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Abstract. In this article we consider solvable hypersurfaces of
the form N exp(RH) with induced metrics in the symmetric space
M = SL(3,C)/SU(3), where H a suitable unit length vector in
the subgroup A of the Iwasawa decomposition SL(3,C) = NAK.
Since M is rank 2, A is 2-dimensional and we can parametrize these
hypersurfaces via an angle α ∈ [−π/2, π/2] determining the direc-
tion of H. We show that one of the hypersurfaces (corresponding to
α = 0) is minimally embedded and isometric to the non-symmetric
7-dimensional Damek-Ricci space. We also provide an explicit for-
mula for the Ricci curvatures of these hypersurfaces and show that
all hypersurfaces for α ∈ [−π

2 , 0)∩ (0, π2 ] admit planes of both neg-
ative and positive sectional curvature. Moreover, the symmetric
space M admits a minimal foliation with all leaves isometric to
the non-symmetric 7-dimensional Damek-Ricci space.

1. Introduction

The purpose of this article is to study homogeneous hypersurfaces
in the 8-dimensional symmetric space SL(3,C)/SU(3). This rank two
symmetric space can be canonically identified with the solvable group
S = NA with left invariant metric, using the Iwasawa decomposition
SL(3,C) = NAK, K = SU(3). A specific orthonormal basis of the
associated two-dimensional Lie algebra a ⊂ TeS is given by

H0 =

1
2

0 0
0 0 0
0 0 −1

2

 , H1 =

 1
2
√
3

0 0

0 − 1√
3

0

0 0 1
2
√
3

 ∈ a.

Details are explained in Section 2 below. We have the following result:
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Theorem 1.1. Let S = NA be the symmetric space SL(3,C)/SU(3)
with left-invariant metric induced by the inner product

(1) 〈X1, X2〉s =
1

2
Re Tr

(
(X1 + X̄>1 )(X2 + X̄>2 )

)
on the Lie algebra s of S and isometrically embedded hypersurfaces
SH = N exp(RH), H = cos(α)H0 + sin(α)H1, α ∈ [−π/2, π/2].

Then SH is a simply connected constant mean curvature (CMC) hy-
persurface with mean curvature −4 sin(α) with respect to the unit nor-
mal vector TH = sin(α)H0−cos(α)H1 ∈ a. Moreover, SH0 is minimally
embedded in S and isometric to the 7-dimensional Damek-Ricci space.
In particular, SH0 is a harmonic manifold, and therefore Einstein, with
non-positive sectional curvature admitting planes of zero curvature.

Moreover, the following are equivalent:

(a) SH ⊂ S is minimally embedded;
(b) the Cheeger constant of SH is maximal,
(c) H = H0.

Remark 1. In the general case of an irreducible higher rank symmetric
space of non-compact type S = NA the constant mean curvature of
codimension one hypersurfaces NA′ ⊂ NA with a, a′ the Lie algebras
of A,A′, a′ = a	 ` and ` ⊂ a a linear line is given in [4, Prop. 3.1.(4)]
in terms of root space data. The existence of minimally embedded
hypersurfaces NA′ is stated in [4, Corollary 3.2.].

Damek-Ricci spaces are particularly important since they provide
counterexamples to the Lichnerowicz Conjecture. According to this
conjecture, all simply connected harmonic manifolds should be either
flat or rank one symmetric spaces. Harmonic manifolds are characer-
ized by the property that all harmonic functions (i.e., ∆f = 0) have the
mean value property, that is, the average of f over any geodesic sphere
agrees with the value of f at the center (see [24]). It is well known
that harmonic manifolds are Einstein (see [6]). In the compact case,
the Lichnerowicz Conjecture was settled affirmatively by Szabó [23]. It
was shown by Knieper [17] that all non-flat non-positively curved har-
monic manifolds are Gromov hyperbolic and have the Anosov prop-
erty. Damek-Ricci spaces are non-compact homogeneous harmonic
manifolds of non-positive curvature and cover all rank one symmet-
ric spaces except for the real hyperbolic spaces. It was shown by Heber
[12] that there are no other homogeneous harmonic manifolds than
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the ones mentioned above and it is not known whether there are non-
homogeneous harmonic examples. Dotti [11] provided the first com-
plete proof that Damek-Ricci spaces admit planes of vanishing curva-
ture if and only if they are non-symmetric. The smallest non-symmetric
Damek-Ricci space has dimension 7. In brief, the above theorem tells
us that we can recover this 7-dimensional non-symmetric Damek-Ricci
space as a minimal hypersurface of the specific rank two symmetric
space SL(3,C)/SU(3). While S remains a symmetric space and the
equivalences (a),(b),(c) in Theorem 1.1 remain true under rescaling of
the inner product (1) by any multiplicative constant, we like to men-
tion that the constant chosen in (1) is crucial that the hypersurface
SH0 has the structure of a Damek-Ricci space. For more information
about Damek-Ricci spaces and recent results on harmonic manifolds
see, e.g., [10] or the surveys [5, 22, 18].

Remark 2. There is an analogous result for homogeneous hypersur-
faces in SL(3,R)/SO(3). The corresponding subspaces SH are then
4-dimensional, simply connected CMC hypersurfaces with mean cur-
vature −2 sin(α) and SH0 is minimally embedded and isometric to the
complex hyperbolic plane CH2. Since irreducible symmetric spaces
do not admit totally geodesic hypersurfaces unless they have constant
curvature (see [15] or, more generally [3]), note that there is no totally
geodesic embedding of CH2 into SL(3,R)/SO(3).

As a consequence of Theorem 1.1 we obtain that SL(3,C)/SU(3)
has a natural minimal codimension one foliation with leaves isometric
to the 7-dimensional Damek-Ricci space:

Corollary 1.2. Let α ∈ [−π
2
, π
2
] and the flow {φsH : S → S}s∈R be

defined by
φsH(q) := q · exp(sTH)

with TH = sin(α)H0− cos(α)H1⊥TeSH . Then S admits a codimension
one foliation with leaves {φsH(SH)}s∈R. Moreover, the leaves of this
foliation are pairwise equidistant and isometric to SH .

In the particular case α = 0, all leaves of this foliation are mini-
mal and isometric to the Damek-Ricci space SH0, and φsH is volume
preserving both in S and as a map between the leaves.

Remark 3. It is generally true that in an irreducible higher rank sym-
metric space of non-compact type S = NA the leaves of a codimension
one foliation by NA′-orbits (with the same notation as in Remark 1)
are isometrically congruent (see [4, Prop. 3.1.(1)]).

Finally, we investigate curvature properties of the hypersurfaces SH .
To state the result, we need a suitable orthonormal basis of TeSH , given
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by V, iV,W, iW,Z0, iZ0, H with

V =

0 1 0
0 0 0
0 0 0

 , W =

0 0 0
0 0 1
0 0 0

 , Z0 =

0 0 1
0 0 0
0 0 0

 .

Theorem 1.3. Let X = aV + bW + cZ0 + tH ∈ TeSH with a, b, c ∈ C
and t ∈ R be a unit vector, that is |a|2 + |b|2 + |c|2 + t2 = 1. Then the
Ricci curvature of X is given by

RicSH (X) =

− 3 + 4 sin(α)
(

sin
(
α− π

3

)
|a|2 + sin

(
α +

π

3

)
|b|2 + sin(α)|c|2

)
.

In particular, the space SH has strictly negative Ricci curvature if
and only if α ∈ (−π

3
, π
3
). SH admits directions of vanishing Ricci

curvature for α = ±π
3

and directions of positive Ricci curvature for
α ∈ [−π

2
,−π

3
) ∩ (π

3
, π
2
]. In particular, SH is Einstein if and only if

α = 0.
With regards to sectional curvature, the hypersurfaces SH have al-

ways planes of positive and negative curvature unless α = 0. (α = 0
implies that SH is a non-positively curved Damek-Ricci space.)

The structure of this article is as follows: In Section 2 we introduce
the hypersurfaces SH , compute their second fundamental form and
Cheeger constants. Section 3 is devoted to the proof of Theorem 1.1
and Corollary 1.2. The curvature results presented in Theorem 1.3 are
proved in Section 4 using Maple computations. The Maple code can
be found in Appendix A.

Acknowledgement: This research was partially supported by the
program ”Research in Pairs” of the MFO in 2019 and the SFB/TR191
”Symplectic structures in geometry, algebra and dynamics”. The au-
thors are also grateful to Jens Heber to inform us about related results
in [13] and the anonymous referee for helpful comments on some other
relevant references.

2. Basic geometric properties of the hypersurfaces SH

2.1. The Riemannian manifolds S and SH. Henceforth, let G =
SL(3,C) and K = SU(3) and π : G → M = G/K, π(g) = gK be the
canonical projection with x0 = π(e).

We briefly recall the construction of a Riemannian metric which
makes M = G/K a symmetric space: A Cartan involution on g is
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given by θ : g→ g, θ(X) = −X̄>. The Killing form

B(X1, X2) = Tr(adX1 ◦ adX2) = 12 Re Tr(X1X2),

gives rise to the following inner product on g:

〈X1, X2〉g = −1

6
B(X1, θX2) = 2Re Tr(X1X̄

>
2 )(2)

= 2Re

(∑
i,j

(X1)ij(X2)ij

)
.

Since kerDπ(e) = k, the differential Dπ(e) provides a canonical iden-
tification of p and Tx0M , where

(3) g = p⊕ k, X 7→ 1

2
(X − θ(X)) +

1

2
(X + θ(X))

is the Cartan decomposition with p = {X ∈ g | θ(X) = −X} and
k = {X ∈ g | θ(X) = X}. The restriction of 〈·, ·〉g to p induces an
inner product on Tx0M . Left-translation induces a Riemannian metric
onM such thatM becomes a rank two symmetric space of non-compact
type.

Alternatively, we can view M = G/K as a solvable group S with left
invariant metric: the Iwasawa decomposition g = sl(3,C) = n ⊕ a ⊕ k
on the Lie algebra level is given by

n =


0 a c

0 0 b
0 0 0

∣∣∣∣∣ a, b, c ∈ C

 ,(4)

a =


t1 0 0

0 t2 0
0 0 t3

∣∣∣∣∣ t1, t2, t3 ∈ R, t1 + t2 + t3 = 0

 ,

k = su(3) = {X ∈ sl(3,C) | X = −X̄>}.

Let N,A ⊂ G be the Lie groups corresponding to n and a. Then the
restriction of π : G → M to the solvable group S = NA defines a
diffeomorphism π|S : S →M , s 7→ sK. The pull-back of the Riemann-
ian metric on M via this diffeomorphism equips S with a left-invariant
metric. This left-invariant metric induces an inner product 〈·, ·〉s on
the Lie algebra s = n⊕ a = TeS of S. Using (3) we have the following
identifications:

TeS = s→ Tx0M = g/k → p,

X 7→ X + k 7→ 1

2
(X − θ(X)) =

1

2
(X + X̄>),
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leading to the linear isometry φ : s → p, φ(X) = 1
2
(X + X̄>). Our

next aim is to calculate 〈·, ·〉s: Let X1 = Y1 +H,X2 = Y2 + H̃ ∈ s with
Y1, Y1 ∈ n and H, H̃ ∈ a. We have

〈X1, X2〉s = 〈φ(X1), φ(X2)〉g =
1

4
〈X1 + X̄>1 , X2 + X̄>2 〉g.

Note that this metric agrees with the one given in (1). Using (2), we
obtain a⊥n and n⊥n> with respect to 〈·, ·〉g and, therefore, we have

〈Y1 +H, Y2 + H̃〉s =
1

4
〈Y1 + Ȳ >1 + 2H,Y2 + Ȳ >2 + 2H̃〉g(5)

=
1

2
〈Y1, Y2〉g + 〈H, H̃〉g

= Re
(
Tr(Y1Ȳ

>
2 )
)

+ 2 Tr(HH̃).

In particular, we have a⊥n with respect to 〈·, ·〉s and the matrices

(6) H0 =

1
2

0 0
0 0 0
0 0 −1

2

 and H1 =

 1
2
√
3

0 0

0 − 1√
3

0

0 0 1
2
√
3


form an orthonormal basis of the 2-dimensional vector space a. Any
matrix in a of unit length can then be expressed as

(7) H = cos(α)H0 + sin(α)H1,

and we define the corresponding hypersurface by

SH = N exp(RH) ⊂ S = NA.

2.2. The second fundamental form of SH. Next we want to com-
pute the second fundamental form of SH ⊂ S explicitly. The vec-
tor TH = sin(α)H0 − cos(α)H1 ∈ s is a unit vector orthogonal to
TeSH = sH = n⊕RH with respect to 〈·, ·〉s. Its left invariant extension
along SH provides a global unit normal vector field of SH ⊂ S. Any
X ∈ sH can be written as X = aV + bW + cZ0 + tH with a, b, c ∈ C,
t ∈ R and

(8) V =

0 1 0
0 0 0
0 0 0

 , W =

0 0 0
0 0 1
0 0 0

 , Z0 =

0 0 1
0 0 0
0 0 0

 .

It is easy to see that V, iV,W, iW,Z0, iZ0, H, TH form an orthonormal
basis of s. Henceforth ∇S denotes the Levi-Civita connection of S.
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Proposition 2.1. Let H = cos(α)H0 + sin(α)H1 with H0, H1 given in
(6). Then the second fundamental form of SH is given by

∇S
aV+bW+cZ0+tH

TH =

a

(√
3

2
cosα− sinα

2

)
V + b

(
−
√

3

2
cosα− sinα

2

)
W − c (sinα)Z0.

Moreover SH is a CMC hypersurface in S with mean curvature

(9) M(α) = −4 sinα.

Remark 4. Let us now determine the angles α ∈ [−π
2
, π
2
] for which

the hypersurfaces SH are horospheres: The positive Weyl chamber in
a is given by (see [2, p. 243] for illustration)

a+ =


t1 0 0

0 t2 0
0 0 t3

∣∣∣∣∣ t1, t2, t3 ∈ R, t1 > t2 > t3

 ,

and all hypersurfaces SH with normal vector TH ∈ a+ are horospheres
(see [20, Lemma 1.2]). We have TH ∈ a+ if and only if α ∈ [−π

2
,−π

3
]∩

[π
3
, π
2
]. Note that TH ∈ a+ is a singular direction if and only if α = ±π

3
,

and TH ∈ a+ is the barycentric direction (a unit vector corresponding
to the sum of the positive roots) if and only if α = ±π

2
. The eigenvalues

of the second fundamental form of the hypersurface SH are given by

±
√
3
2

cosα− sinα
2
,− sin(α), 0. Therefore, the second fundamental form of

SH is indefinite for any α ∈ (−π
3
, π
3
). In particular, these hypersurfaces

cannot be horospheres, since horospheres in Hadamard manifolds have
semidefinite second fundamental forms (see e.g. [1] or [16]) .

Proof. Using the canonical identification of s with left invariant vector
fields on S and applying Koszul’s formula, we obtain

〈∇S
X1
X2, X3〉s =

1

2
(〈X1, [X3, X2]〉s + 〈X2, [X1, X3]〉s + 〈X3, [X1, X2]〉s)

for X1, X2, X3 ∈ s. This in particular implies,

(10) 〈∇S
X1
TH , X2〉s =

1

2
(〈X1, [X2, TH ]〉s + 〈X2, [X1, TH ]〉s) ,

since 〈TH , [X1, X2]〉s = 0 because of [X1, X2] ∈ sH . A straightforward
calculation shows

(11) [Eij, T ] = EijT − TEij = (tj − ti)Eij
with Eij a 3 × 3 matrix with all entries equals 0 except for one entry
equals 1 at position (i, j) and T a diagonal matrix with diagonal entries
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(t1, t2, t3). Since

TH =


sinα
2
− cosα

2
√
3

0 0

0 cosα√
3

0

0 0 − sinα
2
− cosα

2
√
3

 ,

this implies that

[aV + bW + cZ0 + tH, TH ] =

a

(
−1

2
sinα +

√
3

2
cosα

)
V+b

(
−1

2
sinα−

√
3

2
cosα

)
W−c(sinα)Z0.

Consequently,∇•TH has diagonal structure with respect to V, iV,W, iW,
Z0, iZ0, H, and we have

∇S
V TH = 〈∇S

V TH , V 〉sV = 〈V, [V, TH ]〉sV =

(
−1

2
sinα +

√
3

2
cosα

)
V,

and similarly for the other unit vectors. This finishes the proof of
Proposition 2.1. �

2.3. The Cheeger constant of SH. The Cheeger isoperimetric con-
stant h(M) of a complete non-compact Riemannian manifold M is
defined by

h(M) = inf
K⊂M

area(∂K)

vol(K)
,

where K ranges over all connected, open submanifolds of M with com-
pact closure and smooth boundary.

A formula for this constant was given in [21] for general solvable
groups with left invariant metric. Since SH is a solvable group, we
obtain from this formula

(12) h(SH) = max
X∈sH ,‖X‖s=1

Tr(adX),

where adX(X̃) = [X, X̃] is viewed as linear transformation on the 7-
dimensional real vector space sH spanned by V, iV,W, iW,Z0, iZ0, H.
This is the main ingredient of the proof of the following result:

Proposition 2.2. Let H = cos(α)H0 + sin(α)H1 with H0, H1 given in
(6). Then the Cheeger constant of SH is given by

h(SH) = 4 cosα.

In particular, S±H1 has a vanishing Cheeger constant.
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Proof. In view of (12) we only have to calculate Tr(adX) for X =
aV + bW + cZ0 + tH with |a|2 + |b|2 + |c|2 + t2 = 1 with a, b, c ∈ C and
t ∈ R. Using (11) we conclude for e ∈ {1, i} that

[H, eV ] =

(
cosα

2
+

√
3

2
sinα

)
eV,

[H, eW ] =

(
cosα

2
−
√

3

2
sinα

)
eW,

[H, eZ0] = (cosα)eZ0.

Note that the traces of ad eV, ad eW and ad eZ0 vanish since the matrix
representations of these operators have zero for each diagonal entry.
This implies that

h(SH) = max
X∈sH ,‖X‖s=1

Tr(adX) = Tr(adH) =

2

(
cosα

2
+

√
3

2
sinα

)
+ 2

(
cosα

2
−
√

3

2
sinα

)
+ 2 cosα = 4 cosα.

�

3. Proof of Theorem 1.1 and Corollary 1.2

We start with the proof of Theorem 1.1 in the Introduction:

Proof of Theorem 1.1. The solvable group SH0 with left invariant met-
ric is a Damek-Ricci space if the following properties of (sH0 , 〈·, ·〉s) are
satisfied:

(1) sH0 = n ⊕ RH0, n⊥H0 and H0 is a unit vector with respect to
〈·, ·〉s;

(2) n = v⊕z with [v, v] ⊂ z and [v, z], [z, z] = {0} (that is n is 2-step
nilpotent);

(3) v⊥z with respect to 〈·, ·〉s;
(4) let Z ∈ z; then the map JZ ∈ End(v), defined by

〈JZ(U1), U2〉s = 〈Z, [U1, U2]〉s for all U1, U2 ∈ v,

satisfies J2
Z = −‖Z‖2 idv;

(5) [H0, U ] = 1
2
U for all U ∈ v and [H0, Z] = Z for all Z ∈ z.

We note that a Lie algeba n satisfying properties (2), (3) and (4) is
called a Lie algebra of Heisenberg type.

Properties (1), (2), (3) and (5) are obviously satisfied by choosing
v = CV ⊕ CW and z = CZ0 since V, iV,W, iW,Z0, iZ0, H0 are an
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orthonormal basis of sH0 with respect to 〈·, ·〉s. For example, (2) follows
from [V,W ] = VW −WV = Z0 and (5) follows fromH0,

0 a c
0 0 b
0 0 0

 =

1

2

1 0 0
0 0 0
0 0 −1

0 a c
0 0 b
0 0 0

−1

2

0 a c
0 0 b
0 0 0

1 0 0
0 0 0
0 0 −1

 =

0 a
2

c
0 0 b

2
0 0 0

 .

To show (4), we define for Z = zZ0, z ∈ C,

JZ

0 a 0
0 0 b
0 0 0

 = z

0 −b̄ 0
0 0 ā
0 0 0

 .

Then we have〈
JZ0

0 a 0
0 0 b
0 0 0

 ,

0 c 0
0 0 d
0 0 0

〉
s

= Re(ad− bc) =

〈0 0 1
0 0 0
0 0 0

 ,

0 0 ad− bc
0 0 0
0 0 0

〉
s

=

〈
Z0,

0 a 0
0 0 b
0 0 0

 ,

0 c 0
0 0 d
0 0 0

〉
s

and

J2
Z0

0 a 0
0 0 b
0 0 0

 = JZ0

0 −b̄ 0
0 0 ā
0 0 0

 = −

0 a 0
0 0 b
0 0 0

 .

This shows that SH0 is the 7-dimensional Damek-Ricci space which
is, therefore, a harmonic manifold (see [10]). The space SH0 cannot be a
symmetric space since dimR z = 2 and the centres of symmetric Damek-
Ricci spaces must have dimension 1, 3 or 7. It was shown independently
by [7] and [9] that all Damek-Ricci spaces have non-positive sectional
curvature and by [11] that these spaces admit planes of zero curvature
if and only if they are non-symmetric.

Finally, the equivalences of (a), (b) and (c) follow immediately from
Propositions 2.1 and 2.2. �

Remark 5. In the case of the rank two symmetric space H2×H2 (where
Hk denotes the k-dimensional real hyperbolic space) a similar analysis
shows that SH0 is of constant negative curvature, that is, agrees with H3

up to scaling. Here the direction H0 in the flat a is characterized by the
fact that SH0 is minimally embedded in H2×H2. It would be interesting



CODIMENSION ONE FOLIATION BY DAMEK-RICCI SPACES 11

to investigate which of the corresponding hypersurfaces in rank two
symmetric spaces of non-compact type are harmonic manifolds.

Theorem 1.1 has the following consequence:

Corollary. Let α ∈ [−π
2
, π
2
] and the flow {φsH : S → S}s∈R be defined

by
φsH(q) := q · exp(sTH).

Then S admits a codimension one foliation with leaves {φsH(SH)}s∈R.
Moreover, the leaves of this foliation are pairwise equidistant and iso-
metric to SH .

In the particular case α = 0, all leaves of this foliation are mini-
mal and isometric to the Damek-Ricci space SH0, and φsH is volume
preserving both in S and as a map between the leaves.

Proof. By abuse of notation, we extend TH ∈ s = TeS to a global unit
vector field on S, again denoted by TH , orthogonal to SH and given by

TH(q) =
d

ds

∣∣∣
s=0

q exp(sTH).

Then φsH is the associated flow and its flow lines s 7→ φsH(q) are
geodesics in S through q. This implies that the leaves are equidistant.

Next we show that all leaves are isometric to SH : Let F s
H : S → S

be the isometry F s
H(q) = exp(sTH)q. Then we have for all q ∈ SH that

there exists q′ ∈ SH with

(13) φsH(q) = F s
H(q′),

and, therefore, φsH(SH) and F s
H(SH) coincide as sets and are isometric

to SH . Indeed, if

q =

1 x z
0 1 y
0 0 1

 exp(tH) ∈ SH

and

exp(sTH) =

eτ1 0 0
0 eτ2 0
0 0 eτ3

 ,

with suitable τ1, τ2, τ3 ∈ R, then (13) is satisfied if

q′ =

1 eτ2−τ1x eτ3−τ1z
0 1 eτ3−τ2y
0 0 1

 exp(tH) ∈ SH .

We know from Theorem 1.1 that SH0 is a Damek-Ricci space and
minimal in S. Since F s

H is an isometry mapping leaves to leaves, the
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mean curvature is preserved for all leaves. Finally, the volume distor-
tion of the flow φsH on both S and as a map between the leaves is given
by esM(α) with the mean curvature M(α) = −4 sin(α) given in (9).
Hence φsH is volume preserving for α = 0. �

4. Curvature considerations for the hypersurfaces SH

This section is devoted to the proof of Theorem 1.3 from the In-
troduction. Before we enter the proof we like to make the following
general remark.

Remark 6. The following result was shown in Heber [13, Theorem
4.18] (related to earlier work by Wolter [25]): Let s = a ⊕ n be a Lie
algebra of Iwasawa type with inner product Q which is Einstein and
HQ ∈ s be the vector defined by Q(HQ, X) = Tr adX for all X ∈ s.
Then the metric subalgebra (a′⊕n, Q) with non-trivial subspace a′ ⊂ a
is Einstein if and only if HQ ∈ a′. In particular, (RHQ ⊕ n, Q) is
Einstein.

Note that our Lie algebra (s, 〈·, ·〉s) is Einstein since its corresponding
Lie group with left invariant metric is a symmetric space and we can
apply this result with Q = 〈·, ·〉s. A straightforward calculation yields
then HQ = 4·H0 and Heber’s result agrees with our result that amongst
all hypersurfaces SH with H = cos(α)H0 + sin(α)H1 only SH0 is an
Einstein manifold.

It would be interesting to investigate which of the homogeneous Ein-
stein manifolds appearing in the more general setting of Heber are
Damek-Ricci spaces.

While in Heber’s setting, only subalgebras (a′⊕n, Q) are Einstein in
the case Hq ∈ a′, all subalgebras of the form (a′⊕n, Q) are Ricci solitons
(see [8, Prop. 3.7]; this follows from an algebraic characterization of
Ricci solitons for solvmanifolds given in [19, Theorem 4.8]). The notion
of a Ricci soliton is a generalization of the Einstein property, namely,
a Riemannian manifold (M, g) is called a Ricci soliton if there exists
a constant c and a vector field X such that RicM = cg + LXg, where
LX denotes the Lie derivative with respect to X. As a consequence,
all our hypersurfaces SH are Ricci solitons.

Proof of Theorem 1.3. Let RS be the Riemannian curvature tensor of
S given by

RS(X1, X2)X3 = ∇S
X1
∇S
X2
X3 −∇S

X2
∇S
X1
X3 −∇S

[X1,X2]
X3

and RSH be the corresponding curvature tensor of SH .
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The derivation of the expression (16) is based on the Gauss equation:

(14) 〈RSH (X1, X)X,X1〉s = 〈RS(X1, X)X,X1〉s+

〈∇S
X1
TH , X1〉s〈∇S

XTH , X〉s −
(
〈∇S

X1
TH , X〉s

)2
,

where X1 ∈ sH = n⊕RH = TeSH and TH = sin(α)H0− cos(α)H1 ∈ s.
The ingredients in (14) are explicitly calculated using

〈RS(X1, X2)X2, X1〉s = −〈[[φ(X1), φ(X2)], φ(X2)], φ(X1)〉g

from the theory of symmetric spaces (see, e.g., [14, Theorem IV.4.2])
and the following consequence of Koszul’s formula (see (10)):

〈∇S
X1
TH , X2〉s =

1

2
(〈Φ(X1),Φ([X2, TH ])〉g + 〈Φ(X2),Φ([X1, TH ])〉g) .

The Ricci curvature is then given by

(15) RicSH (X) = 〈RSH (V,X)X, V 〉s + 〈RSH (iV,X)X, iV 〉s+
〈RSH (W,X)X,W 〉s + 〈RSH (iW,X)X, iW 〉s+

〈RSH (Z0, X)X,Z0〉s + 〈RSH (iZ0, X)X, iZ0〉s + 〈RSH (H,X)X,H〉s.

The calculation of (15) in the case X = aV + bW + CZ0 + tH with
|a|2 + |b|2 + |c|2 + t2 = 1 was done with Maple (see Appendix A) with
the following result:

RicSH (X) = −2
√

3 sin(α) cos(α)(|a|2 − |b|2)
− 2(|a|2 + |b|2 + 2|c|2) cos2(α)− 3t2 − |a|2 − |b|2 + |c|2,

which simplifies to

(16) RicSH (X) =

− 3 + 4 sin(α)
(

sin
(
α− π

3

)
|a|2 + sin

(
α +

π

3

)
|b|2 + sin(α)|c|2

)
,

using |a|2 + |b|2 + |c|2 = 1− t2.
In order to find the maximum of (16) for a given value of α ∈ [−π

2
, π
2
],

it is sufficient to assume that a, b, c are real with a2 + b2 + c2 ≤ 1. Let

fα(a, b, c) = 4 sin(α)
(

sin
(
α− π

3

)
|a|2 + sin

(
α +

π

3

)
|b|2 + sin(α)|c|2

)
.

Since fα(a, b, c) is a homogeneous polynomial of degree 2, we have

max
a2+b2+c2≤1

fα(a, b, c) = max
a2+b2+c2=1

fα(a, b, c).
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When a2 + b2 + c2 = 1, it is obvious that the maximal value of fα is
equal to

4 sin(α) max
{

sin
(
α− π

3

)
, sin

(
α +

π

3

)
, sin(α)

}
,

and we obtain

−3+ max
a2+b2+c2=1

fα(a, b, c) =

{
4 sin(|α|) sin(|α|+ π

3
)− 3 if 0 ≤ |α| ≤ π

3
;

4 sin2(α)− 3 if π
3
< |α| ≤ π

2
.

This means that the maximum is strictly monotone in |α| and vanishes
at |α| = π

3
, which implies the statements about the Ricci curvature

signs.
Finally, we have f0(a, b, c) = −3 and SH is Einstein for α = 0. For

|α| ∈ (0, π
2
], we have fα(0, 0, c) = 4c2 sin2(α)− 3 which is non-constant

since c ∈ [−1, 1]. This implies that SH is not Einstein in this case.
Concerning sectional curvature, we consider the plane σ ⊂ sH spanned

by the orthonormal vectors

X1 =

√
2

3
W +

1√
3
Z0 and X2 = −

√
2

3
iW +

1√
3
iZ0.

Using (14) we obtain again with the help of Maple (see Appendix A)

KSH (σ) = 〈RSH (X1, X2)X2, X1〉s =
4

3
√

3
sin(α) cos(α) +

1

9
sin(α)2.

This expression vanishes only if α = 0 and is strictly positive for any
α ∈ (0, π

2
]. Similarly, if we choose the plane σ ⊂ sH spanned by the

orthonormal vectors

X1 =

√
2

3
V +

1√
3
Z0 and X2 = −

√
2

3
iV +

1√
3
iZ0,

we obtain (see Appendix A again)

KSH (σ) = − 4

3
√

3
sin(α) cos(α) +

1

9
sin(α)2,

which is strictly positive for any α ∈ [−π
2
, 0).

Moreover, since RicSH (H) = −3 for all α ∈ [−π
2
, π
2
], there are also

planes of strictly negative curvature. �

Appendix A. Maple Calculations

In this appendix, we discuss the Maple code for the calculation of
Ricci curvature of hypersurface SH within SL(3, C)/SU(3) and the
existence of planes with positive sectional curvatures.
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The following lines guarantee that Maple treats α and t as real vari-
ables:

> with(LinearAlgebra):

> assume(alpha, ’real’): assume(t, ’real’):

Next, we define the map φ : s→ p and the Lie bracket [·, ·] (in Maple
denoted by LB(·, ·)):

> Phi := X -> (1/2)*X+(1/2)*conjugate(Transpose(X)):

> LB := (X1, X2) -> X1.X2-X2.X1:

Now, we define the inner product 〈·, ·〉g (in Maple denoted by G(·, ·))
and the unit vectors H0, H1 and H = cos(α)H0 + sin(α)H1, TH =
sin(α)H0 − cos(α)H1, V,W,Z0 in the tangent space sH = TeSH of
the hypersurface SH :

> G := (X1, X2) -> 2*Trace(X1.conjugate(Transpose(X2))):

> H0 := Matrix([[1/2, 0, 0], [0, 0, 0], [0, 0, -1/2]]):
> H1 := Matrix([[(1/6)*3^(1/2), 0, 0],
[0, -(1/3)*3^(1/2), 0], [0, 0, (1/6)*3^(1/2)]]):

> H := cos(alpha)*H0+sin(alpha)*H1:

> T_H := sin(alpha)*H0-cos(alpha)*H1:

> V := Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]):

> W := Matrix([[0, 0, 0], [0, 0, 1], [0, 0, 0]]):

> Z0 := Matrix([[0, 0, 1], [0, 0, 0], [0, 0, 0]]):

The Riemannian curvature tensor 〈RS(X1, X2)X2, X1〉g in the am-
bient space S (in Maple denoted by RS(X1, X2)), the second funda-
mental form: 〈∇S

X1
TH , X2〉g (in Maple denoted by SecFF (X1, X2)),

the curvature tensor 〈RSH (X1, X2)X2, X1〉g in the hypersurface SH (in
Maple denoted by RSH(X1, X2) and the Ricci curvature RicSH (X) (in
Maple denoted by RicSH(X) are introduced via the following lines:

> R_S := (X1, X2) -> -G(LB(LB(Phi(X1),Phi(X2)),
Phi(X2)), Phi(X1)):
> SecFF := (X1, X2) -> (1/2)*G(Phi(X1),Phi(LB(X2,T_H)))
+ (1/2)*G(Phi(X2),Phi(LB(X1,T_H))):
> R_SH := (X1, X2) -> R_S(X1, X2) + SecFF(X1, X1)*
SecFF(X2, X2) - (SecFF(X1, X2))^2:
> Ric_SH := X -> R_SH(V, X) + R_SH(I*V, X) + R_SH(W, X)
+ R_SH(I*W, X) + R_SH(Z0, X) + R_SH(I*Z0, X) + R_SH(H, X):
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The relevant results are now obtained via the following lines:

> simplify(expand(Ric_SH(a*V+b*W+c*Z0+t*H)));

− 2 ∗ cos(α) ∗ sin(α) ∗ (|a| − |b|) ∗ (|a|+ |b|) ∗
√

3+

(−2 ∗ |a|2 − 2 ∗ |b|2 − 4 ∗ |c|2) ∗ cos(α)2 − 3 ∗ t2 − |a|2 − |b|2 + |c|2

> simplify(expand(R_SH((2/3)^(1/2)*W+(1/3)*3^(1/2)*Z0,
-(2/3)^(1/2)*I*W+(1/3)*3^(1/2)*I*Z0)));

(4/9) ∗ sin(α) ∗ cos(α) ∗
√

3 + (1/9) ∗ sin(α)2

> simplify(expand(R_SH((2/3)^(1/2)*V+(1/3)*3^(1/2)*Z0,
-(2/3)^(1/2)*I*V+(1/3)*3^(1/2)*I*Z0)));

−(4/9) ∗ sin(α) ∗ cos(α) ∗
√

3 + (1/9) ∗ sin(α)2
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[23] Z. I. Szabó, The Lichnerowicz conjecture on harmonic manifolds, J. Differential
Geom. 31(1) (1990), 1–28.

[24] T. J. Willmore: Mean value theorems in harmonic Riemannian spaces, J. Lon-
don Math. Soc. 25 (1950), 54–57.

[25] T. H. Wolter, Einstein metrics on solvable groups, Math. Z. 206(3) (1991),
457–471.

Dept. of Mathematics, Ruhr University Bochum, 44780 Bochum, Ger-
many

Dept. of Mathematical Sciences, Durham University, Durham DH1
3LE, UK

Dept. of Mathematical Sciences, Durham University, Durham DH1
3LE, UK

Email address: gerhard.knieper@rub.de
Email address: j.r.parker@durham.ac.uk
Email address: norbert.peyerimhoff@durham.ac.uk


