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ABSTRACT

The LHCb collaboration announced the observation of CP violation in the decays of the D0 meson, the lightest particle
containing charm quarks, which might provide clues to why there is more matter than antimatter in the Universe and lead to a
deeper understanding of the theory of the strong interaction.

The visible part of our Universe is mostly made up of protons and some neutrons and each proton is to a good approximation
made out of two up quarks and one down quark. This immediately raises two questions. First, starting from symmetric initial
conditions in the very early Universe, we would expect an equal number of particles and anti-particles. Where are all the
anti-protons? Second, since up and down quarks seem to be sufficient to describe our world, why are there also heavier copies
of the up-quark, such as the charm and the top quark and heavier copies of the down-quark, such as the strange and the bottom
quark?

In 1967 Andrei Sakharov1 found three criteria for any fundamental theory of nature, that enable the creation of a matter-
antimatter asymmetry out of a symmetric initial state at the beginning of the Universe. One of these requirements is the violation
of a symmetry called CP: the charge (C) transformation makes a negative charged particle out of a positive one and the parity
(P) transformation exchanges left with right, that is all coordinates~x are transformed into −~x. In 1973 Makoto Kobayashi and
Toshihide Maskawa2 showed that in the standard model of particle physics (SM) at least two heavier copies of the up and the
down quark are necessary in order to have CP violation for quarks. So in principle the SM contains the necessary ingredient of
CP violation, but whether it contains enough of it, that is a different question.

CP violation has so far been confirmed experimentally in composite particles containing strange or bottom quarks and it is
currently intensively studied by the LHCb collaboration and the ATLAS and CMS experiments at the Large Hadron Collider
(LHC) at CERN and soon by the Belle II experiment in Japan. Unfortunately it turned out that the amount of CP violation
found for the strange and bottom quarks is not sufficient to explain the matter-antimatter asymmetry in the Universe. Naive
SM estimates predict a tiny amount of CP violation for the charm quarks, therefore it came as a big surprise when the LHCb
Collaboration announced at a workshop dinner in Geneva in 2011 the first evidence for a large value of a quantity denoted ∆ACP
(see Ref.3). This quantity describes the different probabilities for a D0 meson (consisting of a charm and an anti-down quark,
see Fig. 1 a) to decay into a pion π+ = (ud̄) - π− = (dū) pair, where d and u stand for the down and up quarks respectively and
the bar denotes the antiparticle, and for a D̄0 = (c̄u) meson, where c stands for the charm quark, decaying into the same final
state. To increase the experimental accuracy, this difference is compared to the equivalent difference if the final state consists of
kaons K+ = (us̄) and K− = (sū), where s denotes the strange quark.

The 2011 measurement prompted hundreds of scientific papers, either interpreting it as evidence for new sources of CP
violation or as new unknown large effects of the strong interaction within the SM. Unfortunately follow-up measurements could
not confirm the first evidence for CP violation for particles containing charm quarks and the interest in the topic somewhat
faded so the first chapter of the ∆ACP saga seemed to have come to an end4. Nevertheless the LHCb collaboration continued
measuring this quantity with much larger datasets, and finally in March this year, they announced5 the definite observation of a
non-vanishing value of ∆ACP at the Moriond Conference. The new value is smaller than the one found in 2011, but it is still a
factor of at least five to ten times larger than naive SM expectations.

Less than a week after the LHCb announcement, three theory paper appeared on the arxiv preprint server. Based on more
elaborated estimates they came again to opposite conclusions: the new measurement is probably due to physics beyond the SM
(Ref.6) versus the new effects can be accommodated within the SM (Ref.7, 8). At the beginning of April all three scientific
teams met at a workshop at Durham University to discuss their contradicting ideas.

Where do these conflicting interpretations root? Often the mathematical equations describing the SM cannot be solved
exactly and we can describe an observable A only approximately, or more rigorously we can express A as a Taylor series with
an expansion parameter x and Taylor coefficients ai:

A = a0 +a1x+a2x2 +a3x3 + ... .



Typically it turns out that the higher terms in this expansion are considerably more difficult to calculate than the lower terms and
state-of-the art mathematical techniques allow only the determination of the first two or three coefficients. If the coefficients ai
are all of similar magnitude and if x is a small number, for instance x = 0.1, then we expect a nicely converging series

A = a0 +0.1a1 +0.01a2 +0.001a3 + ... ,

which can be well approximated by the first few terms. If x is, however, of the order one, all coefficients ai contribute with a
similar weight and in order to determine the observable A one has to know an infinite number of coefficients which is a clear
impossibility.
The theoretical understanding of the new LHCb result for the CP violating quantity ∆ACP boils now down to the determination
of the size of the expansion parameter x in the composite particle containing charm quarks. The decay of a D0 meson into a
π+−π− pair can proceed via two possibilities: the left of Fig. 1b shows the space-time diagram (a Feynman diagram with
time on the horizontal axis) of the dominant contribution to this decay - the tree-level amplitude; the right of Fig. 1b shows
the Feynman diagram of a more complicated decay path - the so-called penguin amplitude. The numerical evaluation of a
Feynman diagram gives the probability of the corresponding process. To some extent the expansion parameter x can in this case
be imagined as the ratio of the numerical value of the penguin Feynman diagram relative to the tree-level Feynman diagram - if
x≈ 0.1 then the SM contribution to ∆ACP is small and the new experimental measurement is due to physics beyond the SM; if
x≈ 1 then the new measurement would be due to very large hadronic effects within the SM.

The authors of Ref.7 assume that x is large and with the help of additional symmetries that imply that the up, down and
strange quark behave similarly (SU(3) flavour symmetry), they find a consistent theoretical picture for the description of
hadronic D meson decays and conclude thus that the measured value of LHCb can be well accommodated by the SM.
In Ref.6 we follow a different approach and start from the observation that we can describe theoretically the measured lifetimes
of the D mesons well with our theoretical tools9 and we find an expansion parameter of x≈ 0.3 so a Taylor expansion could
make sense.This observation is based on some considerable theoretical effort in determining four of the subleading coefficients
in the Taylor expansion. We are therefore confident that the first principle quantum chromodynamics tools (which work only
for small x) used in Ref.10 will give reliable predictions in the charm system and we predict6 that the LHCb measurement of CP
violation5 is about a factor of 7 larger than the SM prediction and this deviation could be due to new physics. Whether this will
be sufficient to explain the missing anti-matter in the Universe will have to be worked out in future studies, as well as precise
limits of the possible hadronic contributions in charm physics. So a new chapter of the ∆ACP saga still opened and there is a lot
of exciting work ahead of us.
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Figure 1. Six different types of quarks are known to exist in nature. More or less all matter around us is made of the up (u)
and the down quark (u); for example two up quarks and one down quark form a proton. But there are heavier copies of these
two quarks: charm (c) and top (t) quarks, which have the same electric charge (+2/3) as the up quarks, and strange (s) and
bottom (b) quarks have the same electrical charge (-1/3) as the down quarks. The charm quark together with an anti-up quark
can form a bound state called D0. There are two ways in which D0 can decay into a pair of pions (consisting of up and down
quarks and their antiparticles): the so-called tree level decay (left) and the more complicated penguin decay (right).
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