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A RANDOM COVER OF A COMPACT HYPERBOLIC
SURFACE HAS RELATIVE SPECTRAL GAP 3

16
− ε

Michael Magee, Frédéric Naud and Doron Puder

Abstract. Let X be a compact connected hyperbolic surface, that is, a closed con-
nected orientable smooth surface with a Riemannian metric of constant curvature
−1. For each n ∈ N, let Xn be a random degree-n cover of X sampled uniformly
from all degree-n Riemannian covering spaces of X. An eigenvalue of X or Xn is
an eigenvalue of the associated Laplacian operator ΔX or ΔXn

. We say that an
eigenvalue of Xn is new if it occurs with greater multiplicity than in X. We prove
that for any ε > 0, with probability tending to 1 as n → ∞, there are no new
eigenvalues of Xn below 3

16 − ε. We conjecture that the same result holds with 3
16

replaced by 1
4 .
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1 Introduction

Spectral gap is a fundamental concept in mathematics and related sciences as it
governs the rate at which a process converges towards its stationary state. The
question that motivates this paper is whether random objects have large, or even
optimal, spectral gaps. This will be made precise below.

One of the simplest examples of spectral gap is the spectral gap of a graph. The
spectrum of a graph G on n vertices is the collection of eigenvalues of its adjacency
matrix AG . Assuming that G is d-regular, the largest eigenvalue occurs at d and is
simple if and only if G is connected. This means, writing

λ0 = d ≥ λ1 ≥ λ2 ≥ · · · ≥ λn−1

for the eigenvalues of AG , then there is a spectral gap between λ0 and λ1 (i.e. λ0 > λ1)
if and only if G is connected. In fact, the Cheeger inequalities for graphs due to Alon
and Milman [AM85] show that the size of the spectral gap (i.e. λ0 − λ1) quantifies
how difficult it is, roughly speaking, to separate the vertices of G into two sets, each
not too small, with few edges between them. This is in tension with the fact that
a d-regular graph is sparse. Sparse yet highly-connected graphs are called expander
graphs and are relevant to many real-world examples.1

However, a result of Alon and Boppana [Nil91] puts a sharp bound on what
one can achieve: for a sequence of d-regular graphs Gn on n vertices, as n → ∞,
λ1(Gn) ≥ 2

√
d − 1 − o(1). The trivial eigenvalues of a graph occur at d, and if G has

a bipartite component, at −d. A connected d-regular graph with all its non-trivial
eigenvalues in the interval [−2

√
d − 1, 2

√
d − 1] is called a Ramanujan graph after

Lubotzky, Phillips, and Sarnak [LPS88].
In the rest of the paper, if an event depending on a parameter n holds with

probability tending to 1 as n → ∞, then we say it holds asymptotically almost surely
(a.a.s.). A famous conjecture of Alon [Alo86], now a theorem due to Friedman

1 Following Barzdin and Kolmogorov [BK93], consider the network of neurons in a human brain.
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[Fri08], states that for any ε > 0, a.a.s. a random d-regular graph on n vertices,
chosen uniformly amongst such graphs, has all its non-trivial eigenvalues bounded in
absolute value by 2

√
d − 1+ε. In other words, almost all d-regular graphs have almost

optimal spectral gaps. In [Bor], Bordenave has given a shorter proof of Friedman’s
theorem. A first result about uniform spectral gap for random regular graphs is due
to Broder and Shamir [BS87b] who proved a.a.s. λ1 ≤ 3d3/4. The approach in the
current paper is similar to the direct trace method introduced by Broder–Shamir,
which was subsequently improved by Puder and Friedman-Puder [Pud15, FP22] to
show a.a.s. that λ1 ≤ 2

√
d − 1 + 2√

d−1
.

Friedman conjectured in [Fri03] that the following extension of Alon’s conjecture
holds. Given any finite graph G there is a notion of a degree-n cover2 Gn of the graph.
Elements of the spectrum3 of Gn that are not elements of the spectrum of G are called
new eigenvalues of Gn. Friedman conjectured that for a fixed finite graph G, for any
ε > 0 a random degree-n cover of G a.a.s. has no new eigenvalues of absolute value
larger than ρ(G) + ε, where ρ(G) is the spectral radius of the adjacency operator of
the universal cover of G, acting on �2 functions. For d even, the special case where
G is a bouquet of d

2 loops recovers Alon’s conjecture. Friedman’s conjecture has
recently been proved in a breakthrough by Bordenave and Collins [BC19].

The focus of this paper is the extension of Alon’s and Friedman’s conjectures to
compact hyperbolic surfaces.

A hyperbolic surface is a Riemannian surface of constant curvature −1 without
boundary. In this paper, all surfaces will be orientable. By uniformization [Bea84,
Section 9.2], a connected compact hyperbolic surface can be realized as Γ\H where
Γ is a discrete subgroup of PSL2(R) and

H = { x + iy : x, y ∈ R, y > 0 }

is the hyperbolic upper half plane, upon which PSL2(R) acts via Möbius transfor-
mations preserving the hyperbolic metric

dx2 + dy2

y2
.

Let X = Γ\H be a connected compact hyperbolic surface. Topologically, X is a
connected closed surface of some genus g ≥ 2.

Since the Laplacian ΔH on H is invariant under PSL2(R), it descends to a differ-
ential operator on C∞(X) and extends to a non-negative, unbounded, self-adjoint
operator ΔX on L2(X). The spectrum of ΔX consists of real eigenvalues

0 = λ0(X) ≤ λ1(X) ≤ · · · ≤ λn(X) ≤ · · ·
2 The precise definition of a cover of a graph is not important here; only that it is analogous to

a covering space of a surface.
3 We also take multiplicities into account in this statement.
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with λi → ∞ as i → ∞. The same discussion also applies if we drop the condition
that X is connected.4 We have λ0(X) < λ1(X) if and only if X is connected, as
for graphs. With Friedman’s conjecture in mind, we also note that the spectrum of
ΔH is absolutely continuous and supported on the interval [14 , ∞) (e.g. [Bor16, Thm.
4.3]). There is also an analog of the Alon–Boppana Theorem in this setting: a result
of Huber [Hub74] states that for any sequence of compact hyperbolic surfaces Xi

with genera g(Xi) tending to infinity,

lim sup
i→∞

λ1(Xi) ≤ 1
4
.

To state an analog of the Alon/Friedman conjecture for surfaces, we need a
notion of a random cover. Suppose X is a compact connected hyperbolic surface,
and suppose X̃ is a degree-n Riemannian cover of X. Fix a point x0 ∈ X and label
the fiber above it by [n] def= {1, . . . , n}. There is a monodromy map

π1(X, x0) → Sn

that describes how the fiber of x0 is permuted when following lifts of a closed loop
from X to X̃. Here Sn is the symmetric group of permutations of the set [n]. The
cover X̃ is uniquely determined by the monodromy homomorphism. Let g denote
the genus of X. We fix an isomorphism

π1(X, x0) ∼= Γg
def= 〈a1, b1, a2, b2, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1〉 . (1.1)

Now, given any

φ ∈ Xg,n
def= Hom(Γg, Sn)

we can construct a cover of X whose monodromy map is φ as follows. Using the
fixed isomorphism of (1.1), we have a free properly discontinuous action of Γg on H

by isometries. Define a new action of Γg on H × [n] by

γ(z, i) = (γz, φ[γ](i)).

The quotient of H×[n] by this action is named Xφ and is a hyperbolic cover of X with
monodromy φ. This construction establishes a one-to-one correspondence between
φ ∈ Xg,n and degree-n covers with a labeled fiber Xφ of X. See also Example 3.4.

As for graphs, any eigenvalue of ΔX will also be an eigenvalue of ΔXφ
: every

eigenfunction of ΔX can be pulled back to an eigenfunction of ΔXφ
with the same

eigenvalue. We say that an eigenvalue of ΔXφ
is new if it is not one of ΔX , or more

generally, appears with greater multiplicity in Xφ. To pick a random cover of X, we
simply use the uniform probability measure on the finite set Xg,n. Recall we say an
event that pertains to any n holds a.a.s. if it holds with probability tending to one
as n → ∞. The analog of Friedman’s conjecture for surfaces is the following.

4 In which case X is a finite union of connected compact hyperbolic surfaces, each of which can
be realized as a quotient of H.
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Conjecture 1.1. Let X be a compact connected hyperbolic surface. Then for any
ε > 0, a.a.s.

spec
(
ΔXφ

) ∩
[
0,

1
4

− ε

]
= spec (ΔX) ∩

[
0,

1
4

− ε

]

and the multiplicities on both sides are the same.

Remark 1.2. The analog of Conjecture 1.1 for finite area non-compact surfaces
appeared previously in the work of Golubev and Kamber [GK19, Conj. 1.6(1)].

Remark 1.3. We have explained the number 1
4 in terms of the spectrum of the

Laplacian on the hyperbolic plane and as an asymptotically optimal spectral gap in
light of Huber’s result [Hub74]. The number 1

4 also features prominently in Selberg’s
eigenvalue conjecture [Sel65], that states for X = SL2(Z)\H, the (deterministic)
family of congruence covers of X never have new eigenvalues below 1

4 . Although Sel-
berg’s conjecture is for a finite-area, non-compact hyperbolic orbifold, the Jacquet-
Langlands correspondence [JL70] means that it also applies to certain arithmetic
compact hyperbolic surfaces.

Remark 1.4. In [Wri20, Problem 10.4], Wright asks, for random compact hyper-
bolic surfaces sampled according to the Weil–Petersson volume form on the moduli
space of genus g closed hyperbolic surfaces, whether lim infg→∞(P(λ1 > 1

4)) > 0. See
Section 1.1 for what is known in this setting. It is not even known [Wri20, Problem
10.3] whether there is a sequence of Riemann surfaces Xn with genus tending to ∞
such that λ1(Xn) → 1

4 . Conjecture 1.1 offers a new route to resolving this problem
via the probabilistic method, since it is known by work of Jenni [Jen84] that there
exists a genus 2 hyperbolic surface X with λ1(X) > 1

4 and this X can be taken as
the base surface in Conjecture 1.1. (See Section 1.2 for important developments in
this area after the current paper was written.)

The main theorem of the paper, described in the title, is the following.

Theorem 1.5. Let X be a compact connected hyperbolic surface. Then for any
ε > 0, a.a.s.

spec
(
ΔXφ

) ∩
[
0,

3
16

− ε

]
= spec (ΔX) ∩

[
0,

3
16

− ε

]

and the multiplicities on both sides are the same.

Remark 1.6. The appearance of the number 3
16 in Theorem 1.5 is essentially for the

same reason that 3
4 appears in [MN20] (note that 3

16 = 3
4(1 − 3

4), and eigenvalues of
the Laplacian are naturally parameterized as s(1 − s)). Ultimately, the appearance
of 3

4 can be traced back to the method of Broder and Shamir [BS87b] who proved
that a.a.s. a random 2d-regular graph on n vertices has λ1 ≤ O

(
d3/4
)
, using an

estimate analogous to Theorem 1.11 below.
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Remark 1.7. More mysteriously, 3
16 is also the lower bound that Selberg obtained

for the smallest new eigenvalue of a congruence cover of the modular curve SL2(Z)\H,
in the same paper [Sel65] as his eigenvalue conjecture. In this context, the number
arises ultimately from bounds on Kloosterman sums due to Weil [Wei48] that follow
from Weil’s resolution of the Riemann hypothesis for curves over finite fields. The
state of the art on Selberg’s eigenvalue conjecture, after decades of intermediate
results [GJ78, Iwa89, LRS95, Iwa96, KS02], is due to Kim and Sarnak [Kim03] who
produced a spectral gap of size 975

4096 for congruence covers of SL2(Z)\H.

It was pointed out to us by A. Kamber that our methods also yield the following
estimate on the density of new eigenvalues of a random cover.

Theorem 1.8. Let

0 ≤ λi1(Xφ) ≤ λi2(Xφ) ≤ · · · ≤ λik(φ)(Xφ) ≤ 1
4

denote the collection of new eigenvalues of ΔXφ
of size at most 1

4 , included with
multiplicity. For each of these, we write λij

= sij
(1−sij

) with sij
= sij

(Xφ) ∈ [12 , 1
]
.

For any ε > 0 and σ ∈ (1
2 , 1
)
, a.a.s.

#
{
1 ≤ j ≤ k(φ) : λij

<σ (1 − σ)
}

=#
{
1 ≤ j ≤ k(φ) : sij

> σ
}≤n3−4σ+ε. (1.2)

Remark 1.9. The estimate (1.2) was established by Iwaniec [Iwa02, Thm 11.7] for
congruence covers of SL2(Z)\H. Although Iwaniec’s theorem has been generalized
in various directions [Hux86, Sar87, Hum18], as far as we know, Iwaniec’s result has
not been directly improved, so speaking about density of eigenvalues, Theorem 1.8
establishes for random covers the best result known in the arithmetic setting for
eigenvalues above the Kim–Sarnak bound 975

4096 [Kim03]. Density estimates such as
Theorem 1.8 have applications to the cutoff phenomenon on hyperbolic surfaces by
work of Golubev and Kamber [GK19].

We prove Theorems 1.5 and 1.8 using Selberg’s trace formula in Section 2. We
use as a ‘black-box’ in this method a statistical result (Theorem 1.11) about the
expected number of fixed points of a fixed γ ∈ Γg under a random φ.

If π ∈ Sn then we write fix(π) for the number of fixed points of the permutation
π. Given an element γ ∈ Γg, we let fixγ be the function

fixγ : Xg,n → Z, fixγ(φ) def= fix(φ(γ)).

We write Eg,n[fixγ ] for the expected value of fixγ with respect to the uniform prob-
ability measure on Xg,n. In [MP20], the first and third named authors proved the
following theorem.

Theorem 1.10. Let g ≥ 2 and 1 �= γ ∈ Γg. If q ∈ N is maximal such that γ = γ q
0

for some γ0 ∈ Γg, then, as n → ∞,

Eg,n[fixγ ] = d(q) + Oγ

(
n−1
)
,

where d(q) is the number of divisors of q.
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In the current paper, we need an effective version of Theorem 1.10 that controls
the dependence of the error term on γ. We need this estimate only for γ that are
not a proper power. For γ ∈ Γg, we write �w(γ) for the cyclic-word-length of γ,
namely, for the length of a shortest word in the generators a1, b1, . . . , ag, bg of Γg

that represents an element in the conjugacy class of γ in Γg. The effective version
of Theorem 1.10 that we prove here is the following.

Theorem 1.11. For each genus g ≥ 2, there is a constant A = A(g) such that
for any c > 0, if 1 �= γ ∈ Γg is not a proper power of another element in Γg and
�w(γ) ≤ c log n then

Eg,n[fixγ ] = 1 + Oc,g

(
(log n)A

n

)
.

The implied constant in the big-O depends only on c and g.

Remark 1.12. In the rest of the paper, just to avoid complications in notation and
formulas that would obfuscate our arguments, we give the proof of Theorem 1.11
when g = 2. The extension to arbitrary genus is for the most part obvious: if it is
not at some point, we will point out the necessary changes.

The proof of Theorem 1.11 takes up the bulk of the paper, spanning Section 4–
Section 6. The proof of Theorem 1.11 involves delving into the proof of Theorem 1.10
and refining the estimates, as well as introducing some completely new ideas.

1.1 Related works.

The Brooks–Makover model. The first study of spectral gap for random sur-
faces in the literature is due to Brooks and Makover [BM04] who form a model of a
random compact surface as follows. Firstly, for a parameter n, they glue together n
copies of an ideal hyperbolic triangle where the gluing scheme is given by a random
trivalent ribbon graph. Their model for this random ribbon graph is a modification
of the Bollobás bin model from [Bol88]. This yields a random finite-area, non com-
pact hyperbolic surface. Then they perform a compactification procedure to obtain
a random compact hyperbolic surface XBM(n). The genus of this surface is not de-
terministic, however. Brooks and Makover prove that for this random model, there
is a non-explicit constant C > 0 such that a.a.s. (as n → ∞)

λ1(XBM(n)) ≥ C.

Theorem 1.5 concerns a different random model, but improves on the Brooks–
Makover result in two important ways: the bound on new eigenvalues is explicit,
and this bound is independent of the compact hyperbolic surface X with which we
begin.

It is also worth mentioning a recent result of Budzinski, Curien, and Petri
[BCP21, Thm. 1] who prove that the ratios

diameter(XBM(n))
log n
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converge to 2 in probability as n → ∞; they also observe that this is not the optimal
value by a factor of 2.
The Weil–Petersson model. Another reasonable model of random surfaces comes
from the Weil–Petersson volume form on the moduli space Mg of compact hyperbolic
surfaces of genus g. Let XWP(g) denote a random surface in Mg sampled according to
the (normalized) Weil–Petersson volume form. Mirzakhani proved in [Mir13, Section
1.2.I] that with probability tending to 1 as g → ∞,

λ1(XWP(g)) ≥ 1
4

(
log 2

2π + log 2

)2

≈ 0.00247.

We also note recent work of Monk [Mon22] who gives estimates on the density of
eigenvalues below 1

4 of the Laplacian on XWP(g).
Prior work of the authors. In some sense, the closest result to Theorem 1.5 in
the literature is due to the first and second named authors of the paper [MN20],
but it does not apply to compact surfaces, rather to infinite area convex co-compact
hyperbolic surfaces. Because these surfaces have infinite area, their spectral theory
is more involved. We will focus on one result of [MN20] to illustrate the comparison
with this paper.

Suppose X is a connected non-elementary, non-compact, convex co-compact
hyperbolic surface. The spectral theory of X is driven by a critical parameter
δ = δ(X) ∈ (0, 1). This parameter is both the critical exponent of a Poincaré se-
ries and the Hausdorff dimension of the limit set of X. If δ > 1

2 then results of
Patterson [Pat76] and Lax-Phillips [LP81] say that the bottom of the spectrum of
X is a simple eigenvalue at δ(1 − δ) and there are finitely many eigenvalues in the
range [δ(1 − δ), 1

4). In [MN20], a model of a random degree-n cover of X was intro-
duced that is completely analogous to the one used here; the only difference in the
construction is that the fundamental group of X is a free group Fr and hence one
uses random φ ∈ Hom(Fr, Sn) to construct the random surface Xφ. The following
theorem was obtained in [MN20, Thm. 1.3.].

Theorem 1.13. Assume that δ = δ(X) > 1
2 . Then for any σ0 ∈ (3

4δ, δ
)
, a.a.s.

spec
(
ΔXφ

) ∩ [δ (1 − δ) , σ0(1 − σ0)] = spec (ΔX) ∩ [δ (1 − δ) , σ0(1 − σ0)] (1.3)

and the multiplicities on both sides are the same.

Although Theorem 1.13 is analogous to Theorem 1.5 (for compact X, δ(X) = 1),
the methods used in [MN20] have almost no overlap with the methods used here.
For infinite area X, the fundamental group is free, so the replacement of Theorem
1.11 was already known by results of Broder–Shamir [BS87b] and the third named
author [Pud15]. The challenge in [MN20] was to develop bespoke analytic machinery
to access these estimates.

Conversely, in the current paper, the needed analytic machinery already exists
(Selberg’s trace formula) and rather, it is the establishment of Theorem 1.11 that is
the main challenge here, stemming from the non-free fundamental group Γg.
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1.2 Subsequent results. Since the preprint version of the current paper ap-
peared in March 2020, several important results have been obtained in the area of
spectral gap of random surfaces. Independently of each other, Wu and Xue [WX21]
and Lipnowski and Wright [LW21] proved that for any ε > 0, a Weil–Petersson ran-
dom compact hyperbolic surface of genus g has spectral gap of size at least 3

16 − ε
with probability tending to one as g → ∞. This result has been extended to the case
of Weil–Petersson random surfaces with not too many cusps by Hide in [Hid21].

In [MN21], the results of [MN20] have been strengthened by the first and second
named author to an (essentially optimal) analog of Friedman’s theorem for bounded
frequency resonances on infinite area Schottky surfaces.

Hide and the first named author have recently proved in [HM21] that the analog
of Conjecture 1.1 for finite area non-compact hyperbolic surfaces holds true, and by
combining this result with a cusp removal argument of Buser, Burger, and Dodziuk
[BBD88], in [HM21] it is also proved that there exist compact hyperbolic surfaces
with genera tending to infinity and λ1 → 1

4 . (We have chosen to preserve Remark
1.4 as originally written here for posterity.)

1.3 Structure of the proofs and the issues that arise.

Proof of Theorem 1.5 given Theorem 1.11. First, we explain the outline
of the proof of Theorem 1.5 from Theorem 1.11. Theorem 1.8 also follows from
Theorem 1.11 using the same ideas. Both proofs are presented in full in Section 2.

Our method of proving Theorem 1.5 is analogous to the method of Broder and
Shamir [BS87b] for proving that a random 2d-regular graph has a large spectral gap.
For us, the Selberg trace formula replaces a more elementary formula for the trace of
a power of the adjacency operator of a graph in terms of closed paths in the graph.

Let Γ denote the fundamental group of X. By taking the difference of the Selberg
trace formula for Xφ and that for X we obtain a formula of the form

∑

new eigenvalues λ of Xφ

F (λ) =
∑

[γ]∈C(Γ)

G(γ) (fixγ(φ) − 1) , (1.4)

where C(Γ) is the collection of conjugacy classes in Γ, and F and G are interde-
pendent functions that depend on n. The way we choose F and G together is to
ensure

• F (λ) is non-negative for any possible λ, and large if λ is an eigenvalue we want
to forbid, and

• G(γ) localizes to γ with �w(γ) ≤ c log n for some c = c(X).

By taking expectations of (1.4) we obtain

E

⎡

⎣
∑

new eigenvalues λ of Xφ

F (λ)

⎤

⎦ =
∑

[γ]∈C(Γ)

G(γ)E [fixγ(φ) − 1] . (1.5)



604 M. MAGEE ET AL. GAFA

The proof will conclude by bounding the right hand side and applying Markov’s
inequality to conclude that there are no new eigenvalues in the desired forbidden
region. Since G is well-controlled in our proof, it remains to estimate each term
E [fixγ(φ) − 1]. To do this, we echo Broder–Shamir [BS87b] and partition the sum-
mation on the right-hand side of (1.5) according to three groups.

• If γ is the identity, then G(1) is easily analyzed, and E [fixγ(φ) − 1] = n − 1.
• If γ is a proper power of a non-trivial element of Γ, then we use a trivial bound
E [fixγ(φ) − 1] ≤ n − 1, so we get no gain from the expectation. On the other
hand, the contribution to

∑

[γ]∈C(Γ)

G(γ)

from these elements is negligible. Intuitively, this is because the number of
elements of Γ with �w(γ) ≤ L and that are proper powers is (exponentially)
negligible compared to the total number of elements.

• If γ is not a proper power and not the identity, then we use Theorem 1.11
to obtain E [fixγ(φ) − 1] = OX

(
(log n)A

n

)
. Thus for ‘most’ summands in the

right-hand side of (1.5) we obtain a significant gain from the expectation.

Assembling all these estimates together gives a sufficiently upper strong bound on
(1.5) to obtain Theorem 1.5 via Markov’s inequality.

Proof of Theorem 1.11. To understand the proof of Theorem 1.11, we suggest
that the reader first read the overview below, then Section 6 where all the compo-
nents of the proof are brought together, and then Section 3–Section 5 where the
technical ingredients are proved. As throughout the paper, we assume g = 2 in this
overview and we will forgo precision to give a bird’s-eye view of the proof.

Fixing an octagonal fundamental domain for X, any Xφ is tiled by octagons; this
tiling comes with some extra labelings of edges corresponding to the generators of Γ.
Any labeled 2-dimensional CW-complex that can occur as a subcomplex of some Xφ

is called a tiled surface. For any tiled surface Y , we write E
emb
n (Y ) for the expected

number, when φ is chosen uniformly at random in Hom(Γ, Sn), of embedded copies
of Y in Xφ.

In the previous paper [MP20], we axiomatized certain collections R of tiled sur-
faces, depending on γ, that have the property that

E2,n[fixγ ] =
∑

Y ∈R
E

emb
n (Y ). (1.6)

These collections are called resolutions. Here we have oversimplified the definitions
to give an overview of the main ideas.

In [MP20], we chose a resolution, depending on γ, that consisted of two spe-
cial types of tiled surfaces: those that are boundary reduced or strongly boundary
reduced. The motivation for these definitions is that they make our methods for
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estimating E
emb
n (Y ) more accurate. To give an example, if Y is strongly boundary

reduced then we prove that for Y fixed and n → ∞, we obtain5

E
emb
n (Y ) = nχ(Y )

(
1 + OY

(
n−1
))

. (1.7)

However, the implied constant depends on Y , and in the current paper we have
to control uniformly all γ with �w(γ) ≤ c log n. The methods of [MP20] are not
good enough for this goal. To deal with this, we introduce in Definition 3.12 a new
type of tiled surface called ‘ε-adapted’ (for some ε ≥ 0) that directly generalizes,
and quantifies, the concept of being strongly boundary reduced. We will explain the
benefits of this definition momentarily. We also introduce a new algorithm called
the octagons-vs-boundary algorithm that given γ, produces a finite resolution R as
in (1.6) such that every Y ∈ R is either

• ε-adapted for some ε > 0, or
• boundary reduced, with the additional condition that d (Y ) < f (Y ) < −χ(Y ),

where d(Y ) is the length of the boundary of Y and f(Y ) is the number of
octagons in Y .

Any Y ∈ R has d(Y ) ≤ c′(log n) and f(Y ) ≤ c′(log n)2 given that �w(γ) ≤ c log n
(Corollary 3.25). The fact that we maintain control on these quantities during the
algorithm is essential. However, a defect of this algorithm is that we lose control of
how many ε-adapted Y ∈ R there are of a given Euler characteristic. In contrast, in
the algorithm of [MP20] we control, at least, the number of elements in the resolution
of Euler characteristic zero. We later have to work to get around this.

We run the octagons-vs-boundary algorithm for a fixed ε = 1
32 to obtain a res-

olution R. Let us explain the benefits of this resolution we have constructed. The
ε-adapted Y ∈ R contribute the main contributions to (1.6), and the merely bound-
ary reduced Y contribute something negligible.

Indeed, we prove for any boundary reduced Y ∈ R in the regime of parameters
we care about, that

E
emb
n (Y ) � (A0f(Y ))A0f(Y )nχ(Y ), (1.8)

where A0 > 0. This bound (1.8) appears in (6.5) as the result of combining Corol-
lary 4.5, Theorem 5.1, Proposition 5.11 and Lemma 3.6; the proof is by carefully
effectivizing the arguments of [MP20].

While the bound (1.8) is quite bad (for example, using it on all terms in (1.6)
would not even recover the results of [MP20]), the control of the dependence on d(Y )
is enough so that when combined with d (Y ) < f (Y ) < −χ(Y ) we obtain

E
emb
n (Y ) � (A0f(Y ))A0f(Y )n−f(Y ) �

((
c′(log n)2

)A0

n

)f(Y )

.

5 Some of the notation we use here is detailed in Section 1.4.
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This is good enough that it can simply be combined with counting all possible Y with
d(Y ) ≤ c′(log n) and f(Y ) ≤ c′(log n)2 to obtain that the non-ε-adapted surfaces in
R contribute � (log n)A

n to (1.6) for A > 0. This is Proposition 6.1.
So from now on assume Y ∈ R is ε-adapted and we explain how to control the

contributions to (1.6) from these remaining Y . We first prove that there is a rational
function QY such that

E
emb
n (Y ) = nχ(Y )

(
QY (n) + O

(
1
n

))(
1 + O

(
(log n)2

n

))
, (1.9)

where the implied constants hold for any ε-adapted Y ∈ R as long as �w (γ) ≤
c log n (Theorem 5.1, Proposition 5.12 and Corollary 5.21). In fact, this expression
remains approximately valid for the same Y if n is replaced throughout by m with
m ≈ (log n)B for some B > 0; this will become relevant momentarily.

The rational function QY is new to this paper; it appears through Corollary 5.15
and Lemma 5.20 and results from refining the representation-theoretic arguments
in [MP20]. The description of QY is in terms of Stallings core graphs [Sta83], and
related to the theory of expected number of fixed points of words in the free group.
In the notation of the rest of the paper,

QY (n) =
(n)v(Y )

nχ(Y )

∑

H∈Q(Y )

(n)v(H)∏
f∈{a,b,c,d}(n)ef (H)

, (1.10)

where Q(Y ) is a collection of core graphs obtained by adding handles to the one-
skeleton of Y , performing ‘folding’ operations, and taking quotients in a particular
way (see Section 5.8 for details).

The argument leading to (1.9) involves isolating some of the terms that contribute
to E

emb
n (Y ), and reinterpreting these as related to the size of a set X∗

n(Y,J ) of maps
F4 → Sn that contain, in an appropriate sense, an embedded copy of Y but only
satisfy the relation of Γ modulo Sn−v(Y ) rather than absolutely (Proposition 5.13).
Then by topological arguments the set X

∗
n(Y,J ) is counted in terms of core graphs

leading to Lemma 5.20 that gives (1.10) here.
One unusual thing is that our combinatorial description of QY does not imme-

diately tell us the order of growth of QY (n), because we do not know much about
Q(Y ). On the other hand, we know enough about QY (for example, for what range
of parameters it is positive) so that we can ‘black-box’ results from [MP20] to learn
that if Y is fixed and n → ∞, QY (n) → 1. (We also learn from this argument the
interesting topological fact that there is exactly one element of Q(Y ) of maximal
Euler characteristic.)

This algebraic properties of QY , together with a priori facts about QY , allow us
to use (1.9) to establish the two following important inequalities:
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E
emb
n (Y ) = nχ(Y )

(
1 + Oc

(
(log n)4

n

)
+ O

(
m

n

E
emb
m (Y )
mχ(Y )

))
(1.11)

nχ(Y ) � m

n
E

emb
m (Y ), if χ(Y ) < 0 (1.12)

where m ≈ (log n)B is much smaller than n. These inequalities are provided by
Proposition 5.27 and Corollary 5.25 (see also Remark 5.26). While (1.12) may look
surprising, its purpose is for running our argument in reverse with decreased param-
eters as explained below.

Let us now explain precisely the purpose of (1.12) and (1.11). By black-boxing
the results of [MP20] one more time, we learn that there is exactly one ε-adapted
Y ∈ R with χ(Y ) = 0, and none with χ(Y ) > 0. This single Y with χ(Y ) = 0
contributes the main term of Theorems 1.10 and 1.11 through (1.11). Any other
term coming from ε-adapted Y can be controlled in terms of Eemb

m (Y ) using (1.11)
and (1.12). These errors could accumulate, but we can control them all at once by
using (1.6) in reverse with n replaced by m to obtain

∑

Y ∈R
E

emb
m (Y ) = E2,m[fixγ ] ≤ m ≈ (log n)B.

Putting the previous arguments together proves Theorem 1.11.

1.4 Notation. The commutator of two group elements is [a, b] def= aba−1b−1.
For m, n ∈ N, m ≤ n, we use the notation [m, n] for the set {m, m + 1, . . . , n} and
[n] for the set {1, . . . , n}. For q, n ∈ N with q ≤ n we use the Pochammer symbol

(n)q
def= n(n − 1) · · · (n − q + 1).

For real-valued functions f, g that depend on a parameter n we write f = O(g) to
mean there exist constants C, N > 0 such that for n > N , |f(n)| ≤ Cg(n). We write
f � g if there are C, N > 0 such that f(n) ≤ Cg(n) for n > N . We add constants
as a subscript to the big O or the � sign to mean that the constants C and N
depend on these other constants, for example, f = Oε(g) means that both C = C(ε)
and N = N(ε) may depend on ε. If there are no subscripts, it means the implied
constants depend only on the genus g, which is fixed throughout most of the paper.
We use the notation f � g to mean f � g and g � f ; the use of subscripts is the
same as before.

2 The Proof of Theorem 1.5 Given Theorem 1.11

2.1 Selberg’s trace formula and counting closed geodesics. Here we de-
scribe the main tool of this Section 2: Selberg’s trace formula for compact hyper-
bolic surfaces. Let C∞

c (R) denote the infinitely differentiable real functions on R
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with compact support. Given an even function ϕ ∈ C∞
c (R), its Fourier transform is

defined by

ϕ̂(ξ) def=
∫ ∞

−∞
ϕ(x)e−ixξdx

for any ξ ∈ C. As ϕ ∈ C∞
c (R), the integral above converges for all ξ ∈ C to an

entire function.
Given a compact hyperbolic surface X, we write L(X) for the set of closed ori-

ented geodesics in X. A geodesic is called primitive if it is not the result of repeating
another geodesic q times for q ≥ 2. Let P(X) denote the set of closed oriented prim-
itive geodesics on X. Every closed geodesic γ has a length �(γ) according to the
hyperbolic metric on X. Every closed oriented geodesic γ ∈ L(X) determines a con-
jugacy class [γ̃] in π1(X, x0) for any basepoint x0. Clearly, a closed oriented geodesic
in X is primitive if and only if the elements of the corresponding conjugacy class
are not proper powers in π1(X, x0). For γ ∈ L(X) we write Λ(γ) = �(γ0) where γ0

is the unique primitive closed oriented geodesic such that γ = γq
0 for some q ≥ 1.

We now give Selberg’s trace formula for a compact hyperbolic surface in the form
of [Bus10, Thm. 9.5.3] (see Selberg [Sel56] for the original appearance of this formula
and Hejhal [Hej76, Hej83] for an encyclopedic treatment).

Theorem 2.1. (Selberg’s trace formula). Let X be a compact hyperbolic surface
and let

0 = λ0(X) ≤ λ1(X) ≤ · · · ≤ λn(X) ≤ · · ·
denote the spectrum of the Laplacian on X. For i ∈ N ∪ {0} let

ri(X) def=

⎧
⎨

⎩

√
λi(X) − 1

4 if λi(X) > 1/4

i
√

1
4 − λi(X) if λi(X) ≤ 1/4

.

Then for any even ϕ ∈ C∞
c (R)

∞∑

i=0

ϕ̂(ri(X)) =
area(X)

4π

∫ ∞

−∞
rϕ̂(r) tanh(πr)dr +

∑

γ∈L(X)

Λ(γ)

2 sinh
(

�(γ)
2

)ϕ(�(γ)).

(Both sides of the formula are absolutely convergent.)

We will also need a bound on the number of closed oriented geodesics with length
�(γ) ≤ T . In fact we only need the following very soft bound from e.g. [Bus10,
Lem. 9.2.7].

Lemma 2.2. For a compact hyperbolic surface X, there is a constant C = C(X)
such that

|{γ ∈ L(X) : �(γ) ≤ T}| ≤ CeT .
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Much sharper versions of this estimate are known, but Lemma 2.2 suffices for
our purposes.

Suppose that X is a connected compact hyperbolic surface. We fix a basepoint
x0 ∈ X and an isomorphism π1(X, x0) ∼= Γg as in (1.1) where g ≥ 2 is the genus of
X. If γ is a closed oriented geodesic, by abuse of notation we let �w (γ) denote the
minimal word-length of an element in the conjugacy class in Γg specified by γ (on
page 5 we used the same notation for an element of Γg). We want to compare �(γ)

and �w(γ). We will use the following simple consequence of the S̆varc–Milnor lemma
[BH99, Prop. 8.19].

Lemma 2.3. With notations as above, there exist constants K1, K2 ≥ 0 depending
on X such that

�w(γ) ≤ K1�(γ) + K2.

2.2 Choice of function for use in Selberg’s trace formula. We now fix a
function ϕ0 ∈ C∞

c (R) which has the following key properties:

1. ϕ0 is non-negative and even.
2. Supp(ϕ0) = (−1, 1).
3. The Fourier transform ϕ̂0 satisfies ϕ̂0(ξ) ≥ 0 for all ξ ∈ R ∪ iR.

Proof that such a function exists. Let ψ0 be a C∞, even, real-valued non-negative
function whose support is exactly (−1

2 , 1
2). Let ϕ0

def= ψ0 � ψ0 where

ψ0 � ψ0(x) def=
∫

R
ψ0(x − t)ψ0(t)dt.

Then ϕ0 has the desired properties. ��
We now fix a function ϕ0 as above and for any T > 0 define

ϕT (x) def= ϕ0

( x

T

)
.

Lemma 2.4. For all ε > 0, there exists Cε > 0 such that for all t ∈ R≥0 and for all
T > 0

ϕ̂T (it) ≥ CεTeT (1−ε)t.

Proof. First observe that

ϕ̂T (it) = T ϕ̂0(Tit) = T

∫

R
ϕ0(x)eTxtdx.

Using t ≥ 0 and Supp(ϕ0) = (−1, 1) with ϕ0 non-negative, we have for some Cε > 0

ϕ̂T (it) ≥ T

∫ 1

1−ε
ϕ0(x)eTxtdx ≥ TCεe

T (1−ε)t. ��
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2.3 Proof of Theorem 1.5. Let X be a genus g compact hyperbolic surface
and let Xφ be the cover of X corresponding to φ ∈ Hom(Γg, Sn) constructed in the
introduction. In what follows we let

T = 4 log n.

For every γ ∈ L(X), we pick γ̃ ∈ Γg in the conjugacy class in Γg corresponding to
γ (so in particular �w (γ̃) = �w (γ)). Every closed oriented geodesic δ in Xφ covers,
via the Riemannian covering map Xφ → X, a unique closed oriented geodesic in X
that we will call π(δ). This gives a map

π : L(Xφ) → L(X).

Note that �(δ) = �(π(δ)). We claim that |π−1(γ)| = fixγ̃(φ), recalling that fixγ̃(φ)
is the number of fixed points of φ(γ̃). Indeed, by its very definition, Xφ is a fiber
bundle over X with fiber [n]. If γ ∈ P(X), and we fix some regular point o ∈ γ (not
a self-intersection point), then in Xφ, the fiber of o can be identified with [n]. The
oriented geodesic path γ\{o} lifts to n oriented geodesic paths with start and end
points equal to [n]. The permutation of [n] obtained by following these from start
to end is (up to conjugation) φ(γ̃) and hence, the δ’s with π(δ) = γ are precisely
the paths that close up, or in other words, the δ’s with π(δ) = γ correspond to
fixed points of φ(γ̃). For general γ ∈ L (X), assume that γ = γ q

0 with q ≥ 1 and
γ0 ∈ P (X). A similar argument shows that the elements in π−1 (γ) are in bijection
with fixed points of γ̃0

q which we may take as our γ̃.
We also have area(Xφ) = n ·area(X). Now applying Theorem 2.1 to Xφ with the

function ϕT gives
∞∑

i=0

ϕ̂T (ri(Xφ)) =
area(Xφ)

4π

∫ ∞

−∞
rϕ̂T (r) tanh(πr)dr +

∑

δ∈L(Xφ)

Λ(δ)

2 sinh
(

�(δ)
2

)ϕT (�(δ))

=
n · area(X)

4π

∫ ∞

−∞
rϕ̂T (r) tanh(πr)dr

+
∑

γ∈L(X)

∑

δ∈π−1(γ)

Λ(δ)

2 sinh
(

�(γ)
2

)ϕT (�(γ))

=
n · area(X)

4π

∫ ∞

−∞
rϕ̂T (r) tanh(πr)dr

+
∑

γ∈P(X)

fixγ̃(φ)�(γ)

2 sinh
(

�(γ)
2

)ϕT (�(γ))

+
∑

γ∈L(X)−P(X)

∑

δ∈π−1(γ)

Λ(δ)

2 sinh
(

�(γ)
2

)ϕT (�(γ)),

where in the second equality we used the fact that for δ ∈ L (Xφ), � (δ) = � (π (δ)),
and in the third equality we used that if γ ∈ P(X), then δ ∈ P(Xφ) for all
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δ ∈ π−1(γ), so Λ(δ) = Λ(γ) = �(γ). Let i1, i2, i3, . . . be a subsequence of 1, 2, 3, . . .
such that

0 ≤ λi1(Xφ) ≤ λi2(Xφ) ≤ · · ·
are the new eigenvalues of Xφ. Thus λi1 (Xφ) is the smallest new eigenvalue of Xφ.
Taking the difference of the above formula with the trace formula for X (with the
same function ϕT ) gives

∞∑

j=1

ϕ̂T (rij
(Xφ)) =

(n − 1) · area(X)
4π

∫ ∞

−∞
rϕ̂T (r) tanh(πr)dr

+
∑

γ∈P(X)

(fixγ̃(φ) − 1)�(γ)

2 sinh
(

�(γ)
2

) ϕT (�(γ))

+
∑

γ∈L(X)−P(X)

ϕT (�(γ))

2 sinh
(

�(γ)
2

)

⎛

⎝

⎛

⎝
∑

δ∈π−1(γ)

Λ(δ)

⎞

⎠− Λ(γ)

⎞

⎠ . (2.1)

Since ϕT is non-negative and for any γ ∈ L(X), |π−1(γ)| ≤ n, and Λ(δ) ≤ � (δ) =
�(γ) for all δ ∈ π−1(γ), the sum on the bottom line of (2.1) is bounded from above
by

n
∑

γ∈L(X)−P(X)

ϕT (�(γ))

2 sinh
(

�(γ)
2

) · �(γ) = n
∑

γ∈P(X)

∞∑

k=2

ϕT (k�(γ))

2 sinh
(

k�(γ)
2

)k�(γ). (2.2)

We have
∞∑

k=2

ϕT (k�(γ))

2 sinh
(

k�(γ)
2

)k�(γ)
(∗)�X �(γ)

∞∑

k=2

ke− k�(γ)
2

(∗∗)� X �(γ)e−�(γ), (2.3)

where in (∗) we relied on that ϕT is bounded, and in both (∗) and (∗∗) on that
there is a positive lower bound on the lengths of closed geodesics in X. As ϕT is
supported on (−T, T ), the left hand side of (2.3) vanishes whenever � (γ) ≥ T/2.
Using Lemma 2.2 we thus get

n
∑

γ∈P(X)

∞∑

k=2

ϕT (k�(γ))

2 sinh
(

k�(γ)
2

)k�(γ) �X n
∑

γ∈P(X):�(γ)≤T

�(γ)e−�(γ)

≤ n

T∑

m=0

∑

γ∈L(X) : m≤�(γ)<m+1

(m + 1) e−m

�X n

T∑

m=0

(m + 1)em+1e−m � nT 2. (2.4)
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We also have
∫ ∞

−∞
rϕ̂T (r) tanh(πr)dr = T

∫ ∞

−∞
rϕ̂0(Tr) tanh(πr)dr

=
1
T

∫ ∞

−∞
r′ϕ̂0(r′) tanh

(
π

r′

T

)
dr′

≤ 2
T

∫ ∞

0
|r′||ϕ̂0(r′)|dr′ � 1

T
. (2.5)

The final estimate uses that, since ϕ0 is compactly supported, ϕ̂0 is a Schwartz
function and decays faster than any inverse of a polynomial. Combining (2.1), (2.2),
(2.4) and (2.5) gives

∞∑

j=1

ϕ̂T (rij
(Xφ)) = O

(
(n − 1) · area(X)

4π
· 1
T

)

+
∑

γ∈P(X)

(fixγ̃(φ) − 1) �(γ)

2 sinh
(

�(γ)
2

) ϕT (�(γ)) + OX

(
T 2n

)

=
∑

γ∈P(X)

(fixγ̃(φ) − 1) �(γ)

2 sinh
(

�(γ)
2

) ϕT (�(γ)) + OX

(
T 2n
)
, (2.6)

where in the last equality we used T > 1.
We are now in a position to use Theorem 1.11. The contributions to the sum

above come from γ with �(γ) ≤ T . By Lemma 2.3, this entails �w(γ̃) = �w (γ) ≤
K1T + K2 ≤ c log n for some c = c(X) > 0 and n sufficiently large. Moreover, if
γ ∈ P(X), then γ̃ is not a proper power in Γg. Thus for each γ appearing in (2.6),
Theorem 1.11 applies to give

Eg,n [fixγ̃(φ) − 1] �X
(log n)A

n

where A = A(g) > 0 and the implied constant depends on X. Now using that ϕ̂T is
non-negative on R ∪ iR, we take expectations of (2.6) with respect to the uniform
measure on Xg,n to obtain

Eg,n [ϕ̂T (ri1(Xφ))]

≤
∑

γ∈P(X)

Eg,n [fixγ̃(φ) − 1] �(γ)

2 sinh
(

�(γ)
2

) ϕT (�(γ)) + OX

(
T 2n

)

Theorem 1.11�X
(log n)A

n

∑

γ∈P(X)

�(γ)

2 sinh
(

�(γ)
2

)ϕT (�(γ)) + T 2n

�X
(log n)A

n

∑

γ∈P(X) : �(γ)≤T

�(γ)e−�(γ)/2 + T 2n
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≤ (log n)A

n

�T−1�∑

m=0

∑

γ∈L(X) : m≤�(γ)<m+1

(m + 1)e−m/2 + T 2n

Lemma 2.2�X
(log n)A

n

�T−1�∑

m=0

(m + 1)e−m/2em+1 + T 2n

� (log n)A

n
TeT/2 + T 2n

T=4 log n�ε n1+ε/3, (2.7)

where ε is the parameter given in Theorem 1.5. The third inequality above used that
on a compact hyperbolic surface, the lengths of closed geodesics are bounded below
away from zero (by the Collar Lemma [Bus10, Thm. 4.1.1]), together with the fact
that ϕT is supported in [−T, T ]. So Eg,n [ϕ̂T (ri1(Xφ))] ≤ n1+ε/2 for large enough n,
and for these values of n, by Markov’s inequality

P
[
ϕ̂T (ri1(Xφ)) > n1+ε

] ≤ n−ε/2. (2.8)

Lemma 2.4 implies that if λi1(Xφ) ≤ 3
16 −ε, in which case ri1(Xφ) = itφ with tφ ∈ R

and tφ ≥
√

1
16 + ε ≥ 1

4 + ε for ε sufficiently small, then

ϕ̂T (ri1(Xφ)) ≥ CεTeT (1−ε)tφ ≥ Cεn
4(1−ε)(1/4+ε) ≥ Cεn

1+2ε > n1+ε, (2.9)

by decreasing ε if necessary, and then assuming n is sufficiently large. Combining
(2.8) and (2.9) gives

P

[
Xφ has a new eigenvalue ≤ 3

16
− ε

]
≤ P

[
ϕ̂T (ri1(Xφ)) > n1+ε

] ≤ n−ε/2

completing the proof of Theorem 1.5, under the assumption of Theorem 1.11. ��
2.4 Proof of Theorem 1.8. We continue using the same notation as in the
previous section, including the choice of T = 4 log n. We let

0 ≤ λi1(Xφ) ≤ λi2(Xφ) ≤ · · · ≤ λik(φ) ≤ 1
4

denote the collection of new eigenvalues of Xφ of size at most 1
4 , with multiplicities

included. For each such eigenvalue we write λij
= sij

(1 − sij
) with sij

∈ [12 , 1
]
; this

has the result that rij
= i(sij

− 1
2).

Again taking expectations of (2.6) with respect to the uniform measure on Xg,n,
but this time, keeping more terms, gives
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Eg,n

⎡

⎣
k(φ)∑

j=1

ϕ̂T

(
rij

(Xφ)
)
⎤

⎦ ≤
∑

γ∈P(X)

Eg,n [fixγ̃(φ) − 1] �(γ)

2 sinh
(

�(γ)
2

) ϕT (�(γ)) + OX

(
T 2n
)

�X,ε n1+ε/3

by (2.7). On the other hand, Lemma 2.4 implies that for ε ∈ (0, 1)

k(φ)∑

j=1

ϕ̂T

(
rij

(Xφ)
)�ε

k(φ)∑

j=1

TeT (1−ε)(sij
(Xφ)− 1

2) �
k(φ)∑

j=1

n4(1−ε)(sij
(Xφ)− 1

2).

Therefore

Eg,n

⎡

⎣
k(φ)∑

j=1

n4(1−ε)(sij
(Xφ)− 1

2)

⎤

⎦ ≤ n1+ε/2

for n sufficiently large. Markov’s inequality therefore gives

P

⎡

⎣
k(φ)∑

j=1

n4(1−ε)(sij
(Xφ)− 1

2) ≥ n1+ε

⎤

⎦ ≤ n−ε/2

so a.a.s.
∑k(φ)

j=1 n4(1−ε)(sij
(Xφ)− 1

2) < n1+ε. This gives that for any σ ∈ (1
2 , 1
)
, a.a.s.

#
{
1 ≤ j ≤ k(φ) : sij

> σ
} ≤ n1+ε−4(1−ε)(σ− 1

2
) ≤ n3−4σ+3ε.

This finishes the proof of Theorem 1.8 assuming Theorem 1.11. ��

3 Tiled Surfaces

3.1 Tiled surfaces. Here we assume g = 2, and let Γ def= Γ2. We write Xn
def=

X2,n throughout the rest of the paper. Consider the construction of the surface
Σ2 from an octagon by identifying its edges in pairs according to the pattern
aba−1b−1cdc−1d−1. This gives rise to a CW-structure on Σ2 consisting of one vertex
(denoted o), four oriented 1−cells (labeled by a, b, c, d) and one 2-cell which is the
octagon glued along eight 1-cells.6 See Figure 1. We identify Γ2 with π1 (Σ2, o), so
that in the presentation (1.1), words in the generators a, b, c, d correspond to the
homotopy classes of the corresponding closed paths based at o along the 1-skeleton
of Σ2.

Note that every covering space p : Υ → Σ2 inherits a CW-structure from Σ2:
the vertices are the pre-images of o, and the open 1-cells (2-cells) are the connected

6 We use the terms vertices, edges and octagons interchangeably with 0-cells, 1-cells and 2-cells,
respectively.
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Figure 1: The CW-structure we give to the surface Σ2 with fundamental group Γ = Γ2 =
〈a, b, c, d | [a, b] [c, d]〉: it consists of a single vertex (0-cell), four edges (1-cells) and one oc-
tagon (a 2-cell).

components of the pre-images of the open 1-cells (2-cells, respectively) in Σ2. In
particular, this is true for the universal covering space Σ̃2 of Σ2, which we can now
think of as a CW-complex. A sub-complex of a CW-complex is a subspace consisting
of cells such that if some cell belongs to the subcomplex, then so are the cells of
smaller dimension at its boundary.

Definition 3.1. (Tiled surface) [MP21, Def. 3.1]. A tiled surface Y is a sub-complex
of a (not-necessarily-connected) covering space of Σ2. In particular, a tiled surface
is equipped with the restricted covering map p : Y → Σ2 which is an immersion. We
denote by Y (0) the set of vertices and by Y (1) the 1-skeleton of Y . If Y is compact,
we write v (Y ) for the number of vertices of Y , e (Y ) for the number of edges and
f (Y ) for the number of octagons.

Alternatively, instead of considering a tiled surface Y to be a complex equipped
with a restricted covering map, one may consider Y to be a complex as above
with directed and labeled edges: the directions and labels (a, b, c, d) are pulled back
from Σ2 via p. These labels uniquely determine p as a combinatorial map between
complexes.

Note that a tiled surface is not always a surface: for example, it may also contain
vertices or edges with no 2-cells incident to them. However, as Y is a sub-complex
of a covering space of Σ2, namely, of a surface, any neighborhood of Y inside the
cover is a surface, and it is sometimes beneficial to think of Y as such.

Definition 3.2. (Thick version of a tiled surface) [MP21, Def. 3.2]. Given a tiled
surface Y which is a subcomplex of the covering space Υ of Σ2, consider a small,
closed, regular neighborhood of Y in Υ. This neighborhood is a closed surface,
possibly with boundary, which is referred to as the thick version of Y .
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We let ∂Y denote the boundary of the thick version of Y and d (Y ) denote the
number of edges along ∂Y (so if an edge of Y does not border any octagon, it is
counted twice).

We stress that we do not think of Y as a sub-complex, but rather as a complex for
its own sake, which happens to have the capacity to be realized as a subcomplex of a
covering space of Σ2. In particular, if Y is compact, it is a combinatorial object given
by a finite amount of data. See [MP21, Section 3] for a more detailed discussion.

Definition 3.3. (Morphisms of tiled surfaces). Let pi : Yi → Σ2 be tiled surfaces
for i = 1, 2. A map f : Y1 → Y2 is a morphism of tiled surfaces if it is a combinatorial
map of CW-complexes that commutes with the restricted covering maps.

Y1
f ��

p1 ���
��

��
��

� Y2

p2����
��
��
��

Σ2

In other words, a morphism of tiled surfaces is a combinatorial map of CW-
complexes sending i-cells to i-cells and which respects the directions and labels of
edges.

Example 3.4. The fibered product construction gives a one-to-one correspondence
between Hom(Γ, Sn) and topological degree-n covers of Σ2 with a labeled fiber over
the basepoint o. Explicitly, for φ ∈ Hom(Γ, Sn), we can consider the quotient

Xφ
def= Γ\

(
Σ̃2 × [n]

)

where Σ̃2 is the universal cover of Σ2 (an open disc) and Γ acts on Σ̃2×[n] diagonally,
by the usual action of Γ on Σ̃2 on the first factor, and via φ on the second factor.
The covering map Xφ → Σ2 is induced by the projection Σ̃2 × [n] → Σ̃2.

Being a covering space of Σ2, each Xφ is automatically also a tiled surface. The
fiber of o ∈ Σ2 is the collection of vertices of Xφ. We fix throughout the rest of
the paper a vertex u ∈ Σ̃2 lying over o ∈ Σ2. This identifies the fiber over o in
Xφ with {u} × [n] and hence gives a fixed bijection between the vertices of Xφ and
the numbers in [n]. The map φ �→ Xφ is the desired one-to-one correspondence
between Hom(Γ, Sn) and topological degree-n covers of Σ2 with the fiber over o
labeled bijectively by [n].

Example 3.5. For any 1 �= γ ∈ Γ, pick a word γ̃ of minimal length in the letters
a, b, c, d and their inverses that represents an element in the conjugacy class of γ in Γ.
In particular, γ̃ is cyclically reduced. Now take a circle and divide it into {a, b, c, d}-
labeled and directed edges separated by vertices, such that following around the
circle from some vertex and in some orientation, and reading off the labels and
directions, spells out γ̃. Call the resulting complex Cγ . That Cγ is a tiled surface



GAFA A RANDOM COVER OF A COMPACT HYPERBOLIC SURFACE 617

follows from [MP21] (in particular, it is embedded in the core surface Core (〈γ〉)
which is itself a tiled surface, by [MP21, Thm. 5.10]). Note that generally Cγ is not
uniquely determined by γ (e.g., [MP21, Figure 1.2 and Section 4, Section 5]), and we
choose one of the options arbitrarily. We have v(Cγ) = e (Cγ) = �w(γ) and f (Cγ) = 0.

If Y is a compact tiled surface, there are some simple relations between the
quantities v(Y ), e(Y ), f(Y ), d(Y ), and χ(Y ), the topological Euler characteristic
of Y . We note the following relations, which are straightforward or standard. For
example, e (Y ) ≤ 4v (Y ) as each vertex is incident to at most 8 half-edges.7

d (Y ) = 2e (Y ) − 8f (Y ) . (3.1)
4f (Y ) ≤ e (Y ) ≤ 4v (Y ) . (3.2)

The following lemma will be useful later.

Lemma 3.6. Let Y be a compact tiled surface without isolated vertices. Then

v (Y ) ≤ f (Y ) + d(Y ).

Proof. Let i denote the number of internal vertices of Y , namely, vertices adjacent
to 8 octagons, and let p denote the number of the remaining, peripheral vertices. As
there are no isolated vertices, p ≤ d (Y ) (when going through the boundary cycles,
one edge at a time, one passes at every step exactly one peripheral vertex, and each
peripheral vertex is traversed at least once, although possibly more than once). We
have

8f(Y ) =
∑

O an octagon of Y

#{corners of O}

=
∑

v a vertex of Y

#{corners of octagons at v}

≥ 8i = 8v(Y ) − 8p ≥ 8v (Y ) − 8d (Y ) . ��
The Euler characteristic χ(Y ) is also controlled by f(Y ) and d(Y ).

Lemma 3.7. Let Y be a compact tiled surface without isolated vertices. Then8

χ(Y ) ≤ d(Y )
2

− 2f(Y ).

Proof. We have

χ (Y ) = v (Y ) − e (Y ) + f (Y )
(3.1)
= v (Y ) − 3f (Y ) − d (Y )

2
Lemma 3.6≤ d (Y )

2
− 2f (Y ) .

��
7 For general g ≥ 2, (3.1) is d (Y ) = 2e (Y ) − 4gf (Y ), and (3.2) is 2gf (Y ) ≤ e (Y ) ≤ 2gf (Y ).
8 For arbitrary g ≥ 2, the bound is χ (Y ) ≤ d(Y )

2
− (2g − 2) f (Y ).
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Figure 2: The right figure shows a vertex with 8 half-edges around it, ordered (clockwise)
according to the fixed cyclic order induced from the CW-structure on Σ2. On the left is a
tiled surface with 11 vertices, 11 edges and one octagon. The orientation on the octagon is
counter-clockwise, while around any vertex it is clockwise. The pink stripes describe blocks:
a half-block spelling c−1d−1ab and a block of length 3 spelling d−1ab. The latter one can be
extended in both ends.

3.2 Blocks and chains. Here we introduce language that was used in [MP21,
MP20], based on terminology of Birman and Series from [BS87a]. Let Y denote a
tiled surface throughout this Section 3.2. When we refer to directed edges of Y , they
are not necessarily directed according to the definition of Y .

First of all, we augment Y by adding half-edges, which should be thought of
as copies of [0, 1

2). Of course, every edge of Y (1) is thought of as containing two half
edges, each of which inherits a label in {a, b, c, d} and a direction from their ambient
edge. We add to Y {a, b, c, d}-labeled and directed half-edges to form Y+ so that
every vertex of Y+ has exactly 8 emanating half-edges, with labels and directions
given by ‘a-outgoing, b-incoming, a-incoming, b-outgoing, c-outgoing, d-incoming,
c-incoming, d-outgoing’. The cyclic order we have written here induces a fixed cyclic
ordering on the half-edges at each vertex of Y+. If a half-edge of Y+ does not belong
to an edge of Y (hence was added to Y+), we call it a hanging half-edge. We may
think of Y+ as a surface too, by considering the thick version of Y and attaching a
thin rectangle for every hanging half-edge. We call the resulting surface the thick
version of Y+, and mark its boundary by ∂Y+. See Figure 2 for the cyclic ordering
of half-edges around every vertex and Figure 4 for a piece of ∂Y+.

For two directed edges �e1 and �e2 of Y with the terminal vertex v of
�e1 equal to the source of �e2, the half-edges between �e1 and �e2 are by definition the
half edges of Y+ at v that are strictly between �e1 and �e2 in the given cyclic ordering.
There are m of these where 0 ≤ m ≤ 7.

A path in Y is a sequence P=(�e1, . . . , �ek) of directed edges in Y (1), such that for
each 1 ≤ i ≤ k−1 the terminal vertex of �ei is the initial vertex of �ei+1. A cycle in Y is
a cyclic sequence C =(�e1, . . . , �ek) which is a path with the terminal vertex of �ek iden-
tical to the initial vertex of �e1. A boundary cycle of Y is a cycle corresponding to a
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Figure 3: A long chain (the pink stripe) consisting of five consecutive blocks of lengths
4, 3, 3, 3, 4.

boundary component of the thick version of Y . A boundary cycle is always oriented
so that if Y is embedded in the full cover Z, the boundary reads successive segments
of the boundaries of the neighboring octagons (in Z − Y ) with the orientation of
each octagon coming from [a, b] [c, d] (and not from the inverse word). For example,
the unique boundary cycle of the tiled surface in the left side of Figure 2, starting
at the rightmost vertex, spells the cyclic word c−1d−1abab−1a−1dcd−1c−1a−1dc.

If P is a path in Y (1), a block in P is a non-empty (possibly cyclic) subsequence
of successive edges, each successive pair of edges having no half-edges between them
(this means that a block reads necessarily a subword of the cyclic word [a, b] [c, d]).
A half-block is a block of length 4 (in general, 2g) and a long block is a block of
length at least 5 (in general, 2g + 1). See Figure 2.

Two blocks (�ei, . . . , �ej) and (�ek, . . . , �e�) in a path P are called consecutive if
(�ei, . . . , �ej , �ek, . . . , �e�) is a (possibly cyclic) subsequence of P and there is precisely one
half-edge between �ej and �ek. A chain is a (possibly cyclic) sequence of consecutive
blocks. Note that in a chain, an f -edge with some f ∈ {a+1, . . . , d±1

}
is followed by

an edge labeled by the letter f ′ that follows f in the cyclic word [a, b] [c, d], or by
the letter that follows the inverse of f ′. For example, a b−1-edge is always followed
in a chain by either a c-edge or a d−1-edge. A cyclic chain is a chain whose blocks
pave an entire cycle (with exactly one half-edge between the last block and the first
blocks). A long chain is a chain consisting of consecutive blocks of lengths

4, 3, 3, . . . , 3, 4

(in general, 2g, 2g − 1, 2g − 1, . . . , 2g − 1, 2g). See Figure 3. A half-chain is a cyclic
chain consisting of consecutive blocks of length 3 (in general, 2g − 1) each.

3.3 Boundary reduced and strongly boundary reduced tiled surfaces.
We recall the following definitions from [MP21, Def. 4.1, 4.2].

Definition 3.8. (Boundary reduced). A tiled surface Y is boundary reduced if no
boundary cycle of Y contains a long block or a long chain.

Definition 3.9. (Strongly boundary reduced). A tiled surface Y is strongly bound-
ary reduced if no boundary cycle of Y contains a half-block or is a half-chain.

Given a tiled surface Y embedded in a boundary reduced tiled surface Z, the
BR-closure of Y in Z, denoted BR (Y ↪→ Z) and introduced in [MP21, Def. 4.4], is
defined as the intersection of all boundary reduced sub-tiled surfaces of Z containing
Y . We compile some properties of the BR-closure into the following proposition.
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Proposition 3.10. Let Y ↪→ Z be an embedding of a compact tiled surface Y into

a boundary reduced tiled surface Z, and denote Y ′ def= BR (Y ↪→ Z).

1. [MP21, Prop. 4.5] Y ′ is boundary reduced.
2. [MP21, proof of Prop. 4.6] Y ′ is compact, and d (Y ′) ≤ d (Y ), with equality if

and only if Y ′ = Y .
3. [MP21, proof of Prop. 4.6] Y ′ can be obtained from Y by initializting Y ′ = Y

and then repreatedly either (i) annexing an octagon of Z\Y ′ which borders a
long block along ∂Y ′, or (ii) annexing the octagons of Z\Y ′ bordering some
long chain along ∂Y ′, until Y ′ is boundary reduced.

4. We have9

f(Y ′) ≤ f(Y ) +
d(Y )2

6
.

Proof of item 4. Assume that Y ′ is obtained from Y by the procedure described in
item 3. In each such step, d (Y ′) decreases by at least two, so there are at most d(Y )

2
steps where octagons are added. We will be done by showing that at each step at
most d(Y )

3 octagons are added. And indeed, in option (i) exactly one octagon is added
(and 1 ≤ d(Y )

3 or otherwise Y is boundary reduced). In option (ii), if the long chain
consists of � blocks, it is of length 3� + 2 ≤ d (Y ′), and at most � ≤ d(Y ′)−2

3 < d(Y )
3

new octagons are added. ��
3.4 Pieces and ε-adapted tiled surfaces. For the proof of Theorem 1.11 we
will need to quantify (strongly) boundary reduced tiled surfaces. This is captured by
the notion of ε-adapted tiled surface we introduce in this Section 3.4. The following
concepts of a piece and its defect play a crucial role here.

Definition 3.11. (Piece, defect). A piece P of ∂Y+ is a (possibly cyclic) path along
∂Y+, consisting of whole directed edges and/or whole hanging half-edges. We write
e(P ) for the number of full directed edges in P , he(P ) for the number of hanging

half-edges in P , and |P | def= e(P ) + he(P ). We let

Defect(P ) def= e(P ) − 3he(P ).

(In general, Defect(P ) def= e(P ) − (2g − 1) he(P ).) See Figure 4 for an illustration of
a piece.

Definition 3.12. (ε-adapted). Let ε ≥ 0 and let Y be a tiled surface. A piece P of
∂Y+ is ε-adapted if it satisfies10

Defect(P ) ≤ 4χ(P ) − ε|P |. (3.3)

9 For larger values of the genus g, we could get a tighter bound, but the stated bound holds and
is good enough.
10 In general, if Defect(P ) ≤ 2g · χ(P ) − ε|P |.
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Figure 4: A piece P of ∂Y+ is shown in black line. The broken black line marks parts of ∂Y+

adjacent to but not part of P and the yellow stripe marks the side of the internal side of Y .
This piece consists of 9 full directed edges and 9 hanging half-edges, so Defect (P ) = −18.

We have χ(P ) = 0 if P is a whole boundary component and χ(P ) = 1 otherwise. We
say that a piece P is ε-bad if (3.3) does not hold, i.e., if Defect(P ) > 4χ(P ) − ε|P |.
We say that Y is ε-adapted if every piece of Y is ε-adapted.

The following lemma shows that this notion indeed quantifies the notion of
strongly boundary reduced tiled surfaces.

Lemma 3.13. Let Y be a tiled surface.

1. Y is boundary reduced if and only if it is 0-adapted.
2. Y is strongly boundary reduced if and only if every piece of ∂Y is ε-adapted

for some ε > 0. If Y is compact, this is equivalent to that Y is ε-adapted for
some ε > 0.

Proof. A block at ∂Y is a piece P with he (P ) = 0. Assume that Y is 0-adapted.
If P is a block at ∂Y , then e (P ) = Defect (P ) ≤ 4χ (P ) ≤ 4, so P cannot be a
long block. If P is a long chain at ∂Y consisting of k blocks (k − 2 of length 3 and
two of length 4) and the k − 1 hanging edges between them, then Defect (P ) =
(3k + 2) − 3 (k − 1) = 5 > 4 = 4χ (P ), which is a contradiction. Similarly, if P is
a half-block or a half-chain, then Defect (P ) = 4χ (P ), and so P is ε-bad for any
ε > 0. The converse implications are not hard and can be found in [MP20, proof of
Lem. 5.18]. ��
We need the following lemma in the analysis of the next subsection.

Lemma 3.14. If 0 ≤ ε < 3 and P is an ε-bad piece of a compact tiled surface Y ,
then11

|P | <
4d (Y )
3 − ε

. (3.4)

Proof. If P is ε-bad, then by definition e (P ) − 3 · he (P ) > 4χ (P ) − ε |P |. So

(3 − ε) |P | < 3 (e (P ) + he (P )) + (e (P ) − 3 · he (P ) − 4χ (P )) ≤ 4 · e (P ) ≤ 4d (Y ) .

��
11 For arbitrary g ≥ 2, the bound is |P | < 2g·d(Y )

2g−1−ε
.
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3.5 The octagons-vs-boundary algorithm. In this Section 3.5 we describe
an algorithm whose purpose is to grow a given tiled surface in such a way that either

• the output Y ′ is ε-adapted for some fixed ε > 0, or alternatively,
• the number of octagons of Y ′ is larger than the length of the boundary of Y ′.

If Y ′ is ε-adapted for a suitable ε, it is very well adapted to our methods, so that
we can give an estimate for E

emb
n (Y ′) with an effective error term (e.g., Proposition

5.27). If, on the other hand, f(Y ′) > d(Y ′), then the Euler characteristic of Y ′ can be
linearly comparable to the number of octagons in Y ′ by Lemma 3.7, and see Section
6.2 where it is used.

The algorithm depends on a positive constant ε > 0; we shall see below that
fixing ε = 1

32 works fine for our needs (for arbitrary g ≥ 2 we shall fix ε = 1
16g .) To

force the algorithm to be deterministic, we a priori make some choices:

Notation 3.15. For every compact tiled surface Y which is boundary reduced but
not ε-adapted, we pick an ε-bad piece P (Y ) of ∂Y .

With the ambient parameter ε fixed as well as the choices of ε-bad pieces, the
octagons-vs-boundary (OvB) algorithm is as follows.

Input. An embedding of tiled surfaces Y ↪→ Z where Y is compact and Z has no
boundary.

Output. A compact tiled surface Y ′ and a factorization of the input embedding
Y ↪→ Z by Y ↪→ Y ′ ↪→ Z where both maps are embeddings.

Algorithm. Let Y ′ = Y .
(a) Let Y ′ = BR(Y ′ ↪→ Z). If

θ(Y ′) def= f(Y ′) − d(Y ′) > 0 (3.5)

terminate the algorithm and return Y ′.
(b) If Y ′ is not ε-adapted, add all the octagons of Z meetinga P (Y ′) to Y ′, and go
to (a).
Return Y ′.

aAn octagon O in Z is said to meet P (Y ′) if some directed edge or hanging-half-edge
of P (Y ′) lies at ∂O.

Note that the output Y ′ of the algorithm is always boundary reduced. Of course,
we would like to know when/if this algorithm terminates.

In step (a), if BR (Y ′ ↪→ Z) �= Y ′ then d(Y ′) decreases by at least two, and f(Y ′)
increases by at least one. So θ(Y ′) increases by at least three.

In step (b), if Y ′ changes, the following lemma shows that θ(Y ′) increases by at
least one provided that ε ≤ 1

16 .
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Lemma 3.16. With notation as above, if Y ′ is modified in step (b), then

1. d(Y ′) increases by less than 2ε |P (Y ′)|.
2. θ(Y ′) increases by more than

(
1
8 − 2ε

) |P (Y ′)|, so the increase is positive
when12 ε ≤ 1

16 .

Note that θ (Y ′) is an integer, so any positive increase is an increase by at least
one.

Proof. Suppose that in step (b) Y ′ is modified. Let Y ′′ denote the result of this
modification and let P = P (Y ′). Let k denote the number of new octagons added.
First assume that P is a non-closed path, so χ (P ) = 1. We have k ≤ he (P ) + 1
because every hanging half-edge along P marks the passing from one new octagon
to the next one. Every new octagon borders 8 edges in Z. For most new octagons,
two of these edges contain hanging half-edges of P and are internal edges in Y ′′, so
if j of the edges belong to P , the net contribution of the octagon to d (Y ′′) − d (Y ′)
is at most 6−2j. The exceptions are the two extreme octagons, which possibly meet
only one hanging half-edge of P , and contribute a net of at most 7 − 2j. The sum
of the parameter j over all new octagons is exactly e (P ). In total, we obtain:

d
(
Y ′′)− d

(
Y ′) ≤ 6k + 2 − 2 · e (P )

≤ 6 (he (P ) + 1) + 2 − 2 · e (P )
= 2 (3 · he (P ) − e (P )) + 8
< 2 (ε |P | − 4χ (P )) + 8 = 2 · ε |P | ,

where the last inequality comes from the definition of an ε-bad piece. If P is a whole
boundary cycle of Y ′

+, we have k ≤ he (P ) and all octagons contribute at most 6−2j
to d (Y ′′) − d (Y ′), so

d
(
Y ′′)− d

(
Y ′) ≤ 6k − 2 · e (P ) ≤ 6 · he (P ) − 2 · e (P ) < 2 (ε |P | − 4χ (P )) = 2ε |P | .

This proves Part 1.
There is a total of 8k directed edges at the boundaries of the new octagons. Of

these, e (P ) are edges of P . Each of the remaining 8k − e (P ) can ‘host’ two hanging
half-edges of P , and each hanging half-edge appears in exactly 2 directed edges of
new octagons. This gives

2he (P ) ≤ 2 (8k − e (P )) ,

so 8k ≥ he (P ) + e (P ) = |P |. Hence

θ
(
Y ′′)− θ

(
Y ′) = k − (d (Y ′′)− d

(
Y ′)) >

1
8

|P | − 2ε |P | =
(

1
8

− 2ε

)
|P | .

��
12 For arbitrary g ≥ 2, θ (Y ′) increases by more than

(
1
4g

− 2ε
)

|P (Y ′)|, so we need ε ≤ 1
8g

.
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The upshot of the previous observations and Lemma 3.16 is that, provided ε ≤ 1
16 ,

every time step (a) of the algorithm is reached, except for the first time, Y ′ has
changed in step (b), so θ(Y ′) has increased by at least one. Since

θ(Y ) = f(Y ) − d(Y ) ≥ −d(Y ),

and the algorithm halts at the latest after the first time that θ (Y ) is positive, we
deduce the following lemma:

Lemma 3.17. If ε ≤ 1
16 , then during the octagons-vs-boundary algorithm, step (a)

is reached at most d(Y ) + 2 times. In particular, the algorithm always terminates.

Now that we know the algorithm always terminates (assuming ε ≤ 1
16), and

it clearly has deterministic output due to our a priori choices, if Y ↪→ Z is an
embedding of a compact tiled surface Y into a tiled surface Z without boundary we
write OvBε(Y ↪→ Z) for the output of the OvB algorithm with parameter ε applied
to Y ↪→ Z. Thus OvBε(Y ↪→ Z) is a tiled surface Y ′ with an attached embedding
Y ↪→ Y ′. We can now make the following easy observation.

Lemma 3.18. Let ε ≤ 1
16 , let Y ↪→ Z be an embedding of a compact tiled surface Y

into a tiled surface Z without boundary, and let Y ′ = OvBε(Y ↪→ Z). Then at least
one of the following holds:

• Y ′ is ε-adapted.
• Y ′ is boundary reduced and f(Y ′) > d(Y ′).

We also want an upper bound on how d(Y ′) and f (Y ′) increase during the OvB
algorithm.

Lemma 3.19. Assume13 ε ≤ 1
32 . Let Y be a compact tiled surface, Z be a boundary-

less tiled surface and denote Y = OvBε (Y ↪→ Z). Then

d(Y ) ≤ 3d(Y ), (3.6)

f(Y ) ≤ f(Y ) + 4d (Y ) + d(Y )2. (3.7)

Proof. If step (a) is only reached once, then the result of the algorithm, Y , is equal
to BR(Y ↪→ Z). In this case we have d

(
Y
) ≤ d (Y ) and f

(
Y
) ≤ f (Y ) + d(Y )2

6
by Proposition 3.10 part 4, so the statement of the lemma holds. So from now on
suppose step (a) is reached more than once.

Let Y1 = Y ′ at the penultimate time that step (a) is completed. Between the
penultimate time that step (a) is completed and the algorithm terminates, step (b)
takes place to form Y2 = Y ′, and then step (a) takes place one more time to form
Y3 = Y which is the output of the algorithm.

First we prove the bound on d (Y3). We have θ(Y1) ≤ 0, so

θ (Y1) − θ (Y ) ≤ 0 − (f (Y ) − d (Y )) ≤ d (Y ) .

13 For arbitrary g ≥ 2, we pick ε ≤ 1
16g

. The statement of the lemma holds as is.
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We claim that in every step of the OvB algorithm, the increase in θ is larger then the
increase in d. Indeed, this is obviously true in step (a), where θ does not decrease and
d does not increase. It is also true in step (b) by Lemma 3.16 and our assumption
that ε ≤ 1

32 . Therefore,

d (Y1) − d (Y ) ≤ θ (Y1) − θ (Y ) ≤ d (Y ) ,

and we conclude that d (Y1) ≤ 2d (Y ).
Let P = P (Y1). By Lemma 3.16,

d (Y2) ≤ d (Y1) + 2ε |P |
(3.4)

≤ d (Y1) + 2ε · 4d (Y1)
3 − ε

= d (Y1)
[
1 +

8ε

3 − ε

]
≤ 1.1 · d (Y1) ≤ 2.2 · d (Y ) ,

where the penultimate inequality is based on that ε ≤ 1
32 . Finally, d (Y3) ≤ d (Y2),

so (3.6) is proven.
For the number of octagons, note first that

f (Y1) = θ (Y1) + d (Y1) ≤ d (Y1) ≤ 2d (Y ) .

Let k denote the number of new octagons added in step (b) to form Y2 from Y1. As
noted in the proof of Lemma 3.16, k ≤ he (P ) + 1. As P = P (Y1) is ε-bad, we have

he (P ) ≤ 1
3

(e (P ) + ε |P |)
(3.4)

≤ 1
3
d (Y1)

(
1 +

4ε

3 − ε

)
< d (Y1) ≤ 2d (Y ) ,

the penultimate inequality is based again on that ε ≤ 1
32 . Thus f (Y2) − f (Y1) ≤

he (P ) + 1 ≤ 2d (Y ).
Finally, by Proposition 3.10 part 4, f (Y3) − f (Y2) ≤ d(Y2)

2

6 ≤ d (Y )2, and we
conclude

f (Y3) = f (Y1) + [f (Y2) − f (Y1)] + [f (Y3) − f (Y2)]
≤ 2d (Y ) + 2d (Y ) + d (Y )2 = 4d (Y ) + d (Y )2 ,

which proves (3.7) in this case as well. ��
3.6 Resolutions from the octagons-vs-boundary algorithm. Recall the
definition of the tiled surface Xφ from Section 1 and Example 3.4. Given a tiled
surface Y , we define

En(Y ) def= Eφ∈Xn
[#morphisms Y → Xφ].

This is the expected number of morphisms from Y to Xφ. Recall that we use the
uniform probability measure on Xn. We have the following result that relates this
concept to Theorem 1.11.
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Lemma 3.20. Given 1 �= γ ∈ Γ, let Cγ be as in Example 3.5. Then

En[fixγ ] = En(Cγ). (3.8)

Proof. This is not hard to check but also follows from [MP20, Lem. 2.7]. ��
We need to work not only with En(Y ) for various tiled surfaces, but also with the
expected number of times that Y embeds into Xφ. For a tiled surface Y , this is given
by

E
emb
n (Y ) def= Eφ∈Xn

[#embeddings Y ↪→ Xφ].

We recall the following definition from [MP20, Def. 2.8].

Definition 3.21. (Resolutions). A resolution R of a tiled surface Y is a collection
of morphisms of tiled surfaces

R = {f : Y → Wf} ,

such that every morphism h : Y → Z of Y into a tiled surface Z with no boundary

decomposes uniquely as Y
f→ Wf

h
↪→ Z, where f ∈ R and h is an embedding.

The point of this definition is the following lemma also recorded in [MP20,
Lem. 2.9].

Lemma 3.22. If Y is a compact tiled surface and R is a finite resolution of Y , then

En (Y ) =
∑

f∈R
E

emb
n (Wf ) . (3.9)

The type of resolution we wish to use in this paper is the following.

Definition 3.23. (Rε(Y )). For a compact tiled surface Y , let Rε(Y ) denote the

collection of all morphisms Y
f−→ Wf obtained as follows:

• F : Y → Z is a morphism of Y into a boundary-less tiled surface Z.
• UF is the image of F in Z. Hence there is a given embedding ιF : UF ↪→ Z.
• Wf is given by Wf = OvBε(Uf ↪→ Z) and f = ιF ◦ F : Y → Wf .

Theorem 3.24. Given a compact tiled surface Y amd ε ≤ 1
32 (or ε ≤ 1

16g for

arbitrary g ≥ 2), the collection Rε(Y ) defined in Definition 3.23 is a finite resolution
of Y .

Proof. To see that Rε(Y ) is finite, note that there are finitely many options for UF

(this is a quotient of the compact complex Y ). For any such UF we have f(UF ) ≤ f(Y )
and d(UF ) ≤ d(Y ), and hence by Lemma 3.19 there is a bound on f(Wf ) depending
only on Y . As we add a bounded number of octagons to obtain Wf , there is a bound
also on v (Wf ) and on e (Wf ). This means that Wf is one of only finitely many tiled
surfaces, and there are finitely many morphisms of Y to one of these.
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Now we explain why Rε(Y ) is a resolution – this is essentially the same as [MP20,
proof of Thm. 2.14]. Let F : Y → Z be a morphism with ∂Z = ∅. By the definition

of Rε(Y ), it is clear that F decomposes as Y
f→ Wf ↪→ Z for the f ∈ Rε(Y ) that

originates in F . To show uniqueness, assume that F decomposes in an additional
way

Y
f ′
→ Wf ′ ↪→ Z

where Wf ′ is the result of the OvB algorithm for some F ′ : Y → Z ′ with ∂Z ′ = ∅. We
claim that both decompositions are precisely the same decomposition of F (namely
Wf ′ = Wf and f ′ = f). First, UF ′ = F ′ (Y ) ↪→ Wf ′ ↪→ Z, so UF ′ = F ′ (Y ) =
F (Y ) = UF . The OvB algorithm with input F ′ (Y ) ↪→ Z ′ takes place entirely
inside Wf ′ , and does not depend on the structure of Z ′\Wf ′ : the choices are made
depending only on the structure of the boundary of Y ′ in step (b) of the OvB
algorithm, as well as in every step of the procedure described in Proposition 3.10(3)
to obtain BR (Y ′ ↪→ Z) in step (a). Moreover, the result of these steps depends
only on the octagons of Z immediately adjacent to the boundary of Y ′. But Wf ′ is
embedded in Z, and so it must be identical to Wf and f ′ identical to f . ��

It is the following corollary of the previous results, applied to a tiled surface Cγ as in
Example 3.5, that will be used in the rest of the paper. Recall that for γ ∈ Γ, �w (γ)
denotes the word-length, with respect to the generators {a, b, c, d}, of a shortest
representative of the conjugacy class of γ in Γ.

Corollary 3.25. Let 1 �= γ ∈ Γ and14 ε ≤ 1
32 . For any f : Cγ → Wf in Rε(Cγ),

either

1. Wf is boundary reduced, and χ(Wf ) < −f(Wf ) < −d(Wf ), or
2. Wf is ε-adapted.

Moreover, in either case,

d(Wf ) ≤ 6�w (γ) , (3.10)

f(Wf ) ≤ 8�w (γ) + 4 (�w (γ))2 . (3.11)

Proof. The inequalities (3.10) and (3.11) are from Lemma 3.19 and the fact that
d (Cγ) = 2�w (γ) and f (Cγ) = 0. It follows from the construction of Rε(Cγ) using the
OvB algorithm that if f ∈ Rε(Y ) with f : Y → Wf , and Wf is not ε-adapted, then
Wf is boundary reduced and d(Wf ) < f(Wf ). Combined with Lemma 3.7 this gives

χ(Wf ) ≤ −2f(Wf ) +
1
2
d(Wf ) < −2f(Wf ) +

1
2
f(Wf ) ≤ −f(Wf ). ��

14 For arbitrary g ≥ 2, take ε ≤ 1
16g

. The same result holds.
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4 Representation Theory of Symmetric Groups

4.1 Background. We write Sn for the symmetric group of permutations of the
set [n]. By convention S0 is the trivial group with one element. If m ≤ n, we always
let Sm ≤ Sn be the subgroup of permutations fixing [m + 1, n] element-wise. For
k ≤ n, we will let S′

k ≤ Sn be our notation for the subgroup of permutations fixing
[n − k] element-wise. We write C[Sn] for the group algebra of Sn with complex
coefficients.

Young diagrams. A Young diagram (YD) of size n is a collection of n boxes, ar-
ranged in left-aligned rows in the plane, such that the number of boxes in each row
is non-increasing from top to bottom. A Young diagram is uniquely specified by the
sequence λ1, λ2, . . . , λr where λi is the number of boxes in the ith row (and there
are r rows). We have λ1 ≥ λ2 ≥ · · · ≥ λr > 0; such a sequence of integers is called a
partition. We view YDs and partitions interchangeably in this paper. If

∑
i λi = n

we write λ � n. Two important examples of partitions are (n), with all boxes of
the corresponding YD in the first row, and (1)n def= (1, . . . , 1︸ ︷︷ ︸

n

), with all boxes of the

corresponding YD in the first column. If μ, λ are YDs, we write μ ⊂ λ if all boxes of
μ are contained in λ (when both are aligned to the same top-left borders). We say
μ ⊂k λ if μ ⊂ λ and there are k boxes of λ that are not in μ. We write ∅ for the
empty YD with no boxes. If λ is a YD, λ̌ is the conjugate YD obtained by reflecting
λ in the diagonal (switching rows and columns).

A skew Young diagram (SYD) is a pair of Young diagrams μ and λ with μ ⊂ λ.
This pair is denoted λ/μ and thought of as the collection of boxes of λ that are not
in μ. We identify a YD λ with the SYD λ/∅ so that YDs are special cases of SYDs.
The size of a SYD λ/μ is the number of boxes it contains; i.e. the number of boxes
of λ that are not in μ. The size is denoted by |λ/μ|, or if λ is a YD, |λ|.
Young tableaux. Let λ/μ be a SYD, with λ � n and μ � k. A standard Young
tableau of shape λ/μ is a filling of the boxes of λ/μ with the numbers [k + 1, n]
such that each number appears in exactly one box and the numbers in each row
(resp. column) are strictly increasing from left to right (resp. top to bottom). We
refer to standard Young tableaux just as tableaux in this paper. We write Tab(λ/μ)
for the collection of tableaux of shape λ/μ. Given a tableau T , we denote by T |≤m

(resp. T |>m) the tableau formed by the numbers-in-boxes of T with numbers in the
set [m] (resp. [m + 1, n]). The shape of T |≤m and of T |>m is a SYD in general. If T
is a tableau and the shape of T is a YD we let μm(T ) be the YD that is the shape
of T |≤m. If ν ⊂ μ ⊂ λ, T ∈ Tab(μ/ν) and R ∈ Tab(λ/μ), then we write T � R for
the tableau in Tab(λ/ν) obtained by adjoining R to T in the obvious way.

Irreducible representations. The equivalence classes of irreducible unitary represen-
tations of Sn are in one-to-one correspondence with Young diagrams of size n. Given
a YD λ � n, we write V λ for the corresponding irreducible representation of Sn; each
V λ is a finite dimensional Hermitian complex vector space with an action of Sn by
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unitary linear automorphisms. Hence V λ can also be thought of as a module for
C[Sn]. We write dλ

def= dimV λ. It is well-known, and also follows from the discussion
of the next paragraphs, that dλ = |Tab(λ)|. Note that dλ = dλ̌ since reflection in
the diagonal gives a bijection between Tab(λ) and Tab(λ̌).

We now give an account of the Vershik–Okounkov approach to the representation
theory of symmetric groups from [VO04]. According to the usual ordering of [n] there
is a filtration of subgroups

S0 ≤ S1 ≤ S2 ≤ · · · ≤ Sn.

If W is any unitary representation of Sn, m ∈ [n] and μ � m, we write Wμ for
the span of vectors in copies of V μ in the restriction of W to Sm; we call Wμ the
μ-isotypic subspace of W .

It follows from the branching law for restriction of representations between Sm

and Sm−1 that for λ � n and T ∈ Tab(λ) the intersection

(
V λ
)

μ1(T )
∩
(
V λ
)

μ2(T )
∩ · · · ∩

(
V λ
)

μn−1(T )

is one-dimensional. Vershik–Okounkov specify a unit vector vT in this intersection.
The collection

{ vT : T ∈ Tab(λ) }

is an orthonormal basis for V λ called a Gelfand-Tsetlin basis.

Modules from SYDs. If m, n ∈ N, λ � n, μ � m and μ ⊂ λ, then

V λ/μ def= HomSm
(V μ, V λ)

is a unitary representation of S′
n−m as S′

n−m is in the centralizer of Sm in Sn.
We write dλ/μ for the dimension of this representation. There is also an analogous
Gelfand-Tsetlin orthonormal basis of V λ/μ indexed by T ∈ Tab(λ/μ); the basis
element corresponding to a skew tableau T will be denoted wT . It follows that
dλ/μ = |Tab(λ/μ)|. Note that when μ = λ, Tab (λ/μ) = {∅} (∅ the empty tableau),
and the representation V λ/μ is one-dimensional with basis w∅.

One has the following consequence of Frobenius reciprocity (cf. e.g. [MP20,
Lem. 3.1]).

Lemma 4.1. Let n ∈ N, m ∈ [n] and μ � m. Then

∑

λ�n : μ⊂λ

dλ/μdλ =
n!
m!

dμ.



630 M. MAGEE ET AL. GAFA

4.2 Effective bounds for dimensions. Throughout the paper, we will write
bλ for the number of boxes outside the first row of a YD λ, and write b̌λ for the num-
ber of boxes outside the first column of λ. More generally, we write bλ/ν (resp. b̌λ/ν)
for the number of boxes outside the first row (resp. column) of the SYD λ/ν, so
bλ/ν = bλ − bν and b̌λ/ν = b̌λ − b̌ν . We need the following bounds on dimensions of
representations.

Lemma 4.2. [MP20, Lem. 4.3]. If n ∈ N, m ∈ [n], λ � n, ν � m, ν ⊂ λ and m ≥ 2bλ,
then

(n − bλ)bλ

b bλ

λ mbν

≤ dλ

dν
≤ b bν

ν nbλ

(m − bν)bν
. (4.1)

The condition m ≥ 2bλ ensures that both ν and λ have most boxes in their first
row. This is an important and recurring theme of the paper (see e.g. Proposition 4.6).

Lemma 4.3. Let λ/ν be a skew Young diagram of size n. Then

dλ/ν ≤ (n)bλ/ν
and dλ/ν ≤ (n)b̌λ/ν

.

Proof. There are at most
(

n
bλ/ν

)
options for the set of bλ/ν elements outside the first

row. Given these, there are at most bλ/ν ! choices for how to place them outside the
first row. The proof of the second inequality is analogous. ��

4.3 Effective bounds for the zeta function of the symmetric group. The
Witten zeta function of the symmetric group Sn is defined for a real parameter s as

ζSn(s) def=
∑

λ�n

1
d s

λ

. (4.2)

This function, and various closely related functions, play a major role in this paper.
One main reason for its appearance is due to a formula going back to Hurwitz [Hur02]
that states

|Xg,n| = |Hom(Γg, Sn)| = |Sn|2g−1ζSn(2g − 2). (4.3)

This is also sometimes called Mednykh’s formula [Med78]. We first give the following
result due to Liebeck and Shalev [LS04, Thm. 1.1] and independently, Gamburd
[Gam06, Prop. 4.2]. We refer the reader to Section 1.4 for the definition of notations
(e.g. O,�) that we use in this Section 4.

Theorem 4.4. [LS04, Gam06]. For any s > 0, as n → ∞

ζSn(s) = 2 + O
(
n−s
)
.

This has the following corollary when combined with (4.3).
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Corollary 4.5. For any g ∈ N with g ≥ 2, we have

|Xg,n|
(n!)2g−1

= 2 + O(n−2).

As well as the previous results, we also need to know how well ζSn(2g − 2) is
approximated by restricting the summation in (4.2) to λ with a bounded number of
boxes either outside the first row or outside the first column. We let Λ(n, b) denote
the collection of λ � n such that λ1 ≤ n − b and λ̌1 ≤ n − b. In other words, Λ(n, b)
is the collection of YDs λ � n with both bλ ≥ b and b̌λ ≥ b. A version of the next
proposition, when b is fixed and n → ∞, is due independently to Liebeck and Shalev
[LS04, Prop. 2.5] and Gamburd [Gam06, Prop. 4.2]. Here, we need a version that
holds uniformly over b that is not too large compared to n.

Proposition 4.6. Fix s > 0. There exists a constant κ = κ(s) > 1 such that when
b2 ≤ n

3 ,

∑

λ∈Λ(n,b)

1
d s

λ

�s

(
κb2s

(n − b2)s

)b

. (4.4)

Proof. Here we follow Liebeck and Shalev [LS04, proof of Prop. 2.5] and make the
proof uniform over b. Let Λ0(n, b) denote the collection of λ � n with λ̌1 ≤ λ1 ≤ n−b.
Since dλ = dλ̌,

∑

λ∈Λ(n,b)

1
d s

λ

≤ 2
∑

λ∈Λ0(n,b)

1
d s

λ

,

so it suffices to prove a bound for
∑

λ∈Λ0(n,b)
1

d s
λ

. Let Λ1(n, b) denote the elements
λ of Λ0(n, b) with λ1 ≥ 2n

3 . We write

∑

λ∈Λ0(n,b)

1
d s

λ

= Σ1 + Σ2

where

Σ1
def=

∑

λ∈Λ1(n,b)

1
d s

λ

, Σ2
def=

∑

λ∈Λ0(n,b)−Λ1(n,b)

1
d s

λ

.

Bound for Σ1. By [LS04, Lem. 2.1] if λ ∈ Λ1(n, b) then since λ1 ≥ n
2 , dλ ≥ ( λ1

n−λ1

)
.

Indeed, for completeness, following [LS04, Proof of Lem. 2.1] we can find many
tableaux of shape λ as follows. Put the numbers 1, . . . , n−λ1 in the left most entries
of the first row of λ. Then for any of the

(
λ1

n−λ1

)
choices of size n − λ1 subsets of

[n − λ1 + 1, n], there is obviously a tableau of shape λ with those numbers outside
the first row.
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Let p(m) denote the number of μ � m. The number of λ ∈ Λ1(n, b) with a valid
fixed value of λ1 is p(n − λ1) since λ1 ≥ n

2 and hence any YD with n − λ1 boxes can
be added below the fixed first row of λ1 boxes to form λ. Therefore

Σ1 ≤
n−b∑

λ1=� 2n

3
�

p (n − λ1)(
λ1

n−λ1

)s =
� n

3
�∑

�=b

p(�)
(
n−�

�

)s .

We now split the sum into two ranges to estimate Σ1 ≤ Σ′
1 + Σ′′

1 where

Σ′
1 =

b2∑

�=b

p(�)
(
n−�

�

)s , Σ′′
1 =

� n

3
�∑

�=b2+1

p(�)
(
n−�

�

)s .

First we deal with Σ′
1. We have p(�) ≤ c

√
�

1 for some c1 > 1 [Apo76, Thm. 14.5]. As
� ≤ n − �,

(
n − �

�

)
≥ (n − �)�

��
.

This gives

Σ′
1 ≤

b2∑

�=b

c
√

�
1

(
�

n − �

)s�

≤ c b
1

b2∑

�=b

(
b2

n − b2

)s�

�s c b
1

(
b2

n − b2

)sb

, (4.5)

where the last inequality used that b2

(n−b2) ≤ 1
2 as we assume b2 ≤ n

3 .
To deal with Σ′′

1 we make the following claim.

Claim. There is n00 > 0 such that when n ≥ n00 and � ≤ n
3

(
n − �

�

)
≥
(

2n

3

)√
�

. (4.6)

Proof of claim. Observe that when � ≤ n
3

(
n − �

�

)
≥ (n − �)�

��
= (n − �)

√
� (n − �)�−√

� �−�

≥
(

2n

3

)√
�

(2�)�−√
� �−� =

(
2n

3

)√
�
(

2
√

�−1

�

)√
�

.

We have 2
√

�−1 ≥ � when � ≥ 49 which proves the claim in this case. On the other
hand, it is easy to see that there is a n00 > 0 such that (4.6) holds when n ≥ n00

and 1 ≤ � < 49. This proves the claim. ��
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The claim gives

Σ′′
1 ≤

� n

3
�∑

�=b2+1

( c2

ns

)√
�

for some c2 = c2(s) > 1 when n ≥ n00. Let n0 = n0(s) ≥ n00 be such that when
n ≥ n0, c2

ns < e−1. Let q = q (n) def= c2
ns . Then when n ≥ n0, log(q) ≤ −1 and

Σ′′
1 ≤

∫ ∞

b2
q
√

xdx =
2qb

log q

(
1

log q
− b

)
.

We obtain

Σ′′
1 ≤ 2(b + 1)qb ≤ 2(b + 1)c b

2

nsb
. (4.7)

Together with (4.5) this yields:

Σ1 �s c b
1

(
b2

n − b2

)sb

+
2(b + 1)c b

2

nsb
�s

(
κb2s

(n − b2)s

)b

(4.8)

with κ = κ (s) = max (c1, c2).
Bound for Σ2. If λ ∈ Λ0(n, b) − Λ1(n, b) then λ̌1 ≤ λ1 < 2n

3 and [LS04, Prop. 2.4]
gives the existence of an absolute c0 > 1 such that

dλ ≥ c n
0 .

Thus for large enough n and b2 ≤ n
3

Σ2 ≤
∑

λ∈Λ0(n,b)−Λ1(n,b)

c−ns
0 ≤ p(n)c−ns

0 ≤ c
√

n
1 c−ns

0 �s n−bs. (4.9)

Putting (4.8) and (4.9) together proves the proposition. ��

5 Estimates for the Probabilities of Tiled Surfaces

Before reading this Section 5, we recommend the reader to have read Section 1.3 for
context and motivation.
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5.1 Prior results. The aim of this Section 5.1 is to introduce an already known
formula (Theorem 5.1) for the quantities E

emb
n (Y ) that are essential to this pa-

per, and to give some known first estimates for the quantities appearing therein
(Lemma 5.2). To better understand their source and logic, the reader is advised to
look at [MP20, Section 5].

We continue to assume g = 2. Throughout this entire Section 5 we will assume
that Y is a fixed compact tiled surface. We let v = v(Y ), e = e(Y ), f = f(Y ) denote
the number of vertices, edges, and octagons of Y , respectively. Throughout this
section, f will stand for one of the letters a, b, c, d. For each letter f ∈ {a, b, c, d}, let
ef denote the number of f -labeled edges of Y .

In [MP20, Section 5.3] we constructed permutations

σ+
f , σ−

f , τ+
f , τ−

f ∈ S′
v ⊂ Sn

for each f ∈ {a, b, c, d} satisfying certain five properties named P1, P2, P3, P4,
and P5 that are essential to the development of the theory, but not illuminating to
state precisely here. We henceforth view these permutations as fixed, given Y .

Recall from Section 4.1 that for YDs μ ⊂ λ we say μ ⊂k λ if λ has k more
boxes than μ. Also recall from Section 4.1 that � denotes concatenation of Young
tableaux, and for a SYD λ/ν, if T is a (standard) tableau of shape λ/ν, wT denotes
a Gelfand-Tsetlin basis vector in V λ/ν associated to T . In the same situation, we
write 〈•, •〉 for the inner product in the unitary representation V λ/ν . In the prequel
paper [MP20, Thm. 5.10] the following theorem was proved.

Theorem 5.1. For n ≥ v we have

E
emb
n (Y ) =

(n!)3

|Xn| · (n)v (n)f∏
f (n)ef

· Ξn(Y ) (5.1)

where

Ξn(Y ) def=
∑

λ,ν:
ν⊂v−fλ�n−f

dλdν

∑

μa,μb,μc,μd

∀f, ν⊂μf ⊂ef −fλ

1
dμa

dμb
dμc

dμd

Υn

({
σ±

f , τ±
f

}
, ν, {μf} , λ

)
,

(5.2)

Υn

({
σ±

f , τ±
f

}
, ν, {μf} , λ

)
def=

∑

r+
f , r−

f ∈ Tab (μf/ν)

sf , tf ∈ Tab (λ/μf )

M
({

σ±
f , τ±

f , r±
f , sf , tf

})

(5.3)

and M({σ±
f , τ±

f , r±
f , sf , tf}) is the following product of matrix coefficients:

M
({

σ±
f , τ±

f , r±
f , sf , tf

})
def
=

〈
σ−

b

(
σ+

a

)−1
wr+

a �sa
, wr−

b �sb

〉〈
τ+a

(
σ+

b

)−1
wr+

b �sb
, wr+

a �ta

〉

·
〈

τ+b

(
τ−
a

)−1
wr−

a �ta
, wr+

b �tb

〉〈
σ−

c

(
τ−
b

)−1
wr−

b �tb
, wr−

c �sc

〉
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·
〈

σ−
d

(
σ+

c

)−1
wr+

c �sc
, wr−

d �sd

〉〈
τ+c

(
σ+

d

)−1
wr+

d �sd
, wr+

c �tc

〉

·
〈

τ+d

(
τ−
c

)−1
wr−

c �tc
, wr+

d �td

〉〈
σ−

a

(
τ−
d

)−1
wr−

d �td
, wr−

a �sa

〉
.

(5.4)

Note that (n!)3

|Xn|
n→∞→ 2 by (4.3) and Theorem 4.4, and that

(n)v(n)f∏
f (n)ef

= nχ(Y )

(
1 + O

(
n−1
))

, so the more mysterious term in (5.1) is Ξn (Y ). In light of Theo-
rem 5.1, we will repeatedly discuss ν, {μf}, λ satisfying

ν ⊂v−ef
μf ⊂ef −f λ � n − f ∀f ∈ {a, b, c, d} (5.5)

and {r±
f , sf , tf} satisfying

r+
f , r−

f ∈ Tab(μf/ν), sf , tf ∈ Tab(λ/μf ) ∀f ∈ {a, b, c, d}. (5.6)

To give good estimates for Ξn(Y ), we need an effective bound for the quantities
M({σ±

f , τ±
f , r±

f , sf , tf}) that was obtained in [MP20]. Before giving this bound, we
recall some notation. For T ∈ Tab(λ/ν), we write top(T ) for the set of elements in
the top row of T (the row of length λ1 − ν1 which may be empty). For any two sets
A, B in [n], we define d(A, B) = |A\B|. Given {r±

f , sf , tf} as in (5.6), we define

Dtop

({
σ±

f , τ±
f , r±

f , sf , tf

})

def
= d

(
σ−

b

(
σ+

a

)−1
top(r+a � sa), top(r−

b � sb)
)

+ d
(
τ+

a

(
σ+

b

)−1
top(r+b � sb), top(r+a � ta)

)

+ d
(
τ+

b

(
τ−

a

)−1
top(r−

a � ta), top(r+b � tb)
)

+ d
(
σ−

c

(
τ−

b

)−1
top(r−

b � tb), top(r−
c � sc)

)

+ d
(
σ−

d

(
σ+

c

)−1
top(r+c � sc), top(r−

d � sd)
)

+ d
(
τ+

c

(
σ+

d

)−1
top(r+d � sd), top(r+c � tc)

)

+ d
(
τ+

d

(
τ−

c

)−1
top(r−

c � tc), top(r+d � td)
)

+ d
(
σ−

a

(
τ−

d

)−1
top(r−

d � td), top(r−
a � sa)

)
.

(5.7)

Lemma 5.2. [MP20, Lem. 5.14]. Let ν, {μf}, λ be as in (5.5) and {r±
f , sf , tf} be as

in (5.6). If λ1 + ν1 > n − f + (v − f)2, then

∣
∣∣M
({

σ±
f , τ±

f , r±
f , sf , tf

})∣∣∣ ≤
(

(v − f)2

λ1 + ν1 − (n − f)

)Dtop({σ±
f ,τ±

f ,r±
f ,sf ,tf})

.

The condition λ1 + ν1 > n − f + (v − f)2 corresponds to the bound given by
Lemma 5.2 being non-trivial, and we will be applying Lemma 5.2 when both λ and
ν have O(n1/4) boxes outside their first rows and v, f � n1/4. In particular, λ1 + ν1

is of order 2n, while f and (v − f)2 are of much smaller order. Hence the condition
will be met for sufficiently large n (Fig. 5).

Recall from Section 4.2 that bν is the number of boxes of a Young diagram ν
outside the first row, and b̌ν is the number of boxes outside the first column. We
have the following trivial upper bound for Dtop({σ±

f , τ±
f , r±

f , sf , tf}):

Dtop

({
σ±

f , τ±
f , r±

f , sf , tf

})
≤ 8 (bλ − bν) . (5.8)
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ν = μa = λ =

|ν| = n − v = 4 |μa| = n − ea = 7 |λ| = n − f = 9
bν = 1 bμa = 3 bλ = 3

Figure 5: An example of possible ν, μa, λ appearing in Theorem 5.1 (supposing e.g. n =
10, v = 6, ea = 3, f = 1).

We recall the following estimate obtained in [MP20, Prop. 5.22].

Proposition 5.3. Let ε ≥ 0. Suppose that ν, {μf}, λ are as in (5.5) and {r±
f , sf , tf}

are as in (5.6). If Y is ε-adapted then

Dtop

({
σ±

f , τ±
f , r±

f , sf , tf

})
≥ bλ + 3bν − bμa

− bμb
− bμc

− bμd
+ εbλ/ν . (5.9)

5.2 Partitioning Ξn and preliminary estimates. In this Section 5.2 we
show how the condition that Y is ε-adapted leads to bounds on Ξn. We continue
to view Y as fixed and hence suppress dependence of quantities on Y . We write
D = D (Y ) def= v − f. Note that D ≥ 0 by (3.2), with equality if and only if Y has
no boundary. By Lemma 3.6, D ≤ d (Y ). So D is another measure of the size of the
boundary of Y , and it plays an important role in some of our bounds below. We will
use the notation ΞP (ν)

n where P is a proposition concerning ν to mean

ΞP (ν)
n

def=
∑

ν⊂v−fλ� n−f
P (ν) holds true

dλdν

∑

ν⊂μf ⊂ef −fλ

1
dμa

dμb
dμc

dμd

Υn

({
σ±

f , τ±
f

}
, ν, {μf} , λ

)
.

We will continue to use this notation, for various propositions P , throughout the
rest of the paper. We want to give bounds for various ΞP (ν)

n under the condition that
Y is either boundary reduced (namely, 0-adapted) or, moreover, ε-adapted for some
ε > 0. We will always assume v ≤ n1/4 and so also D = v − f ≤ n1/4. Note that
bν ≤ D and b̌ν ≤ D cannot hold simultaneously as v,D ≤ n1/4, and as all but one
box of ν � n − v is either outside the first row or first column, one has the simple
inequality bν + b̌ν + 1 ≥ n − v.

Then for n � 1 we have

Ξn = Ξν=(n−v)
n + Ξν=(1)n−v

n + Ξ0<bν≤D;b̌ν>0
n + Ξ0<b̌ν≤D;bν>0

n + Ξbν ,b̌ν>D
n .

Moreover by [MP20, Lem. 5.9] we have

Ξν=(n−v)
n = Ξν=(1)n−v

n , Ξ0<bν≤D;b̌ν>0
n = Ξ0<b̌ν≤D;bν>0

n

hence

Ξn = 2Ξν=(n−v)
n + 2Ξ0<bν≤D;b̌ν>0

n + Ξbν ,b̌ν>D
n . (5.10)

This is according to three regimes for bν and b̌ν :



GAFA A RANDOM COVER OF A COMPACT HYPERBOLIC SURFACE 637

• The zero regime: when bν or b̌ν equal 0. The contribution from here is 2Ξν=(n−ν)
n .

• The intermediate regime: when bν , b̌ν > 0 but one of them is at most D. The
contribution from this regime is 2Ξ0<bν≤D;b̌ν>0

n .
• The large regime: when both bν , b̌ν > D. The contribution from this regime is

Ξbν ,b̌ν>D
n .

The strategy for bounding these different contributions is to further partition the
tuples (ν, {μf} , λ) according to the data bλ, {bμf

}, bν , b̌λ, {b̌μf
}, b̌ν .

Definition 5.4. For B =
(
Bλ, {Bμf

}, Bν , B̌λ, {B̌μf
}, B̌ν

)
we write

(ν, {μf} , λ) � B

if (5.5) holds, and ν, {μf} and λ have the prescribed number of blocks outside the
first row and outside the first column, namely,

bλ =Bλ, b̌λ =B̌λ, bν = Bν , b̌ν = B̌ν and ∀f ∈ {a, b, c, d} bμf
= Bμf

, b̌μf
= B̌μf

.

We denote by Bn (Y ) the collection of tuples B which admit at least one tuple of
YDs (ν, {μf} , λ). Finally, we let

ΞB
n = ΞB

n (Y ) def=
∑

(ν,{μf },λ)�B

dλdν

dμa
dμb

dμc
dμd

Υn

({
σ±

f , τ±
f

}
, ν, {μf} , λ

)
. (5.11)

Note that Ξn (Y ) =
∑

B∈Bn(Y ) ΞB
n . Also, note that B ∈ Bn (Y ) imposes restric-

tions on the possible values of Bλ, {Bμf
}, Bν , B̌λ, {B̌μf

}, B̌ν . For example, for every
f ∈ {a, b, c, d}, 0 ≤ Bμf

− Bν ≤ v − ef and 0 ≤ Bλ − Bμf
≤ ef − f, and likewise for

the B̌’s. In addition, Bν + B̌ν + 1 ≥ n − ν, and so on.
We first give a general estimate for the quotient of dimensions in the summands

in (5.11).

Lemma 5.5. Suppose that v ≤ n1/4 and that (ν, {μf}, λ) satisfy (5.5). If bν ≤ D

then

dλdν

dμa
dμb

dμc
dμd

� 1
d 2

ν

b5bλ

λ n(bλ+3bν−∑f bμf ). (5.12)

Proof. By Lemma 4.2,

dν

dμf

≤ b
bμf

μf (n − v)bν

(n − ef − bμf
)bμf

≤ b bλ

λ nbν

(
n − 2n1/4

)bμf

,

where the second inequality is based on that ef +bμf
≤ ef +(bν + v − ef ) = bν +v ≤

2n1/4. The hypotheses of Lemma 4.2 are met here since

2bμf
− |ν| ≤ 2(bν + v − ef ) − (n − v) ≤ 5v − n ≤ 5n

1
4 − n ≤ 0
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for n � 1. Similarly, since 2bλ − |ν| ≤ 2(bν +D) − (n − v) ≤ 5n
1
4 − n ≤ 0 for n � 1,

Lemma 4.2 gives dλ

dν
≤ bbν

ν (n−f)bλ

(n−v−bν)bν
≤ b

bλ
λ nbλ

(n−2n1/4)bν . Altogether,

dλd 3
ν

dμa
dμb

dμc
dμd

≤ b 5bλ

λ n(bλ+4bν)

(
n − 2n1/4

)bν+
∑

f bμf

= b 5bλ

λ n(bλ+3bν−∑f bμf )
(

1
1 − 2n−3/4

)bν+
∑

f bμf

≤ b 5bλ

λ n(bλ+3bν−∑f bμf ) ·
(

1
1 − 2n−3/4

)9n1/4

.

As
(

1
1−2n−3/4

)9n1/4
n→∞→ 1, the right hand side of the last inequality is at most

2b 5bλ

λ n(bλ+3bν−∑f bμf ) for large enough n. ��

We next give bounds for the individual ΞB
n .

Lemma 5.6. There is κ > 1 such that if Y is ε-adapted for ε ≥ 0, v ≤ n1/4 and
Bν ≤ D, then

∣
∣
∣ΞB

n

∣
∣
∣� B 10Bλ

λ

(
D24n−ε

)Bλ−Bν

(
κD4

(n − v − D2)2

)Bν

.

Proof. By assumption, Bν ≤ D ≤ v ≤ n
1
4 . So for every (ν, {μf}, λ) � B,

λ1 + ν1 − (n − f) = (n − f − Bλ) + (n − v − Bν) − (n − f)
≥ n − v − Bν − (Bν + D) ≥ n − 4v,

and Lemma 5.2 gives that whenever
{

r±
f , sf , tf

}
satisfy (5.6),

∣
∣
∣M
({

σ±
f , τ±

f , r±
f , sf , tf

})∣∣
∣ ≤
(

D2

n − 4v

)Dtop({σ±
f ,τ±

f ,r±
f ,sf ,tf})

. (5.13)

Proposition 5.3 gives

Bλ + 3Bν −
∑

f

Bμf
≤ Dtop

({
σ±

f , τ±
f , r±

f , sf , tf

})
− ε (Bλ − Bν) ,

so by Lemma 5.5

dλd3
ν

dμa
dμb

dμc
dμd

∣∣
∣M
({

σ±
f , τ±

f , r±
f , sf , tf

})∣∣
∣

� B 5Bλ

λ n−ε(Bλ−Bν)

(
nD2

n − 4v

)Dtop({σ±
f ,τ±

f ,r±
f ,sf ,tf})

.
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Now using the trivial upper bound Dtop

({
σ±

f , τ±
f , r±

f , sf , tf

})
≤ 8(Bλ−Bν) in (5.8)

and Bλ − Bν ≤ v − f ≤ v ≤ n
1
4 , we obtain that for large enough n,

(
nD2

n − 4v

)Dtop({σ±
f ,τ±

f ,r±
f ,sf ,tf})

≤ D16(Bλ−Bν)

(
1

1 − 4n−3/4

)8n1/4

≤ 2D16(Bλ−Bν).

Therefore,

dλd3
ν

dμa
dμb

dμc
dμd

∣∣
∣M
({

σ±
f , τ±

f , r±
f , sf , tf

})∣∣
∣� B 5Bλ

λ

(
D16n−ε

)Bλ−Bν
.

From this we obtain
∣
∣∣ΞB

n

∣
∣∣� B 5Bλ

λ

(
D16n−ε

)Bλ−Bν
∑

(ν,{μf },λ)�B

1
d2

ν

∑

r+
f , r−

f ∈ Tab (μf/ν)

sf , tf ∈ Tab (λ/μf )

1

≤ B 5Bλ

λ

(
D24n−ε

)Bλ−Bν
∑

(ν,{μf },λ)�B

1
d2

ν

since there are at most (D)(Bλ−Bν) ≤ D(Bλ−Bν) choices of r+
f � sf or of r−

f � tf for
all f , by Lemma 4.3. For fixed ν above, there are at most B5Bλ

λ choices of {μf}
and λ such that (ν, {μf}, λ) � B. For example, the boxes outside the first row of λ

uniquely determine λ and form a YD of size Bλ; there are at most Bλ! ≤ BBλ

λ of
these. Hence

∣
∣∣ΞB

n

∣
∣∣� B 10Bλ

λ

(
D24n−ε

)Bλ−Bν
∑

ν�n−v : bν=Bν

1
d2

ν

.

Note that above, we have ν1 = n − v − Bν ≥ n − 2n
1
4 , so b̌ν ≥ n − 2n

1
4 − 1 ≥

n
1
4 ≥ Bν for n � 1, and in this case ν ∈ Λ(n − v, Bν). Moreover, for n � 1,

B2
ν ≤ n

1
2 ≤ n−n

1
4

3 ≤ n−v
3 and so we can finally apply Proposition 4.6 to obtain for

the same κ = κ (2) > 1 from Proposition 4.6 that

∣
∣∣ΞB

n

∣
∣∣� B10Bλ

λ

(
D24n−ε

)Bλ−Bν

(
κB 4

ν

(n − v − B 2
ν )2

)Bν

≤ B 10Bλ

λ

(
D24n−ε

)Bλ−Bν

(
κD4

(n − v − D2)2

)Bν

.

��
Since Lemma 5.6 is only useful for Bν or B̌ν small compared to n we have to
supplement it with the following weaker bound.
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Lemma 5.7. If Y is any tiled surface and B ∈ Bn (Y ) then

∣
∣∣ΞB

n

∣
∣∣ ≤ (D!)8

∑

(ν,{μf },λ)�B

dλ

d3
ν

.

Proof. Since M({σ±
f , τ±

f , r±
f sf , tf}) is a product of matrix coefficients of unit vectors

in unitary representations, we obtain |M({σ±
f , τ±

f , r±
f sf , tf})| ≤ 1. Therefore, with

assumptions as in the lemma, and arguing similarly as in the proof of Lemma 5.6,
we obtain

∣
∣∣ΞB

n

∣
∣∣ ≤

∑

(ν,{μf },λ)�B

dλdν

dμa
dμb

dμc
dμd

∑

r+
f , r−

f ∈ Tab (μf/ν)

sf , tf ∈ Tab (λ/μf )

1

(∗)

≤ (D!)8
∑

(ν,{μf },λ)�B

dλdν

dμa
dμb

dμc
dμd

≤ (D!)8
∑

(ν,{μf },λ)�B

dλ

d3
ν

,

where in (∗) we used the fact there are at most |λ/ν|! = (v − f)! choices of r+
f � sf

and of r−
f � tf . ��

5.3 The zero regime of bν . We only need analytic estimates for Ξν=(n−v)
n

when Y is boundary reduced (so 0-adapted); when Y is ε-adapted for ε > 0 we will
take a different, more algebraic approach to Ξν=(n−v)

n in Section 5.7.

Lemma 5.8. If Y is boundary reduced and v ≤ n1/4 then
∣∣
∣Ξν=(n−v)

n

∣∣
∣� (D + 1)9D34D.

Proof. If ν = (n−v) then Bν = 0. Inserting the bounds from Lemma 5.6 with ε = 0
(since Y is boundary reduced, see Lemma 3.13) and Bν = 0 gives

∣
∣∣Ξν=(n−v)

n

∣
∣∣�

∑

B∈Bn(Y ) : Bν=0

B 10Bλ

λ D24Bλ .

Because B ∈ Bn (Y ), there exist some (ν, {μf} , λ) � B and satisfying (5.5). We
then have since ν ⊂v−f λ, and bν = 0, Bλ = bλ ≤ bν + v − f = v − f = D. In
Bn (Y ), the set of B

′
s with Bν = 0 and a fixed value of Bλ is of size at most

(D+1)9. Indeed, there are at most Bλ +1 ≤ D+1 options for Bμf
for each f . Since

n− v− 1 = B̌ν ≤ B̌μf
≤ B̌λ ≤ n− f− 1, there are at most v− f+1 = D+1 possible

values of each of B̌μf
and B̌λ. In total then there are at most (D+1)9 choices. Hence
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∣
∣∣Ξν=(n−v)

n

∣
∣∣� (D + 1)9

D∑

Bλ=0

(
B 10

λ D24
)Bλ ≤ (D + 1)9

D∑

Bλ=0

(D34)Bλ � (D + 1)9D34D.

��
5.4 The intermediate regime of bν .

Lemma 5.9. Assume that v ≤ n1/4.

1. If Y is boundary reduced with D ≤ n1/10 then

∣
∣∣Ξ0<bν≤D;b̌ν>0

n

∣
∣∣�

(
D34210

)D+1

(n − v − D2)2
. (5.14)

2. For any ε ∈ (0, 1), there is η = η(ε) ∈ (0, 1
100) such that if Y is ε-adapted, with

D ≤ nη then
∣
∣∣Ξ0<bν≤D;b̌ν>0

n

∣
∣∣�ε

1
n

. (5.15)

Proof. When D = 0, the inequality 0 < bν ≤ D cannot hold, and so Ξ0<bν≤D;b̌ν>0
n = 0

by definition, and both statements hold. So assume D ≥ 1. We can also assume that
D ≤ n1/10.

For any ε ≥ 0, the bounds from Lemma 5.6 give

∣
∣∣Ξ0<bν≤D;b̌ν>0

n

∣
∣∣�

∑

B∈Bn(Y ) :
0<Bν≤D;B̌ν>0

B 10Bλ

λ

(
D24n−ε

)Bλ−Bν

(
κD4

(n − v − D2)2

)Bν

.

Arguing similarly as in the proof of Lemma 5.8, the number of B’s in the sum above
with a fixed value of Bν and Bλ is � D10. Also note that Bλ ≤ Bν + D ≤ 2D. We
obtain
∣∣
∣Ξ0<bν≤D;b̌ν>0

n

∣∣
∣� D10

∑

0<Bν≤D
Bν≤Bλ≤Bν +D

B 10Bλ

λ

(
D24n−ε

)Bλ−Bν

(
κD4

(n − v − D2)2

)Bν

≤ D10
D∑

Bν=1

(
κ(2D)10D4

(n − v − D2)2

)Bν Bν+D∑

Bλ=Bν

(
D24B 10

λ n−ε
)Bλ−Bν

.

As Bλ ≤ 2D, we bound the second summation by
∑D

t=0

(
D34210n−ε

)t. By our as-
sumption that D ≤ n1/10 and v ≤ n1/4, we have κ(2D)10D4

(n−v−D2)2
≤ 1

2 for large enough n.
Hence
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∣∣
∣Ξ0<bν≤D;b̌ν>0

n

∣∣
∣� D10 · κ(2D)10D4

(n − v − D2)2

D∑

t=0

(
D34210n−ε

)t

� D24

(n − v − D2)2

D∑

t=0

(
D34210n−ε

)t
. (5.16)

If Y is boundary reduced, it is 0-adapted (Lemma 3.13), so (5.16) yields

∣
∣∣Ξ0<bν≤D;b̌ν>0

n

∣
∣∣� D24

(n − v − D2)2
· (D34210

)D ≤
(
D34210

)D+1

(n − v − D2)2

proving the first statement.
For the second statement, given ε > 0, let η = ε

100 and assume 1 ≤ D ≤ nη. The
choice of η implies that for n �ε 1, D34210n−ε ≤ 1

2 , so (5.16) gives
∣∣
∣Ξ0<bν≤D;b̌ν>0

n

∣∣
∣�ε

D24

(n − v − D2)2
�ε

1
n

.

��
5.5 The large regime of bν , b̌ν . In the large regime of bν and b̌ν we use the
same estimate for any type of tiled surface.

Lemma 5.10. If v ≤ n1/4 and D ≤ n1/24 then
∣∣
∣Ξbν ,b̌ν>D

n

∣∣
∣� (D + 1)4

(n − v − D2)2
.

Proof. Using the bound from Lemma 5.7 gives
∣
∣
∣Ξbν ,b̌ν>D

n

∣
∣
∣ ≤

∑

B∈Bn(Y ) : Bν ,B̌ν>D

(D!)8
∑

(ν,{μf },λ)�B

dλ

d3ν

≤ (D!)8
∑

ν�n−v,bν>D,b̌ν>D

d−3
ν

∑

ν⊂v−fλ

dλ

∑

ν⊂μf ⊂ef −fλ

1

≤ (D!)12
∑

ν�n−v,bν>D,b̌ν>D

d−3
ν

∑

ν⊂v−fλ

dλ ≤ D12D (n − f)!

(n − v)!

∑

ν�n−v,bν>D,b̌ν>D

d−2
ν

� D12DnD

⎛

⎜
⎝

κ (D + 1)4

(
n − v − (D + 1)2

)2

⎞

⎟
⎠

D+1

=

⎛

⎜
⎝

κnD12 (D + 1)4

(
n − v − (D + 1)2

)2

⎞

⎟
⎠

D

κ (D + 1)4

(
n − v − (D + 1)2

)2 .

The second-last inequality used Lemma 4.1 and the final inequality used Proposi-
tion 4.6. Since we assume D ≤ n1/24 and v ≤ n1/4 we obtain the stated
result. ��
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5.6 Assembly of analytic estimates for Ξn. Now we combine the estimates
obtained in Sections 5.3, 5.4, 5.5. First we give the culmination of our previous
estimates when Y is boundary reduced.

Proposition 5.11. There is A0 > 0 such that if Y is boundary reduced, v ≤ n1/4,
and D ≤ n1/24, then

|Ξn| � (A0D)A0D.

Proof. With assumptions as in the proposition, splitting Ξn as in (5.10) and using
Lemmas 5.8, 5.9(1), and 5.10 gives

|Ξn| � (D + 1)9D34D +

(
D34210

)D+1

(n − v − D2)2
+

(D + 1)4

(n − v − D2)2
.

If D = 0 this gives |Ξn| � 1 which proves the result. If 1 ≤ D ≤ n1/24 we obtain
|Ξn| � (A0D)A0D as required. ��
Next we show that if Y is ε-adapted, then D can be as large as a fractional power
of n while Ξn is still very well approximated by 2Ξν=(n−v)

n .

Proposition 5.12. For any ε ∈ (0, 1), there is η = η(ε) ∈ (0, 1
100) such that if Y is

ε-adapted with D ≤ nη and v ≤ n1/4, then
∣
∣∣Ξn − 2Ξν=(n−v)

n

∣
∣∣�ε

1
n

.

Proof. Lemmas 5.9(2) and 5.10 yield that given ε ∈ (0, 1), there is η = η(ε) ∈
(0, 1

100), such that if D ≤ nη, v ≤ n1/4 and Y is ε-adapted, then
∣∣
∣Ξn − 2Ξν=(n−v)

n

∣∣
∣ =
∣∣
∣2Ξ0<bν≤D;b̌ν>0

n + Ξbν ,b̌ν>D
n

∣∣
∣

�ε
1
n

+
(D + 1)4

(n − v − D2)2
� 1

n
.

��
Remark. For general g, the condition η(ε) < 1

100 of Proposition 5.12 should be
replaced by η(ε) < 1

Cg for some universal C ≥ 100.

5.7 A new expression for Ξν=(n−v)
n . We continue to fix a compact tiled

surface Y . The goal of this section is to give a formula for Ξν=(n−v)
n that is more

precise than is possible to obtain with the methods of the previous section. This will
be done by refining the methods of [MP20, Section 5].

We will assume throughout that n ≥ v. We fix a bijective map J : Y (0) → [v],
and as in [MP20, Section 5] for each n ∈ N we modify J by letting

Jn : Y (0) → [n − v + 1, n], Jn(v) def= J (v) + n − v. (5.17)
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We use the map Jn to identify the vertex set of Y with [n − v + 1, n]. Let V−
f =

V−
f (Y ) ⊂ [n − v+ 1, n] be the subset of vertices of Y with outgoing f -labeled edges,

and V+
f ⊂ [n − v + 1, n] those vertices of Y with incoming f -labeled edges. Note

that ef = |V−
f | = |V+

f |. Recall that S′
v ≤ Sn is the subgroup of permutations fixing

[n − v] element-wise. For each f ∈ {a, b, c, d} we fix g0
f ∈ S′

v such that for every
pair of vertices i, j of Y in [n − v + 1, n] with a directed f -labeled edge from i to
j, we have g0

f (i) = j. Note that g0
f (V−

f ) = V+
f . We let g0 def= (g0

a, g
0
b , g

0
c , g

0
d) ∈ S4

n.
For each f ∈ {a, b, c, d} let Gf be the subgroup of Sn fixing pointwise V−

f . Let

G
def= Ga × Gb × Gc × Gd ≤ S4

n.
Our formula for Ξν=(n−v)

n will involve the size of the set

X
∗
n(Y,J ) def=

{
(αa, αb, αc, αd) ∈ g0G | W (αa, αb, αc, αd) ∈ Sn−v

}
(5.18)

where15 W (ga, gb, gc, gd)
def= g−1

d g−1
c gdgcg

−1
b g−1

a gbga. Note that a similar set, de-
noted Xn(Y,J ) in [MP20, Section 5.2], is the set in which the condition is that
W (αa, αb, αc, αd) = 1 rather than the identity only when restricted to [n − v + 1, n],
as in (5.18). This smaller set Xn(Y,J ) counts the number of covers φ ∈ Hom (Γ2, Sn)
in which (Y,J ) embeds.

The main result of this Section 5.7 is the following.

Proposition 5.13. With notations as above,

Ξν=(n−v)
n =

(n)v |X∗
n(Y,J )|

(n)f
∏

f∈a,b,c,d(n − ef )!
.

Recall that (n)q is the Pochhammer symbol as defined in Section 1.4. In the rest
of the paper, whenever we write an integral over a group, it is performed with respect
to the uniform measure on the relevant group. Let

I
def=
∫

hf ∈Gf

∫

π∈Sn−v

1
{
W
(
g0
aha, g

0
bhb, g

0
chc, g

0
dhd

)
π = 1

}
.

The following lemma is immediate as a result of relating sums to normalized inte-
grals.

Lemma 5.14. We have |X∗
n(Y,J )| = |Sn−v| · |G| · I.

For a Young diagram λ of size m, we write χλ for the trace of the irreducible
representation of Sm on V λ.

15 The reason we use this word instead of the relator [ga, gb][gc, gd] of Γ2 is the same as in [MP20]:
the one-to-one correspondence between Xn and degree-n covers of a genus 2 surface uses the version
of the symmetric group where permutations are multiplied as functions acting from the right,
whereas in this section we want to multiply permutations as functions on [n] acting from the left.
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Corollary 5.15. We have

|X∗
n(Y,J )| =

∏
f∈a,b,c,d(n − ef )!

(n)v

∑

λ�n

dλΘ(n−v)
λ (Y,J )

where

Θ(n−v)
λ (Y,J ) def=

∫

hf ∈Gf

∫

π∈Sn−v

χλ

(
W
(
g0
aha, g

0
bhb, g

0
chc, g

0
dhd

)
π
)
. (5.19)

Proof. Using Schur orthogonality, write

1{g = 1} =
1
n!

∑

λ�n

dλχλ(g),

hence

I =
1
n!

∑

λ�n

dλΘ(n−v)
λ (Y,J ) .

We have |G| =
∏

f∈{a,b,c,d}(n − ef )!, hence by Lemma 5.14

|X∗
n (Y,J )| = (n − v)!

∏

f∈{a,b,c,d}
(n − ef )! · 1

n!

∑

λ�n

dλΘ(n−v)
λ (Y,J )

=

∏
f∈a,b,c,d(n − ef )!

(n)v

∑

λ�n

dλΘ(n−v)
λ (Y,J ) .

��
Consider the vector space

W λ def= V λ ⊗ V̌ λ ⊗ V λ ⊗ V̌ λ ⊗ V λ ⊗ V̌ λ ⊗ V λ ⊗ V̌ λ

as a unitary representation of S8
n. This is a departure from [MP20, Section 5] where

W λ was thought of as a representation of S4
n; we take a more flexible setup here.

The reader may find it useful to see [MP20, Section 5.4] for extra background on
representation theory. The inner product on V λ gives an isomorphism V λ ∼= V̌ λ,
v �→ v̌. Let Bλ ∈ End(W λ) be defined as in [MP20, Equation (5.9)] by the formula

〈Bλ (v1⊗v̌2⊗v3⊗v̌4⊗v5⊗v̌6⊗v7 ⊗ v̌8) , w1 ⊗ w̌2 ⊗ w3 ⊗ w̌4 ⊗ w5 ⊗ w̌6 ⊗ w7 ⊗ w̌8〉
def= 〈v1, w3〉〈v3, v2〉〈w2, v4〉〈w4, w5〉〈v5, w7〉〈v7, v6〉〈w6, v8〉〈w8, w1〉. (5.20)

We note the following, extending [MP20, Lem. 5.4].

Lemma 5.16. For any (g1, g2, g3, g4, g5, g6, g7, g8) ∈ S8
n, we have

trW λ(Bλ ◦ (g1, g2, g3, g4, g5, g6, g7, g8)) = χλ(g−1
8 g−1

6 g7g5g
−1
4 g−1

2 g3g1).

Proof. The proof is a direct calculation directly generalizing [MP20, Lem. 5.4]. ��



646 M. MAGEE ET AL. GAFA

Let Q be the orthogonal projection in W λ onto the vectors that are invariant by G
acting on W λ by the map

(ga, gb, gc, gd) ∈ G �→ (ga, ga, gb, gb, gc, gc, gd, gd) ∈ S8
n.

This projection appeared also in [MP20, Section 5.4].

Lemma 5.17. We have Θ(n−v)
λ (Y,J ) = trW λ(pBλg0Q) where p denotes the operator

p
def=
∫

π∈Sn−v

(π, 1, 1, 1, 1, 1, 1, 1) ∈ End
(
W λ
)

.

Remark 5.18. Note that p is the projection in End(W λ) onto the triv-isotypic
subspace for the action of Sn−v on the first factor of W λ (while being the identity
on the remaining seven factors). This is a self-adjoint operator.

Proof. Recall the definition of Θ(n−v)
λ (Y,J ) in (5.19). Using Lemma 5.16, for every

set of fixed values of the hf and π, we have

χλ

(
W
(
g0
aha, g

0
bhb, g

0
chc, g

0
dhd

)
π
)

= trW λ

(
Bλ ◦ (g0

ahaπ, g0
aha, g

0
bhb, g

0
bhb, g

0
chc, g

0
chc, g

0
dhd, g

0
dhd

))

Therefore,

Θ(n−v)
λ (Y,J ) = trW λ(Bλg0Qp) = trW λ(pBλg0Q). ��

Using Lemma 5.17, we now find a new expression for Θ(n−v)
λ (Y,J ) by calculating

trW λ(pBλg0Q).

Proposition 5.19. We have

Θ(n−v)
λ (Y,J ) =

∑

(n−v)⊂μf⊂ef −fλ′⊂fλ

dλ/λ′

dμa
dμb

dμc
dμd

Υn

({
σ±

f , τ±
f

}
, (n − v), {μf} , λ′

)
.

(5.21)

Proof. This calculation is very similar to the proof of [MP20, Prop. 5.8] where
trW λ(Bλg0Q) was calculated. The only difference here is the presence of the ad-
ditional operator p. Therefore we will not give all the details. The proof follows
[MP20, proof of Prop. 5.8] using properties P1–P4 of σ±

f , τ±
f . One also uses that

p is a self-adjoint projection. The role that p plays in the proof is that instead of
obtaining a summation over all ν ⊂v λ, the projection p forces only the relevant
ν = (n − v) to appear.

Indeed, the calculation leading to [MP20, Equation (5.17)] is replaced by
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〈
pBλ

[
Eλ,a,+

μa,Sa,Ta
⊗ Eλ,b,+

μb,Sb,Tb
⊗ Eλ,c,+

μc,Sc,Tc
⊗ Eλ,d,+

μd,Sd,Td

]
,

Eλ,a,−
μa,Sa,Ta

⊗ Eλ,b,−
μb,Sb,Tb

⊗ Eλ,c,−
μc,Sc,Tc

⊗ Eλ,d,−
μd,Sd,Td

〉

=
〈
Bλ

[
Eλ,a,+

μa,Sa,Ta
⊗ Eλ,b,+

μb,Sb,Tb
⊗ Eλ,c,+

μc,Sc,Tc
⊗ Eλ,d,+

μd,Sd,Td

]
,

p
(
Eλ,a,−

μa,Sa,Ta
⊗ Eλ,b,−

μb,Sb,Tb
⊗ Eλ,c,−

μc,Sc,Tc
⊗ Eλ,d,−

μd,Sd,Td

)〉

=
1

dμa
dμb

dμc
dμd

∑

R±
f ∈Tab(μf )

〈
v

σ+
a

R+
a �Sa

, v
σ−

b

R−
b �Sb

〉〈
v

σ+
b

R+
b �Sb

, v
τ+

a

R+
a �Ta

〉〈
v

τ−
a

R−
a �Ta

, v
τ+

b

R+
b �Tb

〉

·
〈
v

τ−
b

R−
b �Tb

, v
σ−

c

R−
c �Sc

〉〈
v

σ+
c

R+
c �Sc

, v
σ−

d

R−
d �Sd

〉〈
v

σ+
d

R+
d �Sd

, v
τ+

c

R+
c �Tc

〉

〈
v

τ−
c

R−
c �Tc

, v
τ+

d

R+
d �Td

〉〈
v

τ−
d

R−
d �Td

, p0v
σ−

a

R−
a �Sa

〉

where p0 is orthogonal projection to the Sn−v-invariant vectors in V λ. Then the
same discussion as precedes [MP20, Equation (5.17)] applies now to show that the
above is zero unless there is ν � n−v such that ν ⊂ μf for all f ∈ {a, b, c, d}, and all
R+

f |≤n−v, R−
f |≤n−v are equal and of shape ν, except now, the presence of p0 forces

ν = (n − v). Then the rest of the proof is the same. ��
Proof of Proposition 5.13. Combining Corollary 5.15 and Proposition 5.19 we ob-
tain

|X∗
n(Y,J )|

=

∏
f∈{a,b,c,d}(n − ef )!

(n)v

∑

λ�n

dλ

∑

(n−v)⊂μf⊂ef −fλ′⊂fλ

dλ/λ′

dμa
dμb

dμc
dμd

Υn

({
σ±

f , τ±
f

}
, (n − v), {μf} , λ′

)

=

∏
f∈a,b,c,d (n − ef )!(n)f

(n)v

∑

(n−v)⊂μf ⊂ef −fλ′�n−f

dλ′

dμa
dμb

dμc
dμd

Υn

({
σ±

f , τ±
f

}
, (n − v), {μf} , λ′

)

=

∏
f∈a,b,c,d (n − ef )!(n)f

(n)v
Ξν=(n−v)

n ,

where the second equality used Lemma 4.1 and the third used d(n−v) = 1. This gives
the result. ��
5.8 Understanding

∣
∣X∗

n(Y,J )
∣
∣. Recall the definition of X

∗
n(Y,J ) in (5.18).

Because these 4-tuples of permutations generally do not correspond to covers of the
surface Σ2, they are better analyzed as n-degree covers of the bouquet of four loops,
namely, as graphs on n vertices labeled by [n] with directed edges labeled by a, b, c, d,
and exactly one incoming f -edge and one outgoing f -edge in every vertex and every
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Figure 6: On the left is a tiled surface Y consisting of two vertices and a single d-edge
between them. The middle part shows Ŷ : where we “grow” an octagon from every vertex of
Y , and in which Y (1) is embedded. The figure on the right shows another element of Q (Y ):
a folded quotient of Ŷ where Y (1) is still embedded.

f ∈ {a, b, c, d}. Equivalently, these graphs are the Schreier graphs depicting the
action of Sn on [n] with respect to the four permutations αa, αb, αc, αd.

Such a Schreier graph G corresponds to some 4-tuple (αa, αb, αc, αd) ∈ X
∗
n(Y,J )

if and only if the following two conditions are satisfied. The assumption that
(αa, αb, αc, αd) ∈ g0G means that Y (1), the 1-skeleton of Y , is embedded in G, in an
embedding that extends Jn on the vertices. The condition that W (αa, αb, αc, αd) ∈
Sn−v, means that at every vertex of G with label in [n − v + 1, n], there is a closed
path of length 8 that spells out the word [a, b][c, d].

In Lemma 5.20 below we show that the number of such graphs (equal to |X∗
n (Y,J )|)

is rational in n. To this end, we apply techniques based on Stallings core graphs, in
a similar fashion to the techniques applied in [Pud14, PP15].

Construct a finite graph Ŷ as follows. Start with Y (1), the 1-skeleton of Y . At
every vertex attach a closed cycle of length 8 spelling out [a, b] [c, d]. Then fold the
resulting graph, in the sense of Stallings,16 to obtain Ŷ . In other words, at each vertex
v of Y (1), if there is a closed path at v spelling [a, b] [c, d], do nothing. Otherwise,
find the largest prefix of [a, b] [c, d] that can be read on a path p starting at v and the
largest suffix of [a, b] [c, d] that can be read on a path s terminating at v. Because
Y is a tiled surface, |p| + |s| < 8. Attach a path of length 8 − |p| − |s| between the
endpoint of p and the beginning of s which spells out the missing part of the word
[a, b] [c, d]. In this description, no folding is required. Note, in particular, that Y (1)

is embedded in Ŷ .
By the discussion above, the Schreier graphs G corresponding to X

∗
n (Y,J ) are

the graphs in which there is an embedding of Y (1) which extends to a morphism of
directed edge-labeled graphs of Ŷ . We group these G according to the image of Ŷ . So

16 Folding a graph with directed and labeled edges means that as long as there is a vertex with two
incoming edges with the same label, or two outgoing edges with the same label, these two edges are
merged, and so are their other endpoints. It is well known that this process has a unique outcome
[Sta83, Section 3].
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denote by Q (Y ) the possible images of Ŷ in the graphs G: these are precisely the
folded quotients of Ŷ (edges can only be merged with equally-labeled other edges)
which restrict to a bijection on Y (1). In particular, Ŷ ∈ Q (Y ). We illustrate these
concepts in Figure 6. As Ŷ is a finite graph, the set Q (Y ) is finite.

Lemma 5.20. For every n ≥ 8v (Y ),

|X∗
n(Y,J )| =

(n!)4

(n)v(Y )

∑

H∈Q(Y )

(n)v(H)∏
f∈{a,b,c,d} (n)ef (H)

. (5.22)

Proof. By the discussion above it is enough to show that for every H ∈ Q (Y ) and
n ≥ 8v (Y ), the number of Schreier graphs G on n vertices where the image of Ŷ is
H, is precisely

(n!)4

(n)v(Y )

·
(n)v(H)∏

f∈{a,b,c,d} (n)ef (H)

.

First, note that v (H) ≤ v
(
Ŷ
)

≤ 8v (Y ), so under the assumption that n ≥ 8v (Y ),
H can indeed be embedded in Schreier graphs on n vertices. The number of possible
labelings of the vertices of H, which must extend the labeling of the vertices of Y (1),
is

(n − v (Y )) (n − v (Y ) − 1) · · · (n − v (H) + 1) =
(n)v(H)

(n)v(Y )

.

There are exactly ea (H) constraints on the permutation αa for it to agree with the
data in the vertex-labeled H, so there are (n − ea (H))! = n!

(n)ea(H)
such permutations.

The same logic applied to the other letters gives the required result. ��
Combining Lemma 5.20 with Proposition 5.13 gives the following corollary.

Corollary 5.21. For n ≥ 8v(Y ) we have

Ξν=(n−v)
n (Y ) =

∏
f∈{a,b,c,d}(n)ef (Y )

(n)f(Y )

∑

H∈Q(Y )

(n)v(H)∏
f∈{a,b,c,d}(n)ef (H)

.

In particular, if Y is fixed and n → ∞, we have

Ξν=(n−v)
n (Y ) =

∑

H∈Q(Y )

ne(Y )−f(Y )+χ(H)

(
1 + OY

(
1
n

))
. (5.23)

Proof. The first statement follows directly from Lemma 5.20 and Proposition 5.13.
To obtain the second statement from the first, we use that all Pochammer symbols
(n)q appearing therein have q bounded depending on Y and hence (n)q = nq +
OY (nq−1). ��
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Note that in the construction of Ŷ from Y (1), we add a “handle” (a sequence of
edges) to the graph for every vertex of Y that does not admit a closed cycle spelling
[a, b] [c, d]. Hence the Euler characteristic of Ŷ is equal to that of Y (1) minus the
number of such vertices in Y . If Y has an octagon attached along every closed cycle
spelling [a, b] [c, d], there are v (Y ) − f (Y ) such vertices, so

χ
(
Ŷ
)

= χ
(
Y (1)

)
− (v (Y ) − f (Y )) = f (Y ) − e (Y ) . (5.24)

In particular, this is the case when Y is (strongly) boundary reduced. This is im-
portant because of the role of χ (H) in (5.23) for H ∈ Q(Y ). It turns out that when
Y is strongly boundary reduced, Ŷ has Euler characteristic strictly larger than all
other graphs in Q (Y ):

Lemma 5.22. If Y is strongly boundary reduced, then for every H ∈ Q(Y )\{Ŷ },

χ (H) < χ
(
Ŷ
)

.

Proof. We use [MP20, Prop. 5.26] that states that if Y is strongly boundary reduced,
then as n → ∞,

Ξn(Y ) = 2 + OY

(
n−1
)
. (5.25)

When Y is fixed and n → ∞, it follows from Lemmas 5.9(1) and 5.10 that

Ξn(Y ) = 2Ξ(n−v)
n (Y ) + OY

(
n−2
)
. (5.26)

Combining (5.25) and (5.26) gives

Ξ(n−v)
n (Y ) = 1 + OY

(
n−1
)
. (5.27)

Comparing (5.27) with (5.23) shows that there is exactly one H ∈ Q(Y ) with
χ (H) = f(Y ) − e(Y ), and all remaining graphs in Q(Y ) have strictly smaller Euler
characteristic. Finally, (5.24) shows this H must be Ŷ itself. ��
5.9 Bounds on E

emb
n (Y ) for ε-adapted Y . In this section we give the fi-

nal implications of the previous sections for E
emb
n (Y ) for ε-adapted Y . Recall the

definition of Q (Y ) from Section 5.8. We will need the following easy bound for
Pochhammer symbols.

Lemma 5.23. Let n ∈ N and q ∈ N ∪ {0} with q ≤ 1
2n. Then

nq

(
1 − q2

n

)
≤ nq exp

(−q2

n

)
≤ (n)q ≤ nq.

Proof. The first inequality is based on 1 − x ≤ e−x. The second one is based on
writing (n)q = nq

(
1 − 1

n

) · · ·
(
1 − q−1

n

)
and using e−2x ≤ 1 − x which holds for

x ∈ [0, 1
2

]
. The third inequality is obvious. ��
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Proposition 5.24. Let ε ∈ (0, 1) and η = η(ε) ∈ (0, 1
100) be the parameter provided

by Proposition 5.12 for this ε. Let n ∈ N and M = M (n) ≥ 1. Let Y be ε-adapted
with D(Y ) ≤ nη and v(Y ), e(Y ), f(Y ) ≤ M ≤ n1/4. Then

E
emb
n (Y )
nχ(Y )

=
(

1 + Oε

(
M2

n

))
⎛

⎝1 +
∑

H∈Q(Y )\{Ŷ }
nχ(H)+e(Y )−f(Y )

⎞

⎠ . (5.28)

Proof. Assume all parameters are as in the statement of the proposition. By Theo-
rem 5.1 and Proposition 5.12 we have

E
emb
n (Y )
nχ(Y )

=
(n!)3

|Xn| · (n)v(Y )(n)f(Y )∏
f (n)ef (Y )nχ(Y )

[
2Ξν=(n−v)

n (Y ) + Oε

(
1
n

)]
.

By Lemma 5.23, (n)v(Y )(n)f(Y )∏
f (n)ef (Y )nχ(Y ) = 1+O

(
M2

n

)
. By Corollary 4.5, (n!)3

|Xn| = 1
2 +O

(
1
n2

)
.

With Corollary 5.21, this gives

E
emb
n (Y )
nχ(Y )

=
[
1
2

+ O

(
M2

n

)]
⎡

⎣2

∏
f (n)ef (Y )

(n)f(Y )

∑

H∈Q(Y )

(n)v(H)∏
f (n)ef (H)

⎤

⎦+ Oε

(
1
n

)

Lem. 5.23=
[
1 + O

(
M2

n

)] ∑

H∈Q(Y )

ne(Y )−f(Y )+χ(H) + Oε

(
1
n

)
, (5.29)

where the use of Lemma 5.23 is justified since for every H ∈ Q (Y ), v (H) ≤ v(Ŷ ) ≤
8v (Y ) ≤ 8M , and e (H) ≤ e(Ŷ ) ≤ e (Y )+8v (Y ) ≤ 9M . In the summation in (5.29),
the top power of n is realized by Ŷ and is equal to zero (by (5.24) and Lemma 5.22),
so we obtain

E
emb
n (Y )
nχ(Y )

=
[
1 + O

(
M2

n

)]⎛

⎝1 +
∑

H∈Q(Y )\{Ŷ }
nχ(H)+e(Y )−f(Y )

⎞

⎠+ Oε

(
1
n

)
,

which yields (5.28). ��
The drawback of Proposition 5.24 is that we do not know how to directly estimate
the sum over H ∈ Q (Y ) \{Ŷ } that appears therein. Because we can not directly deal
with this sum, we instead use Proposition 5.24 to deduce in the remaining results
of this section that for ε-adapted Y we can control Eemb

n (Y ) using E
emb
m (Y ) with m

much smaller than n.

Corollary 5.25. Let ε ∈ (0, 1), and η = η(ε) ∈ (0, 1
100) be the parameter provided

by Proposition 5.12 for this ε. Let m ∈ N. Let Y be ε-adapted with D(Y ) ≤ mη

and v(Y ), e(Y ), f(Y ) ≤ m1/4. Then

E
emb
m (Y )
mχ(Y )

�ε 1 +
∑

H∈Q(Y )\{Ŷ }
mχ(H)+e(Y )−f(Y ).

In particular, Eemb
m (Y ) �ε mχ(Y ).
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Remark 5.26. As a direct consequence of Corollary 5.25, under the same condi-
tions, if χ(Y ) < 0 and n ≥ m we obtain

m

n
E

emb
m (Y ) � mχ(Y )+1

n
� nχ(Y ).

While Corollary 5.25 is a direct consequence of Proposition 5.24, we can get more
information by combining Proposition 5.24 with what we already know about Q(Y ).

Proposition 5.27. Let ε ∈ (0, 1), η be as in Proposition 5.12 and K > 1. Let
n ∈ N and m = m (n) ∈ N with m < n and m

n→∞→ ∞. Let Y be ε-adapted and
suppose that v(Y ), e(Y ), f(Y ) ≤ (K log n)2 ≤ m1/4 and that D(Y ) ≤ K log n ≤ mη.
Then

E
emb
n (Y )
nχ(Y )

= 1 + Oε,K

(
(log n)4

n

)
+ Oε,K

(
m

n

E
emb
m (Y )
mχ(Y )

)
. (5.30)

Proof. With assumptions as in the proposition, Proposition 5.24 gives

E
emb
n (Y )
nχ(Y )

=
(

1 + Oε,K

(
(log n)4

n

))⎛

⎝1 +
∑

H∈Q(Y )\{Ŷ }
nχ(H)+e(Y )−f(Y )

⎞

⎠

= 1 + Oε,K

(
(log n)4

n

)
+ Oε,K

⎛

⎝
∑

H∈Q(Y )\{Ŷ }
nχ(H)+e(Y )−f(Y )

⎞

⎠ .

Finally, because for every H ∈ Q (Y ) \{Ŷ } we have χ (H) + e (Y ) − f (Y ) ≤ −1 and
m < n,

∑

H∈Q(Y )\{Ŷ }
nχ(H)+e(Y )−f(Y ) =

∑

H∈Q(Y )\{Ŷ }

( n

m

)χ(H)+e(Y )−f(Y )
mχ(H)+e(Y )−f(Y )

≤ m

n

∑

H∈Q(Y )\{Ŷ }
mχ(H)+e(Y )−f(Y ) Cor. 5.25�ε

m

n

E
emb
m (Y )
mχ(Y )

,

concluding the proof of the proposition. ��

6 Proof of Theorem 1.11

The reader is suggested to have read the overview in Section 1.3 before attempting
to read this section of the paper.
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6.1 Setup. We remind the reader that g = 2. We are given c > 0, and an
element γ ∈ Γ of cyclic word length �w(γ) ≤ c log n. We assume that γ is not a
proper power of another element of Γ. We remind the reader that Cγ is an annular
tiled surface associated to γ as in Example 3.5. By Lemma 3.20,

En [fixγ ] = En (Cγ) ,

where En(Cγ) is the expected number of morphisms from Cγ to the random surface
Xφ. Let ε = 1

32 (for general g, ε = 1
16g ) and let Rε(Cγ) be the finite resolution of Cγ

provided by Definition 3.23 and Theorem 3.24. Each element of this resolution is a
morphism h : Cγ → Wh where Wh is a tiled surface. By Lemma 3.22 we have for any
n ≥ 1

En [fixγ ] =
∑

h∈Rε(Cγ)

E
emb
n (Wh) , (6.1)

where E
emb
n (Wh) is the expected number of embeddings of Wh into the random tiled

surface Xφ. Associated to each Wh here, v(Wh), e(Wh), and f(Wh) are the number
of vertices, edges, and faces of Wh. Also associated to Wh are d(Wh), the number
of edges in the boundary of Wh, χ(Wh), the topological Euler characteristic of Wh,
and D(Wh) = v(Wh) − f(Wh).

By Corollary 3.25, there is a constant K = K(c) > 0, such that for each h ∈
Rε(Cγ), and for n ≥ 3, we have

d(Wh) ≤ K log n,

f(Wh) ≤ K(log n)2.

By Lemma 3.6 we have v(Wh) ≤ d(Wh) + f(Wh), so D (Wh) ≤ d (Wh) and

D(Wh) ≤ K log n.

We also have e(Wh) ≤ 4v(Wh) by (3.2). Hence by increasing K if necessary we can
also ensure

v(Wh), e(Wh) ≤ K(log n)2.

6.2 Part I: the contribution from non-ε-adapted surfaces. Our first goal
is to control the contribution to En[fixγ ] in (6.1) from non-ε-adapted surfaces. Let
Rε

(non-ε-ad) (Cγ) denote the set of morphisms h : Cγ → Wh in Rε(Cγ) such that Wh

is not ε-adapted. In particular, such Wh is boundary reduced and f (Wh) > d (Wh).

Proposition 6.1. There is a constant A > 0 such that for any c > 0, if �w(γ) ≤
c log n, then

∑

h∈Rε
(non-ε-ad)(Cγ)

E
emb
n (Wh) �c

(log n)A

n
.
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Proof. We first do some counting. Let us count h ∈ Rε
(non-ε-ad) (Cγ) by their value

of D(Wh) and f(Wh). By Corollary 3.25 every h ∈ Rε
(non-ε-ad) (Cγ) has

χ(Wh) < −f(Wh) < −d(Wh). (6.2)

Combining (6.2) with Lemma 3.6 yields

0 ≤ D(Wh) ≤ d (Wh) < f(Wh). (6.3)

Notice that (6.3) implies f(Wh) ≥ 1. First we bound the number of possible Wh

with D(Wh) = D0 and f(Wh) = f0 for fixed D0 < f0. Note that in this case v(Wh) =
v0

def= D0+f0. We may over-count the number of Wh with v0 vertices by counting the
number of Wh together with a labeling of their vertices by [v0]. We first construct
the one-skeleton of such a tiled surface: there are at most v v0

0 choices for the a-
labeled edges, and also for the b-labeled edges etc. Because Wh are all boundary
reduced, there is an octagon attached to any closed [a, b] [c, d] path, so the one-
skeleton completely determines the entire tiled surface. Hence there are at most
v 4v0
0 choices for Wh with v(Wh) = v0.

We also have to estimate how many ways there are to map Cγ into such a Wh.
Fixing arbitrarily a vertex v of Cγ , any morphism Cγ → Wh is uniquely determined
by where v goes; hence there are at most v0 morphisms and so in total there are at
most

v4v0+1
0 ≤ v5v0

0 = (D0 + f0)5(D0+f0) ≤ (2f0)10f0

elements h ∈ Rε
(non-ε-ad) (Cγ) with D(Wh) = D0 and f(Wh) = f0. Hence there are at

most K log n · (2f0)10f0 elements h ∈ Rε
(non-ε-ad) (Cγ) with f(Wh) = f0.

We are going to use Theorem 5.1 that relates E
emb
n (Wh) to a certain quantity

Ξn(Wh). By Proposition 5.11 there is A0 > 1 such that for h ∈ Rε
(non-ε-ad) (Cγ)

|Ξn(Wh)| �K (A0D(Wh))A0D(Wh) ≤ (A0f(Wh))A0f(Wh) , (6.4)

so by Theorem 5.1, Corollary 4.5, and Lemma 5.23 we get

E
emb
n (Wh) Thm 5.1=

n!3

|Xn|
(n)v(Wh)(n)f(Wh)∏

f (n)ef (Wh)
Ξn (Wh)

Cor. 4.5� (n)v(Wh)(n)f(Wh)∏
f (n)ef (Wh)

Ξn (Wh)

Lemma 5.23�K nχ(Wh)Ξn (Wh)
(6.4)�K nχ(Wh) (A0f(Wh))A0f(Wh) . (6.5)

Therefore, for every 1 ≤ f0 ≤ K (log n)2,
∑

h∈Rε
(non-ε-ad)(Cγ)

f(Wh)=f0

E
emb
n (Wh) �K (A0f0)A0f0

∑

h∈Rε
(non-ε-ad)(Cγ)

f(Wh)=f0

nχ(Wh)

(6.2)

≤ (A0f0)A0f0
∑

h∈Rε
(non-ε-ad)(Cγ)

f(Wh)=f0

n−f0
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≤ K log n

(
(A0f0)

A0 (2f0)
10

n

)f0

≤ K log n ·
(

AA0
0 210

(
K(log n)2

)A0+10

n

)f0

.

So

∑

h∈Rε
(non-ε-ad)(Cγ)

E
emb
n (Wh) =

K(log n)2∑

f0=1

∑

h∈Rε
(non-ε-ad)(Cγ)

f(Wh)=f0

E
emb
n (Wh)

� KK log n ·
K(log n)2∑

f0=1

(
AA0

0 210
(
K(log n)2

)A0+10

n

)f0

� K
(log n)2A0+21

n
,

where the last inequality is based on that A
A0
0 210(K(log n)2)A0+10

n ≤ 1
2 for n �K 1. ��

6.3 Part II: the contribution from ε-adapted surfaces. Write Rε
(ε-ad)(Cγ)

⊂ Rε(Cγ) for the collection of morphisms h : Cγ → Wh in Rε(Cγ) such that Wh is
ε-adapted. In light of Proposition 6.1 it remains to deal with the contributions to
En[fixγ ] from Rε

(ε-ad)(Cγ). Indeed we have by Proposition 6.1 and (6.1)

En[fixγ ] =
∑

h∈Rε
(ε-ad)(Cγ)

E
emb
n (Wh) + Oc

(
(log n)A

n

)
. (6.6)

Recall that if Wh is ε-adapted, it is, in particular, strongly boundary reduced,
and so by [MP20, Section 1.6], Eemb

n (Wh) = nχ(Wh)
[
1 + O

(
n−1
)]

as n → ∞. By
Theorem 1.10, En[fixγ ] = 1 + O

(
n−1
)
. Comparing this with (6.6), we conclude that

there is exactly one h0 ∈ Rε(Cγ) with χ (Wh0) = 0. This h0 also satisfies that Wh0

is ε-adapted.17

Still, we are missing some information about Rε
(ε-ad)(Cγ) that we will need: for

example, the ability to count how many h : Cγ → Wh there are in Rε
(ε-ad)(Cγ) with

different orders of contributions (i.e. nχ(Wh)) to (6.6). We are going to use a trick to
get around this missing information.

Let η ∈ (0, 1
100) be the parameter provided by Proposition 5.12 for the current

ε = 1
32 (the reason for choosing η like this now is just so that we can momentarily

apply Corollary 5.25 and Proposition 5.27). Let m be an auxiliary parameter given
by

m =
⌈
(K log n)1/η

⌉

17 It can be shown that h0 is the result of the OvB algorithm when applied to the embedding
Cγ ↪→ 〈γ〉 \Σ̃2 with Σ̃2 the universal cover of Σ2—see [MP20, Section 2].
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so that when n �c 1, for all h ∈ Rε
(ε-ad)(Cγ), D(Wh) ≤ K log n ≤ mη and

v(Wh), e(Wh), f(Wh) ≤ K(log n)2 ≤ m1/4. Moreover, (log n)100 �c m �c (log n)
1
η .

To exploit the fact that each E
emb
n (Wh) is controlled by E

emb
m (Wh) (Corollary 5.25

and Proposition 5.27), we will at two points use the inequality

m ≥ Em[fixγ ]
(6.1)
=

∑

h∈Rε(Cγ)

E
emb
m (Wh) ≥

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
m (Wh) . (6.7)

We begin with

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
n (Wh)

Prop. 5.27
=

∑

h∈Rε
(ε-ad)(Cγ)

nχ(Wh)

[
1 + Oc

(
(log n)4

n

)

+Oc

(
m

n

E
emb
m (Wh)
mχ(Wh)

)]

=
∑

h∈Rε
(ε-ad)(Cγ)

nχ(Wh)

[
1 + Oc

(
(log n)4

n

)]

+ Oc

⎛

⎝m

n

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
m (Wh)

⎞

⎠

(6.7)
=

∑

h∈Rε
(ε-ad)(Cγ)

nχ(Wh)

(
1 + Oc

(
(log n)4

n

))
+ Oc

(
m2

n

)
.

(6.8)

The middle estimate above used that χ(Wh) ≤ 0 for all h ∈ Rε
(ε-ad)(Cγ), and so

(
n
m

)χ(Wh) ≤ 1. The contribution to (6.8) from h0 is 1 + Oc

(
(log n)4

n

)
. So we obtain

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
n (Wh) = 1 + Oc

(
(log n)4

n

)
(6.9)

+O

(
m2

n

)
+ O

⎛

⎜
⎜⎜
⎝

∑

h∈Rε
(ε-ad)(Cγ)

χ(Wh)<0

nχ(Wh)

⎞

⎟
⎟⎟
⎠

.

(6.10)

To deal with the last error term, we relate it to the expectations at level m. Indeed,
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∣∣
∣
∣∣
∣∣
∣
∣

∑

h∈Rε
(ε-ad)(Cγ)

χ(Wh)<0

nχ(Wh)

∣∣
∣
∣∣
∣∣
∣
∣

=
∑

h∈Rε
(ε-ad)(Cγ)

χ(Wh)<0

( n

m

)χ(Wh)
mχ(Wh) ≤ m

n

∑

h∈Rε
(ε-ad)(Cγ)

mχ(Wh)

Cor. 5.25� m

n

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
m (Wh)

(6.7)

≤ m2

n
.

Incorporating this estimate into (6.10) gives

∑

h∈Rε
(ε-ad)(Cγ)

E
emb
n (Wh) = 1 + Oc

(
(log n)4

n

)
+ O

(
m2

n

)
= 1 + Oc

(
(log n)A

n

)
,

where A = 2
η . Combining this with (6.6) and increasing A if necessary we obtain

En[fixγ ] = 1 + Oc

(
(log n)A

n

)

as required. This concludes the proof of Theorem 1.11. ��
Remark 6.2. The arguments above show that

∑

h∈Rε
(ε-ad)(Cγ)

mχ(Wh) �
∑

h∈Rε
(ε-ad)(Cγ)

E
emb
m (Wh) � m,

hence the number of elements of h ∈ Rε
(ε-ad)(Cγ) with χ(Wh) = χ is � m1−χ. In

general, given arbitrary γ ∈ Γ, and ε > 0 we obtain by the same argument that for
some η = η(ε) > 0 we have

#{ h ∈ Rε
(ε-ad)(Cγ) : χ(Wh) = χ } �ε

(
�(γ)

1
η

)1−χ
.

We mention this side-effect of our proof in case it is of independent interest.
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