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Abstract
Despite the utility of theHill numbers,measuring diversity within complex systems and complex
datasets, particularly regarding parts of a distribution to thewhole—that is, different portions of
diversity types to the entire systemor dataset—is a challenging issue. In this paper, we attempt to relate
the diversity of a part (or parts) of a distribution to the diversity of thewhole.We derive this
relationship for theHill numbers Dq , and use these results to further examine the effect of a freely
varying type on the diversity of thewhole distribution.

1.Measuring diversity

As identified by Sornette (Sornette 2009) and others (Newman 2005, Barabasi 2009), probability distributions
are the ‘first quantitative characteristics’ of both complex systems and complex datasets (Sornette 2009, p. 2). In
terms of diversity (bothwith regard to species richness and evenness), thismakes themhighly useful, as
measurements on awide range of complex systems and complex datasets arewell approximated by their shape,
particularly as the sample size and its diversity  ¥n . For example, within the complexity sciences, the
literature onmeasuring diversity is vast and includes a number of differentmathematical formulations—Gini-
Simpson index, Shannon entropy,Hill numbers— (Jost 2006, Leinster andCobbold 2012, Chao and Jost 2015,
Hsieh et al 2016, Pavoine andMarcon 2016, Jost 2018). TheHill numbers andRényi entropies are also important
measures used to derive quantumuncertainty relations in quantum theory and also themaximal entropy
principle in statistical inference (see Jizba et al 2015, Jizba andKorbel 2018 and references therein).

Across thesemeasures, theHill numbers Dq provide a highly useful way tomeasure the diversity of a
distribution that computes the number of equivalent equiprobable types for a uniformdistribution that
maintains the same level of entropy (Rényi entropy to be precise) (macArthur 1965,Hill 1973, Peet 1974,
Jost 2006, Gaggiotti et al 2018, Jost 2018). The parameter q favours the types with lower frequencies if 0<q<1
and the types with higher frequencies for q>1. For q=1, D1 weights each type proportional to their relative
frequency of occurrence, and boils down to eHwhereH is the Shannon entropy of the distribution.

Still, despite the utility of theHill numbers,measuring diversity within complex systems and complex
datasets, particularly regarding parts of a distribution to thewhole—that is, different portions of diversity types
to the entire systemor dataset—is a challenging issue. In this paper, we attempt to relate the diversity of a part (or
parts) of a distribution to the diversity of thewhole.We derive this relationship for theHill numbers Dq , and use
these results to further examine the effect of a freely varying type on the diversity of thewhole distribution.

Our interest in this issue is based on a series of papers we havewritten on diversity in complex systems and
complex datasets, inwhichwe have introduced amodification of D1 called case-based entropy Cc tomore
effectivelymeasure the true diversity of some dataset of study, including the restriction of diversity within
complex systems (Rajaram andCastellani 2012, 2014). As ameasure,Cc is based on amodification of the
Shannon-Wiener entropyH; and is inspired by Jost’s paper onEntropy andDiversity, (Jost 2006), inwhich he
states that: ‘In physics, economics, information theory, and other sciences, the distinction between the entropy
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of a system and the effective number of elements of a system is fundamental. It is this latter number, not the
entropy, that is at the core of the concept of diversity in biology’ (p. 363).

To our knowledge such an approach, relative to the probability distributions of complex systems or complex
datasets in general (particularly big data), has not been derived or explored before. As such, for us, Jost’s quote—
and, in turn, our development of Shannon-Wiener entropyH intoCc—provides one potentially useful way for
advancing the statisticalmeasurement of diversity within complex systems in general. In addition, we anticipate
the use of our results in furthering our development of case-based entropy and deriving newproperties of
the same.

Remark 1.1.Wenote that the choice of q actually encodes the kind of correlation that exists between the parts of
Pi of the distribution (Jizba andKorbel 2018). =q 1means that the parts are independent and the strong system
independence condition is satisfied i.e., disjoint parts are independent. Other choices of q will correspond to a sub
or super exponential relationship between the number of distinguishable states and distinguishable sub-systems,
as found in strongly correlated systems. So inherently, the choice of q actually chooses the kind of correlations
that the partitions Pi have, and it is with that caveat that we endeavor to establish the relationship between
diversity of the parts to thewhole.

1.1. Purpose of current study
In terms of the current study, we consider a general probability distributionwith a randomvariableX as shown
in table 1 (signifying different types or categories), where xi denotes the i−th type, with probability pi and
frequency fi.We ask the following question: ifPi denotes a partition of the indices {1,K,K} and Dq

Pi
represents

the diversity of that partition, what is the relationship between Dq
Pi
and the diversity of allK types given by Dq

K ?
And in particular, howdoes Dq

K change if the probability of a single type pK (say theK-th type) varies from0 to 1.
In otherwords, we are interested in the functional relationship of D pq

K K( ) as pK varies from0 to 1.
These results also address a key aspect of diversity and its relationshipwith the probability (or relative

frequency) of the free type; namely, they show that as pK increases, there exists an optimal level of frequency pK
ˆ

so that themaximal diversity, which is equal to onemore than the diversity of the known types i.e., +-D 1q
K 1 , is

attained, and the diversity starts to decrease for all probabilities < <p p 1K K
ˆ . Furthermore, there exists a

frequency pK
˜ so that = -D p Dq

K K
q

K 1( ˜ ) . In other words, when the probability of theK-th type equals pK
˜ , the

diversity of allK types is equal to the diversity of theK−1 types. And, in some sense, at =p pK K
˜ , it is as though

theK-th type does not appear to exist. Also, for all probabilities < <p p 1K K
˜ the diversity starts decreasing and

when pK=1, theK-th type dominates entirely leading to a total diversity of 1 i.e. = D plim 1p
q

K1K
( ) .

We have organized the paper as follows. In section 2, we give a brief introduction to the idea ofmeasurement
of diversity. In section 3, we prove the twomain theorems in the paper for DK

1 and ¹D q, 1q
K respectively. In

section 4, we use the results from section 3 to investigate the function D pq
K K( ). Andwe finally concludewith a

summary in section 5. At the outset, wemention that superscripts on the left are labels for diversities
distinguishing the choices of q amongstHill numbers.We attach an appendix to clarify some of the notation
used, in addition to explaining it in the paper as well.

2. A formal introduction to diversity

Diversity, as ameasure, counts the ‘richness’ (number of types) of a distribution in relation to the ‘evenness’
(equal probability of occurrence) of its diversity types (MacArthur 1965,Hill 1973, Peet 1974, Jost 2006, Rajaram
andCastellani 2012, 2014). The intuition behind this definition is that if all of the types in the distribution occur

Table 1.General datasetwith
complexity types xi eachhaving a
probabilitypi and a frequency fi.

X P F

x1 p1 f1
x2 p2 f2
x3 p3 f3
M M M
xJ pJ fJ
M M M
xK pK fK
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with the same probability, then diversity should simply be equal to the number of typesK; and any deviation
fromuniformity in probabilities will always lead to a lower value of diversity.

Definition 2.1.Given an ordered set of types numbered as Îi N and their corresponding probabilities pi, the
diversity of the entire distribution Dq

K for some complex systemor dataset is defined as the number of
equiprobable types needed to yield the same value of entropy Hq .

Shannon entropy is defined as below:

å= -
=

H p pln 1K
l

K

l l
1

1

( ) ( )

Rényi entropy is defined as below:

å=
- =

H
q

p
1

1
ln . 2q

K
l

K

l
q

1

⎛
⎝⎜

⎞
⎠⎟ ( )

It was shown (MacArthur 1965,Hill 1973, Peet 1974, Jost 2006, Rajaram andCastellani 2012, 2014) that
definition 2.1 implies that the total diversity Dq

K is given by:

= = P=D e
p

1
, 3K

H
l
K

l
p

1
1

K

l

1 ( )

and

å= = ¹
=

-

D e p q, 1. 4q
K

H

i

K

i
q

1

q
K

q
1

1⎛
⎝⎜

⎞
⎠⎟ ( )

Furthermore, we denote the diversity of any partition of indices of types in the following form = ¼P i1, ,i1, { }{ }
as Dq

i1,{ }. The partial diversity for such partitionPi can bewritten as follows:

å= P = ¹=
=

-

D
p

D p q
1

; , 1, 5i l
i

l i
p

q
i

l

i

l i
q1

1, 1
1,

1,
1

1,
l i

q

1,

1
1⎛

⎝⎜
⎞
⎠⎟( )

( ) ( ){ }
{ }

{ } { }
{ }

where = =
å å= =

pl i
p

p

f

f1,
l

k
i

k

l

k
i

k1 1
{ } are themarginal probabilities.We note that equations (3)–(5) can be rewritten

in terms of the frequencies fi as below:

=
å

P

=
å



=

=

=

=
å = å =

D
f

f

D
f

f

; , 6K
l
K

l

l
K

l

i
l
i

l

l
i

l

1 1

1

1
1,

1

1

f l

l
K f l

f l

l
i f l1 1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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=
å

å
=

å

å

=

=

=

=

-

-

-

-

D
f

f
D

f

f
; . 7q

K
l
K

l
q

l
K

l

q
i

l
i

l
q

l
i

l

1

1

1,
1

1

q

q
q

q

q
q

1
1

1

1
1

1

( )
( )

( )
( )

( ){ }

For an arbitrary disjoint partitionPiwith indices not necessarily in order (wenote that P i1,{ }has indices in order
from1 to i for the types), the partial diversities in equation (5) can be rewritten as follows, with DPi

denoting the
diversity of the partitionPi:

å= P = ¹Î
Î

-

D
p

D p q
1

; , 1, 8P l P
lP

p
q

P
l P

lP
q1

i i

i
l Pi

i

i

i

q
1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )

where = =
å åÎ Î

pl P
p

p

f

fi

l

k Pi k

l

k Pi k

. Consequently the partial diversities in terms of frequencies in equations (6) and

(7) can also be rewrittenwith arbitrary partitions with appropriate notation as follows:

=
å



Î

Î
å Î

D
f

f

, 9P
l P l

l P l

1
i

i

i

f l

l Pi
f l

⎜ ⎟⎛
⎝

⎞
⎠

( )
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=
å

å

Î

Î

-

-

D
f

f
. 10q

P
l P l

q

l P l

i

i

q

i

q
q

1
1

1

( )
( )

( )

3. Parts of the diversity distribution to thewhole

Theorem3.1.Given a probability distribution similar to table 1, the diversity of the entire distribution Dq
K for some

complex system or dataset, and the diversities of disjoint parts Dq
Pi
and their respective cumulative probabilities cPi

are related as follows:

=
Î

D
D

c
, 11K

P

P

P

c
1

1

i

i

i

Pi⎛
⎝⎜

⎞
⎠⎟ ( )

and

å=
Î

-
-

D c D 12q
K

P P
P
q q

P
q1

i

i i

q
1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )( )

Proof 3.1.

• The case =q 1: Let usfirst look at the pooling ofm disjoint distributions (i.e., none of the types repeat)with
total frequencies equaling N N N, ,.., m1 2 respectively (i.e., = åN fi i for each distribution) and diversities
D D D, ,.., m

1
1

1
2

1 respectively. Let us consider a newdistributionwhich pools thesem distributions with total
frequency = å =N Np l

m
l1 . Let Dp

1 denote the diversity of the pooled distribution. Then, each of thosem

individual distributions are equivalent to a uniformdistribution eachwith frequency N

D
l

l
1 for all the types

within them.Wehave the following from equation (6):

= =



=





=- =

=

=

=
=

å =

D N e
N D

N

D D

p
,p p

p l
m

l

l
m

l

l
m

l

l
m N

N

l

m
l

l

p

1 1
1

1

1
1

1
1

1l
m Nl

Nl
Dl

Np

Nl
Np

Nl
Np

Nl
Np

l

p

Nl
Np

l1 ln
1 ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( ) ( )

where =pl
N

N
l

p
are the probabilities of occurence of each of the individual distributions assuming they are

equally likely. Now, thinking of a given distribution as a pooling of its disjoint parts with indices in Î Pi —

however, wemaywant to divide it—and changing the notation for the part Pi as the part l from above, we have
that =D Dl P

1 1
i
. The probability of the part of the distribution corresponding to indices in Î Pi will then be

= å =Îp p cl r P r Pi i
, the sumof all the probabilities of the individual types comprising the partPi. Then the

above equation’s last step can be rewritten using the newnotation to obtain equation (11).

• The cases ¹q 1: The idea of the proof is the same i.e., start with poolingm disjoint distributions where the
Dl

1 ʼs are replaced nowby Dq
lʼs and so on.However the calculation from equation (7) for the pooling is

different and as follows:

å å=
å

= ==
-

=

-

=

-

-

- -

D
N D

N

N

N
D p D ,q

p
l
m

l
q q

l
q

p l

m
l

p

q

q
l

q

l

m

l
q q

l
q1

1

1

1

1

1
q

q

q q

1

1
1

1
1⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

( )( )

( )
( ) ( ) ( )( ) ( )

and the result follows by the same renaming convention i.e. Pi as the part l as in the previous q=1 case.

Remark 3.1. If we consider each part Pi in the derivation of the above theorem to be exactly one type i.e.,
= " = ¼P i i K1, ,i { } , then = " = ¼ Î ¥D i K q1 1, , , 0,q

Pi
[ ) and equation (11) reduces to equation (3),

and equation (12) reduces to 4.

Remark 3.2.Wecan restrict ourselves to a portion of the distribution starting from =l 1 to say =l k. Then
theorem3.1 is true for the restriction for any sub-partition k of such a restriction. In other words, the result is
true for a part of part of a distribution and for all nested sub-parts. In this case the probabilities will have to be re-
normalised as =p pl l Pk

and =c cl l Pk
, i.e., all probabilities and cumulative probabilities should be divided by the

sumof all probabilities in the partition Pk. So this result is self-similar in nature.

Remark 3.3 (Example). Let us consider the following probability distribution in table 2: hereK=5. Let us
consider the partition = =P P1, 2 , 3, 41 2{ } { }andP3={5}.We can compute = =D D1.417,P P

1 1
1 2

=D1.755, 1,P
1

3
and =D 3.7471

5 .We can also compute the following: = =c c,P P
9

16

1

41 2
and =cP

3

163
. The

4
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following can be easily checked numerically:

=D
D

c

D

c

D

c
.P

P

c
P

P

c
P

P

c
1

5

1 1 1P P P

1

1

1
2

2

2
3

3

3⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟· ·

Consequently if any three of D D D D, , ,P P P
1

5
1 1 1

1 2 3
and the fourth is unknown (assuming c c c c, , ,P P P P1 2 3 4

are
known), the fourth diversity (or partial diversity) can be computed.
Since entropy is the natural log of diversity, and diversity is the exponential of entropy, any result related to
diversity is also a result related to entropy and vice-versa.Wefinish this section by stating a corollary of theorem
3.1which relates the entropy of parts of a distribution to the total entropy.

Corollary 3.1.Given a probability distribution similar to table 1, the entropy of the entire distribution Hq
K for some

complex system or dataset, and the entropies of disjoint parts Hq
Pi
and their respective cumulative probabilities cPi

are
related as follows:

å= -
Î

H c H cln , 13K
P

P
p

P P
1

i

i i i( ( ( ))) ( )

and

å=
- Î

-H
q

c e
1

1
ln . 14q

K
P P

P
q H q1

i

i

q
Pi

⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟( ) ( )·( )

Proof 3.2.The proof follows by taking natural logarithmof equations (11) and (12) respectively.

4.Diversity and the probability of the free type

As the readermay recall, our results also address a key aspect of diversity and its relationshipwith the probability
(or relative frequency) of the free type. To demonstrate, we apply theorem3.1 to investigate the effect of
changing the probability of the last typeK on the total diversity of Dq

K . Changing the probability pKwillmean
re-normalizing the probabilities of the remaining -K 1 types tomake the total probability=1.Wenote that,
equivalently, we could simply rewrite all formulas in terms of actual frequencies and change the frequency fK of
theK-th type. Using probabilities, however, will allow us to draw graphs between 0 and 1which is a bitmore
convenient (and also visually useful for investigation) to compare the variations for different choices of q.

We state a corollary to theorem3.1which can be easily proved by choosing = ¼ -P K1, , 11 { ( )}and
P2={K}.

Corollary 4.1.Given a probability distribution like in table 1, the diversity of the first -K 1( ) types -Dq
K 1, the

diversity of the whole distribution Dq
K and the probability of the K -th type pK are related as follows:

=
-

-
-

D
D

p p1

1
, 15K

K

K

p

K

p

1
1

1
1 K K⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

and

= - +-
-

-D D p p1 . 16q
K

q
K

q
K

q
K
q

1
1

q
1

1( ( ) ) ( )( )

Proof 4.1.The proof follows by applying theorem3.1 to the partition = ¼ -P K1, , 11 { ( )}and =P K2 { }.

Table 2.Example dataset for
remark 3.3with complexity
types xi eachhaving a
probabilitypi and a frequency fi.

X P

x1
1

16

x2
1

2

x3
3

16

x4
1

16

x5
3

16
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Remark 4.1. It is to be noted that even though equations (15) and (16) show the explicit relationship between
Dq

K and pK for all Î -q D0, 1 , q
K 1[ ] is still completely independent of pK . This is becausewhile computing

marginal probabilities -pl K1, 1{ ( )} (even if we choose to use the already computed probabilities pl K1,{ }!) the
dependence on pK cancels out.

=
å

=
å

=
å

-
=
-

å

=
-

å =
-

=

=

p
p

p

p

p
.l K

l K

k
K

k K

p

p

l
K p

p

l

k
K

k
1, 1

1,

1
1

1, 1
1

1
1

l

k
K

k

l

k
K

k

1

1

( )
{ ( )}

{ }

{ }

Equations (15) and (16) give us a direct relationship between the probability of theK-th type and the total
diversity. For the specific choice ofK=6 and =D 5q

5 , we plot the function D pq
K K( ) for various choices of q.

We note that the choice ofK and -Dq
K 1has no bearing on the shape of the functional relationships that we are

discussing in this section.

Wemake the following observations from the graph‘infigure 1’:

(1) Maximum: Diversity is maximized for all choices of q when =
+-

pK D

1

1q
K 1

ˆ
( )

and the maximum value of

diversity is equal to +-D 1q
K 1 i.e., theK-th type is counted as 1 atmaximum.Wenote that this can be

proved separately byCalculus based techniques. (See theoremA.1 in the appendix).

(2) Start: When pK=0, as expected, the diversity satisfieds = -D D0q
K

q
K 1( ) as expected i.e., in the absence of

theK-th type, the diversity is simply equal to the diversity of the remaining -K 1 types. This is also
equivalent to the Shannon-Kinchin axiom2 (Jizba andKorbel 2019).

(3) Point of diminishing return: We note that there exists a probability < <
+-

p 1
D K

1

1q
K 1

˜
( )

where

= -D p Dq
K K

q
K 1( ˜ ) i.e., there exists a probability of theK-th typewhere the total diversity ofK-types is equal

to the diversity ofK−1 types. So in a sense, at =p pK K
˜ , it is as though theK-th type does not add to the

total diversity at all. For all probabilities < <p p 1K K
˜ , the diversity starts to decrease to a value less than the

diversity of theK−1 types. Hence, for >p pK K
˜ the addition of theK-th type actually starts to decrease the

total diversity, which justifies our terminology that =p pK K
˜ is the point of diminishing returns. Another

way to state this is to say that theK-th type starts to dominate the total diversity for >p pK K
˜ . There is no

explicit analytical form for pK
˜ , as it is the solution of an implicit nonlinear equation.However, its existence

can be proved usingCalculus based techniques. (See corollary A.1 in the Appendix)

Figure 1.Graph of functional relationship betwen the probability of theK-th typePK and the diversity ofK-types Dq
K .
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(4) Variation of point of diminishing return: As q increases, the point of diminishing return pK
˜ gets

monotonically smaller.

(5) Asymptotic behavior at as p 1K : As p 1K , the K-th type completely dominates and the diversity
satisfies D 1q

K i.e., it is as though the previousK−1 types do not even exist! This is also equivalent to
the Shannon-Kinchin axiom2 (Jizba andKorbel 2019).

5. Conclusion

In this paper, relative to the distribution of diversity in complex systems and datasets, we have derived an explicit
statistical relationship between the diversity of part of a distribution and thewhole. Relative to ourfindings, the
following are our conclusions:

(1) Main result: The relationship in theorem 3.1 in equations (11) and (12) provide an explicit functional
relationship between the diversity of a partitionPi of a distribution (given by Dq

Pi
and the total diversity Dq

K

of theK types. To our knowledge this is the first time such a relationship has been derived using this
approach.

(2) At the bottom of the hierarchy, if we consider each type as a part itself, then we can recover the original
formulas given by 3 and 4.

(3) Self-similar nature:The relationship between the diversity of parts to the whole is self-similar in nature i.e.,
the same relationship exists between a part of the distribution and its own parts as well, as explained in
remark 3.2.

(4) Entropy of parts: The relationship between the diversity of parts to the whole leads to a similar fractal
relationship between entropy of parts and thewhole as seen in corollary 3.1.

(5) Usefulness: Themain result in the paper (Theorem 11) can be used to explore the relationship between the
probability of occurrence of a part of a distribution and the diversity of thewhole distribution for a variety of
complex system and datasets. As an example, we have shown how it can be used to explore the dependence
of the total diversity Dq

K ofK types on the probability of theK-th type and found some interesting
revelations along theway such as the point of diminishing returns. Complexity is all about relationships (or
lack thereof) between parts andwhole. Theorem 3.1, corollary 3.1 and corollary 4.1 explicitly relate the
diversity (or entropy) of parts of a distribution to the diversity of the entire distribution. This is important
because it allows us to directly compute the change in the diversity of the entire distribution if the diversity
of the parts change due to complex internalmechanisms.

(6) Future work: In our future work we will try to use the main result in this paper to explore the relationship
between case-based entropy of a given distribution and its shape.We believe this will be a useful step
towards using case-based entropy as a tool to further explore the regions of the distribution that contribute
to the inequality of diversity. For example, in a variety of probability distributions it could prove useful to
pinpoint and quantify the contribution of parts of a distribution to the overall diversity.

AppendixA. Proof of graph properties

TheoremA.1. D pq
K K( ) attains amaximumat =

+-
pK D

1

1q
K 1

ˆ and themaximumdiversity is given

by = +-D p D 1q
K K

q
K 1( ˆ ) .

Proof A.1.We show that ¢ =D p 0q
K K( ˆ ) and  <D p 0q

K K( ˆ ) for all q.We show the calculation for ¹q 1first.
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Also, pK
ˆ is the only solution for ¢ = " ÎD p p0 0, 1q

K K K( ˆ ) [ ].
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Nextwe show the same calculations for q=1:
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In addition, pK
ˆ is the only critical point of " ÎD p p 0, 1K K K

1 ( ) ( ). This in addition to the fact that
= -D D0q

K
q

K 1( ) and = " Î ¥D q1 1 0,q
K ( ) ( )means that =p pK K

ˆ is the absolutemaximumof the
function " ÎD p p 0, 1q

K K K( ) [ ] and " Î ¥q 0,( ). This proves the theorem.

Corollary A.1.There exists a Îp p , 1K K
˜ ( ˆ ) so that = -D p Dq

K K
q

K 1( ˜ ) " Î ¥q 0,( ) and < -D p Dq
K K

q
K 1( )

" Îp p , 1K K( ˜ ).

Proof A.2.The proof follows from the fact that D pq
K K( ) attains an absolutemaximumat =p pK K

ˆ and is
decreasing on Îp p , 1K K( ˆ ) and =D 1 1q

K ( ) . Hence, by continuity of D pq
K K( ) and the intermediate value

theorem the graph has to pass through a point =p pK K
˜ so that = -D p Dq

K K
q

K 1( ˜ ) beforemonotonically
decreasing to =D 1 1q

K ( ) .

Appendix B.Notation

(1) K: The number of types in a distribution.

(2) DK: Diversity of the entire distribution i.e., allK types.

(3) : An ascending disjoint partition of the set of indices K1 ,..,{ } such that every element Î Pi satisfies the
property that <  <i j P Pmax maxi j. In otherwords, the partition preserves the ordering of the
numbers K1 ,..,{ }. In particular, themember +i i j, 1 ,..,{ ( ) }denotes the types in the distribution between
indices i and j andwill be denoted by {i, j}.

(4) DPi
: Diversity of the part of the distribution corresponding to indices in Î Pi .

(5) = å Îc pP l P li i
: sum of probabilities of types in the part of the distribution corresponding to indices

in Î Pi .

(6) = = =
å å= =

pl i
p

c

p

p

f

f1,
l

i

l

k
i

k

l

k
i

k1, 1 1
{ } { }

: marginal probabilities for the first i types =l i1 ,.., . Same definition for

pl Pi
for any partition Î Pi i.e., = = =

å åÎ Î
pl P

p

c

p

p

f

fi

l

Pi

l

k Pi k

l

k Pi k

.
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(7) = =
å =

cl i
c

c

c

p1,
l

i

l

k
i

k1, 1
{ }

{ }
: marginal cumulative probabilities for the first i types =l i1 ,.., . Same definition for

cl Pi
for any partition Î Pi i.e., = =

å Î
cl P

c

c

c

pi

l

Pi

l

k Pi k

. So in general, whenever there is a partitionPi as a

subscript, itmeans that we are dividing the probability (or cumulative probability) in the base by cPi
.
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