F; 4(x) =
(1 —g)"'w;—x41(x). With parallel updates, discrete time TASEP becomes equiv-
alent to the discrete polynuclear growth model as explained, for instance, in [4,20]].

Denote by Pr the probability (I.2)) that G(m,,n,) < a, for every r. By Propo-
sition

P
(3.4 Pr = Z l_[ det(V/ " W, —m,_, (xf — xir_l))i’j
x1,..,xPeWy, =1
Xy, <ar
with the convention that x® = 0. We will drop subscripts i, j from the determi-
nants since all of them will be of N x N matrices with rows indexed by i and
columns by j.

LEMMA 3.3. Recall the Ay notation: Ay = yr — Yi—1 for v = n,m. The sum

(3.4) simplifies to

p—1
=X e () T a9 s )
3.5 x1,. . xP leWy, r=2

v
Xy, <dar

X det(Vj_l_”"—lwApm(ap — xf_l)).

Proving this is the subject of the next section.
3.2 Summation by Parts
The following is in [24}, lemma 3.2] and related to [22, lemma 3.2].

LEMMA 3.4. Let f,g : Z — C be such that f(x) = g(x) = 0ifx < L (typically
L is very negative). Let aj,b; € Z fori = 1,..., N, and consider k such that
1 <k <N. Then,

Z det(Vj_af Sflx; — yi)) det(Vb»’_ig(Zj — x;‘))

xGW];l/,
(3.6) k=
= > det(VFT f(xj — yi)) det(VZ g (z; — x1).
xeWy,
xXx <A
Moreover,
(3.7 Z det(V-i_afg(Zj —xi)) = det(Vj_l_“"g(A — xi)).
z€Wy,

ZN<A
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It is instructive to understand the proof of this lemma, so we will outline the
argument. It should be contrasted with the approach in [34]]; see also [3|], which
manipulates determinants by using that V~! is a summation operator.

PROOEF. For identity (3.7), first note that Zz;z Vf(x) = f(b) — f(a). Now
perform the summation from z down to z1, using multilinearity of the determi-
nant, which reduces V by 1 in the corresponding column. After each step one finds
a difference of two determinants, and the one with a minus sign is 0 due to two
consecutive columns being equal. After the z; sum, the determinant with a minus
sign is 0 because its first column stabilizes to 0 as z; — —oo. For example, during
the summation over Z 5, we have

A—1
Do Y de(Vi gz —x) - VN T Mg (any — i) VN Y gz — xi)
zeEWpN_1, EIN=ZN-1
Zn—1<4A

= > de( Vg — ) VN T g ey — i) VYT (4 — )

ze€Wn_1,
ZN—1<4

—det(V' ™ g(zy —xi) - VN T i g(zy g —xi) VI T T g2y oy — x7))

Z det(Vl_“fg(zl —Xj)--- vN—l—a,‘g(ZN71 —Xi) VN_I_aig(A — xi)).

zZ€WN_1,
ZN—1<A

Identity (3.6) in based on the following idea. First, it is enough to establish it for
the sum over {x € Wy : x; = A}. Suppose [a; ;] is a square matrix, the {1 col-
umn that has the form a; y = V f; 4(x;) and that the variable x; appears nowhere
else. Then det(a,-,j) =V det(am ---fi,g(Xg)---), where V, is the difference
operator in the x,- variable. Now recall the summation-by-parts identity:

b b
> u@)Vp=x)] =Y Vulx)v(—x) + ud + Hv(=b) — u(a@)v(—a + 1).
X=a x=a
Combining these we have the following. Suppose c;,d; € Z are such that for
anindex £ > k,cy = cg41if€ < N anddy_; = dy—1. Define dj_ =dj—1{j=g
and ¢;” = ¢; — 1gj—¢;. Then,

Z det(Vd-"_“" flx; — yi)) det(Vb»f_cfg(Zj — Xi))
S
= Y det(VY T f(x; — yi)) det(VE T g(z; — xi).

xeWy,
xp=A

(3.8)

In plain words, one can move a derivative from column £ of the first determinant
to that of the second, decreasing dy and ¢y by 1 as a result. Indeed, consider
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the sum over variable x; on the left-hand side of (3.8)) while holding the other
variables fixed. Upon transposing the second matrix and using the aforementioned
observations in order, we see that

Xe+1
Z det(VE 741 f(xj — y;)) det(V2 ™ g(z; — x;5))
Xe=Xe—1
Xe+1
= Z det(Vdfi_a"f(Xj — 1)) det(V4 ¢ g(z; — x;)) + (boundary term).
Xe=Xx¢-1
If £ = N then xy;; = 400, and if £ = 1 then xy_; = —oo. The boundary term

equals (I) — (II), where

(I) = det(vd;_a[ f(xj - yi)) ‘xz:=xz+1+l ’ det(vbi_cjg(zi o xj))‘
() = det(VY % f(x; = )|y e, , - 4et(VP "% g(zi — X))

=X

X =Xg41
X¢=xg—1—1"

The term (I) = 0 because columns £ and (£ + 1) of the second determinant agree
dueto ¢y = cg4y when £ < N. If £ = N, then it is 0 because V" g(z —x) = 0
for all sufficiently large x, which makes the last column of the second determinant
0. The term (IT) = 0 for the same reason with respect to the first determinant since
d(—l = d@ — 1.

Analogously, for an £ < k, suppose c¢p4;7 = ¢y + land dy = dy_q if £ > 1.
Then we may move a derivative from the £ column of the first determinant to that
of the second in the left-hand side of (3.8]), which will result in ¢; and dy¢ being
increased by 1.

Identity follows by first applying tocolumns £ = N,N—1,.... k+1
in that order. The conditions on ¢y and dy are then satisfied during each applica-
tion. Then we apply 3.8) to£ = N, ...,k +2andthento £ = N, ... .k + 3, and
so on. The derivative in column j > k is reduced by j — k. Similarly, we apply

the derivative-incrementing procedure first to columns £ = 1,...,k — 1, then to
columns £ = 1,...,k — 2, and so forth to increase the derivative in column j < k
byk —j. O

PROOF OF LEMMA [3.3] In order to simplify the expression for Pr from (3.4) we
apply Lemma [3.4]iteratively. Apply (3.6) to the expression (3.4)) with respect to the
sum over x!, which involves the first two determinants. In doing so, set k = ny,
aj =1i,bj = j, f = wy,, etc. We find that

Pr = Z det(V"l_i W, (x]l)) det(Vj_”lwAzm(x]z — xil))

xl. ., xPeWy,

5
X, <ar

p
X l_[ det(Vj_iwArm(x]r- —xir_l)).

r=3
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Next, apply (3.6) to the sum over x2, which involve the second and third determi-
nants, with k = n, and a; = ny. Then,
Pr = Z det(V" ™ why, (x})) det(VAZ"wAzm (xJ2 —x)
xl. ., xPeWy,

Xy, <ar X det(vj_n2wA3m (x]?, - x12))

p
x l_[ det(Vj_iwArm(x; —xIh).

r=4
After iterating like this for all the variables, we finally use (3.7) to perform the sum
over x? with xﬁ, < ap (recall np, = N). This gives the expression (3.5)). O

We would like to express Pr as a single N x N determinant. This would ordinar-
ily be done by using the Cauchy-Binet identity iteratively over each of the sums.
However, the constraints x,, < a, prevent a direct application. This is addressed
in the following section.

3.3 Cauchy-Binet Identity

Let us manipulate the expression from (3.3)) in the following way. First, consider
N x N matrices A = [a;;] and B = [b;;] such that det(A) - det(B) = 1. In fact,
we will chose 4 and B to be triangular with a;; = b;; ! 'We multiply the matrix of
the first determinant from (3.5]) by A and of the last one by B. Doing so will set us
up for the orthogonalization procedure of the next section.

Formally, introduce functions fo 1, f1,2.-.., fp—1,p as follows. We assume that
p > 2. When p = 1 we can use a simpler approach as explained in Section §.3]
Forl1 <i,j < Naswellasx,y € Z,

N
foali.x) =" @i V" Fwp, (x +a1) - (D)™,
k=1

B9 fricir(xy) = VAr”wArm(y — X+ Ara)- (—I)A’” forl <r < p,

N
foo1.p(x.j) =D VEI g (Apa — x) by - (1)
k=1
Then Pr equals

Pr = Z det(fo,l(i,x}))

x. ., xP leWy,

x,"lk <0 p—1

X l_[ det(fk_lﬁk(xlk_l,xj]-‘)) det(fp_l,p(xip_l, j)).

k=2

(3.10)

The summation constraints became x,’f, < 0 because we have shifted xl[‘ = xlk +

ay in defining fx_; . Also, the powers of —1 in the f’s do not change the product
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of the determinants because they factor out as (—1)N (11+82n++Ap—1ntn,—1) —
(_1)2Nn,,,1 .

Consider 8 = (01, ....0p—1) where each 63 € C \ 0. Define an N x N matrix
L = L(i, j | 0) as follows with the convention that 80 = 1:

p—1
L(la.] | 0) = Z fo,l(l',xl) l_[ fk—l,k(xk—l,Xk)
(311) (xl,-..,x,,_l)eZp—l 1 k=2
p—
i 1ix, <0y—lii<n,
X fp—1,p(xXp=1.J) H@k k<0 ~ltizmey
k=1

The sum is actually finite because f,—1,,(x, y) vanishes for all sufficiently large x
or small y. Apart from the factors involving 6, L is the convolution fo 1 * - *
Jp—1,p or, if we think of the f’s as being matrix kernels, then L is the product

fo,l toT fp—l,l’

We conclude this section with the following:

LEMMA 3.5. Let y, be a counterclockwise circular contour of radius r > 1. Set

—1
ol ——
'J/r :'yr)(...xyr
LG i
(3.12) Pr= 56 doy---do w_
1 k=1(9k_1)

PROOF. For x € Wy, the condition x, < 0 is equivalent to #{x; < 0} > n.
Now for £ € Z,

9(
1{g>0} ¢d9 01

Consequently,
N lel{x, <0}
JE— ]_
(3.13) Ligtx; <o)z} = 95419 o1y

If we apply (3.13) to the expression (3.10) for Pr we find

-
56 dby -+ 11_[ G _1[ > det(fm(l he,"? <°})
74

xkew,,
1<k<p

p—1
XHdet(fk_l,k(x{” 0, °})det(f,,_1,,,(xf—l,,-))].

k=2
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We push 6, "k into the first determinant by inserting O Linto its first 7 rows.
Then, by the Cauchy-Binet identity, the quantity that is inside square brackets is
det(L(i, j |0)). O

Expression (3.12)) is a discrete determinantal formula for the multipoint dis-
tributions functions (I.2). However, matrix L does not have good asymptotical
behaviour for the KPZ scaling limit (or numerical estimates). It is necessary to
express det(/.) as a Fredholm determinant over a space free of parameter N. This
is the subject of the following section.

4 Orthogonalization: Representation as a Fredholm Determinant

Recall the triangular matrices A and B from Section Multiplication by
them is essentially performing elementary row and column operations, which is
an orthogonalization procedure. The entries of A and B, vaguely put, will be like
inverses to entries of the first and last determinant in (3.3). These are obtained
by extending V" w,,(x) to negative m, which motivates the following. Later in
Section [4.3] we provide intuition for this orthogonalization by explaining it for the
single-point law.

4.1 Contour Integrals

Recall the functions G* and G from (2.8)) and (2.9). The three-parameter family
G*(-|n,m,a)and G(- | n,m,a) form a group in that for w # 0,1 — ¢, 1:

G*w|n+n' m+m,a+ad)=G*(w|nma) G*(w|n',m' a),
(4.1) G*(w|-n,—m.—a) =G*(w|n.n.a)"",
G*(w [ 0,0,0) = 1,

and analogously for G. The group property will make it convenient to follow up-
coming calculations and give further intuition for the orthogonalization procedure.

From the generating function (1 + z)_k = szo (_xk)zx for negative binomi-

als, it follows that
1—qz\™"
W (x) = 9§dz ( qz) 7
l—gq

Yo

where p < 1. Changing variables z + (1 — z)~! gives a contour integral repre-
sentation of wy, (x) that, upon applying integer powers of V according to (3.1) and
(3.2), shows that

(4.2) V', (x) = (=1)"! 95 dzG*(z |n,m,x —1)
yr(1)

with radius r > 1 (so y,(1) encloses all possible poles at z = 0,1 —¢, 1). The con-
dition r > 1 ensures that the summation needed to apply V~! to G*(z | n,m, x) in
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the x-variable is legal throughout z € y,(1). The right-hand side of (4.2)) continues
V2w, (x) to integer values of all parameters.

Define the matrices 4 and B as follows. Let ¢(k) be the conjugation factor
defined in (2.11)), and recall m (k) and a(k) from (2.4). Consider any radius v <
1—gq.

1
ik = c()(=DF 754 :
aik = O P T kT L) a) = 1)
(4.3) v .
by = ) -DF e . . .
’ JU GG k=] + Lmp —m(j).ap —a())
The matrices A and B are lower triangular with a;; = c(i)(—=1)} = bi_il, so then

det(A4) det(B) = 1. This is because

9§d§ 1 )1 ifn =0,
G*( |n+1,m,a) )0 ifn<0O.
147
LEMMA 4.1. The following identities hold.

() If1 <i <Nandlz| > 1,

d ! o d ot
y?s gG*(§|i,m,a)(z—§) —glf gG*(§|i—k+1,m,a)'
) If1 <j <Nand|z| > 1,
ZN+1 N -k
d = d .
y?g ZG*(g|N+1—j,nfl,a)(z,—z) ,;y?g ZG*(z|k—j+1,m,a)

PROOF. The first identity follows by expanding (z — ¢)~! in powers of ¢/z.
The contribution of terms on the right-hand side with & > i is 0. The second
one follows from the first by re-indexing &k — N 4 1 — k and substituting i =
N+1-—j. O

For the rest of this section we will deduce an expression for L (i, j | #) in terms
of contour integrals. Recalling the f,_; ;s from (3.9), then (4.2) and {.3)), we infer



2582 K. JOHANSSON AND M. RAHMAN

the following:

G*(z1 | ni,my,ar + x1 — 1)

fou @ x1) = —e(®) 56 41 56 Y G @ hm()at) 1) G151

ytl le (1)
Sre1,(r—1, %) = — ¢ dz, G*(zy | Apn, Aym, Aya —1) forl <r < p,
YRy (1)
fotalipr ) =e) " P dta @ dz,
423 Yrp (1)

G*(zp | Apn, Apm, Apa — xp—1 — 1)
G* (G2 Inp—j + Limp —m(j).ap —a(j)) (zp — &)
The contours above are circular and arranged as follows. Contours y, and y., are
around the origin with 7o < 77 < 1 — ¢ (71 and 1, are ordered for definiteness).
Contours yg, (1) are around 1 with every Ry > 1 4 71; that is, they enclose the
contours around the origin and the numbers 0, 1 — g, 1. In deriving expressions for

fo1and fp_1,, we have used Lemmaf.1]
Upon multiplying all the f’s we get a term that has the form

(=D)P L e@)e(j)7! x (a (p + 2)-fold contour integral).
In this integral, we would like to replace every G* by the corresponding G. In

doing so we obtain factors of G*(1 — /g | -,-,-), which, by the group property
of G*, multiply to

G*(1-yq|j—i—1m(j)—m@).a(j)—a(d).

When multiplied by ¢ (i)c(j)™! this equals c(i, j)/(1 — /), where c(i, j) is the

conjugation factor (2.12).
We may plug the product above into the definition of L(i, j | ) from (3.11).

There we have a sum over X € Z”~! and a product involving @. Let us write the
product of 6 ’s as follows, recalling y1(x) = 1ix<oy and y2(x) = lgx>¢; from
Z7). Note 91ix<03 = 6271 5 (x) 4+ 0272 y2(x). Therefore,

b 1 LS
<0y~ Misng) —€k—Li<ng}
l_[ 0 = Z l_[ 6, “Xer (X1) <+ Xepoy (Xp—1)
k=1 ge{1,2}r—1 k=1

= > ) x(),
ge{1,2}p—1
where yz(X) = ]_[,Ic:i Xex (Xg) and 6%(i) is notation from (2.5). From this expres-

sion we find that

P Y. j) = o
(4.4) Lijie= Y EVTC@D gy a ),
gef1,2}r-1 I-va
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where L (i,j) is the sum over x € ZP~! of yz(x) times the aforementioned
(p + 2)-fold contour integral.

LEMMA 4.2. Given § = (e1,...,6p—1) € {1,2}P7 Lg(i,j) has the following
contour integral form. Consider radii 12 < 11 < 1 —q, aswellasradii R1. ..., Ry
such that every R > 1 + 11 and they satisfy the following pairwise ordering:
4.5) Ry < Rgy1 ifex =2 while Ry > R4 ifep = 1.

There is such a choice of radii, and given these,

Lg(l,‘]) = (_1)€1+-..+€])—l ¢ dé‘l ¢ dé‘z ¢ dzl ¢ de
23] Yty YR, (1) YRp (1)

TM2_, G(zi | Akln.m, @) TIZZ) (2 — 2er) (1222)
G(&1 1i,m(i),a(@)) G(S2 | np—j + Lmp —m(j),ap —a(j)) (21 — 1) (2p — §2)

PROOF. From the discussion preceding the lemma we see that

tin= ¥ ¢ and dad dned dzpetgy o Goo)
231 1223 yr (1) Yrp (1)

(X1 seesXp—1)EZP]
llj;i G(zg | Agn, Agm, Aga + Agx — 1)G(zp | Apn, Apm, Aga — xp—1 — 1)
GG liom(i),a(@) —1)G (&2 | np—j + 1. mp —m(j), ap —a(j)) (z1 — 1) (2p — &2)

From the group property, G(z | n,m,a + x — 1) = G(z | n,m,a)(1 — z)*" L.
Using this, we factor out every (1 — zz)2%*~1, (1 —z,)™*—171 and (1 — &)~ L.
Their contribution is

’ﬁ( -2 ) =&
ey M= 2k oo, (1—z1)
Now suppose z € yp, (1), w € yp,(1), and € € {1,2}. Then,

1-z\* cl—w
sz(x)(l_w) = (- —.

X€Z

so long as p; < pp inthe case ¢ = 2 or p; > pp in the case ¢ = 1. The radii
R1,..., Rp have been chosen precisely to satisfy these constraints imposed by &.
That it is possible to do so may be seen by induction on p as follows.

The base case of p = 2 is trivial. Now suppose there is an arrangement of radii
Ri1, ..., Rp that satisfy the constraints given by €1, ..., &p—1, and we introduce an
ep € {1,2}. Find previous radii R, and Rj such that R, < R, < R} (one of these
may be vacuous). Now choose any radius R,1+1 > 1 + 71 such thatif &, = 1 then
Rs < Rp41 < Rp, while if ¢, = 2 then have R, < Rp4+1 < Rp. This proves the
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claim. An explicit choice of such radii is the following:

. 1 1
R satisfies R - (l —5 T 2P——1) > 1+ 1,
4.6 _
(4.6) s K1y
k= I —l—X; )
j:

Finally, using the summation identity above to carry out the sum over every xj

and simplifying the resulting integrand, we get the representation of LE (i, j) stated
in the lemma. U

We conclude this subsection with a presentation of L(i,j | ) that will be
used to get a Fredholm determinant form in the next subsection and also for its

asymptotics. Consider the contour integral form of L? (,j)in Lemmam Deform
each contour yg, (1) to a union of a contour around 0, say y,, (0), and a contour
around 1, say Ve, (1). The first of these should enclose y, and y, and lie within
the circle of radius 1 — ,/g. That is,

<1 <pp <l—./q foreveryk.

The second should enclose nonzero poles in variable z; and lie outside the circle
of radius I — ,/g. That s,

1—g<1—-p, <1—gq foreveryk.
See Figure .| for an illustration.

YR

ANNANS

&J/ ﬁqi @“ ‘ m

N

FIGURE 4.1. The deformation of yg(1) into two contours y;(0) and y,(1).

The radii of the contours should be arranged so that the ordering imposed by &
remains, thatis, if & = 2 then py < pg41 and ,o;c < ,o;c 41> ¢tc. Inorder to simplify
notation, we denote y,, (0) as VRi (0) and Yol (1) as yg, (1). In this notation we
write the contour integral for L¢(i, j) as a sum of 27 contour integrals, where for
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each integral we make a choice of contours z1 € yg,(61).22 € YR,(62),....2p €
YR,(8p) and § = (J1,...,8p) € {0, 1}7. Thus,

LG, j|0)=
4.7 Z Z (—1yp=lHerttep c(z J) 98()Le(l i)

=/

The entry L%(i , J) looks the same as the integral in Lemma except that yg, (1)
is replaced by yg, (8x) in our simplified notation.

Sefo,1}» £€{1,2}771

4.2 Fredholm Determinant Form

Looking at (4.7), the identity matrlx in the Fredholm determinantal form for L
will come from the contribution at § = 0. So we define some matrices by which
the L% s will be expressed. Recall notations from Section

DEFINITION 4.3. Let Lo = 0. For 1 < k < p, define a matrix Ly as follows. For
1 <i,j <N (recall N = np),
1
1—/q

G(§1 | nk - lsmk —m(l),(lk —(l(l))
d d )
95 f 95 2 G e+ Lmg—mG)ax —a() G — )

Lk(l,]) =

The radii should satisfy 7o < 71 < 1— ,/q.

DEFINITION 4.4. Suppose 0 < k; < ky < pand & € {1,2}77!. Let1, < 11 <
1 — /q. Consider radii Ry, 11...., R, suchthatg < Ry < ./q for every k, and
they are ordered in the following way:

Ry < Rk—H ifep, =2 while R > Rk—H ifep = 1.

Note this depends only on &g, 4+1,...,&k,—1. (It is possible to arrange the radii
according to £ as shown in Lemma) Set Yps = YRi, +1 (1) x -+ x ysz(l).

Define a matrix Lfk ko] 38 follows:

L(kl k1 (- 7) = Lisny, isma} T m f 9561{1 9§ a6 9§ Ak +1d2k 42 dZk,

VRF

L, =03
[Ty <k <kz G (2k | Dk, @) TTe, <ioaier @k — 2 1) ™ @oeypr — $0) 7 @k, — 82)7 1( 1) e

G| i —ng, m@)—mg,.a )—ak,)G(fz\nkz—j+1,mk2—m(J),ak2 a(j))

LEMMA 4.5. Suppose § is identically 0. Then L(e; = 0 unless
k—1 p—k
N e e N
e=(2,...,2,1,...,1) forsomek.
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In other words, it is the zero matrix unless there is a k € [1, p] such that the radii
of contours ygr,(0),...,yr,(0) satisfy Ri < Ry < -+ < Rgand Ry < +++ <
Ri41 < Rg.

PROOF. The contour integral for Lf:) has every contour arranged around the ori-
gin. The poles of the integrand in z-variables come from the term

(21 =)@ — &) [ [ = 2511
k

in the denominator. Given &, suppose there is an index £ with 1 < £ < p such
that Ry < Ry—q and Ry < Ry,;. Then we may contract the z,-contour without

passing any poles in that variable. Hence, L‘(E)(i ,7) = 0. Tt follows that Lf:) can
only be nonzero if there is no such £, which is the condition on ¢ in the lemma. [

LEMMA 4.6. Suppose § is not identically 0. Then Lf; = O unless

§=1(0,...,0,1,...,1,0,...,0);

ie., § consists of a run of 0’s (possibly empty), followed by a run of 1’s (nonempty),
and ending with a run of 0’s (again, possibly empty). Moreover, suppose 5 equals
1 for indices on the interval (k1,kz] with 0 < ky < ko < p. Then for L; to be
nonzero, it must be that ¢y = ++- = ¢, 1 = 2and gj,41 = -+ = &p—1 = 1, Le,
Ry <+ < Ry, and Ry,41 > -+ > Ry (some of these may be vacuous).

PROOF. Given § = (61....,0p) suppose there are indices k1 < k2 such that
8k, = 1, 0,41 = 0, and 8, = 1. Consider the integral of L;(z’, j) involving
the zg, 41-contour, which is around 0. As the zj, -contour is around 1, we may
contract the zg, 41-contour to O unless the zy, 1-contour lies below it (around
0). But then we may contour that one unless the z, 4 3-contour lies below it, and
so on, until we get to the z;,_q-contour. In that case, we can always contact the
Zk,—1-contour because the z kz—contour is around 1. So Le (i, j) = 0 for such 8

which implies the condition on § in the lemma.

ko—k
. PUEDEI . _
Now suppose § = (0,...,0,1,...,1,0,...,0). Consider the contours in the
integral for Lg,(i , J) in variables z1, ..., Zk,. They lie around 0 and we may con-

tract the zx, -contour unless the zx, _j-contour lies below it, and so forth, which
shows Lg(i,j) = Ounless Ry < Ry < -+ < Ry, . Similarly, it will be 0 unless

Ry, < -+ < Ry, 4. This proves the condition stipulated on . g
k—1 p—k
k —— k
LEMMA 4.7. For 1 < k < p, set & = (2,...,2,1,...,1). Then, L% =

(—D*=1(1 — /g)(Lx — Li—y).
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PROOF. Given § = (01, ...,6p) suppose there are indices k1 < ky such that
8k, = 1, 0k, 41 = 0, and 8§, = 1. Consider the integral of L;(i, j) involving
the Zg, 41-contour, which is around 0. As the zj, -contour is around 1, we may
contract the zg, 41-contour to O unless the zy, 4-contour lies below it (around
0). But then we may contour that one unless the z, 4 3-contour lies below it, and
so on, until we get to the z;,_q-contour. In that case, we can always contact the
Zk,—1-contour because the z kz-contour is around 1. So Le (i, j) = 0 for such 8

which implies the condition on § in the lemma.

ko—k
. PRSI . _
Now suppose § = (0,...,0,1,...,1,0,...,0). Consider the contours in the
integral for Lg,(z’ , J) in variables z1, ..., Zk,. They lie around 0 and we may con-

tract the zx, -contour unless the zx, _j-contour lies below it, and so forth, which
shows L%(i,j) = Ounless Ry < Ry < -+ < Ry, . Similarly, it will be 0 unless

Ry, < -+ < Ry, 4. This proves the condition stipulated on . g
k—1 p—k
k e N k
LEMMA 48. For 1 < k < p, set&® = (2,...,2,1,...,1). Then, L% =

(D% (1 — /@) (L — Li—1).

PROOF. Look at the contour integral presentation of L% (i, j) from Lemma
Since § = 6, all contours are around the origin. We will contract the z-contours
YR, .-+ VR, 1n the order specified by ¢k, and use the group property of G to

simplify the integrand. We have Ry < --- < Ry and Ry < -+ < Rp4; < Ry.

First we contract the z,,-contour and pick up residue at z,, = ¢». This eliminates
the variable z, from the integral. We continue by contracting the z,_1-contour,
again with residue at z,_1 = {2, and so on until variable zz; is eliminated.
Next, we contract the z;-contour and gain a residue at z; = {1. We keep doing so
until we have contracted all contours except for the variables &1, {3, and z;. We
will also obtain a factor of (—l)k_2 while eliminating variables z»5, ...,z due
to the factor ({1 — 22) - (2x_1 — Z%) in the integrand. Factoring out another —1
shows that

UOJ%41V1¢d&¢dQ¢d"

YRy

Gz | Agn., Agm, Aka) G(é‘l | ng_q —i,mp—_y —m(i), ax_q —a(z’))(i:ZI
GGl g —j + Lmg —m(j),ar —a(j)) (zx — &) 2k — &2)
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Finally, we eliminate the zz-contour and gain a residue at z; = ¢ followed by
one at 7 = {3 (recall 7y > 72). This gives the difference (1 — ./q) (Lk i, j)—
Li_1(i. J)). 0

We remark that the identity matrix in the Fredholm determinantal representation
for L(i, j | @) will appear from the sum ) pe* (i)L%k (i, j) by way of Lemma
4.8l

LEMMA 4.9. Consider 0 < ki < ks < p and
£§=1(2,...,2, Emax{ky 1} - - - » Emaxika,p—1}» 1o+ .» 1) € {1, 2}17—1'

Suppose 5 equals 1 on inflices over the interval é(kl,kz] and 0 elsewhere. Then,
L§ = (-Dkr (1 - ﬂ)Lfkhkz]' Furthermore, pr_l,p] equals Ly, where
Liisn, 1}

N

1 —./q
G(zp | np—i.Apm, Apa) (2, — &)L
¢d§2¢ de (P|P. D P).(P 52)
; vy GGl np—j 4 Lmp —m(j).ap —a()))
(2}

LP(l’]) =

PROOF. By Lemma L% = 0 unless ¢ is as given in the statement of this
lemma. Consider again the contour integral presentation of Lg,(i, j) from Lemma
The contours around O are those in variables z1,...,2x, and Zg,41....,2p.

We also have Ry < --- < Rg, and Rp < -+ < Ry, 41.
As in the proof of the previous lemma, we contract the contours around 0, gain-
ing residues, and present LZ(i, j) as an integral involving variables {1, {2, Zg, +1.

..+ Zk,- The calculation of this is straightforward and we omit the details. The

1-4; )1{k1=0}
1-z4
contracted, so no residue is obtained at z1 = ;.

The final result is a presentation of L;:(i , j ) that appears like

reason a factor ( appears is that when k1 = 0 the z-contour is not

(1= VDL, 1y i)
from Definition except the indicator 14, i =iy} is absent. To see why
we may assume i > ng,, observe that the variable {1 appears in the integrand of
Lt (i) a8
G | ng, —i,mg, —m(i), ag, —a(i))
Zk+1 — 81 '

When ng, —i > 0, there is no pole in the {j-variable inside y., and the contour
may be contracted to 0. Similarly, if j > ny,, there is no pole in {> inside yx,.
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To simplify pr—l,p]’
contour around 1 (the z,-contour). Since i > np,_1, its integrand decays at least
to the order ¢ 1_2 in the {;-variable (the dependence is displayed above). Further,
m(i) = mp—1 and a(i) = ap—1. So there are no poles at {1 = 1 — ¢ and 1, and
the {1-contour can be contracted to co. In doing so we gain a residue at z1 = 2,
whose value is G(zp | np—1 —i,0,0). Then simplifying the integrand using the

group property gives the desired expression for L'E —1.0]" O

note that it does not depend on ¢ as there is a single

The following simplifies Lfkl, ko] when ky < p.
LEMMA 4.10. If0 < k| <ky < pand € € {1,2}7~! then

Ly k2107 = Vizmiy 13 Ll dea1 G 7))+ Visney et -1l (e @ S

where

s 1
Jer o) G 1) = 7 §£d§1 315 Az, 41 dzk,
1431 i}RE

[l <kwr G (25 | Akr.m.@)G 2k | ] =1 =iy 1 Ay m.a)) (175

G(Cl | i —ng,,m@) —mg,,a(i) —akl) Hk1<k<k2(Zk = Zk+1) (k41— 81)

)1{k1=0}

The contours in J(k1 ko] 7€ arranged like those in L(k1 o]

PROOF. Consider Lfkhkz](i,j) when j € (ng,—1,nk,]. Since ky < p, we
have m(j) = my, and a(j) = ag,. Therefore, the integrand depends on {»
according to the term G(§2 | ng, —Jj + 1,0, 0) (Zk, — §2) in the denominator.
Since ng, — j > 0, we may contract the {>-contour to infinity with residue at
{2 = Z, to find that

1 1
d& . = . :
¢ G(§2 | 7’1k2 —J + 17 07 0)(Zk2 - EZ) G(Zkz | 7’1k2 -] + 17 07 0)

V‘L'z

So we evaluate the integral in {» and simplify the integrand using the group prop-
erty of G, which results in J (Skl ko] O

We may now write L(Z, j | #) from (4.7) in the following way by using Defini-
tionsand 4.4] as well as Lemmas 4.5] |4.6] and Observe that for & = ¢k

as in Lemma , (—1)P~ 1L si+k—1 _ Also, for 0 < ky < ky < p and € as

in Lemma[4.9]
(—P~ I Ei etk — (_pyktmintko.p—1hqyerkg ko)
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where (—1)°%1-%21 is around (2.6)). Putting all this together with we find that

P
L. j10)=>cli.j)0% ()(Lg—Li-1)G.))
k=1
(48) + Z Z (71)8[1(1_k2]+k1+min{k2,p—l} (i, j) 95(1) Lfkl,kz](i’ ).
0<ki<ka2<p gef1,2}71,
g;=2if i<max {k,1}
gi=1if i>min{ko,p—1}
It will be convenient to write the matrices associated to L(i, j | 6) from @.8)) in
the p x p block form, which motivates the following definition.

DEFINITION 4.11. A(6) and B(8) are N x N matrices with a p x p block form as
follows. Recall Definitions and [4.4] and notation introduced in Section 2.1] In
particular, from (2.4), the (r, s)-block of a matrix M is denoted M(r,i;s, j), and

r* =min{r, p —1}.

(1) Define matrix B(#), 0 = (61,....0p—1), by
. . 1
B(r,i;s,j10)=(+06(r| S))-C(r,l:S»J)'l{s«*}q
1

xsﬁdw — ,
G(w |i—j +1, As,r*(m,a))
YT

where the circular contour y; around O has radius 7 < 1 — /g and O(r | s) is

given by (2.6).
(2) Define matrix A(0) = A1(0) + A2(0) as follows:

p
Ar(riizs, j 10) =) O@ | k)- Llkkg](ri:s, j)
k=0
Where L[k’k|®](rvi;s’ .]) = C(rsi;s’ ]) 1{S<k<7‘*} ) Lk(r,l;S,])

Let0 <k, ko < pand € € {1,2}771. Set

Ax(riizs.j | 0) = S ()RR g | )
k1<k2,g
& =2 if k<max {k1,1},
ex =1if k>min{k2,p—1}

[ LE[k1 kaler deal] + LEkil e kaT) + Liky = po1 ko py LLo12]] (7235, ),

where recalling L, and J, (gkl Kol from Lemmas4.9|and 4.10} respectively, we define

L¥[kydealCer k2])(riiss, j) = c(rid8, J) Ly <re, s <o, by <ka} " Liiy o) (21385 7)-

LE[kr |k k2]](r, 058, ) = c(r.iss, J) L, <r*, s=ko<p, ki <ka} J(Skl,kz](r, i;8,7)-
Liplp)(riss, j) = c(riis, j) Yy=py - Lp(r,iis, j).
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Some comments on these matrices. In terms of the p x p block structure, B(6)
is lower triangular with zeroes on the diagonal blocks. Its last two column blocks
are 0 as well. The matrix A;(0) is also strictly block-lower-triangular with the
last three column blocks being 0. The matrix Lf [£1,k2|(k1,k2]] has nonzero blocks
strictly above row k1 (r > k1) and at or below column k». The matrix Lf [k1](k1,k2]]
has nonzero blocks only on column k» < p and above row k1. The matrix L[p|p]
has nonzero block only on row p.

THEOREM 4.12. Let G be the growth function defined by (1.1). Let A(Q) and
B(0) be from Definition and suppose p > 2. Formy < mp < --- < mp and
ny <np <--- <np, we have

Pr[G(m,n1) < ai.G(mz,n2) < az,...,G(mp.np) <ap| =

1

Vl

Here, y¥ 1= Vr X -+ X Yr (p — 1 times) and vy, is a counterclockwise, circular
contour around the origin of radius r > 1.

In order to prove the theorem, we need the following.
LEMMA 4.13. Set, f0r0 <t <l-.,/4,

BG.j) = 1

f (wli—j+1 m@)—m@j), al)—a(j))

Then,
(L — L), j) = Wi, j € (ng—y,ngl}- Wi = j}
+ Wi € mg—1,nk]. J < Nminfk—1, p—23) - B, J)
+ Wi >ng, j <ng.k<p—=2}- LG, J)
—Wi>ng_y, j<ng—1, k<p—1}- L (@, )).
PROOF. Recall from Definition .3t

1
Lk(lvj): l_ﬂ

G(é‘l | nk - lsmk _m(l)aak _a(l))
d d )
5’5 é 95 2 G e+ Lmg—mG)ax —a() G — )

e If j > ny then there is no pole at {» = 0 in the above and we can con-
tract the {>-contour to 0. So Li(i, j) = 0, which means L(i, j) =
Lij<n LG J)-

o Ifi > np and m(i) = my (so a(i) = ay as well), then Li(i,j) = 0
because the {1-contour may be contracted to oo. The conditioni > nj and
m(i) = my is the same as i > ng and k > p — 1. Indeed, if i > ny and
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k > p—1,then m(i) = my = mp_1 (i > np is vacuous). Therefore,
L)) = Yo<ng, j<niy Li Qo J) + Yisng, j<np, k<p—23 L (. J)-

e When i < nj we can contract the ¢ -contour to 0, picking up a residue at
{1 = &, which equals B(i, j). Also, B(i, j) = 0if j > i because there
is no pole at w = 0 in that case. Consequently,

Lk(i,j) = l{ifnk,ank,_jsi}B(ia ]) + 1{i>nk,j§n/\-,k§p—2}Lk(i,j)-

o Ifm(i) = m(j) then

Bli.j) = (- v~ 56 eI = 1.
Yt

Putting all this together we infer that

LG.j)=1i <ng,j <ng.i=j}
+1{i <ng,j <ng,j <i,m@)#m(j)}-B(@,j)
+1{i >ng,j <ng,k <p-—2}-L¢(i, ).

Taking the difference of L (i, j) from Lx_;(i, j) by using the expression above
gives the expression in the lemma except that the indicator in front of B(Z, j) reads
i € (mp_1.ngl, j < ng_1, and m(i) # m(j). However, when j < nj_;, the
condition m (i) # m(j) is precisely j < nuyinik—1,p—2}- OJ

PROOF OF THEOREM H.12l. We have the basic integral expression for the multi-
point probability from Lemma[3.5] The matrix L(7, j | #) is given by (@.8), which
we will prove to equal / + A(0) + B(0).

The matrix A»(@) is the 1 written in the second line of equation (4.8). We
should explain the conditions k1 < min{r, p — 1} and min{s, p — 1} < k5 in
L’:j[kl,k2|(kl,k2]]. Also, why is it that k;y < min{r,p — 1} and s = k» < p in
L[k (k1 k2117 )

The condition k1 < r appears because in the definition of Lfklak2] (i, j) we
have i < ng,, while we know i € (n,—1,n,]. The condition k; < p — 1 appears
because Lfkl, ko] is 0if k4 > p — 1 by Lemma El The condition on s arises

from the decomposition of Lfkl ko] in Lemmap.10, Since j € (n5—1, ns], we have
s < k5, which we decompose into two conditions:

(@) Vis<tr ko=p} + Vs<kor,ko<p} = Limings,p—1}<ko} and (b) Lgg—p,<p.

In case (b) the matrix Lfkbkz] becomes J (gkl,kz] by Lemma 4.10, and this results

in the matrix LE[, (k1 ,k-1].
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We have to show that the matrix associated to the first line in (4.8) equals I +
A1(0) + B(0). If we write the statement of Lemma in block notation, it reads

(Lk — Lg—1)(r.i55,))
= lyp—k=sy - Yi=j} + Yr=k.s+1<minfr.p—1}} - B, i35, )
+ Yok s<kk<p—2} - Li(r.i5s, j)
— Yokt 5<k—1,k<p—1} - Lie—1(r. 155, ).

We need to consider the weighted sum ) e (@) -c(riss, j) x @I).
Observe thatif i € (nj_1,ng], then

4.9)

k. —1y; —Li<ng_13 plisngs Yisn, 13
9{;‘ (l) — e(k | Sk) — 91 {15111}.‘.9](_1!5/1/‘_1 Hk I>ng "'Qp_l p—1 — 1

Therefore, summing i (i)l —k=511(;=jy over k and multiplying by ¢(r,i:s, j)
gives the matrix 1;— jyc(r,i: s, j), which is the identity since c(r,7:s, j) is a con-
jugation factor.

Consider the third term on the right-hand side of (4.9) containing the difference
between Ly and Lj_q. This term is O unless s < r, and k satisfies s < k < r.
When s < k < r,itequals 1y <p_13(Lg — Lg—1)(r,i:s, j). Also, the condi-
tion s < k < r is vacuous unless s < r — 1. When k = s, the term becomes
L<p—13Ls(riizs, j). Whenk = r,itequals 1¢ <y Ly—1(r,i:s, j). We will see
in the following paragraph that Ls(r,i;s, j) = B(r,i;s, j). Thus, we find appear-
ances of B(r,i;s, j) in the third term from Lj; when k = s, and from Lj;_; when
k = s + 1. Accounting for these B(r,i;s, j), we find the weighted sum

3" 6% (i) (third term of @9)) = (1) + () where
k

(I) = 1{s<r,s<p71}<9(r | gs)
- (1{s+1<r,s+1<p—1} + 1{s+1=r,r<p})9(r | 85+1))B(V~ i:18,7),

M =1pen( D 00 1) (Li — Lim)(uizs )

k:s+1<k<r,
k<p—1

+ 1i5<py0(r | €T L1 (riiss. j) — LypepyLr—1(riss, j)).
We have used that 6" (i) = 0(r | ).
Consider term (I). If s < 7 and s < p — 1, then
1{s+1<r,s+1<p—1} + 1{s+1=r,r<p} =1- 1{r=p,s=p—2}v

which gives the coefficient ®(r | s) in term (I) if we recall its definition from (2.6).
If we take this contribution of 1g5<, s<,—13O( | s)B(r,i;s, j), and combine it
with

k. . . . .
Z 6% (i) 1{r=k,s<r,s<p—1}B(ral;sv J)= 1{s<min{r,p—1}} B(r.i;s, )
k
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coming from the k-summation of the second term of (4.9), then, after conjugation
by c(r.i:s, j), we get the matrix B(@) from Definition.11]

Now consider term (II). If we express it as a sum involving the Lz (r,i;s, j),
then the coefficient of L (r,i;s. j)is Ly <k <mingr, p—133 - (0(7 | ey —0(r | k).
Recalling O(r | k), we see that O(r | &) — 0(r | k1) = O(r | k) because
s < p—2duetos < k < min{r, p — 1}. Hence, the contribution of L appears as
O(r | k) Li(r,i;s,j). The sum over k followed by multiplication by c¢(r,i;s, j)
equals the matrix A1(6).

Finally, we show that L(i, j) = B(i, j) for j € (ng—1,n5]ands < p—2asis
the case above. Indeed, we have m(j) = mg and a(j) = ay, which means that

L@ = ¢ dt

1431

¢ G(é‘l |ns—i,ms_m(i)’as_a(i))
dl, , :
, G(& | ns—j +1.0,0) (¢1 — &2)

We can contract the ¢,-contour to co, since j < ng, but doing so leaves a residue
at &, = £y. Its value is B(i, j). O

4.3 Distribution Function of the Single-Point Law

One can write a Fredholm determinantal expression for Pr[G(m,n) < a] when
p = 1 where the matrix is in terms of a double contour integral. Such formulas
are nowadays common as discrete approximations to Tracy-Widom laws, so this
section is meant to provide some intuition for our orthogonalization procedure.
We see that

Pr[G(m.n) < a] = det(V/ 7 " w, (@) nxn

from Lemma Consider the following matrix B = [by;], which is a slight
variant of B from (@.3):

1
b, = d .
ki 95 o CThk—j+Lma=1
Yt

The radius v < 1 — ¢g. The matrix is lower triangular with 1s on the diagonal, so
det(B) = 1. We have

N
Pr(G(m.n) < a] = det(L;;), Lij = Y _(—D¥ TV, (a)by;.
k=1

Using (4.2) and Lemma[4.T| we find that

o G*(z|n—i,ma—1)
b _956[{550& G*C|n—j+1,ma—1D(z-0)
YR

144
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The radii T < 1 — ¢ and R > 1. By collecting residue of the z-integral at z = £,
we infer that

L G*(z|n—i,m,a—1)
E--:sﬁd -’_’_1+9§d 95012, - -
0= pact CP e ma—DGE=0)
144 YT yr(1)
=14-; + MG, j).

Now we arrange theradii tohave r <1 — /g <1—-r <1 —gq.

If we writei = [conl/ 3uand j = [conl/ 3p, then a direct asymptotical analysis
of M(i, j) leads to the Airy kernel (2.16) under KPZ scaling.

5 Asymptotics: Formulation in the KPZ-Scaling Limit

In order to prove Theorem we will consider the limit of the determinantal
expression from Theorem under KPZ scaling. We will do so in several steps.
In Section[5.1] we define the Hilbert space where all matrices are embedded in the
pre- and post-limit. The proof of convergence of the determinant will be based
on a steepest descent analysis of the matrix entries. In Section we provide
contours of descent and behaviour of the entries around critical points. The proof
of convergence is in Section There is a technical addendum in Section
where it is also proved that the limit from Theorem[2.2]is a probability distribution.

5.1 Setting for Asymptotics
p—1

Consider the space X = R ®--- ® R.o DR~ and a measure A on it de-
finedby [y dA f = Zf;i BOO dx f(k,x)+ fooo dx f(p, x). Define the Hilbert
space

(5.1) H=L*X,A) = L*(Reg.dx) ®--- ® L*(R<g, dx) ®L*(R>0, dx).

p—1

Recall the partition {1 ..., N} = (0,n1] U ---(np—1,np]. Embed indices from
{l,..., N} into X by mapping each index i into a unit length interval in the fol-
lowing manner.
5.2) points (k,u) fori — 1 <np +u <iifi € (ng_q1,nx]and k < p,

' points (p,u) fori —1 <np_1 +u <iifi € (np—1,np).
Observe that for k& < p the block (ny_1,nz] is mapped to the interval (—Agn, 0]
and for k = p it is mapped to (0, Apn].

An N x N matrix M embeds as a kernel M on H by

(5.3) M(”a u: s, v) = M(}’, R min{r,p—1} + |—u—|’ §s Pmin{s,p—1} + |—v—|)

Here we have used the block notation (2.4) and [u] is the integer part of u after
rounding up. The range of u# and v lie in the aforementioned intervals determined



2596 K. JOHANSSON AND M. RAHMAN

by each block, but we may extend it to all of R« (and to R~ ¢ for the final blocks)
by making M zero. Then, by design,

(I + M)y = det(I + M)y
where

~ 1 ~
I+Myp=1+) = / dA(ri,un) - dArge, up) (M (ri wil 17, 1j) ) kexk-
k=1
= Xk

This is because M is constant to M(i, j) on asquare of the form [i—1,1)x[j-1,)
determined according to the correspondence (5.2)), and zero elsewhere.

In order to perform asymptotics we should rescale variables of M according to
KPZ scaling (I.3). In this regard, recalling vy = coT/3, we change variables
(r,u) — (r,vr - u) in the Fredholm determinant of M above. So if we define a
new matrix kernel

(5.4 F(rou; s,v) = vr M (r.vr - uss, v - v),

then
det(/ + F)y =det({ + M)yxn-

We will use the following estimate about Fredholm determinants.

LEMMA 5.1. Let A and E be matrix kernels over a space L*(X, 1) that satisfy the
following for some positive constants C1, Ca, and n < 1. There are nonnegative
Sfunctions a1(x),az(x), e1(x), e2(x) on X such that

[A(x. )| < a1(x)az(y) and [E(x.y)| = nei(x)ez(y).

Moreover, both ay(x),e1(x) < Cy and both [y dju(x) az(x), [y du(x)ez(x) <
C>. Then there is a constant C3 = C3(Cy, C) such that

|det(I + A+ E)LZ(X,M) - det(l + A)LZ(X,,LL)| < 7’]C3

PROOF. Considerthedeterminantof [A(x;, x;)+ E(x;, xj)]forxy,...,x; € X.
Using multilinearity, Hadamard’s inequality, and the bounds on a;(x) and e (x),
we find that

|det(A(x,~,x,-) + E(x,',xj-)) — det(A(xi,Xj))|
< Y SRRl [ Tealx)) [ ] aa(x)).

Sclk], S£@ JES JES

If we integrate the above over every x;, use the bound on the integrals of a(x)
and e»(x), and then collect contributions of 7, we see that

/);k du(xr) - du(xg)det(A(xi, x;) + E(xi, x;j)) — det(A(x;. x)))|

< Kk2(Cy )k (1 + k- D).
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Since 0 < 5 < 1, we have that (1 + 7)¥ — 1 < 52%. Consequently,

det(/ + A+ E)p2(x. ) — det( + A)p2(x )]

kk/2 i
< WZW(ZQQ) =:1Cs. O
k>1

We will use the following nomenclature for matrix kernels in the proof of con-
vergence.

DEFINITION 5.2. Let M1, M>, ..., be a sequence of matrices where My is an
N x N matrix understood in terms of the p x p block structure above. Let My be
the embedding of My into H as in (5.3), and Fp the rescaling according to (5.4).

e The matrices are good if there are nonnegative, bounded, and integrable
functions g1(x), ..., gp(x) on R such that following holds. For every N,

|Fn(r;u, s,v)| < gr(u)gs(v) foreveryl <r,s < pandu,v € R.

e The matrices are convergent if there is a matrix kernel ' on H such that
the following holds uniformly in u, v restricted to compact subsets of R:

lim Fy(r,u; s,v) = F(r,u; s,v) foreveryl <r,s < p.
N—oo

e The matrices are small if there is a sequence ny — 0 and functions
g1.....8p as for good matrices such that the following holds:

|Fn(riu, s,v)| < nn gr(u)gs(v) foreveryl <r,s < pandu,v € R.

Note that in the above definition that u and v will be negative or positive depend-
ing on the blocks, and we can think of F being 0 outside the stipulated domain.
It will be convenient to hide dependence of parameter N when discussing matri-
ces and call a matrix good/convergent/small with N understood implicitly. The
following are straightforward consequences of the definitions, dominated conver-
gence theorem, and Lemma/[5.1}

(1) If My, M», ... are good and convergent matrices with limit F on H, then
det(l + Fy)y — det( + F)y < oo.

F satisfies the same goodness bound as its approximants.
(2) If My, M», ... are good and S, S>, ... are small, then

det(/ + Fyy + Fsy)u —det(d + Fyy)n — 0,

where Fpr,, is the rescaling of My according to (5.4) and similarly for
Fg

N
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5.2 Preparation

In order to apply the method of steepest descent to the determinant from Theo-
rem [4.12] we have to identify the limit of matrix kernels and also establish some
decay estimates for them at infinity, so that the series expansion of the Fredholm
determinant converges. To do this we need three things regarding the function
G(w | n,m,a).

First, we need to understand the asymptotic behaviour of G(w | n,m, a) locally
around its critical point under KPZ scaling of 72, m, a. This is the content of Lemma
Second, we have to find descent contours for y; and yr(1) that appear in the
description of A(6) and B(f). These are provided by Definition Third, we
have to establish decay of G along these contours, which is the subject of Lemma
5.9l

Recall G(w | n,m, a) from (2.9) with the indices scaled as

n= K—clxK2/3 —I—covK1/3,
m=K+ C1XK2/3, a=cK + C3§K1/3.

The constants ¢; are given by (2.1). When n = m and a = can, we observe that
the function log G(w | n, m, a), which equals

5.5

nlogw + (m + a)log(l —w) —mlog(l — IL) —log(G*(1— /q | n,m,a)),
—q
has a double critical point at

(5.6) we = 1— /q.

LEMMA 5.3. Assume that we have the scaling (5.3) and that |x|, |§|, |v| < L fora
fixed L. Then uniformly in x, &, v, and w € C restricted to compact subsets,

lim G(wc + v ‘ n,m,a) =Y w|l,x,§—v)

1/3
5.7) K—o0 K 1
= exp{§w3 + xw? — (§ — v)wy,
where
1/3 1 —
(5.8) U VD we

(1+f)1/3 S

The lemma is proved in lemma 5.3 of [24] by considering the Taylor expansion of
log G with the scaling (I.3)).

The circular contours y around 0 and 1 will be chosen according to the following
two contours with appropriate values for the parameters:

DEFINITION 5.4. Let K > 0and 0 < d < K'/3. For |o| < nK'/3, set

(59) wo(o)zwo(a;d):wc(l_ d )ewws

K1/3
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and

d oK1
(5.10) wi(o) =wi(o;d)=1-— ﬁ(l — K1/3)€10K &

Thus, wy is a circle around the origin of radius w¢(1 — d/K'/?) and wy is a circle
around 1 of radius ,/g(1 — d/K3).

Recall the notation (v)4+ = max{v, 0} and (v)— = max{—v, 0}.

LEMMA 5.5. Assume |x|, €| < L for some fixed L > 0. Consider the scaling (5.5))
where v is such that n > 0. There are positive constants Cqy, C1,Cp,C3,Cy,Cs
that depend on q and L such that the following holds. Let 0 < § < Cqy. There are
positive constants (L1 and Wp that depend on q, L, § with the following property. If
K > Cs, there is a choice of d = d(v) such that

(5.11) G (wo(o: d(®)) | n.m.a)| ™! < CaeCa0”—m @ 2 Hua(v)y
and
(5.12) |G(w1(o;d()) | n,m,a)| < C3e_C4U2_M1(U)i/2+M2(U)+

for every |o| < mK'Y3. Ifv > 0 then d(v) may be any point in the interval
[Cq, C2K1/3] (C1 < Ca < ). If v < 0 then d(v) may be any point in the interval
[C1+8- (Y2 .CK3,

The lemma is proved in combination of lemmas 5.6 and 5.7 in [24]. It is
based on a direct critical point analysis of the real parts of log G(wg(0, d)) and
log G(w1 (0, d)) with the scaling (1.3).

Now we mention the choice of conjugation constant & from ([2.12). During
asymptotic analysis we have to set p and the parameter § from Lemma such
that they satisfy the following bounds (in addition to 0 < § < Cp).

(5.13) §< Czcé/ztp—l/z .n}cin{(Akt)l/z} and > o - m]?x{(Akt)_l/3}.

If t, |xk |, |€x| < L, these constraints depend only on ¢, L, and ming {Ay¢}.
The goodness and smallness of matrices will be certified as follows. Write

(5.14) Y(x) = —p1 - ()% + o - ()4

where 1 and p, are according to Lemmal5.5]and § is set to satisfy (5.13)). (The pa-
rameters f, xg, and & from (1.3)) are now fixed.) Suppose A > ming {(Ag1)Y/3} >
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0 and p is as in (3.13)). Then,

4(MA£3
(5.15) e HX (/D) < o 2707 for x € R. So it is bounded.
o0 0
(5.16) / dx VD) / S G A )
oo o
[0 0)
+f dx =W+ < o,
0
(5.17) e HIFVE/A) 0 as x — Foo.
0
(5.18) f dx PV o
—0C

5.3 Convergence of the Determinant

In order to prove Theorem [2.2] by using Theorem 4.12] it suffices to show there
is uniform convergence of det({ + A(6) + B(#)) to det(/ — F(0))y in terms of
6 over the integration contour y;” ~!. Parameter @ enters the matrices in terms of
O(r | €) and O(r | k) from (2.3) and (2Z.6). These quantities will play no role in
the asymptotical analysis as all estimates will involve the basic matrices L[---]. So
all error terms will be uniform in #, and we may suppress # from notation as is
convenient.

The matrix A is good and convergent but B is not. (Under KPZ scaling, entries
of B converge to entries of the form Ai(v—u), which does not have finite Fredholm
determinant). On the other hand, B”~! = 0 because B is strictly block-lower-
triangular with the last two column blocks being zero. So

(I+B)y'=I—-B+B>+...4(—1)P2pP 2
We may then consider instead the determinant of
I +A—AB +---+ (—1)P724BP72,

These matrices turn out to be small from 4 B? onward, and the first two are good
and convergent. These considerations motivate the following.

Since det(/ — B) = 1,

det(/ + A+ B) =det(I + A+ B)det(I — B) = det(/ — B> + A — AB).
We will see in Lemma that B> = B; — B, where B is good and conver-
gent. Proposition will prove that A is good and convergent. We will also find,
from Proposition|5.12} that AB = (AB)g + (AB), with (AB)g being good and
convergent while (4 B); is small. Thus, under KPZ scaling, as T — oo,

det(I + A + B) ~ det(I + B, + (A— (AB)g — By)).

Proposition will prove that P = A — (AB)g — By is such that PB; is small.
So

det(/ + By + P) ~ det(I + B, + P + PB;) = det(I 4+ P)det(I + B»).
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The matrix Bj is strictly block-lower-triangular since B is. So det(/ + B») = 1.
This means that

det(/ + A + B) =~ det({ + P),

and the latter determinant converges under KPZ scaling. The limit of P is precisely
the matrix kernel F from (2.15)). So we will have proved Theorem [2.2]after proving
the upcoming lemmas and propositions.

LEMMA 5.6. The matrix B2 = By — By, where By and By are as follows. Recall
we = 1 — /g, r* = min{r, p — 1} and likewise for s*.

p
Bi(r,i;s,j) = Z(l +O(r | k) - (1 +0(k|s)) - Llkklz](r.i;s,J).
k=0
p
By(r,iys, j = Z(l +O(r | k) -(1+0k|s))- - (SL)[kkz](ri;s, ).
k=0

The matrix (SL) is given by
(SL)[k.k\12](r, i35, )

1
— Lyparey c(riss. j) — 9§ dt, 95 dés
We
Y1 Vo
(¢ — &)t
G(&1 | i —ng_1, Ag e (m,@))G(Ca | ng—y — j + 1, Agx(m, a))

The matrix B; is good and convergent in the KPZ scaling limit with limiting kernel
on H given by

p
FOGus v) =Y (1400 [k) (1 + Ok | 5)) - Flekig] (ri:s. ).
k=0

(Recall F's from Definition (2.1)).)

PROPOSITION 5.7. The matrix A is good and convergent due to the following.
Suppose 0 < k1 < ko < p.

(D) Lg[kl,k2|(k1,k2]] is good and convergent with limit
(—1)*2751 F8 k) a1 ko).

2) Lg[kl |(k1,k2]] is good and convergent with limit (—1)"2_1‘1 Fg[kl [(k1,k2]].
(3) Llk.k|@] is good and convergent with limit F [k.k|2].
(4) L[plp] is good and convergent with limit — F [p|p].
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LEMMA 5.8. Suppose 0 < ky < ko < p. We have

LE[ky ol (k1 ko] - B
D

= > (1 + Ok |s))[Lg[kl,kz,kﬂ(kl,kz]] - (SL)E[kl,kz,k3|(k1,k2]]].
k3=0
L¥[k1 ez sl ]l (7 25, )
= Yig) <r* s<ka<ko}C(r 058, j)

Lbandandac b de, (L250)
X_ “ e
We 1 2 3 Zk1+1 Zky 11—z,
yTI 712 V‘L'3 Vv

V e

[Tk, <k<k, G (2k | Apr.m, @) TTi, <k <ty @k — 21" @hy1 — 8D ek, = 82) MG —83) 7!
G(C1 i —nk,, Dgy px(m,a)) G (82 | Ay o (n,1,0)) G (83 | gy — J + 1, Ay g5 (M, a))

The contours are arranged such that v < 71,73 < 1 — ,/q. Also, )7Rg =
YRk, +1 (1) x -+ x ysz(l), and these are the same as the equally denoted con-

tours in LE[k1.ka|(k1.k2]] (see Definition @.4)):

(SL)F[kr ko klhr k] (755, ) = Lk, <, s <o <o} € (72 55 )

1 1— Lk =03
x—gﬁdclgﬁdczgﬁdcsgﬁd:klﬂ---dzkz( 5‘)
we 1—z1
o Yes Yrs 7

Vre

[Tk, <k<k, G2k | Ak (n.m, @) T, <k <tr @k — k) ™! @iy — )72k, — 82) 712 — £3) 7
G(Gu i =npy Ay e (m, @) G (G2 | Mgy — Mgz 1, Ay ki (1,@)) G (83 | gy 1 — j + 1, Ag gy (m, @)

The difference here from Lg[kl k2.,k3|(k1,k2]] is that the number ny, is replaced by
Nis—1 in the second and third G -functions of the denominator.

The matrix Lg[kl o, k3| (k1 ,k21] is good and convergent. Its limit is
(=R F8 (k) o sl ko).

The matrix (SL)E[kl o, k3| (ki k21| is small.
When ky = p there is an additional term in the representation above:

LE[ky.pl(k1.p]] - B

p
= > (14 0(ks | 9))[LEki.pkslkrpl]] = (1 + O(p | 5)) - LE[k1,p.p—11k1,p]]
k3=0
p—1 .
= D (SL)F [k ko ksl (k1 ka1l
k3=0

LEMMA 5.9. Suppose 0 < ky < ko < p. We have

LEkiiGkoll - B = (14 Ok | 9))| Lk kol kol = (SLY e kol 421
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where

N . . . . 1
(SL)*[kv kalter kodl (7, 858, ) = Vg, <, s<kn} (72058, ) - yg dé 95 diés 95 dzg, 41+ dzp,
c
Y1 Yo ¥V RE

—& \1e1=03
l_[kl<k<k2 G(Zk | Ak(nﬁln'a))G(Zkz ‘ 0' Akz(m‘a)) I—[k1<k<k2(zk 7Zk+1)_1 (%) l

G(1 i —ngy Ak, px(m.a)) G(&2 | ngy1 — J + 1. Dg ey (M. @) 2k, +1 — §1) 2k, — $2)

The contours are as in the lemma above. The matrix (SL)E [k1,k2 (k1 ,k2]] is small.
LEMMA 5.10. Suppose 0 < k1 < p. We have
D
Likikel-B =Y (1+O(k: | s) [L[kl,kl,kzlz] . (SL)[kl,kl,k2|®]],

k>=0

where
o |
Llkr b delo)(.155. ) = gy <resstasin €0 55.0) o - dtr  dta
c
Yt

G —8) (G5!
G(Cl | i — Mgy, Akl,r*(m’a)) G({Z | Akz,]q (n’m’a)) G({?’ | Nk, 7.] + 1’ As,kz(m’a)).

We arrange the radii T5 < 11,73 < 1 — /4.

1
SLks ko121 35, ) = Ly <resctactpe(iss. oo b derd dand e
We Jyq, y Y3

(G —8) M — )t
G(&r i —ng,. Dgy = (m.a)) G (S | ngy — Niyets iy ey M. @)) G (83 | Mgyt — j + 1, Ag g, (m, @)

The difference from L[k .k\.k2|@] is that the number ny., is replaced by ny,_, in
the second and third G -functions of the denominator.

The matrix L[k ,k1,k2|2] is good and convergent with limit F[ki,k1,k2|2]. The
matrix (SL)[k1,k1,k2|2] is small.

LEMMA 5.11. For the matrix L[p|p] we have
Liplp] - B(r,i;s, )

b4
Z 14+ Ok | s) Llpklp] (r.i;s,j)— (1 + O(p | s))L[p,p—1|p] (r,i:s,j)
k=0

p
=2 (1+ Ok [ 9))(SL)[pklp] (r.i:s. ).
k=0
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The matrices L[p.k|p] and (SL)[p.k|p] are as follows:

LIpkln] (55, /) = Vpeps<tappe(raics. j)wic $andae § i,
Ytp Y3 YRp (1)
G(ZP | np —1i, Ap(m,a))(zp — &) W — &)t
G2 | np—ng, Mg, p(m,a))G(¢3 | ng — j + 1, Ag g (m,a))’

SLIpHA 0.:5.1) = Lympscteprciis. ) - P dta pats @ dz,
4! Y3 YRy (1)
G(zp I np—i.Ap(m.a))(zp —&2) " (E2 — {3) 7!
G(&2 | np —ng—1. Mg, p(m.@))G (83 | ng—y — j + 1. Agp(m.a))’
The radii are arranged such that to < 13 < |1 — ,/q. (The difference between
L{p.k,|p] and (SL)[p.k,|p] is that the number ny, is changed to ny_y in the second
and third G -functions of the denominator.)

The matrix L{p.k|p] is good and convergent with limit —F [p,k|p]. The matrix
(SL)[p.k\p] is small.

PROPOSITION 5.12. The matrix AB = (AB)g + (AB)s, where (AB)g is good
and convergent and (A B)g is small. This is due to the following reasons, which
also provides the limit of (AB) 4. Recall from Definition @.11) that A = A1 + A».
Then (AB)g = (A1B)g + (A2B)g, given as follows:
(A1B)g(r.izs, j) = Z O | k1) - (1 + O(ka | 8)) - Llki,k1.k212](r, 155, ).
0<ki.,k2<p

(A2B)g(riizs.j) = Y. (=Dfkthith g g
0<ky,k2,k3<p,E,

satisfies (2.14]
x [(1 + O(ks | $))LE [k o ksl (ko]

—Lky=pis=p-13(1 + O(p | ) LE [k, p,p—11Ck1, 1]
+ Yy <pies=py (1 + O(ka | §)) LE[k1 ksl (k1 k2]
+ 1{k1=11—1,k2=p}(1 + ©(k3 | 5))L[p.k3lp]

—Lgi=p—1ko=pk3=p-13(1 + O(p | S)‘)L[p,p—l\p]](c,i:s,j).

The summation variables k; range over 0,1, ..., p. The matrix (AB)s looks the
same as (AB)g except that every L is replaced by SL.

PROOF. We see in Definition f.11] that 4 is a weighted sum—involving the
6)’s—of the matrices L[k.k|@], L [k1.kalGk1 k1], LE[k1](k1,k-]], and L[p|p]. When
we multiply 4 by B, we replace every L[] by L[] - B. Then if we substitute the
representation of these matrices by using Lemmas [5.8] [5.9] [5.10] and [5.11] we get
the representation (A B) g +(AB); as given by the statement of the proposition. [

Lemma [5.6] along with Propositions and [5.12) imply that the matrix P =
A — (AB)g — By has limit F from (Z.13). Specifically, the limit of By is F(©.
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The limit of A; is F(!) and that of A, is F®. The limit of (41 B), is F® and
the one of (42B)g is F (). Let us also remark that when comparing the matrix A
with F, we see the factors (—1)f1421 K163 have become (—1)8k1-k21Hiky=p3
This is because the limits of the ¢ are of the form (—1)k2_k1 FE, and k;‘ + ko =
2ko — 14, — py, and likewise for L[p|p] withky = p — 1 and k> = p.

We then arrive at the conclusion of Theorem [2.2] once we have proved the fol-
lowing:

PROPOSITION 5.13. The matrix PB; is small, where P = A — (AB)gy — By and
By is from Lemmal5.6

The proof of this is in the next section. For the remainder of this section we will
prove Proposition and the aforementioned lemmas. The proofs will be on a
case-by-case basis, where we consider each of the three types of matrices L[k,k,|2],
Llk1,ka|(k1,k2]], and L[k1|(k1,k2]], and then prove the propositions claimed about
them.

The following lemma will be used again and again to multiply matrices by B.

LEMMA 5.14. Suppose 0 < Ni < N, are integers and wi # wy belong to
C\{0,1,1 —g}. Then,

1
Z — _ n! / A
N1<£5N2G(w1|n L+ 1,m,a)G(wy | L—n',m’,a’)

We 1
= X —
w1 — Wy [G(wl |n—Ny,m,a) G(wy | Ny —n/,m’,a’)

1
G(wy | n— Ny,m,a) G(ws | Ny —n/,m/,a’)]'

PROOF. Due to the group property of G, the sum over £ can be written as

1 Z w1 -1 We ¢
G(wy | n,m,a)G(ws | —n’,m’,a’) We wy )

Ni<l<N»

The geometric sum evaluates to

e [(w1/w2)™> = (wy /wp) "]
w1 — W2

_ We 1
— wy —wz | G(wy | —N2,0,0)G(ws | N2,0,0)

1
~ G(wy | —Nyi,0,00G(w, | N1,0,0)]‘

Then by the group property we obtain the expression on the right-hand side of the
identity . U
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PROOF OF LEMMA We have that

D
Bz(r,i;s,j):Z Z B(ral’k’E)B(k’KaSa.])
k=0 njp_1<€<ng
Let us recall
o . .1+®(rIS)§£ 1
B , 158, :1 = C(r, 179, d
(18D = Ry f0 )7, 7 Pl

i—j+ 1-As,r*(maa))‘

The conjugation factor satisfies ¢(r,i; k,£)c(k,{;s, j) = c(r,i:s, j). Therefore,
B2(r,i:s, j)

p
1
= c(ui5.)) Y ke sk (L4 O [ 1) - (14 Ok [ )5  dty § ata
k=0 CVT] Yt

2

Z 1
G li—€+1,Agp+(ma))G(L2 | €—j + 1, Agpx(m.a))

ng—1<€=ng

Observe that k* = k because k < r* < p. By Lemma[5.14] the sum over £ gives
the difference of the integrand of L[k.k|@](r,i;s, j) from that of (SL)[k.k|@](r,i;
s, j). Consequently, the expressions for By and B, follow and we have B? =
B1 — B». That B; is good and convergent will follow due to every L[k,k|@] being
such, which will be shown in the proof of Proposition [5.12|below. O

Throughout the remaining argument we will assume the following:

(1) The parameters tx, X, & are bounded in absolute value by ming{Agz} >
Oand by L.

(2) C4,1 is a constant whose value may change from one appearance to the
next, but depends on g and L only.

Proof of Claims Regarding LE [k1ska (ke k1]
The matrix L& [k1,k2|(k1,k2]] has the form

LE[ky kol kr ko] (r i35, )

) N
= Lk, <p s <kp)C (1,155, j)— 95 d&y 95 d&s
We

(5.19) v, ye
f(1,82)
G| i —ngy, By px(m,a)) GG [ ng, — J + 1, Agx g, (M, a))
where

_e\ Lk =03
ey <=, G | Axtnm.ay) (150) ™

- dzy .
Ty <<k @k = Zk41) @41 — SD(@ky — £2)

Fe1.t) = 95 d2g, o1

-

yRé‘
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Let us fix k1, k2, and &. Let Fr be the KPZ rescaling of our matrix according to
(5.4). The indices i and j on the (r, s)-block are re-scaled as
(5.20) i =ng++ [vru] and j = ng + [vpv].

It is convenient to ignore the rounding as it makes no difference in the asymptotic
analysis. Consequently,

2
I —ng, = Akl,r*t T — cl(Akl’r*x) . (Akl,r*l T)3

+ ¢p (Akl,r*t T)%,

(5.21) (Agey )/
2
Agyem = Dge ot T + 1 (Dgy o X) - (At T)3,
1
Akl’,*a = CZAkl,r*t T + C3(Ak1,r*5) . (Akl,r*t T)3.
Similarly,
. 2
nk2 -] = AS*,kzt T — cl(AS*,kzx) . (AS*,kzt T)3

+ ¢o _ (As*,kzt T)»%,

(5.22) (Agr g, )'/3
2
Akl,r*m = As*,kzt T+ Cl(As*,kzx) ’ (As*,kzt T)3,

1

Ak, rxa = 2 Agx jo,t T + c3(Agx j, §) - (Agx gyt T)3.

We note that Ag, ,«t > 0 and Ag ;¢ > 0 due to the conditions k; < r* and
s* < kz.
Recalling Definition 5.4} choose the contours yz, and y-, as follows:

Y = w()(O'],dl) with K = Akl,r*[ T,
Vi, = wo(O'z,dz) with K = As*,kzt T.

The choices for d; and d» will be made later.
With the rescaling (5.20) the conjugation factor satisfies

(5.23) c(r.izs, j) = T+ Cq L T,
PROOF THAT Lg[kl,k2|(k1,k2]] Is GooD. From Lemma we see there is a

choice of d; = d(u) such that we have the following uniformly in {; = ¢;(01) €
wo(o1, d1):

. _ _ 2 * 1/3
1G(L1(01) | i — g, A, e (m,a))| 71 < Cae™ CaoTTH0/ Ry x5

Recall W(x) = —puq - (x)3/2 + ps - (x)4. Also, there is a choice of dp = d(—v)
such that the following holds uniformly in ¢ = &2 (02) € wo(o2, d2):

G(E2(02) | iy = ] + 1. Age o (m. @) 7" = Ce™ G0z THER (B 1
We will see below that f from (5.19) satisfies the following uniformly in oy and 075.
(5.24) |f(¢1(01). La(02))| = CqL TP

)3
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Changing variables {; — oy and &, — 03, we have |d ¢y /doy| < Cq,LT_l/3 for
¢ = 1,2. The conjugation factor also satisfies (5.23)). Therefore,

|Fr(r,u;s,v)
— — _ 2 2
< Cqvr T723e07) /R _do2dos| f(£1(01), §a(02))|e” 4102
x eql((“/(Akw*t)m)) . eq’(_”/(As*.kzt)l/3)

< Cy Le—uu+lll((u/(Ak1,,»*t)1/3)) .e“”+‘1’(_”/(As*,k2t)1/3).

Recall from (5.13) that e~ #*+¥(/A) j5 bounded and integrable over R if y satis-
fies the bound from (5.13) and A > ming {(Ax¢)'/3}. This is the case for us and
the matrix is good. 0

PROOF OF ESTIMATE (5.24) FOR f({1,¢2). First,

(1 =¢)/(T =z =2/(1 —q).

Suppose that {1 € wo(o,d1) for some dy and K = k17T, and zx, 41 € wi(0,d>2)
for some d» and K = «2T. Then |{1 — 2, 4+1] = T=Y3((d1/k1) + (d2/k2)). In
our case, d1, da, k2, k2 all remain uniformly positive in 7", and depend on ¢ and L.
Therefore, |1 — zk1+1|_1 < Cq,LT1/3. Similarly, [{, — Zk2|_1 < Cq,LTl/3 if
Tk, € wl(o, dz)

The parameters Ay (n,m, a) are re-scaled according to

Agn = Mgt T — e (Dgx) - (At T)F,
(5.25) Agm = Mgt T + e1(Agx) - (At T)3,
Ara = e2 Apt, T + c3(AgE) - (Mgt T)3.

We choose z; to lie on the contour w1 (oy, Dy ) with the choice K = Ayt T.
The number Dy is chosen so that the estimate (5.12) from Lemma [5.5] holds,
namely, uniformly in oy,

G (zx(0%) | Ap(n.m.a)| < Cze~C4%.

This is for every k1 < k < k».

We need the Dy ’s to be ordered according to €. The Dy ’s may be chosen from
an interval with length of order T1/3. So we can choose them from the interval
[1,2p], say, which ensures that they can be ordered accordingly and also that their
pairwise distance is at least 1. Consequently, |zx — Zx41]7! < Cy, LT3 for
every k.
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When we change variables z; +— oy, we have |dzy /doy| < Cq4 1 T-1/3. Thus,
if {1 € wo(o,dy) and &» € wo(o’, d2), then uniformly in £ and &5,

(€1, E)] < Cop (T3 / dog, 41 -+ dog,e™C+ Tk oF

RA2—k1

. (T1/3)k2—k1—1+2

< C,LTY3. O

PROOF THAT Lg[kl,k2|(k1,k2]] Is CONVERGENT. Now we assume the kernel
variables u and v in F7 remain bounded and that we are on the (r, 5)-block. We
will choose contours for all the variables in the following way:

N ca .. cad
{1 =§1(01)€w0(—401, 221

Vi Ve

N c4 .. cad
§2=§1(02)€w0(—402, 422

Vi Ve

Cq Cq Dk
lk = Zz(O'k) € W1 (—O’k, E—
N
The constant ¢4 is from (5.8). The numbers d; and d» are as in the proof of good-
ness so that the estimate (5.11)) holds. Since u and v are bounded, we may absorb
the terms eY® and e¥?) into the constant C3 of the estimate. The numbers Dy
are chosen so that the estimate (5.12) holds. They are also to be ordered according
to £. As before, we may choose them so that they have pairwise distance at least 1
and are ordered accordingly; the condition of the ordering is (2.13).
Due to this choice of contours, arguing as before, we find the following esti-
mates. We have z; = 24 (ox) and &y = {¢(0y):

[1x |Gz | Ag(n.m,a))|
|G(§1 | [ —NE,» Akl,r*(mva)) : G(CZ | Mg, _.] + la As*,kz(msa))|
< Cq L€—C4(Zk 0,‘2.4—3124-822),

), K = Akl,r*t T.

), K = AS*’sz T.

), K:=AptT.

VT - ‘ [T Grk—zk+) " Grir1 =)k, = 827"

k1<k<ko
d d&,
T |5 115 =
doy, Oy ’
k1<k<k> {=1,2

These estimates allow us to use the dominated convergence theorem to get the limit
of the integral in Fr(r,u;s,v). So we consider the pointwise limit of the integral.
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Suppose oy and 6y lie on compact subsets of R. We have

~ c o~ —
{1(01) = we + W (io1 +d1) + Cy, L T 2/3,
lyr*

c4

ey W2 )+ G T
s* ko

$2(02) = we

Zr (o) = w (—iox + Dy) + Cq,LT_Z/"’.

4
+ N
(At T3

Let us write 2, = (—dog + Di)/Axt, §f = (i61 + d1)/(Ag, r+t) and &) =
(i02 + d2)/(Ag* k,t). With the new variables, in the large-7 limit, the contour yr,
becomes the vertical contour I'_, intersecting the real axis at —d (recall { é now
remains bounded). The contour yg, (1) becomes the vertical contour I'p, oriented
downward. It is downward because yg, (1) crosses the real axis at the point 1 — Ry,
(which is the one near w,) in the downward direction. If we re-orient the contours
upward, then we gain a factor of (—1)*k2=%1,
We see from Lemma[5.3] that

G(zk | Ax(n,m,a))
— G (Agt - 2p | 1, Ap(x,8) = 9 (2 | Ax(t, x, 6)),

G(zk | Ax(n,m,a))
= G(Apt -z | 1 A (x,8) = G2y | Ax(t, x,6)),

G (&1 |1 —niy. Agey e (m. @)
- g(Akl’r*t ) é‘i | L Akw‘*xv Akl,r*é - (Akl,r*t)_1/3u)
= g(é‘i | Akl’r*([’x’é))egiu’

G(é‘z | Mgy, — ] +1, AS*,kz(mva))
= G (A gt - T | 1, Agr oy X, Agr g &+ (Agr 1,1) " H30)
=9(¢1 | As*,kz(z,x,é))e—iév.

These limits are uniformly in {; and zz, as well as in u and v, because these
variables are now restricted to compact subsets of their domains. We also have the
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following:
1_[ (Zk — Zi41) = ()21 (T 1/3)k—k—1
k1<k<k2
< [T @2y + Cor (@135,
k1<k<k2
l_[ dzy -vr = Co(c4)k2_kl(T_1/3)k2—k1—1
ki<k<kz

x [ dzj+ Cor(r™/3kakr,
ki<k<k>

(zk — o) e = (2f — &) e, + Cq T3,
(k. €) = (ky + 1,1) or (ka, 2).

Next, we have that coc4a = 1 — /g = w,, which is a factor we obtain from
the ratio of the second product above to the first. This cancels the factor 1/w, in
Fr(r,u;s,v). Also, as T — oo, the term

1 — ¢\ k=0
( ) — 1
1 —2z1

and the conjugation factor ¢(r,i;s, j) — c(r.u:s,v) = e by (5.23).
Putting all this together we see that the limit of the kernel Fr(r,u;s,v) is the
kernel (— 1)"2_1‘l x F& [k1,k2|(k1,k2]](r, u; 5, v), the latter from part (3) of Definition
[2.1] This proves part (1) of Proposition[5.7] This same argument will be used with
minor changes to show goodness and convergence of all the other matrices. U

PROOF OF LEMMA [5.8] First we prove the decomposition of LE [k1.Jea|(ky k2]] -
B given in the lemma. We keep to the notation there. Using Lemma [5.14] we find
that

P
Lk kalterol] - B = Y (14 O(ks | 9))[Liy — SLi,]-
k3=0

Liy(r,iss, j) = 1{k1<,*,s<k;<k2}c(r.i:s,j) X

1 1— Liky =03
—¢d§19§d§z¢dé3 515 dzkl+1~-~dzk2( gul)
We -z

Yty Y, Y3 y

Ve

« Hk,<k5k2 G(Zk \ Ak(n,m.a)) Hk1<k<k2(1k - Zk+1)7l(1kl+1 - 51)71(11@ ) ' (2—t3)7!
G({l | i—ng,, Akl,r*(m.a)) G({z | Mgy — Niys Ak;’kz(m.a)) G(§3 [ g, —Jj + 1, As,k;(m,a)) :
The matrix SZk3 looks the same as Zk3 with the difference being that ng, is
changed to 74, _; in the two G-functions corresponding to variables {> and (3.

The matrix ij; looks the same as L& [k1,k2,k3|(k1,k2]] except that k’3" appears
instead of k3 in L gx g,y Agx i, (m,a), and Aggx(m,a). Now k3 = ks if
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k3 < p. An exception occurs if k3 = ko = p. In this case ng, —ng, = 0, so
there is no pole at {5 = 0 in the integrand. The {,-contour is the innermost one
since 1 < 73, and it can be contracted to 0. So we may assume k3 < p, and then

replace k;" with k3 in the above. This results in LE [k1,k2.k3](k1,ko]].

Now consider Szk3. It also equals (SL)g[k1,k2,k3|(k1,k2]] unless k3 = ko = p.
In the latter case, since k3 = p — 1, the matrix is Lf [£1,p,p—1|(k1,k2]]. Accounting
for this case we get the representation of L? [k1,k2|(k1,k2]] - B given by the lemma.

Next we prove that LE [k1,k2,k3](k1,k2]], which we simply write L, is good. Fix
k1.k2, k3 and an (r, s)-block such that k1 < r* and s < k3 < kp. The argument

is the same as the one for goodness of Lf [k1,k2|(k1,k2]] since these matrices have
the same structure. The variable {3 now has the same role as the variable ¢, did for

Lf [k1,k2|(k1,k2]]; i.e., it carries the j-index. The difference now is that {, appears

in (&2 —83)7"/G(&a | Mgy, (n.m,a)).

We choose {> to lie on the contour y;, = wo(02,d2) with K := Ag, .t T. The
number d> is to be chosen so that we have the estimate (5.11)) from Lemma [5.5]
i.e.,

(G(2(02) | Ak gy (n,m,@))| ™ < Caem €403,

As before, {3 is chosen to lie on y;, = wo(03, d(—v)) so that we have the estimate
(G(E3(03) | Aggsnt =70, Ay s (m,@)| ! = CemCooa ¥/ (B0,
We have £ — &3]7 < Cy, 1 T*/3 uniformly over the contours, and also
|d¢a/doy| < CqrT7Y3.

Due to the term (¢, — £3)~! we have to ensure that the contours are chosen so
that they remain ordered, i.e., 7o < 73. This means we want d(—v) < (dp — 1) -
(As,k3t/Ak3,k2t)1/3 < Cg4,1d>, say. Since the column block s < p, we have
v < 0, and both d» and d(—v) can be chosen from intervals of order 7'/3 in
length. So we can order the contours.

Arguing as in the proof of goodness of LE [k1,k2|(k1,k2]] and using the estimates
above, we find that L is good as well. Specifically, if Fr is the re-scaled kernel
of L according to (5.4)), then

|Fr(r,u;s,v)| < Cq’Le_“”JF‘I’(”/(Akl.r*t)1/3) P/ (A )3

This bound certifies goodness.

Now we argue that L is convergent to (—1)¥2~%1 F é [k1,k2,k3|(k1,k2]]. This is the
same as the earlier proof of convergence of L? [k1,k2|(k1,k2]]. In the KPZ scaling
limit the function G({2 | Ak, k, (n,m,a)) converges to 4(¢5 | Ag(t,x,£)). Then
the KPZ re-scaled kernel is seen to converge as before.

Finally, we prove that the matrices SLE [k1,k2.k3](k1,k2]] are small. Let us fix
k1,k», k3, and consider a block (r,s) such that ky < r* and s < k3 < kp. We
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have that
SL ks kaitn ksl ) = D b a §ae § ag )
¢ YTy 1423 Vi3
(2=t~

X .
G(&1 i —ngy. Mgy rr(m, @) G (82 | Ny = Ryt Dy ko M. @) G (83 | iyt — j + 1, Ag gy (m, @)

The function f(¢1, ¢2) is from (5.19) and satisfies the bound (5.24). The contours
are ordered such that 7, < 73.
For convenience, introduce

AL = BDp DYV Ao = (ApyioDV? Az = (Agu)'3,
5= Agsn _ Ap,t T3 1 C, TV,
vr Co
We find, ignoring rounding, that
(l — Nk, Ak],r*’/nv Akl,r*a)

= Ag, o (n.m,a) + co(u/A1,0,0) - (Ag, o+t )3,
(7’1k2 —Ngs—1, Ak3,k2mv Ak3,k2a)

= Mgy tr (1., a) + o (1) D2,0,0) - (A xpt T)Y3,
(nk3—1 - jv As,k:;m’ As,k:;a)

= Ag iy (n,m,a) + co — (v + A1)/ A3,0,0) - (Agpyt T3,

Note g,y — j > Obecause j € (ns—1,ns] and s < k3.
Now we choose contours for the variables. We choose yr, to be wo(o1, d(u))
with K := (A1)3T such that we have the estimate (5.11)), namely,

(G(&1(01) | § =gy, Mgy oe(m, @) 7 < Cae™CaoTH¥0e/aD),
Next we choose yy, to be wo(02, d(A)) with K := (A2)3T such that we have
|G (22(02) | Ny — Myt Mgy oy (. @)1 < Ce~CE TR/,
Finally, y., is chosen to be wo(03, d(—v — 1)) with K := (A3)3T such that
G(63(03) | kgt — J + L Aggy (m,a)| 7" < CaeCHo3+PE0+D/A3),

We have to maintain the ordering 7, < 73 due to the term ({ — ¢3)~! in the in-
tegrand. So we should have d(—v — 1)/A3 < (d(X) — 1)/A,, say. We know
that d(1)/A, may belong to the interval [Cy/A,, CoTY/3] if T is sufficiently
large in terms of ¢ and L. If v + A < O then d(—(v + A))/A3 may belong to
[C1/ A3, C2T1/3], and we may order the contours as we wish.

On the other hand, if v + A > 0 then d(—v — A1)/ A3 may belong to the interval

[C1/As +8(v + )2/ A2 T3,
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Since d(X)/ Az belongs to [C1/A», CoT1/3], we can ensure that d(—v— 1)/ Az <
(d(X) — 1)/ A, for all sufficiently large 7" so long as

S+ M2 < AT — Al

Now observe that v < 0 because index j belongs to column block s with s < p
due to s < k3 < ko. Therefore,

(v +M)V2 < AV2 = (Ag,t/eo) 2TV + €, TVS.

We are fine if § < Czcé/zAg/z(A/Qt)_l/z. We note that Ag/z > ming {(Axt)'/?}
and Ag,t < t,. So § satisfies the required bound as it is chosen according to (5.13).

Let Fr(r,u;s,v) be our matrix re-scaled according to (5.4). Also, recall that
| f(C1,8)] < Cq,LTl/3 according to (5.24). Then, using the above bounds for the
G-functions and arguing as in the proof of goodness of LE [k1,k2|(k1,k2]], we find
that

|Fr (s 5,0)| < Cy.p e @0 Y0/ ADHO/ D)+ U (—(0+1)/A3)

A

_ oAV B) ik /A | ROHR YA/ BS),

nr

Note that every Ay > ming {(Ag?)!/3} and p satisfies (5.13). Therefore, from
(5.15), we have that 7 — 0 as T — oo due to A — oco. We also see that the
functions e ~Hu+¥W/A1) gpg eh(W+A)+¥(=(+A)/A3) are bounded and integrable
over the reals. This certifies smallness of SL& [k1,k2,k3|(k1,k2]]. O

Proof of Claims Regarding LE [k 11k k1]
We will first prove Lf [k1](k1,k2]] is good and convergent as stated by Proposition
Then we will prove Lemma[5.9]

PROOF THAT Lg[k1|(k1,k2]] Is GooD AND CONVERGENT. Fix £ and k; < k».
Note L®[k1|(k1.k2]] has nonzero blocks only of column block s = k» < p. Con-

sider the block (7, s) such that k1 < r* and s = k> < p. On this block the matrix
has the form
Litikalriss. ) = e(riis ) fdte § dai, 161 zi)
YTy YRy, (1)
G(2ky | ] —Niye1 — 1, Mg, (m, a))
G(C1 | i —nk,. A, = (m,a))

’

(5.26)
f@l,Zkz) = 95 de1+1 ¢ dez—l
yRk1+1(1) YR/\‘zfl (1)
_e\ Lk =03
[T <k<ia Gk | Mg, ) ($221)

Hk1<k<k2(Zk = Zk+1) (Zky+1 — §1)
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The contours around 1 are ordered according to €.

Under KPZ scaling the indices i and j are re-scaled as i = n,» + vru and
J = ng, + vrv, where we ignore rounding. Note that v < 0 since s = k> < p.
We have that

(l _nklvAkl,r*(m’a))
= Akl,r*(n5m7a) + CO(U/(AkI’r*[)l/?’,O,O) ’ (Akl,r*l T)1/37

(] —Ngy—1, Akz (Wl, a))
= Apy(n,m.a) + co(v/(Dgy)'/3,0,0) - (Ag,t T)'/3.

The triple (i —ng,, Ag, r+(m,a)) has the form (5.21) and (j —ng,—1, Ak, (m,a))
has the form (5.22).

Now we choose contours for the variables. We choose y;, to be wo(1, d(u))
with K := Ay, =t T. Then with an appropriate choice of d(u) from Lemma
we have the estimate (5.11)):

~ . — — 52 * 1/3
|G(§1(O’1) | (l _nkl’Akl,r*(mva))N 1 < C3€ C40‘1 +\I/(u/(Akl.r t) )

Next we choose yg,, (1), the contour of zg,, to be wi(ok,, D(v)) with K :=
A, t T so that we get the estimate (5.12)):

_ 2 - \1/3
G (Zkey (04y) | (= eyt — 1, Ay (m,@)))| < Cze™ S0k TP/ BT

For k1 < k < k», we choose the contour yg, (1) to be wy (0%, Dy) with K :=
Ayt T such that we have the estimate (5.12)) from Lemma[5.5}

Gz (0%) | Ag(n.m.a))| < Cze~C3%.

The parameter Dy may be chosen from the range [Cy, Co(Agt T)'/3]. We have
seen that we can choose these Dy ’s such that they are ordered according to €. The
parameter Dy, has to be ordered with respect to D(v). We can first choose these
two and then choose the remaining Dy ’s accordingly.

To see that Dy,_; and D(v) can be ordered, set A1 = (Ak2_1)1/3 and Ay =
(Akzt)1/3. Since v < 0, D(v) may be chosen such that D(v)/A, belongs to the
range [C1/Ap + S(U)l_/z/A;/z, C>T'/3]. The number Dy,_;/A; may belong to
[C1/A1, CoTY3]. 1f €k,—1 = 2 then we require Dy,_1/A1 < (D(v) — 1)/A2,
say, and this is possible within the aforementioned ranges. Suppose &g,—; = 1.
Then we are fine so long as §(v)/2 < CzAg/z T3 — ¢y Aé/z. Now since j €
(Nky—1.Nk,], we have (vV)— < Ap,n/vr < (Ag,t/co) T2/3 4+ Cq,LT1/3. So
Y2 < (Akzt/co)l/2 T3 4 Cq,LTl/G. Therefore, it suffices to have § <
C Ag/z(Akzt/co)_l/z, which is the case since § satisfies (5.13).

Let Fr(r,u;s,v) be the re-scaling of our matrix by (5.4). Having chosen the
contours, the estimates above imply the following, if we argue as in the proof of
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goodness of LE[ky ksl (k1 ka1].
|Fr(r,u:s,v)l
. ~ —C4(B2At02 ) L o
ECq,LVT(T_3)k2_k1+1/» dBy oy, TR (T ek
Rlxz—/\1+l

X l{v<0}e—/m+\11(u/(Akl ,r*t)1/3)euv+lll(v/(Ak2t)1/3)

<Cqy Le_uu—i_ql(”/(Ali*’)l/S) 3 Mv+\l/(v/(Ak2t)1/3).

03¢
Both Ag, ,«t and Ag,¢ are at least ming {Ag¢} and p satisfies (5.13). So the
functions of u and v above are bounded and integrable by (5.13), and the matrix is
good.

For the proof of convergence of LE [k1|(k1,k2]] to (—l)kZ_k 1 FE [k11(k1,k2]] we can
repeat the argument for convergence of LE [k1,k2| (k1 ,k2]]. O

PROOF OF LEMMA 5.9 Since L? [k1|(k1,k2]] has nonzero blocks only on col-
umn block k2,

LEfky (kv kal] - B(r.iss. )
= (14 Ok | 5)) Z L[k 101 kaT)(r, i3 ko, €) Bk, £, 5, ).
Ke(nszlvnkz]
We can compute this using Lemma(5.14]as follows:

LE[k1 |1 kal] - B(ryiss, j) = (1 4+ Oka | 8)) c(r.iss, j)

1 f (1. 2ky)
1 <r*,s<kx<p} 5 d d 2 <
 Mhisrtaska<rlya 36 o 56 36 §2G(g°1 | —ngys Ag, pe(m,a))
1

Y7y YRy, (1) Ve2

x ; -
G(Zky | Mpym1 — L+ 1, —Apy,(m, @) G (&2 | £ — j + 1, Ay, (m. )

Le(nyy—1.nk,]

1
= (1+Oka | 9155, )) Lty <rt ko) 55 dt, 99 dts §6
c
Yt

Yy 2 VR, (D
[ F €1, 2k,) @k, — §1)7VG (24, | Ay (n.m, )
G |i—ngy Agy px(m,a)) G (G2 | niy — j + 1. Ag g, (m. @)
_ S(C1.2k,)(2ks —C1)_1G(Zk2 | 0, Akz(m.a)) :|
G| i—ngy. Agy px(m,a)) G (G2 | N1 — j + 1, A g, (. a))

= (1 + O(kz | )L s kol Ger kal] — SLE[kr el lr o] -
The function f is from (5.26). We observed above that the term ({1, 24) (2, —
0) 7 G(zk, | Aky(n,m,a)) divided by G(¢y | --+) - G(¢a | -+ ) makes the inte-
grand of Lg[kl Jk2,l (k1 ,k2]], as is required.
To complete the proof we show that the matrix S LE [k ,k21| (k1.,k-]] is small. The

argument is analogous to the prior proof of smallness of SL®[k; k2 k3|(k;1,k2]]. The
role of variables {1, {2, {3 from there is now given to {1, g, {2, respectively. The

parameter A = Ag,n/vr = (Akzt/co)Tz/3 + Cq’LT1/3. Since the &,-contour
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lies around O and the z,-contour around 1, there is no ordering between them.
We need the zx,-contour to be ordered with respect to the z,_1-contour accord-
ing to &,_1, and for this we may repeat the prior argument for the goodness of

L[k, |(k1 k2]
After choosing contours as before we get the following estimates for the G-
functions:

G (¢1(01) | Agy pont + vru, Akl,r*(m,a))rl < C3e—C4012+\IJ(u/A1)’
G (82 | Agssnt — vr (0 + A). Ag sy (m.@))| " < Cae~Cara+¥(-0+0)/82),
1G (24,(03) | Agynt — vT A, Mgy (m, a))] < Cae~Co03+¥(A/A3),

Here, A1 = (Mg, +0)V3, Ay = (Ag,1)1/3, and Az = (Ag,0)'/3.
Using these estimates and arguing as before, we find the following estimate for
the re-scaled kernel Fp of SLE[kq.k2,|(k1,k2]].

\Fr(r,u;s,v)| < Cq,Le_‘M"'lp(_MA“ o hutY/AL) | u+A)+Y(=(v+A)/Az)

nr

We observe that ng = C(],Le_”)“_‘“()“/A»“)y2 — 0, and the two functions of u
and v are bounded and integrable over R due to (5.13)). So the matrix is small. [J

Proof of Claims Regarding L [,k|2]

First we will prove that L[k.k|@] is good and convergent to F'[k.k|@]. Then we
will prove Lemmaby first showing that L[k ,k;,k2|@] is good and convergent,
and then that SL[k;,k1,k2|2] is small.

PROOF THAT Lk,k|@] Is GOOD AND CONVERGENT. The matrix L[k,k|@] has
nonzero blocks (r,s) only if s < k < r*. Let us fix such k, r, and s, so then
Llkk\z](r,i; 5, j) equals

1
Ciss. ) 95 dt, 95 dts
cy‘L'l y‘rz

(61 —¢)7!
G(fl | [ —ng, Ak,r*(mva)) G(§2 | ng—j+1, As,k(m’a)).

Ignoring rounding, the indices are re-scaled according to i = n,* + vru and
j = ns + vrv. Note that v < 0 since s < p. In this case the KPZ re-scaling
of (i —ng, Ag,+(m,a)) looks like (5.21)), and that of (nx — j, A x(m,a)) like
B22). Set Ay = (Ag,+1)'/3 and Ay = (Agit)'/3.

For establishing goodness, the contours are chosen as follows. The {;-contour
is wo(o1,d(u)) with K := Ay .=t T'; the {>-contour is wo(02, d(—v)) with K =
Ag xt T. With appropriate choices for d(u) and d(—v), Lemma provides the
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estimates
G(£1(01) | Agpert + V71, Ay (m, @))| 7" < Cae~CaoTHYW/ A1),
1G(£2(02) | Agpn — vpv. Ay (m.a))| ™" < Cze=Ca03+¥(v/A2)

We need to have 15 < 71, which translates to d(u)/A1 < (d(—v) — 1)/ As, say.
Since v < 0, the number d(—v)/A, may be chosen from [C{ /A5, CoT'/3] once
T is large enough in terms of ¢ and L. When u > 0, d(u)/A can be chosen
from [C/ A1, C2T'/3], and we can order the contours accordingly. If ¥ < 0 then
d(u)/ A1 may belong to [C1/A1 + S(M)I_/Z/Ai’/z, C,T'/3]. We can order the
contours so long as §(u)}/? < CZA‘;’/z T3 — ClAi/z. We have that (u)_ <
(Ar*)z/cO)T2/3 + Cq,LT1/3. Therefore, as before, we are fine since § satisfies

Let Fr be the re-scaled kernel of L[k.k|@] by (5.4). The estimates above for

the G-functions and the same argument used to show goodness of LE [k1,k2 (k1 k2]
implies the following bound:

(5.27) |Fr(r,u;s,v)| < Cq’Le_”“”"'ql(”/A') . MVt (—v/A2)

This certifies goodness of L [k,k|@] by (5.15).
The proof of convergence to F[k.k|@] is the same as that of L[k .ka|(k k2]
converging to the kernel (—1)k27K1 F& [k, k,|(k1 k»]]. So we omit the details. O

PROOF OF LEMMA [5.10l We multiply L[k,k|@] by B using Lemma
Llkki2] - B(r,i;s,J)

= (1 + Ok | 9)) Lk are, s<kep<ky (1055, j)

ko
1 (&1 — &)™t
: w_%ﬂg dgljg dﬁﬂg VS G i —n. Apm.a)

1
* [ 2 G2 | ng =€+ 1, Ag(m,a))G (&3 [ £~ j + I’As,kz(mva))i|

Le(mpy—1.nk,]
=Y (14 0(kz | ) - [LIkkkal2](r.i:5. j) = (SL) [k kol2] (1 i3 5. )]
ko

Now consider L[k ,k1,k2|2] to see that it is good, and converges to F [k1,k1,k2|2].
Recall

L |
Llkikik2|@] (7,058, j) = L) <r*, s<kp<ky} C(r,lis,J)uT 9§ d& 95 dé ¢ dis
C)’rl Yty V3

(&1 —8) (G —¢83)7!
G(;l | i — Ny Akl,r*(m’ a)) G(§2 | Akz,kl (n.m,a)) G(é‘l | Nk, — ] + la As,kz(ms a))
This matrix has the same structure as L[k.k|], and the proof of goodness and
convergence is analogous. The new terms in the integrand are (¢, — £3)~ ! and
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G2 | Ak, k,(n,m,a)). The latter converges to (82 | Ak, k,(t,x,§)) under
KPZ re-scaling by Lemma which leads to the limit kernel F [k, ,k1,k>|@]. In the
proof of goodness, one uses estimate (5.11) from Lemma [5.5]to derive the same
bound on the re-scaled kernel of L[k, .k;,k2|2].

During the estimates leading to goodness, one has to ensure that the contours
are ordered appropriately. Due to the term (£; — £2) ™1 ({2 — ¢3) ™!, we require that
T3 < 71, 73. We choose the {>-contour to be wo(02, d2) with K := Ay, ¢, T'. The

parameter d> may be chosen from an interval with length of order T1/3. Then, the
same argument used for ordering contours in showing goodness of L [k.k|@] shows
that contours can be ordered accordingly.

We are left to prove that SL[k;,k1,k2|@] is small. It is similar to proofs of small-
ness so far. Let us fix k1, k» and consider a nonzero (7, s)-block, so then k; < r*
and s < ko < k1. We have

SL[k1,k1,k212](r 058, j) = c(r,i;s,]) wic 95 dt, yg dts ¢ des
D
(&1 — &) —3) !
G(C1 i —nky. DMy e (m.a)) G (G2 | nigy — Niym1. Agy iy (M. @)) G (83 | Mgy — j + 1, Ag g, (m.a))

The radii satisfy 72 < 71,73 < 1 — /4.
We have i = n,+ + vyu and j = ng + vrv. Set

A= Apn/vr = (At /co)T?3,
Alsoset A1 = (Akl,r*Z)I/S’ Ay = (Akz,klt)l/s and Ay = (As,kzt)l/z’. Then,
(i —ng,, Ak, px(m,a)) = (Mg, p+n +v7u, Ay, o+ (m,a)),
(k) = Nhy—15 Dia oy (M, @) = (Bpy ey + V7 A, Agy i (M, @),
(nk2—1 - .] + 1, As,kz (mv (l)) = (As,kzn - UT(U + A)v As,kz (m’ CZ))

We choose the {1 -contour to be wq (o1, d(u)), the {>-contour to be wo (o2, d(1)),
and the ¢3-contour to be wqg (03, d(—v — A)). The corresponding values of K are
Ag, st T, A, k8 T, and Ag gt T, respectively. By Lemma@ we have the
following estimates:

(G(1(01) | Ak pon + V71, Agy o (m,@))|7F < CaemCooTTH@/AD,
(G(2(02) | Aty eyt + 07 A, Ay, (m. a))| 7 < CaemCaoariG/aa),
(GG | Assyn = V1 (v 4 1), Ag gy (m, a))| 7 < CaemCooa HHCFDIAS),
To ensure the constraints on radii of contours, we need, say,
(d(A) —1)/Az > max{d(u)/Ar, d(—v —A)/A3z}.

We can choose d (1) /A, from the interval [C /A, CoT1/3]. We also have (u)_ <
Ap+n/vr, and the square root of the latter is of order T1/3. Since v < 0 (due to
s < p), v+ A < A, and A/2 is of order T'/3. Then, since § satisfies (3.13)),
arguing as before we see that the d’s can be chosen to satisfy the constraints.
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Let Fr be the re-scaled kernel of SL[k; k1 .k2|@] by (5.4). Using the estimates
above and arguing as before, we find the following:
|Fr(rou:s,v)| < Cy L el /AN +U A/ A2)+ T ((—v—2)/A3))

= C Lo MY/ 82) it ¥W/AD) | D+ P (—v=A)/A3)

nr

M2

We observe that n7 = Cq,Le(E M tends to 0 since w satisfies (5.13). The
functions of # and v are bounded and integrable over R. So the matrix is small. [J

Proof of Claims Regarding L|[p|p]
First we will prove that L[p|p] is good with limit — F [p|p], which will complete
the proof of Proposition Then we will prove Lemma [5.11]

PROOF THAT L[p|p] IS GOOD AND CONVERGENT. The argument is similar to
the goodness and convergence of L[k |(k1,k2]], as these matrices are alike. The only
nonzero row block of L[p|p] is for r = p (see L, from Lemma[4.9). On the (p, s)-
block the indices 7, j are re-scaled asi = np,—1 + vru forO0 <u < Apn/vr, and
Jj = ns+ + vrv. We ignore rounding. So we find that

(np — i, Ap(m,a)) = Ap(n,m,a) + co(—u/(Apt)'/3,0,0) - (Apt T)'/3
(p — j. Mg+ p(m. @) = Age p(n.m.a) + co(—v/(Age p1)!/3,0,0) - (Age pt T)'/3.

We choose y, to be the contour wo(oy,d(—v)) with K = Agx ,t T, and

YR, (1) to be the contour w1 (02, d(—u)) with K := A,z T. Since the {>-contour is

around 0 and the z,-contour is around 1, we can ensure that [z, —C2| > Cy, 1 T-1/3

along these contours. According to Lemma [5.5] we then have the following esti-

mates:

. — — 2 _ . 1/3
(5.28) 1G(¢2(01) | np — J + 1, Agr p(m,a))| 7! < C3e™ Cao0T T/ (Asx pDT),
1G(zp(02) | np — i, Ap(m.a))| < Ce~Caoa+¥ /(801

The re-scaled kernel of L[p|p] according to (5.4) then satisfies the following,
arguing as before:

|Fr(r,u;s,v)|

< Lye pyCr Lumoye MUY/ (Ao | ot W0/ (A ;D).

The functions of u and v above are bounded and integrable by (5.15). So L[p|p] is
good. The argument for convergence of L[p|p] to —F[p|p] is the same as before.
O

PROOF OF LEMMA 5.11l We multiply L[p|p] by B using Lemma/5.14]

p
Llplp] - B(r,iss, j) = Y (1 + Ok | ) (L — (SL)e) (5. ),
k=1
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where

Letriis ) = Ympisainyciiin) o= G dtapdta @ dz,
(4] Y3 YRp (1)
G(Zp | np —i, Ap(m, a))(Zp — ) (G-t
G(G2 | np —ng, Ags p(m,@))G (&3 | ng — j + 1, Ag g (m, @)

and (SZ)k looks the same as ik except for n; being changed to ng_; in both
G2 | np—ng,---)and G(¢3 | ng — j +1,---) above. The contours are arranged
to satisfy 7o < 13 < we.

Now if £k < p, then we see in the above that Zk equals L[p.k|p] as k* = k.
However, when k = p, L p = 0 because there is no pole at {» = 0 in its integrand
due to n, = nj and the {»-contour being the innermost one. So in this way we get

the matrices L[p, k | p]. Now consider the matrix (SZ)k. If k£ < p then it equals
(SL)[p,k|p] by definition. When k = p it is actually (SL)[p,p—1|p] by definition
since k* then equals p — 1. This implies the expression for L[p|p] - B given in the
lemma.

The goodness and convergence of L [p,.k|p] is analogous to that for L[p|p] above.
We explain the difference. We use the estimates from (5.28) to estimate the G-
functions associated to the {3 and z, contours. They involve the variables u and
v from the kernel. There is an additional function G({» | Ap(n.m,a)) in the
denominator of the integrand. For it we choose the {>-contour to be wq(o, d) with
K = Ay pt T, and use the estimate from Lemma [5.5] We have to keep
the ¢» and {3 contours ordered (t2 < 13), for which we require d /(A pt)l/ 3>
(d(—v) + l)/(AS*,pZ)IB. This is ensured as before since the parameter d may be
chosen from an interval whose length is of order T1/3.

The proof of smallness of (SL)[p.k|p] is similar to that of the smallness of
(SL)[ky.k2|(k1,k2])] from before. Arguing as there, we will get the following es-
timate for the re-scaled kernel Fr (r,u;s,v) of (SL)[p.k|p]. Set A = Agn/vT and

= e AR/ Ak DY) Recall 1 < k < p,so A — oo and Ayt > 0. If
nr =e ecall | <k < p, k,p n
satisfies (5.13), then n7 — 0 and

_ _ 1/3
|Fr(rous.v)| < 1= pyCoonrLgsope #1H¥EH/ (BoD 7

. eu(v+k)+\ll(—(v+/l)/(As*.,\.t)l/3)

which guarantees smallness. O

5.4 Tying Up Loose Ends

Here we will prove Proposition [5.13] and that the limit from Theorem [2.2]is a
probability distribution.

PROOF OF PROPOSITION[3. 13| It is enough to show L - B, is small where L is
any one of the matrices L[k,k|@], L[k1,k1.k212], L{p|p], Lp.k|p], Lg[kl,k2|(kl,k2]]7
Lg[kl [(k1,k2]], or Lg[kl Jko,k3|(k1,k2]]. Recall from Lemmathat B is a weighted
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sum of the matrices (SL)[k.k|@]. So it suffices to prove that each of the aforemen-
tioned matrices are small when the multiplication by B is replaced by (SL)[k.k|2].

LEMMA 5.15. Consider the matrix SL[k.k|@] and denote Fr i its re-scaled kernel
according to BA). Set Ay = Agn/vr = (Apt/co) T?? + Co 1. TV3, Ay =
(Ak,r*t)l/Sr and Ay = (As,kt)1/3. The following bound holds for Fr y:

| Frac(r,:5,0)] < Lgcp<pryCq e HAOFTHAAI/AD

MR (—+20)/Az)

PROOF. Letus recall SL[k.k|@] from Lemmal[5.6] The entry SL[k.k12](r,i:s, j)
equals

tgatarny T G ae  ac,
¢ Yo, Yto
(&1 — &)t
G(Ci i —ng—1. Mg p=(m,a)) G(&a | ng—y — j + 1. Ag g (m, @)

Indices i, j are re-scaled according to (5.20). Ignoring the rounding, this means
that

(i —ng—1, Mg yp+(m.a)) = A px(n.m.a) + co((u + Ax)/A1.0,0)
S (Dget THV,
(g—1 — J. As(m.a)) = Agp(n.m.a) — co((v + Ax)/A2.0.0)
(Ag gt THY3,

We choose the {1-contour to be wo(o1,d (1 + Ag)) with K := Ay ¢ T. Sim-
ilarly, the {>-contour is wo(02,d(—v — Ag)) with K = At T. Due to the
constraint 7 < 71, we should have d(u + Ar)/A1 < (d(—v — Ax) — 1)/ As.
In this case, |£1(07) — &a(02)| 7! < Cq’LT1/3. Furthermore, with d(-)’s chosen
according to Lemma/[5.5 we have the following estimates:

1G(E1(01) | i — k1. A pr(m.@))| 7} < CzeCooT+¥(@AR/AD),
G(£2(02) | nk—y — j + 1. Agg(m.a))| ™" < Cae~Caot¥(wtA0)/A2)

With these estimates, changing variables {; +> o, and arguing as before, we see
that

| Frp(r,u; s, v)|
= 1{s<k<r*}Cq,L/ doldaze_c4(012+022)
R2
« et W= LW ((u+Ar) /A1) ¥ (—(v+Ax)/A2)

= Ly apapsy Cgpo HUHHIHU@HAD/AD) | (020 + B0+ 3100/ B2),
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It remains to order the contours. We know that if 7" is sufficiently large in terms
of g and L, then

d(u+ Ar)/Ar € [CiAT! G ifu + A 2 0,
CiAT" + AT 28 + )2, CTY3) ifu + 4y <0,

1 1
[ClAgl,Cle/g’] ifv+4+ A <0,

d(—v —Ap)/ Ay €

[C1AST + AT 28(0 + 4) V2. CoT V3] ifv 4 Ay > 0.

If u+ Ar > 0then we can order the contours by first choosing d(—v— Ay ) and then
choosing d (1 + A) accordingly from an interval with length of order 7'/3. Suppose
u+Ag < 0. Then we will first choose d (1 + Ag ) and then d (—v — A ) accordingly.
We are able to do so if C; AT + A1_3/28(u + A)Y2 < C,TV/3. In this regard,
since A > 0, (U + Ax)— < (u)—. Now () < Apsn/vp = (Apet/co) T3 +
Cq,LT1/3. Therefore, we are fine so long as § < Czcé/ZAf/z(Ar*t)_lm, which
holds because § satisfies (5.13). O

LEMMA 5.16. Let M1, M», ... be a sequence of good matrices where My isn xn
andn = np is according to (1.3)). Then the sequence of matrices My -SL[k.k|@]nxn
is small.

PROOF. Let Fr and Frj be the re-scaled kernels of M, and SL[k.k|@]nxn,
respectively, via (5.4). Let F. be the one for their product. We have that

p
Fr(rus.v) =) fdz Fr(u £, 2) Fri(€. 235, 0) - Ls<k<ry-
=1

The z-integral is over R for £ < p and over R if £ = p. Note that SL[k,k | O]
is nonzero only for k < p — 1, and so we may replace £* by £ above. It suffices to
show that for every £ such that s < k < £, the corresponding z-integral is a small
kernel in terms of u and v.

Fix s, £, and k such that s < k < £. Let g1,...,gp, be the bounded and
integrable functions over R that certify goodness of Fr. Recalling Lemma
let A denote the parameter A there. Also set A} = (Ak,gt)1/3, Ay = (As,kt)1/3,
and the function f(z) = e #eT¥&/AD),

First, suppose £ < p. Due to goodness of Fr and Lemma[5.15] we infer that

0
V dz Fr(r,u; £, 2) Fr (€, 2:5,v)
—0C

0
< Cur [ dzgu@f(z 4 1) gl PPV,
—0

By (5.15) we see that the function MWD +¥(=w+A)/A2) g pounded and inte-
grable over R in variable v. Smallness thus follows if the z-integral tends to O
as T — oo. In this regard observe that for x > 0, f(x) = e{(#2/A)=mx apd
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Z—? — < 0 since p satisfies (5.13). Therefore, maxyx>p f(x) = f(B) — 0 as
B — oo. Also, f is bounded. Therefore,

/_io dz g(2) f(z +A) = /—A/z

A
dz ge(2) f(z + 1) + / dz ge(z — 1) f(2)
—0 A2
—1)2
< ||f||oo/_ dz ge(z) + llgell Zrilijiz{f(z)}-

As T goes to 0o so does A, and both the integral and maximum above tend to 0.
Now consider £ = p. In this case,

0
/ dz Fr(r,u; 4, z) Fre(£,z:s,v)
0

[e 0]
<Cy1 / dz g0(2) f(z + ) - gy (u) - HOHIFHI@FD)/A2)
0

< Cq,LHgE”l . I;lf,)f{f(z)} -gr () _eu(v—i-/l)—i-\ll(—(v—i-k)/Az)_

nr
We see that this is small as required. 0
Lemma [5.16] implies that the matrices L - B, are small where L is any one of

the good matrices mentioned in the opening of this section. So this concludes the
proof of Proposition[5.13] O

PROOF THAT THE KPZ-SCALING LIMIT IS A CONSISTENT FAMILY OF PROB-
ABILITY DISTRIBUTIONS. Let P(§;, ..., &) denote the limiting expression from
Theorem 2.2]as a function of the parameters & . Namely, recall Hz from (T.4),

P(Sl, . ,‘Sg_p) = Tli_r)nooPr[HT(xl,ll) < él, ... ,HT(xp,lp) < ‘Sg_p]

From the discussion for the single-time law we know that P(§1) = Fgye(§1 +
x%), which is a probability distribution in &; (see [20,[38]]). Assume that p > 2.
We need to establish that P has appropriate limit values as any & — oo since
the other necessary properties are retained in the limit. Consider the parameter &;
for concreteness. Since P is the limit of probability distribution functions,

P(&1.....&) < P(&1) = Foue(§1 + x7).

Soas §; — —oo, P(£1,...,&p) tends to O as required.
Now consider the limit as §; — co. We have

Pr[Hr(x1.01) < é1.Hr(x2,12) < &, ... . Hr(xp, 1p) < &p]
= Pr[HT(xz,lz) <&, ....Hr(xp.1p) < ";‘p]
—Pr[HT(xl,tl) > &1, Hr(x2,12) < &,... . Hr(xp. 1p) < ép].
Since the first two terms above have limits, so does the third, and we find that

P16, ... .&p) = P(Ea,....&) — P(E1.62.... . &p),
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where P is the limit of the third term. Moreover,

P(1,....&p) < 1 — Fgue(£1 + x7)

since the corresponding prelimit inequality holds. It follows that P(§q,...,§p)
tends to P(&;, ..., &p) as & — oo. This shows that the KPZ-scaling limit provides
a consistent family of probability distribution functions. It also concludes the proof
of Theorem[2.2 O
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