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Abstract

Despite the utility of the Hill numbers, measuring diversity within complex systems and complex
datasets, particularly regarding parts of a distribution to the whole—that is, different portions of
diversity types to the entire system or dataset—is a challenging issue. In this paper, we attempt to relate
the diversity of a part (or parts) of a distribution to the diversity of the whole. We derive this
relationship for the Hill numbers 9D, and use these results to further examine the effect of a freely
varying type on the diversity of the whole distribution.

1. Measuring diversity

As identified by Sornette (Sornette 2009) and others (Newman 2005, Barabasi 2009), probability distributions
are the ‘first quantitative characteristics’ of both complex systems and complex datasets (Sornette 2009, p. 2). In
terms of diversity (both with regard to species richness and evenness), this makes them highly useful, as
measurements on a wide range of complex systems and complex datasets are well approximated by their shape,
particularly as the sample size and its diversity n — oo. For example, within the complexity sciences, the
literature on measuring diversity is vast and includes a number of different mathematical formulations —Gini-
Simpson index, Shannon entropy, Hill numbers— (Jost 2006, Leinster and Cobbold 2012, Chao and Jost 2015,
Hsieh etal 2016, Pavoine and Marcon 2016, Jost 2018). The Hill numbers and Rényi entropies are also important
measures used to derive quantum uncertainty relations in quantum theory and also the maximal entropy
principle in statistical inference (see Jizba et al 2015, Jizba and Korbel 2018 and references therein).

Across these measures, the Hill numbers D provide a highly useful way to measure the diversity of a
distribution that computes the number of equivalent equiprobable types for a uniform distribution that
maintains the same level of entropy (Rényi entropy to be precise) (macArthur 1965, Hill 1973, Peet 1974,

Jost 2006, Gaggiotti et al 2018, Jost 2018). The parameter g favours the types with lower frequencies if 0 < g < 1
and the types with higher frequencies for g > 1. Forq = 1, 'D weights each type proportional to their relative
frequency of occurrence, and boils down to e where H is the Shannon entropy of the distribution.

Still, despite the utility of the Hill numbers, measuring diversity within complex systems and complex
datasets, particularly regarding parts of a distribution to the whole—that is, different portions of diversity types
to the entire system or dataset—is a challenging issue. In this paper, we attempt to relate the diversity of a part (or
parts) of a distribution to the diversity of the whole. We derive this relationship for the Hill numbers D, and use
these results to further examine the effect of a freely varying type on the diversity of the whole distribution.

Our interest in this issue is based on a series of papers we have written on diversity in complex systems and
complex datasets, in which we have introduced a modification of D called case-based entropy C,to more
effectively measure the true diversity of some dataset of study, including the restriction of diversity within
complex systems (Rajaram and Castellani 2012, 2014). As a measure, C. is based on a modification of the
Shannon-Wiener entropy H; and is inspired by Jost’s paper on Entropy and Diversity, (Jost 2006), in which he
states that: ‘In physics, economics, information theory, and other sciences, the distinction between the entropy
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Table 1. General dataset with
complexity types x; each having a
probability p; and a frequency f..

X P F
X P f

X2 b2 f
X3 ps f
Xy by bjj
XK Px fx

of a system and the effective number of elements of a system is fundamental. It is this latter number, not the
entropy, that is at the core of the concept of diversity in biology’ (p. 363).

To our knowledge such an approach, relative to the probability distributions of complex systems or complex
datasets in general (particularly big data), has not been derived or explored before. As such, for us, Jost’s quote—
and, in turn, our development of Shannon-Wiener entropy H into C—provides one potentially useful way for
advancing the statistical measurement of diversity within complex systems in general. In addition, we anticipate
the use of our results in furthering our development of case-based entropy and deriving new properties of
the same.

Remark 1.1. We note that the choice of g actually encodes the kind of correlation that exists between the parts of
P, of the distribution (Jizba and Korbel 2018). g = 1 means that the parts are independent and the strong system
independence condition is satisfied i.e., disjoint parts are independent. Other choices of g will correspond to a sub
or super exponential relationship between the number of distinguishable states and distinguishable sub-systems,
as found in strongly correlated systems. So inherently, the choice of g actually chooses the kind of correlations
that the partitions P, have, and it is with that caveat that we endeavor to establish the relationship between
diversity of the parts to the whole.

1.1. Purpose of current study

In terms of the current study, we consider a general probability distribution with a random variable X as shown
in table 1 (signifying different types or categories), where x; denotes the i — th type, with probability p; and
frequency f;. We ask the following question: if P; denotes a partition of the indices {1, ..., K} and 9D p, represents
the diversity of that partition, what is the relationship between 9D p, and the diversity of all K types given by 9Dx?
And in particular, how does 1Dy change if the probability of a single type px (say the K-th type) varies from 0 to 1.
In other words, we are interested in the functional relationship of 9Dy (p,,) as px varies from O to 1.

These results also address a key aspect of diversity and its relationship with the probability (or relative
frequency) of the free type; namely, they show that as px increases, there exists an optimal level of frequency py
so that the maximal diversity, which is equal to one more than the diversity of the known typesi.e., iDx_; + 1,is
attained, and the diversity starts to decrease for all probabilities p,, < p,, < 1.Furthermore, there existsa
frequency py sothat 1Dk (P ) = Dk_,.In other words, when the probability of the K-th type equals p,, the
diversity of all K types is equal to the diversity of the K — 1 types. And, in some sense, at p;, = py,itisasthough
the K-th type does not appear to exist. Also, for all probabilities p,, < p, < 1the diversity starts decreasing and
when pr = 1, the K-th type dominates entirely leading to a total diversity of 1 i.e. lim‘;K D) =1

We have organized the paper as follows. In section 2, we give a brief introduction to the idea of measurement
of diversity. In section 3, we prove the two main theorems in the paper for 'Dy and Dy, q = 1respectively. In
section 4, we use the results from section 3 to investigate the function Dy (p, ). And we finally conclude with a
summary in section 5. At the outset, we mention that superscripts on the left are labels for diversities
distinguishing the choices of g amongst Hill numbers. We attach an appendix to clarify some of the notation
used, in addition to explaining it in the paper as well.

2. A formal introduction to diversity

Diversity, as a measure, counts the ‘richness’ (number of types) of a distribution in relation to the ‘evenness’
(equal probability of occurrence) of its diversity types (MacArthur 1965, Hill 1973, Peet 1974, Jost 2006, Rajaram
and Castellani 2012, 2014). The intuition behind this definition is that if all of the types in the distribution occur
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with the same probability, then diversity should simply be equal to the number of types K; and any deviation
from uniformity in probabilities will always lead to a lower value of diversity.

Definition 2.1. Given an ordered set of types numbered as i € N and their corresponding probabilities p,, the
diversity of the entire distribution 1Dg for some complex system or dataset is defined as the number of

equiprobable types needed to yield the same value of entropy 1H.

Shannon entropy is defined as below:

K
'Hy = =>_ pyIn(p) @
=1
Rényi entropy is defined as below:
1 K
He = —In [z pﬂ). @
l—qg S

It was shown (MacArthur 1965, Hill 1973, Peet 1974, Jost 2006, Rajaram and Castellani 2012, 2014) that
definition 2.1 implies that the total diversity Dy is given by:

1
Dy = e'Hx — H1K:1—W 3)
I

and

1

K 1—q
Dy = ek = [>"pt| , g==1. 4
i=1

Furthermore, we denote the diversity of any partition of indices of types in the following form P ;; = {1,...,i}
as 1Dy ;1. The partial diversity for such partition P; can be written as follows:

1

1 d i
31 Dyiy = [Z(Pz{l,,»})q] , q=1, 5)
=1

1D, . = i
(Li} = =77
(PP

. L) POy . Yo f
in terms of the frequencies f; as below:

where p, ' are the marginal probabilities. We note that equations (3)—(5) can be rewritten

K i
'Dx = —Zlil‘f; ];1 D,y = —Zl_(lﬁfl ]; (6
H1K:1f1 KA H;‘Zl fl Si_fi
1Dy = —(Z,K_lfﬂ)‘;q 31 Dyyiy = —(Z;._lflq)lqlq' @
(=) (i)

For an arbitrary disjoint partition P; with indices not necessarily in order (we note that P ;) has indices in order
from 1 to i for the types), the partial diversities in equation (5) can be rewritten as follows, with Dp denoting the
diversity of the partition P;:

1

1 1—q

1

Dp, = iep————9 Dp, = [ > (pip)?]| > q=1, (8
(plp,-)PlP‘ lep,; x

/B h
Sker; P Dker; fe
(7) can also be rewritten with arbitrary partitions with appropriate notation as follows:

ZleP,fl

where p;, = . Consequently the partial diversities in terms of frequencies in equations (6) and

lDPi = (9)

e
Yiep; fi
HIEP,' f

1
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aDp = ~— 17 (10)

i 1

(zlep,fl)q

3. Parts of the diversity distribution to the whole

Theorem 3.1. Given a probability distribution similar to table 1, the diversity of the entire distribution 1Dy for some
complex system or dataset, and the diversities of disjoint parts 1D p, and their respective cumulative probabilities cp,
are related as follows:

1 cp;
D = ] (&) , (11)

PeP CP{
and
1
1—q
1Dy = Z Cgi(qppi)(lfq) (12)
PeP
Proof3.1.

+ Thecase q = 1: Let us first look at the pooling of m disjoint distributions (i.e., none of the types repeat) with
total frequencies equaling N, N; ,.., N, respectively (i.e., N = _; f; for each distribution) and diversities
D! D,,..,!t D, respectively. Let us consider a new distribution which pools these m distributions with total
frequency N, = >_/”; N;. Let 'D, denote the diversity of the pooled distribution. Then, each of those m
individual distributions are equivalent to a uniform distribution each with frequency % for all the types

within them. We have the following from equation (6):

I
D, = Nye Np Nl 5 »

m NN m N\ I
1=, N I, (Vp)

where p, = % are the probabilities of occurence of each of the individual distributions assuming they are
P

p | N N
S NI (DY T (DY { [lDl]p’
1=1

equally likely. Now, thinking of a given distribution as a pooling of its disjoint parts with indices in P, € P—
however, we may want to divide it—and changing the notation for the part P; as the part / from above, we have
that 'D; =! Dp.. The probability of the part of the distribution corresponding to indices in P, € P will then be
P = X,ep b = cp, thesum of all the probabilities of the individual types comprising the part P;. Then the
above equation’s last step can be rewritten using the new notation to obtain equation (11).

+ Thecases q = 1: Theidea of the proof is the same .e., start with pooling m disjoint distributions where the
ID;’s are replaced now by 4D;’s and so on. However the calculation from equation (7) for the pooling is
different and as follows:

m — m q ﬁ m
qDP _ (Zl:lqu(qDl)l q) _ (Z[%) (qDl)(lq)] — (Z(pl)q(qDl)(lq)]
I=1

q
(Np)i=a =1\ Np

1

1—q

and the result follows by the same renaming convention i.e. P; as the part / as in the previous g = 1 case.

Remark 3.1. If we consider each part P, in the derivation of the above theorem to be exactly one typei.e.,
P ={i}Vi=1,.,K,theniDp =1 Vi=1,...,K, g € [0, 0o) and equation (11) reduces to equation (3),
and equation (12) reduces to 4.

Remark 3.2. We can restrict ourselves to a portion of the distribution starting from | = 1tosay ! = k. Then
theorem 3.1 is true for the restriction for any sub-partition Py of such a restriction. In other words, the result is
true for a part of part of a distribution and for all nested sub-parts. In this case the probabilities will have to be re-
normalised as p; = p;, and ¢ = cip,, i.e., all probabilities and cumulative probabilities should be divided by the
sum of all probabilities in the partition Py. So this result is self-similar in nature.

Remark 3.3 (Example). Let us consider the following probability distribution in table 2: here K = 5. Letus
consider the partition P; = {1, 2}, P, = {3, 4}and P; = {5}. We can compute 'Dp, = 1.417,! Dp, =
1.755,! Dp, = 1,and 'Ds = 3.747. We can also compute the following: cp = %, cp, = iand cp, = %.The

4
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Table 2. Example dataset for
remark 3.3 with complexity
types x; each having a
probability p; and a frequency f..

X P
X 1
1 16
x 1
2 2
X 3
3 16
X 1
4 16
x 3
> 16

following can be easily checked numerically:

1D _ ( IDPl ]CPl . ( lDPZ )CPZ . ( le3 ]CPS
5 — — — .
Cp Cp, Ccpy

Consequently ifany three of 'Ds,' Dp,,! Dp,,! Dp, and the fourth is unknown (assuming cp, cp,, cp,, cp, are
known), the fourth diversity (or partial diversity) can be computed.

Since entropy is the natural log of diversity, and diversity is the exponential of entropy, any result related to
diversity is also a result related to entropy and vice-versa. We finish this section by stating a corollary of theorem
3.1 which relates the entropy of parts of a distribution to the total entropy.

Corollary 3.1. Given a probability distribution similar to table 1, the entropy of the entire distribution 9Hy for some
complex system or dataset, and the entropies of disjoint parts 9Hp, and their respective cumulative probabilities cp, are
related as follows:

Hg = > (cp( PHp, — In(cp))), (13)
PeP

and

IHy = ! In [[Z cp (eqHPi'“—ﬂ))]]. (14)

I q PepP

Proof 3.2. The proof follows by taking natural logarithm of equations (11) and (12) respectively.

4. Diversity and the probability of the free type

As the reader may recall, our results also address a key aspect of diversity and its relationship with the probability
(or relative frequency) of the free type. To demonstrate, we apply theorem 3.1 to investigate the effect of
changing the probability of the last type K on the total diversity of 1Dy . Changing the probability px will mean
re-normalizing the probabilities of the remaining K — 1 types to make the total probability = 1. We note that,
equivalently, we could simply rewrite all formulas in terms of actual frequencies and change the frequency fx of
the K-th type. Using probabilities, however, will allow us to draw graphs between 0 and 1 which is a bit more
convenient (and also visually useful for investigation) to compare the variations for different choices of g.

We state a corollary to theorem 3.1 which can be easily proved by choosing P, = {1,...,(K — 1)} and
P, = {K}.

Corollary 4.1. Given a probability distribution like in table 1, the diversity of the first (K — 1) types 1Dk _, the
diversity of the whole distribution 1Dy and the probability of the K -th type p,. are related as follows:

1 (I—PK) PK
Dy = (—D’“ ) (i) : (15)
(1 — pyx) Px
and
Dy = ("D (1 — p)? + plyra. (16)

Proof 4.1. The proof follows by applying theorem 3.1 to the partition P, = {1,...,(K — 1)}and P, = {K}.

5
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2.25 Values for q
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| N\

25 —
50 ——
75 —

"Dy i:gs —
150 —
20
225 —

The probability of the K-th type Py

Figure 1. Graph of functional relationship betwen the probability of the K-th type P and the diversity of K-types 1Dk.

Remark 4.1. It is to be noted that even though equations (15) and (16) show the explicit relationship between
1Dk and p; forall g € [0, 1], Dg_, isstill completely independent of p,.. This is because while computing
marginal probabilities p, ), (evenif we choose to use the already computed probabilities p,, i,!) the

dependence on p;, cancels out.

by
» _ Py _ (Zfﬂpk ) _ P
HLK=1D) T K-1 T —K-1 P T —K-1_°
DiPrixy e folpk POy

Equations (15) and (16) give us a direct relationship between the probability of the K-th type and the total
diversity. For the specific choice of K = 6 and 1Ds = 5, we plot the function 9Dk (p,.) for various choices of 4.
We note that the choice of K and D _ 1 has no bearing on the shape of the functional relationships that we are

discussing in this section.

We make the following observations from the graph‘in figure 1”:

(1) Maximum: Diversity is maximized for all choices of ¢ when p, = ﬁ and the maximum value of
K—1

diversity is equal to 1Dg_; + 1i.e., the K-th type is counted as 1 at maximum. We note that this can be
proved separately by Calculus based techniques. (See theorem A.1 in the appendix).

(2) Start: When px = 0, as expected, the diversity satisfieds 1Dk (0) = 9Dk _ as expected i.e., in the absence of
the K-th type, the diversity is simply equal to the diversity of the remaining K — 1 types. This is also
equivalent to the Shannon-Kinchin axiom 2 (Jizba and Korbel 2019).

(3) Point of diminishing return: We note that there exists a probability (m—l+1) < pg < 1 where
K—1

Dk (py) = Dk_i.e., there exists a probability of the K-th type where the total diversity of K-types is equal
to the diversity of K — 1types. Soinasense, at p,, = py,itisas though the K-th type does not add to the
total diversity at all. For all probabilities p,, < p,, < 1, the diversity starts to decrease to a value less than the
diversity of the K — 1 types. Hence, for p;, > p, theaddition of the K-th type actually starts to decrease the
total diversity, which justifies our terminology that p, = p, is the point of diminishing returns. Another
way to state this is to say that the K-th type starts to dominate the total diversity for p, > p,.. Thereisno
explicit analytical form for p,, asit is the solution of an implicit nonlinear equation. However, its existence
can be proved using Calculus based techniques. (See corollary A.1 in the Appendix)
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(4) Variation of point of diminishing return: As g increases, the point of diminishing return p, gets
monotonically smaller.

(5) Asymptotic behavior at as p, — 1: As p, — 1, the K-th type completely dominates and the diversity
satisfies 1Dg — li.e.,itisas though the previous K — 1 types do not even exist! This is also equivalent to
the Shannon-Kinchin axiom 2 (Jizba and Korbel 2019).

5. Conclusion

In this paper, relative to the distribution of diversity in complex systems and datasets, we have derived an explicit
statistical relationship between the diversity of part of a distribution and the whole. Relative to our findings, the
following are our conclusions:

(1) Main result: The relationship in theorem 3.1 in equations (11) and (12) provide an explicit functional
relationship between the diversity of a partition P; of a distribution (given by 9D p, and the total diversity 1D
of the K types. To our knowledge this is the first time such a relationship has been derived using this
approach.

(2) At the bottom of the hierarchy, if we consider each type as a part itself, then we can recover the original
formulas given by 3 and 4.

(3) Self-similar nature: The relationship between the diversity of parts to the whole is self-similar in naturei.e.,
the same relationship exists between a part of the distribution and its own parts as well, as explained in
remark 3.2.

(4) Entropy of parts: The relationship between the diversity of parts to the whole leads to a similar fractal
relationship between entropy of parts and the whole as seen in corollary 3.1.

(5) Usefulness: The main result in the paper (Theorem 11) can be used to explore the relationship between the
probability of occurrence of a part of a distribution and the diversity of the whole distribution for a variety of
complex system and datasets. As an example, we have shown how it can be used to explore the dependence
of the total diversity 1Dk of K types on the probability of the K-th type and found some interesting
revelations along the way such as the point of diminishing returns. Complexity is all about relationships (or
lack thereof) between parts and whole. Theorem 3.1, corollary 3.1 and corollary 4.1 explicitly relate the
diversity (or entropy) of parts of a distribution to the diversity of the entire distribution. This is important
because it allows us to directly compute the change in the diversity of the entire distribution if the diversity
of the parts change due to complex internal mechanisms.

(6) Future work: In our future work we will try to use the main result in this paper to explore the relationship
between case-based entropy of a given distribution and its shape. We believe this will be a useful step
towards using case-based entropy as a tool to further explore the regions of the distribution that contribute
to the inequality of diversity. For example, in a variety of probability distributions it could prove useful to
pinpoint and quantify the contribution of parts of a distribution to the overall diversity.

Appendix A. Proof of graph properties

Theorem A.1. 9Dk (py ) attains a maximum at ﬁK =
by Dk (py) =1 D1 + L

1 . . . . .
———— and the maximum diversity is given
Dg_1+1

Proof A.1. We show that 9Dy () = 0and 9D{ (p,) < 0forall q. We show the calculation for g = 1 first.
Dy = (“DFP(1 — p)T + pita

1 _ q _
= Dip0) = T ("Dx_ {1 = p)? + ps - (D (1 = pe)t + pl)’
Di(p) = P = PO+ DT - D (= pOT !+ )
N 1 A
Di(p) = 0= D] - (1= p)t '+ pf ' = 0= p = ————1 Di(fy) =1 D1 + 1.

Dg_1+1
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Also, p, is the only solution for Dy (p) = 0 Vp, € [0, 1].

DR (p) = T (DL = P+ P

1 —
> (D1 (1= p)T 4+ ")
1-gq Dy (1 — p)? + pl

+@— D (DT (1= p)i™2 + pl )
1

DY (Py) = —q(IDx_1(1 — pr)® + Py - (D1 - (1 — pp)T 2 + pi2) < 0

Next we show the same calculations forg = 1:

| IDK71 (1 _PK) 1 P](
Dy = | ———— —
(I —pg) Px

1
= In("Dx(py)) = (1 — pK)ln(lDKp1 ] — px In(pg)
~ FK
/ 1D —
élDK(pK)=‘DK<PK)[1 — —ln(pK)']
— FK

1Dy ~ ~
Di(p) =0=> ——L —In(py) =0= = p = ) Di(py) =" Dgy + 1.

1 —pyg D1 + 1
PPk 1 - pL Dy
Dx(po) = —1D1/<(pf<)ln( IK*K 1] - DK(PK)[p1 D:Kl]( 1Kfl; 1)/
K K - K
1
Py Dx— "Dk (py)
- ojipon( 22 - Bt
K K K
LD 1 5 1 5
DL = D[ | - _Px) Db,
1—px ) Pl = py) P = py)

In addition, py is the only critical point of 'Dg (p )V py € (0, 1). This in addition to the fact that
1Dk (0) = 9Dk_jand Dk (1) =1 Vg € (0, 0o) means that p, = p is the absolute maximum of the
function 1Dk (py) Vpx € [0, 1]and Vg € (0, c0). This proves the theorem.

Corollary A.1. Thereexistsa p, € (py, 1)sothat Dy (p,) =1 Dx_, Vq € (0, 00) and Dx (py) <9 Dx_;
Ve € (Pg> D.

Proof A.2. The proof follows from the fact that 9Dk ( p;) attains an absolute maximumat p, = p, andis
decreasingon py € (py, 1)and 1Dk (1) = 1. Hence, by continuity of 1Dk (pj) and the intermediate value
theorem the graph has to pass through a point p,, = p,, so that IDg (p,) =7 Dk_; before monotonically
decreasing to 1Dg (1) = 1.

Appendix B. Notation
(1) K: The number of types in a distribution.
(2) Dg: Diversity of the entire distribution i.e., all K types.

(3) 'P: An ascending disjoint partition of the set of indices {1 ,.., K} such that every element P, € P satisfies the
property that i < j = max P, < max P;. In other words, the partition preserves the ordering of the
numbers {1,.., K}. In particular, the member {7, (i + 1),..,j} denotes the types in the distribution between
indices i and j and will be denoted by {1, j}.

(4) Dp:Diversity of the part of the distribution corresponding to indicesin P, € P.

(5) cp, = Xjcp pyr sum of probabilities of types in the part of the distribution corresponding to indices
inP, e P.
o 4l _ i

6 e S
©) Pipriy i) POy Lt

: marginal probabilities for the first i types [ = 1,..,1i. Same definition for

I . 2 P fi
pip, forany partition F; € Pi.e, pjp = j = ch:>-Pk = ch;fk'

8
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@) cpiy = CC’ = 4 . : marginal cumulative probabilities for the firstitypes I = 1,..,i. Same definition for
{1,i} k=1Pk
cip, for any partition P, € Pi.e., cip, = CC—’ =5 - P .So in general, whenever there is a partition P;as a
Pi keP; Pk

subscript, it means that we are dividing the probability (or cumulative probability) in the base by cp.
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