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S U M M A R Y
Cosmic ray muons are highly penetrating, with some reaching several kilometres into solid
rock. Consequently, muon detectors have been used to probe the interiors of large geological
structures, by observing how the muon flux varies with direction of arrival. There is an
increasing need to discriminate between materials differing only slightly in bulk density. A
particularly demanding application is in monitoring underground reservoirs used for CO2

capture and storage, where bulk density changes of approximately 1 per cent are anticipated.
Muon arrival is a random process, and it is the underlying expectation values, not the actual
muon counts, which provide information on the physical parameters of the system. It is
therefore necessary to distinguish between differences in muon counts due to real geological
features, and those arising from random error. This is crucial in the low-contrast case, where
the method can reach the information theoretic limit of what a data source can reveal, even
in principle. To this end, methods to analyse information availability in low-contrast muon
radiography have been developed, as have means to optimally interpret the available data,
both for radiography and for tomography. This includes a method for calculating expectation
values of muon flux for a given geological model directly, complementing existing Monte
Carlo techniques. A case study, using a model of carbon capture is presented. It is shown
that the new data analysis techniques have the potential to approximately double the effective
sensitivity of the detectors.
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1 I N T RO D U C T I O N

Cosmic ray muons are highly penetrating, with some reaching kilo-
metres into solid rock before attenuation. Consequently, muon de-
tectors have been used to probe the interiors of large geological
structures such as volcanoes, by observing how the muon flux
varies with direction (Nagamine et al. 1995; Tanaka et al. 2007;
Lesparre et al. 2012; Carbone et al. 2013). The technique has also
been applied to large artificial structures, such as Egyptian and
Mesoamerican pyramids (Burkhard et al. 1970; Alfaro et al. 2003;
Morishima et al. 2017), nuclear reactors (Perry et al. 2013; Morris
et al. 2014) and water towers (Jourde et al. 2013).

A new application for muon radiography is monitoring under-
ground reservoirs used for CO2 storage (Kudryavtsev et al. 2011,
2012; Jiang et al. 2013). Carbon capture and storage schemes offer
one of the few ways for reducing emissions of CO2 to within safe
limits, while prolonging the availability of fossil fuel based energy

systems until a more sustainable infrastructure is developed. Once
captured from power plants and industrial point sources, the CO2 is
compressed and transported to a suitable burial site. At this site, su-
percritical CO2 fluid is injected through a well into a suitably porous
and permeable geological formation, in which it displaces the fluid
(e.g. brine) in the pore space. The difference in density (within
the deep geological environments of interest) between supercritical
CO2 (�0.8 g cc–1) and the preexisting pore fluid (�1.0 g cc–1 for
brine) is sufficient to allow the injection and emplacement processes
to be monitored.

Prospective storage sites are usually deep (of the order 1 km)
saline aquifers. Substantial study has gone into understanding the
storage capacity, and the coupled physical–chemical processes of
injecting CO2 into geological formations (Mathias et al. 2013a,b).
Until now, the monitoring of offshore deep storage sites has been
largely based on the oil industry’s standard practice of 3-D seis-
mic surveys. The change in the response of a seismic signal can

1078 C© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/2/1078/5613956 by U

niversity of D
urham

 user on 29 January 2020

mailto:cjb30@bath.ac.uk


Optimizing geophysical muon radiography 1079

be interpreted in terms of changes in temperature, pressure or (as
caused by injection) fluid composition. However the signal is also
affected by the prevailing sea conditions and errors in repositioning
the detectors from survey to survey. These surveys are also very
expensive, and are usually done infrequently. With muon radiogra-
phy, however, the signal is both passive and continuous (Nakamura
et al. 2010). It therefore has the potential to complement existing
monitoring technologies and save long-term costs.

Conceptually, the muon radiography process works (Klinger et al.
2015; Gluyas et al. 2018), but there are various technological prob-
lems to overcome before it can become an industry standard method.
There are also problems to be overcome when analysing muon data.
One such problem is that muon tomography is an inherently random
process, due to the cosmic rays arriving randomly, and the dynamics
of muons in bulk materials being so complex as to be effectively
random, with the material properties only affecting the probability
distributions. This imposes an upper bound to the data acquisition
rate, as it is necessary to distinguish between differences in muon
counts due to real changes in the geology and those simply arising
from random chance. The monitoring of carbon capture schemes is
a particularly demanding application in this respect, as the expected
changes in the muon arrival rate are in the order of 1 per cent.
Therefore, rigorous analysis of the available data is required.

In Section 2, muon radiography is analysed using information
theory, to determine the upper limit to the information that can be
gathered, and to develop a technique for optimally extracting this
data. This technique requires the expectation values of the muon
flux, and hence in Section 3 a muon propagation model based di-
rectly on these probabilities is described. In both of these sections,
the analysis is performed without reference to CO2 storage, and
hence remains valid for very low contrast muon radiography in
general. In Section 4, a case study based on CO2 storage under the
North Sea is presented, and the benefit provided by the improved
data analysis techniques is assessed. The key findings are summa-
rized in Section 5.

2 A P P LY I N G I N F O R M AT I O N T H E O RY

Information theory can be used to explore the absolute upper lim-
its to what can be inferred, even when all other parts of the sys-
tem are perfect. The upper limits have been previously explored in
the context of creating geological images with a specified contrast
(Lesparre et al. 2010). This paper pushes further, into the regime
where such an image would lack any discernible features, but where
by rigorous analysis it can be possible to extract a few meaningful
data bits. To achieve this, it is assumed that a model of the geology
exists, and that the muon observations are being used to determine
the values of certain unknown geological quantities.

In Section 2.1, muon radiography will be analysed in its most
abstract sense, as a data channel which transfers information from
the geology to the muon detectors. This provides the upper limit
to the information that muon flux measurements can provide. In
Sections 2.2 and 2.3, an optimal method for discriminating between
hypotheses for unknown geological quantities is described. In Sec-
tion 2.4, the results are converted into a form which takes into
account the geometry of the detectors.

2.1 Analysis using Poisson communication theory

The upper limit to the available information can be calculated using
a branch of information theory known as Poisson communication

theory. This is a method largely developed to analyse light detectors
operating on a photon by photon basis. An extensive overview of
the subject is given by Verdu (1990).

The analysis starts with the assumption that there are a set of
measurements, each consisting of a muon count. These may either
be the total number of muons observed by a particular detector, or
a subtotal corresponding to a subset of incoming directions.

It is also assumed that the muons arrive at the detector indepen-
dently, in which case the counts will follow a Poisson distribution.
This relies upon the fact that although multiple muons can be gen-
erated from the same cosmic ray, the chance of more than one of
these reaching a given underground detector is negligible. While
exceptional events can occur (Avati et al. 2003), they can be iden-
tified by multimuon arrival within an exceptionally short period of
time.

If the counts are indeed Poisson distributed, then for the mth
measurement, the probability P of observing km muons, given a
particular geological hypothesis, is given by

P (km) = (λm)km exp (−λm)

km!
, (1)

where λm is the expectation value for that measurement and hypoth-
esis. The expectation values are mostly dependent on observation
time, and prior knowledge of the geology, whereas the quantities
to be measured will only affect λm slightly. It is therefore useful to
separate these out, by splitting λm as

λm = tμm, (2)

where t is observation time and μm are mean muon arrival rates,
and then splitting this further as

μm = μ̃m (1 + ηm) , (3)

where μ̃m are typical expectation values of the muon count rates.
Depending on how exactly the method is applied, this may be a null
hypothesis, or a starting value, or both. Deviations from this typical
rate, corresponding to the geological quantities being measured, are
given by ηm.

It is assumed that the values of μ̃m are known perfectly, with all
uncertainty confined to ηm. In practice, values of μ̃m will themselves
be subject to error, but so long as these errors are much smaller than
the anticipated ranges of ηm, the assumption remains valid.

When ηm is dependent on more than one of the geological quan-
tities to be measured, it can be split to first order as

ηm =
N∑
n

ζnmχn, (4)

where χ n is the value of the nth geological quantity (out of N),
and the coefficients ζ nm specify the extent to which the nth quantity
affects the mth measurement. Strictly speaking, the accumulated are
more likely to combine via multiplication, but as

∏
n(1 + ζ nmχ n) ≈

1 +∑nζ nmχ n this will make little difference.
The phrase ‘geological quantity’ is used here to describe any pa-

rameter of the model that is (to leading order) linearly related to a
change in expected muon detection rates, and that is to be measured
by the radiography. Examples may include material densities, thick-
nesses of geological layers, and (as done in Section 4) the extent of
a plume of injected fluid.

It follows from eqs (3) and (4), that given a model of how μm

depends on χ n, the values of ζ nm can be extracted as

ζnm =
[

1

μm

∂μm

∂χn

]
χ1···N =0

. (5)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/2/1078/5613956 by U

niversity of D
urham

 user on 29 January 2020



1080 C.J. Benton

Figure 1. (a) Schematic diagram of geological imaging. Muons pass
through regions of both known and unknown composition, and their di-
rection of arrival logged by detectors. For the purpose of illustration, two
detectors, splitting the incoming muons into two direction-of-arrival bins,
are shown, giving a total of M = 4 muon counts. The unknown geology is
represented by N = 3 quantities, which in this case correspond to the den-
sities of different regions. For clarity, the known and unknown geological
quantities are shown as corresponding to different locations. In general, the
unknown quantities are modifications to known typical values at the same
location. (b) The above, represented as an abstract form of data transfer, as
described in the text.

A schematic diagram of the geology parametrization is given in
Fig. 1.

In order to apply Poisson communication theory to muon radio-
graphy, the relevant problem is that of the Multi Input Multi Output
(MIMO) channel with a rate amplitude constraint and very high dark
noise. In the context of optics, this can be described as follows: The
inputs are photon emitters, where the mean rate of photon emission
can be controlled, but the release of individual photons cannot. The
release of each photon is assumed to be independent of any other
photon, and so the number of photons released over any time inter-
val is Poisson distributed. For the nth emitter, the mean rate xn can
be varied over the range

0 ≤ xn ≤ An, (6)

Figure 2. Schematic diagram of the optical communication system de-
scribed in the text. The structure is the same as the geological imaging
scheme shown in Fig. 1(b), allowing an analogy to be drawn.

where An is the rate amplitude constraint. Similarly, the outputs are
photon detectors, which report photon detections at a rate

μm = �m +
N∑
n

αnm xn, (7)

where αnm is the efficiency of light transfer from the nth emitter to
the mth detector. The detectors are assumed to have a dark noise,
so that they will falsely register photon hits at a rate of �m. This is
assumed to be a Poisson process, and independent of real photon
hits, so that it merely adds to the mean detected rate, as is done in
eq. (7). The dark noise is further assumed to be very high, so that
�m � xn. A schematic diagram of this system is shown in Fig. 2.

No paper seems to deal with the precise combination of require-
ments described here. In the Single Input Single Output (SISO)
case, for very high noise, Davis (1980), extending on the work of
Kabanov (1978), gives the channel capacity as

CSISO = (αA)2

8�
, (8)

where α and A are the single element equivalents of αnm and An.
This is Davis’s eq. (8) a, where in his notation, αA is represented
by c, and � is represented by λ0. The rate is given in nats per
unit time, where 1 nat is the equivalent of ln (2) data bits. Haas &
Shapiro (2002) consider the MIMO case, but do not make the same
investigation as Davis into very high noise limit. As is shown in
Appendix A, the techniques can be combined to give

CMIMO =
M∑
m

1

8�m

(
N∑
n

αnm An

)2

(9)

which as expected, reduces to eq. (8) in the SISO case.
It is now necessary to draw an analogy between this and the muon

radiography problem. The first assumption is that muon counts are
analogous to photon counts. Therefore, linking the rates μm in eqs
(3) and (7) gives

μ̃m +
N∑
n

μ̃mζnmχn = �m +
N∑
n

αnm xn . (10)

There is a slight complication, in that �m is a lower bound, whereas
μ̃m may not be. It is therefore useful to define ηmin

m , as the minimum
possible values of ηm. If the values of χ n are bounded by the closed
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interval
[
χmin

n , χmax
n

]
, then by eq. (4) this minimum is given by

ηmin
m =

N∑
n

min
(
ζnmχmin

n , ζnmχmax
n

) ≡
N∑
n

ζnmχ−
n (11)

where χ−
n is shorthand for the value of χmin

n or χmax
n which provides

the minimum term. Adding ηmin
m to the first term of eq. (11) and then

subtracting it from the second term gives

μ̃m

(
1 + ηmin

m

)+
N∑
n

μ̃mζnm

(
χn − χ−

n

) = �m +
N∑
n

αnm xn . (12)

Both sides of the equation now consist of non-negative values being
added to lower bounds. This allows the photon counting and muon
counting terms to be equated as

�m = μ̃m

(
1 + ηmin

m

)
(13)

αnm xn = μ̃mζnm

(
χn − χ−

n

)
(14)

The second assumption is that the range of possible expectation
values for the muon count rate is equivalent to the range of possible
expectation values for the photon count rate. In other words, when
the expectation value of the muon count rate is as low as believed
possible (for a given geological model), this is equivalent to dark
noise, and similarly, when the expectation value is as high as be-
lieved possible, this is equivalent to the maximum photon intensity
case, where xn = An. The former limit is given by eq. (13), whereas
the latter is given by

αnm An = μ̃mζnm

(
χ+

n − χ−
n

)
(15)

where χ+
n are the values of χ n which maximize ηm. It is convenient

to rewrite this as

αnm An = μ̃m |ζnm | 	χn (16)

where

	χn ≡ ∣∣χ+
n − χ−

n

∣∣ (17)

The reason for the modulus signs is that χ+
n − χ−

n is not necessarily
positive, as χ+

n and χ−
n correspond to maximizations and minimiza-

tions of ηm and not to the individual values of χ n. If this difference
happens to be negative, then ζ nm will also be negative, and so eq.
(16) remains valid.

Making the equivalences, using eqs (13) and (16), gives the data
rate as

C = 1

8

M∑
m

μ̃m

(
N∑
n

|ζnm | 	χn

)2

(18)

where due to ηmin
m being small, the approximation 1 + ηmin

m ≈ 1 has
been made. Converting from nats to bits gives the binary data rate
Cb as

Cb = ln (2)

8

M∑
m

μ̃m

(
N∑
n

|ζnm | 	χn

)2

(19)

This equation shows how much data can be inferred, but only as a
total, and only in an abstract sense. The task of obtaining geological
information from the muon counts still remains.

2.2 Orthogonal combinations of geological quantities

Information can be obtained from muon detector data by combining
it into test statistics, and then using these to discriminate between

different hypotheses for the geological quantities of interest. Before
doing so, it is necessary to construct combinations of geological
quantities such that the test statistics are independent. This can
be done by switching to an alternative basis, consisting of linear
combinations of geological quantities. For N such quantities, the ith
linear combination χ ′

i is defined by

χ ′
i =

N∑
n

Xinχn, (20)

where X is an N × N matrix. Writing eq. (4) in this basis gives

ηm =
N∑
i

ζ ′
imχ ′

i , (21)

where ζ ′
im is defined in terms of the matrix inverse of X as

ζ ′
im =

N∑
n

X−1
in ζnm . (22)

It will become apparent in Section 2.3 that the optimal test statistic
requires ζ ′

n to be orthogonal, such that

M∑
m

ζ ′
imζ ′

jm = ξiδi j , (23)

where δij is the Kronecker delta, and where ξ i are positive coeffi-
cients. It is shown in Appendix B that so long as there are N linearly
independent sets of ζ nm, this condition can be satisfied by defining
the matrix T as

Tin =
∑

m

ζnmζim (24)

in which case the ith row of X is the ith normalized eigenvector of
T, with ξ i being the corresponding eigenvalue. It is convenient to
order the eigenvectors, and to choose their sign, so that the trace
of X is maximized. This ordering results in X (which is already
orthogonal) having unit determinant, in which case it becomes a
rotation matrix. When there are two or three geological quantities,
the trace is related to the rotation angle by

θ2 = cos−1

(
1

2
(Tr X2)

)
(25)

θ3 = cos−1

(
1

2
(Tr X3 − 1)

)
(26)

and therefore maximization of the trace amounts to minimization
of the rotation angle. Higher dimensional analogies are more com-
plicated, as general rotations can no longer be described by a single
angle.

In all cases, however, the trace maximization can be thought of
as preserving some degree of ordering. Where possible, it matches
the elements of χ

′
to the elements of χ they depend on most. In the

case where a particular geological quantity can already be observed
independently, that is where muons passing through regions affected
by that quantity will always miss regions affected by other quantities,
the corresponding elements of χ

′
and χ will coincide. In the extreme

case where all the geological quantities are independent, X simply
becomes the identity matrix.

This rotation provides a basis for muon tomography, as opposed
to simple radiography. When combinations of geological quantities
χ ′

i have been measured, the X matrix can be used to transform them
back into individual geological quantities χ n. Therefore, as happens
in (for example) an X-ray CT scanner, quantities that cannot be
measured independently can be separated at the data analysis stage.
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2.3 Analysis using hypothesis testing

Given orthogonal combinations of geological quantities, it is pos-
sible to construct a set of geological hypotheses, each of which
describes a possible state of the geology. The complete set of hy-
potheses H is assumed to be the Cartesian product

H = H
1 × H

2 × · · · × H
N , (27)

where each H
i is a set corresponding to the ith combination of ge-

ological quantities. (In other words, the elements of H correspond
to every possible combination of the elements of Hi .) Each H

i has
Hi elements, corresponding to Hi possible values of χ ′

i . These are
indexed as H

i
hi

, where the upper index corresponds to a particular
combination of geological quantities, and the lower index corre-
sponds to a hypothesized value.

In order to distinguish between these combinations of geological
hypotheses, a test statistic for the ith combination is defined as

i =
M∑
m

γimkm, (28)

where km is the set of muon count measurements, and where γ im

are weighting coefficients, the optimal values of which are to be
determined. The assumption that the test statistic is a linear com-
bination is a loss of generality, but as shown in Appendix C, this
form is unlikely to differ greatly from an optimal statistic. For a
single combination of geological hypotheses H

i
hi

, the test statistic
will have an expectation value

ψihi =
M∑
m

γimλm . (29)

This form is problematic, as the index hi corresponds to hypotheses
for a single combination of geological quantities, whereas λm is
dependent on all such combinations. In other words, it is necessary
for the left-hand side of the equation to be a function of just Hi ,
whereas the right-hand side of the equation is in general a function
of all H. The problem can be made more explicit by substituting eqs
(2), (3) and (21) into eq. (29), to give

ψihi = t
M∑
m

γimμ̃m

⎛
⎝1 +

N∑
j

ζ ′
jmχ ′

j

(
H

j
h j

)⎞⎠ , (30)

where H has been split into its components, as per eq. (27). For
the test statistic to be useful in isolating the ith combination of
geological quantities, all terms in this summation other than that for
i = j must equal zero. This means that

M∑
m

γimζ ′
jm = ξiδi j . (31)

It will become apparent that the case γ im = ζ ′
im is of particular im-

portance, as this corresponds to optimal resolution. (This is stated
in eq. (50), and justified in Appendix E.) In this case, eq. (31) be-
comes eq. (23), which is satisfied by the orthogonalization described
in Section 2.2. Therefore eq. (30) can be reduced to

ψihi = t
M∑
m

γimμ̃m

(
1 + ζ ′

imχ ′
i

(
H

i
hi

))
(32)

which, as required, depends on only the ith combination of geolog-
ical quantities. The test statistic can be analysed by assuming the
measurement to imply H

i
hi

, so long as

bi,hi −1 < i ≤ bihi , (33)

Figure 3. Schematic of hypothesis testing in an orthogonal basis. A pair
of geological quantities χ1 and χ2 have been transformed into orthogonal
combinations χ ′

1 and χ ′
2, in what amounts to rotation by angle θ . Three

different hypotheses for both χ ′
1 and χ ′

2 give nine hypotheses overall. These
map onto hypotheses in χ1 and χ2 via the rotation.

where bihi are threshold values. A schematic of hypothesis testing
is given in Fig. 3.

The probability of the correct hypothesis being chosen for the ith
combination of geological quantities is

Qi =
Hi∑

hi =1

P
(
bi,hi −1 < i ≤ bihi |Hi

hi

)
P
(
H

i
hi

)
, (34)

where P
(
H

i
hi

)
is the prior probability of the geological hypothesis

H
i
hi

. It may be possible to extend this use of prior probabilities into
a Bayesian inference scheme, but doing so is beyond the scope of
this paper.

It is assumed that the set of hypotheses is collectively exhaustive,
so that

P
(
i ≤ bi0|Hi

1

) = 0 (35)

P
(
i ≤ bi Hi |Hi

Hi

) = 1. (36)

Therefore, eq. (34) can be rewritten as

Qi = P
(
H

i
Hi

)+
Hi −1∑
hi =1

[
P
(
i ≤ bihi |Hi

hi

)
P
(
H

i
hi

)
(37)

−P
(
i ≤ bihi |Hi

hi +1

)
P
(
H

i
hi +1

)]
.

When large muon counts are expected, it follows that

M∑
m

λm � 1. (38)

Consequently, as shown in Appendix D, the probability mass func-
tion of  i can be approximated by the normal probability density
function, even if the individual distributions of km cannot. This will
have mean ψihi and standard deviation σihi , with the latter given by

σ 2
ihi

=
M∑
m

γ 2
imλm . (39)
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The cumulative distribution function for a random variable , nor-
mally distributed with expectation ψ and standard deviation σ , is
given by

P ( ≤ c) = 1

2

[
1 + erf

(
c − ψ√

2σ 2

)]
, (40)

where the error function is defined here as

erf (x) ≡ 2√
π

∫ x

0
exp
(−y2

)
dy. (41)

Therefore, making the normal approximation allows eq. (37) to be
written as

Qi = P
(
H

i
Hi

)

+ 1

2

Hi −1∑
hi =1

⎡
⎢⎢⎣erf

⎛
⎜⎜⎝ βihi −∑M

m γim μ̃m

(
1 + ζ ′

imχ ′
i

(
H

i
hi

))
√

2
∑M

m γ 2
im μ̃m

(
1 + ζ ′

imχ ′
i

(
H

i
hi

)) √
t

⎞
⎟⎟⎠ P

(
H

i
hi

)

− erf

⎛
⎜⎜⎝ βihi −∑M

m γim μ̃m

(
1 + ζ ′

imχ ′
i

(
H

i
hi +1

))
√

2
∑M

m γ 2
im μ̃m

(
1 + ζ ′

imχ ′
i

(
H

i
hi +1

)) √
t

⎞
⎟⎟⎠P

(
H

i
hi +1

)
⎤
⎥⎥⎦ , (42)

where the division thresholds have been written in a time indepen-
dent form βihi , defined by

bihi = tβihi . (43)

The numerators within the error functions of eq. (42) contain a
subtraction which is critically dependent on the value of ηm

(
H

i
hi

)
.

Conversely, the denominators are such that the approximation

1 + ζ ′
imχ ′

i ≈ 1 (44)

can safely be made. [A similar approximation was made in the
derivation of eq. (19).] Using this approximation, and choosing βihi

to be the mean of the surrounding expectation values, such that

βihi =
M∑
m

γimμ̃m

(
1 + ζ ′

im

(
1

2
χ ′

i

(
H

i
hi +1

)+ 1

2
χ ′

i

(
H

i
hi

)))
(45)

allows eq. (42) to be rewritten as

Qi = P
(
H

i
Hi

)
+

Hi −1∑
hi =1

erf

⎛
⎝∑M

m γimμ̃mζ ′
im

(
χ ′

i

(
H

i
hi +1

)− χ ′
i

(
H

i
hi

))
√

8
∑M

m γ 2
imμ̃m

√
t

⎞
⎠

× P
(
H

i
hi

)+ P
(
H

i
hi +1

)
2

. (46)

In the special case where Hi = 2, or more generally, where χ ′
i

(
H

i
hi

)
are evenly spaced between the hypotheses, such that

zim = ζ ′
im

(
χ ′

i

(
H

i
hi +1

)− χ ′
i

(
H

i
hi

))
, (47)

where zim is the spacing, eq. (46) reduces to

Qi = P
(
H

i
Hi

)
+ erf

⎛
⎝∑M

m γimμ̃m zim√
8
∑M

m γ 2
imμ̃m

√
t

⎞
⎠
(

1 − P
(
H

i
1

)+ P
(
H

i
Hi

)
2

)
.(48)

At this point, the coefficients γ im can be chosen so that the proba-
bility of obtaining the correct answer Qi is maximized. As the error
function is monotonically increasing, this maximization is equiva-
lent to the maximization of

qi =
(∑M

m μ̃m zimγim

)2

∑M
m μ̃mγ 2

im

(49)

over with respect to γ im, for a given index i.
It is shown in Appendix E that this occurs when γ im ∝ zim. A

proportional, rather than an absolute solution is to be expected, as the
converse would imply that it is possible to extract differing amounts
of information from a set of numbers by multiplying them all by
a common constant. Due to the unimportance of the coefficient
of proportionality, it can be arbitrarily chosen to be the spacing
between hypotheses. From eq. (47), this gives

γim = ζ ′
im (50)

thus justifying the assumption made when deriving eq. (32). Sub-
stituting eq. (50) into eq. (28) gives the optimum test statistic as

i =
M∑
m

ζ ′
imkm . (51)

The optimized value of Qi can then be obtained by substituting eqs
(47) and (50) into eq. (48), giving

Qi = P
(
H

i
Hi

)

+ erf

⎛
⎝
√√√√1

8

M∑
m

μ̃mζ ′2
im

(
χ ′

i

(
H

i
hi +1

)− χ ′
i

(
H

i
hi

))2 √
t

⎞
⎠

×
(

1 − P
(
H

i
1

)+ P
(
H

i
Hi

)
2

)
. (52)

Therefore, given some acceptable value for Qi, the time taken to
distinguish between hypotheses is

ti = τi∑M
m μ̃mζ ′2

im

(
χ ′

i

(
H

i
hi +1

)− χ ′
i

(
H

i
hi

))2 , (53)

where τ i is a constant of proportionality.
The right-hand sides of eqs (19) and (53) are effectively recip-

rocals of one another. This suggests that the two approaches are
equivalent, as the former is data per unit time, whereas the latter is
time required to acquire a particular piece of data. The relation can
be made more explicit by combining eqs (4) and (21) to give

N∑
n

ζnmχn =
N∑
i

ζ ′
imχ ′

i (54)

which allows eq. (19) to be written as

Cb = ln (2)

8

M∑
m

μ̃m

(
N∑
i

∣∣ζ ′
im

∣∣	χ ′
i

)2

. (55)

The principal difference is that eq. (55) considers all hypotheses
over the maximum possible range, and so provides the total data rate,
whereas eq. (53) applies to a particular combination of hypotheses,
over some subrange, in which case only the data contributing to the
resolution of those hypotheses is included.

The prefactor in eq. (55) can be used to set τ i in eq. (53), giving

ti = 1
ln(2)

8

∑M
m μ̃mζ ′2

im

(
χ ′

i

(
H

i
hi +1

)− χ ′
i

(
H

i
hi

))2 (56)

as the mean time required to acquire the data bit to separate hy-
potheses. When there are two hypotheses, this can be written more
conveniently as

ti = 1
ln(2)

8

∑M
m μ̃mζ ′2

im

(
χ ′A

i − χ ′B
i

)2 , (57)

where χ ′A
i and χ ′B

i represent the values of χ ′
i for hypotheses labelled

A and B, respectively.
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2.4 Sorting observations by direction of arrival

So far, the muon counts have been treated in a very general sense,
with little consideration as to which count a given muon observation
is assigned to. If the muon observations are sorted by direction of
arrival, where each set of directions covers a solid angle element
	�m, then μm can be split up as

μm = Jmam	�m, (58)

where Jm is the muon flux density, and am is the effective detector
area. Likewise, the expected muon counts can be written as

λm = Jmam	�mt. (59)

Substituting eq. (58) into eq. (19) gives

Cb = ln (2)

8

M∑
m

(
N∑
n

|ζnm | 	χn

)2

J̃ mam	�m, (60)

where J̃ m corresponds to Jm for the μm = μ̃m case. Similarly, eq.
(57) becomes

ti = 1
ln(2)

8

∑M
m ζ ′2

im

(
χ ′A

i − χ ′B
i

)2
J̃ mam	�m

(61)

and the ζ nm coefficients can be derived as

ζnm =
[

1

Jm

∂ Jm

∂χn

]
χ1···N =0

. (62)

The summations in eqs (60) and (61) can be thought of as being
approximations to integrals with respect of �. If 	�m becomes in-
finitesimal, then these equations will indeed contain a continuously
varying J̃ integrated over all of the solid angle.

As an aside, when constructing an image of muon flux density
with direction of arrival, sufficient information must exist to dis-
tinguish between regions of the image. This limits the meaningful
angular resolution, regardless of the accuracy of the detectors. In
Appendix F, this limiting resolution is estimated to be of the order

φlim
m ≈ 1

	ηm

√
Jmamt

, (63)

where 	ηm is the maximum likely range of ηm. Due to the very
crude approximations made, this should not be interpreted as a di-
vision between necessary and excessive resolution. It may, however,
provide a useful guideline for detector specifications.

3 M O D E L L I N G M U O N F LU X D E N S I T Y

In order to apply the data analysis technique described above, it is
necessary to have a model of the geology, to calculate the muon
flux densities Jm for different geological scenarios. While there
are a range of muon simulation software packages, including Geant
(Agostinelli 2003), MMC (Chirkin & Rhode 2004), MUM (Sokalski
et al. 2001) and MUSIC (Antonioli et al. 1997; Kudryavtsev et al.
1999; Kudryavtsev 2009), they work on a muon-by-muon basis, and
so can’t provide the values of Jm directly. Furthermore, the need to
differentiate these values with respect to the geological quantities
presents a problem, in that numerical differentiation is very noise
sensitive. It is therefore useful to perform modelling based on the
expectation values themselves.

3.1 Calculation of survival probability function

As a preliminary to calculating muon flux densities, a realistic sur-
vival probability function, �(s), is required. This is a function of
propagation distance s, and gives the probability that a randomly
selected muon will reach that distance. The MUSIC code was used
to simulate the passage of muons through rock, taking into account
ionization, bremsstrahlung, electron-positron pair production and
inelastic scattering between muons and atomic nuclei.

The propagation of an individual muon is dependent on its start-
ing energy. Therefore, the survival probability function will depend
on the distribution of muon energies at ground level. To take this
into account, the Gaisser parametrization (Gaisser 1990) was used.
This is a semi-empirical model of high energy muon flux at ground
level, as a function of muon energy E and zenith angle θ . This gives
the mean arrival rate of ≥100 GeV muons per unit area, per unit
solid angle, per unit energy as

g (E, θ )

=
{

0 ; E < 100 GeV
1400

m2 s sr GeV

(
E

GeV

)−2.7
(Fπ (E, θ ) + FK (E, θ )); E ≥ 100 GeV

,

(64)

where the fact that <100 GeV muons are not being considered is
made explicit. This is done due to both the limit of applicability of
the Gaisser parametrization, and the low probability of lower energy
muons penetrating substantially into the rock. In the subsequent
analysis, muon starting at lower energies don’t enter the statistics.

The E−2.7 power law corresponds to the energy spectrum of the
cosmic ray nucleons entering the earth’s atmosphere, and the func-
tions Fπ and FK correspond to the two principal muon producing
reactions, which involve the intermediate production of a pion or a
kaon. They are given by

Fπ (E, θ ) = 1

1 + 1.1E cos θ

115 GeV

(65)

FK (E, θ ) = 0.054

1 + 1.1E cos θ

850 GeV

(66)

To demonstrate the method, survival probability functions were
calculated for ‘standard rock’, a rock model consisting of atoms
with proton number 11 and mass number 22, which are approximate
averages for the elements present in common rock forming minerals
(Groom et al. 2001). Standard rock has a density of 2.65 g cm−3,
which again is a representative value. MUSIC supports arbitrary
chemical composition (as do other simulation packages), and so
any rock type can in principle be simulated.

The reason for using standard rock is that for the geology be-
ing considered, no accurate data for elemental composition exists.
While the composition is known on a mineralogical basis, the exact
mineral ratios are not known. Furthermore, many of the minerals
exist as series, whereby substances with different elemental com-
positions are assigned the same mineral name. This problem also
affects conventional Monte Carlo methods, and so should not be
considered a limitation of this particular method.

As only a one time calculation was required, 1 million simulations
were performed, thus minimizing random error. In order to make
efficient use of these simulations, the starting energies were chosen
using the method described in Appendix G. The calculated values
of �(s), for a selection of zenith angles are shown in Fig. 4.
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Figure 4. The probability that a randomly chosen ≥100 GeV cosmic ray
muon will penetrate a given distance of standard rock, assuming the Gaisser
model of ground level flux, shown for a selection of zenith angles. The
flat region preceding 200 m is a consequence of the 100 GeV energy cut-
off. Further than this, the probability of any <100 GeV muon surviving is
negligible, and the probability function is quasi-exponential.

3.2 Probability ray tracing

The muon flux density below ground can be calculated by per-
forming ray tracing based on the above survival functions. The ray
tracing makes the approximation that the muons travel in a straight
line, and that deflections, both in angular direction and in position
perpendicular to the original ray path can be neglected. This is an
acceptable approximation for the high energy muons being consid-
ered here (Lesparre et al. 2010), but becomes problematic at lower
energies.

The material in each cell is represented by its bulk density ρ. This
is an approximation, as in reality the survival probability function
depends somewhat on elemental composition. A further approxi-
mation is that when the density of the rock differs from that of some
reference rock (which in the demonstration below is standard rock)
the difference in muon survival is largely due to the increase or
reduction of the total material encountered on route. Again, this is a
reasonable approximation for high-energy muons, as the number of
particle interactions is more important than the rate at which they
occur. (This would not be true for low energy muons, as the effect of
muon decay via the weak nuclear force would be significant. How-
ever, for the very high energy muons being considered, relativistic
time dilation reduces the observed rate of their decay by a factor of
1000 or more.)

To implement this approximation, the muon survival probability
function is represented as a function of effective distance s̃. This is
defined as

s̃ =
∫ sout

sin

ρ (s)

ρ0
ds, (67)

where ρ0 = 2.65 g cm−3 is the density of standard rock. By defi-
nition, muons encountering the same integrated density of material
will have traveled the same effective distance. When all the material

encountered has the same density as the reference rock, the real and
effective distances will be the same.

In the mth direction, the muon arrival rate per unit area, per unit
solid angle, per unit energy, jm, is given by multiplying the corre-
sponding rate at ground level by the survival probability function.
This gives

jm = g (E, θm) � (s̃m, θm) , (68)

where θm and s̃m are the zenith angle and effective distance for that
particular direction. Integrating these spectra with respect to energy
gives the muon arrival rate per unit area per unit solid angle at the
detector as

Jm =
∫ ∞

0
jm dE (69)

and the muon arrival rate per unit area per unit solid angle at ground
level as

G (θm) =
∫ ∞

0
g (E, θm) dE . (70)

As per Section 3.1, these functions only apply to muons with an
energy of ≥100 GeV at sea level. This becomes unimportant beyond
a depth of about 200 m, as the survival probability of lower muons
energy becomes negligible.

Integrating eq. (68) over all energies gives

Jm = G (θm) � (s̃m, θm) . (71)

Ray traced images, such as those shown in Section 4 can then be
generated by evaluating eq. (71) in all directions. The implementa-
tion of this ray tracing is described in Appendix H.

4 A P P L I C AT I O N T O G E O L O G I C A L
S T O R A G E O F C A R B O N D I OX I D E

To demonstrate the value of the methods derived in this paper, they
have been applied to a model of a geological CO2 storage scenario.
This is based around real geophysical data for the Boulby Mine, in
Yorkshire, England, which extends laterally for 7 km beneath the sea
at depths of between about 750 m and 1.4 km. While CO2 storage is
not planned for this site, it is chosen because a deep science facility
[the Boulby Underground Laboratory (Murphy & Paling 2012)] is
already located there, and the geology is very similar to that known
to exist at several of the preferred storage sites in the North Sea
(Hedley et al. 2013).

This demonstration is a useful way of testing the equations de-
rived in the previous sections with realistic numbers, rather than
just abstract values. It concerns radiography rather than full tomog-
raphy. However, the numerical values will be of a similar order of
magnitude, and so assessing the method as applied to radiography
will provide an idea as to its usefulness when applied to tomography.

4.1 Model of geology and carbon dioxide injection

The geology around the Boulby mine consists of five principal
layers. The first layer, starting from the sea bed is Liassic shale,
the second layer is Triassic Mercia mudstone and the third layer
is Triassic Bunter sandstone. The Boulby mine workings straddle
the boundary between a fourth and a fifth layer, the former of
which consists of Upper-Permian sylvite and polyhalite and the
latter of which consists of Upper-Permian halite, sylvite, polyhalite
and other evaporite minerals. The model includes the sea itself as a
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Figure 5. Cross section of the Boulby mine geology. The mine workings
straddle the boundary between the two upper-Permian layers. (a) At present.
(b) After a (hypothetical) injection of supercritical CO2 into the Bunter
sandstone, creating a plume capped by the Mercia mudstone. The vertical
line denotes the well, and the black cross gives the location of a possible
muon detector (with the dashed lines showing the field of view used for ray
tracing).

zeroth layer, having a depth of 32 m. A cross section of this geology
is shown in Fig. 5(a).

The carbon capture scheme is assumed to operate by injecting
supercritical CO2 fluid into the Bunter sandstone. This is porous and
permeable, allowing CO2 to move from the injection site, by displac-
ing brine from the rock’s pore system. The Mercia mudstone above
the Bunter sandstone has a much lower permeability, and should
therefore act as a seal, preventing CO2 from leaking upwards to-
wards the sea. The purpose of the muon tomography is to determine
whether or not the expected processes are happening in practice.

The initial movement of the CO2 and brine was modelled using
a method based on (Mathias et al. 2009). (The later sequestration
stages involving CO2 dissolution and mineral trapping mechanisms,
where chemical reactions take place, are not considered in this
demonstration.) The Bunter layer is now considered as two subre-
gions, this division being equivalent to the difference between Parts
A and B of Fig. 5. The upper subregion is assumed to be filled to
the maximum extent with CO2 (i.e. the pore space is filled with
CO2 plus a specified fraction of immobile brine), and the lower
subregion is assumed to be unaffected by the injection (i.e. all pore
space contains brine). The density of these regions, and the shape

Table 1. Physical parameters used in the CO2 flow model. These correspond
to the Boulby site.

Parameter Symbol Value Units

Brine density ρw 1100 kg m–3

Brine viscosity μw 900 μPa s
CO2 density ρn 720 kg m–3

CO2 viscosity μn 60 μPa s
Rock density ρs 2670 kg m–3

Rock porosity φ 0.15 –
CO2 relative permeability krn 0.3948 –
Brine relative permeability krw 1 –
Brine residual saturation Srw 0.4438 –
Well/reservoir height H 170 m
CO2 mass injection rate Mn 20 kg s–1

of the surface between them are calculated from a simple model of
fluid flow through porous media, as detailed in Appendix I. This
includes numerous simplifications (as described in the appendix)
but it provides a reasonable example of the general scenario that the
method will be applied to. More sophisticated models have been ap-
plied in other papers, but at the expense of far higher computational
overheads. (Klinger et al. 2015; Gluyas et al. 2018).

The calculations were performed using real values for the Boulby
site, as displayed in Table 1. The rock density, porosity, and perme-
ability characteristics are measured values for the sandstone. The
fluid properties were derived using equations of state (Rowe & Chou
1970; Bell at al. 2014). A CO2 injection rate of 20 kg s–1 was cho-
sen, which is unexceptional for the range (3–120 kg s–1) considered
practical (Mathias et al. 2011a). The well is assumed to protrude
170 m into the Bunter sandstone, reaching a total depth below sea
level of 569 m. Fig. 5(b) shows a cross section of the geology after
1 yr of CO2 injection.

4.2 Results

Fig. 6 shows muon flux densities for the cases of no CO2 injection,
and 1 yr of CO2 injection, respectively. The detector is assumed to
be located within the mine workings directly beneath the well at a
depth below sea level of 808 m. The difference between the images
is slight, as the muon attenuation is dominated by the unchanged
geological factors. Fig. 7(a) shows the relative change in muon
flux density. This change is always positive, as the supercritical
CO2 is less dense than the brine it replaces, reducing the effective
propagation length of the muons.

If the difference between the cases is parametrized by the extent
to which the CO2 has been retained, with χ n = 0 being no retention
(i.e. the no injection case), and χ n = 1 being full retention (i.e. the
expected 1 yr case), then Figs 6(a) and 7(a) are, respectively, plots
of J̃ m and ζ nm (the latter being for the single parameter n = 1). If
the object of the data analysis is to distinguish between these cases,
such that 	χ n = 1, then the total information rate can be calculated
via eq. (60). The summand of this Equation gives the information
rate from each direction, as is shown in Fig. 7(b).

4.3 Comparison of test statistics

This modelling can be used to compare the new test statistic  i, as
given by

i =
M∑
m

ζ ′
imkm (72)
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Figure 6. Calculated muon flux density at the location of the detector.
Displayed using Gnomonic projection onto a plane at surface level, where
the axes give the horizontal distance from the detector. Shown (a) before
CO2 injection and (b) after 1 yr of CO2 injection. The dashed line shows the
outer extent of the CO2 plume.

with the more obvious test statistic, that is the sum of muons arriving
from trajectories passing through some object of interest, as given
by

�i =
∑

m

δmkm, (73)

where δm is assigned a value of 1 if the mth ray path passes through
the object, and is 0 otherwise. In the context of Figs 6 and 7, the
value of δm is 1 within the dashed line and 0 outside.

The counts km have expectation value

λm = Jmam	�mt, (74)

where Jm is derived from the above modelling, am	�m depends on
the detector and t is observation time. Therefore, the expectation
values for  i and �i (denoted by ψ i and φi, respectively) are given
by

ψi =
∑

m

ζ ′
im Jmam	�mt (75)

φi =
∑

m

δm Jmam	�mt. (76)

The same for typical values of muon flux density are also required.
When monitoring CO2 storage, these typical values are most use-
fully chosen as those corresponding to the geology prior to CO2
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Figure 7. Quantities derived from the data in Fig. 6. (a) Relative change
in muon flux density. (b) Theoretical information acquisition rate, per unit
detector area per unit solid angle.

injection. The expectation values for the prior to injection case are
therefore given by

ψ̃i =
∑

m

ζ ′
im J̃ mam	�mt (77)

φ̃i =
∑

m

δm J̃ mam	�mt, (78)

where J̃ m are likewise the values of Jm prior to injection. In the limit∑
mλm � 1, the quantities  i and �i are both normally distributed,

where the null hypothesis has standard deviations given by

σ 2
ψi

=
M∑
m

ζ ′2
im J̃ mam	�mt (79)

σ 2
φi

= φ̃i . (80)

In the case of �i, this is a basic property of the Poisson distribution.
The equivalent result for  i follows from Appendix D.

As the distribution for the null hypothesis is normal, with known
mean and standard deviation, the relevant statistical test is the Z-
test. As the muon rate is expected to increase with CO2 injection,
an upper-tailed Z-test should be used. In actual fact, analysis of
real data probably would not proceed like this, as instead of using
values of J̃ m from modelling, the null hypothesis expectation values
will be estimated from muon observations taken during a learning
period prior to CO2 injection. Instead, the modelling will only enter
the analysis via the ζ ′

im coefficients. The reasons for this difference
are discussed in Section 5.
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That said, this hypothetical Z-test remains a useful way of evaluat-
ing the information gathering capabilities of the revised test statistic
when realistic numbers are used. For a test statistic x, the Z-score is
calculated as

z = x − μ

σ
, (81)

where μ and σ are the mean and standard deviation of the null
hypothesis. If the null hypothesis is to be rejected for a given p-
value, then z must exceed a certain threshold, which is dependent
on p. If, for example, a p-value of less than 0.05 is required, then the
threshold value of z is 1.645. The two test statistics can be converted
into a Z-score as

z = i − ψ̃i

σψi

(82)

z� = �i − φ̃i

σφi

. (83)

The effectiveness of these test statistics in detecting an alternative
hypotheses can be assessed by calculating their expectation values
in the case that the hypothesis is true. These are given by

z̄ = ψi − ψ̃i

σψi

(84)

z̄� = φi − φ̃i

σφi

. (85)

The natural way of comparing these values is to compare their
relation to the observation time and the effective area of the muon
detectors. If these are chosen differently for different test statistics,
then dividing eq. (85) by eq. (84), substituting in the definitions for
mean and standard deviations, and then re-arranging gives

ta =
(

z̄�

z̄

)2

t�a�, (86)

where t and t� are the observation times, and a and a� are
scaling factors for the effective detector areas. For a given choice
of p-value, this relates the expected requirement for observation
times. Making this calculation from the above results gives ta ≈
0.48 t�a�. This means that the required observation time required
to achieve a certain result can be approximately halved, or that the
detector area required to obtain that result in the same amount of
time can be approximately halved. Alternatively, it can be thought of
as approximately doubling the effective sensitivity of the detectors.

5 S U M M A RY A N D C O N C LU S I O N S

Methods to analyse the information content of low-contrast muon
radiography have been developed, as have means to optimally anal-
yse available data. While this problem has been analysed in terms of
producing images with a specified contrast (Lesparre et al. 2010),
the analysis described here considers the absolute upper bounds
to data acquisition, and provides means to extract data in these
extremes.

In order to make use of the method, it is first necessary to obtain
the coefficients ζ nm, which represent how the muon flux density in
the mth direction (out of M) depends on the nth geological quantity
(out of N) to be determined. Given a set of anticipated mean muon
flux densities Jm, these coefficients can be calculated as

ζnm =
[

1

Jm

∂ Jm

∂χn

]
χ1···N =0

, (87)

where χ n are the geological quantities to be measured. The total
data rate obtainable by a muon detector can then be calculated as

Cb = ln (2)

8

M∑
m

(
N∑
n

|ζnm | 	χn

)2

J̃ mam	�m, (88)

where 	χ n are the maximum ranges between feasible values of χ n,
where am is the effective detector area in that direction, and where
	�m is a solid angle element. The quantity J̃ m is some typical
value of Jm, which depending on how the method is applied, may
correspond to the null hypothesis, or a starting value, or both. When
multiple detectors are used, the data rates simply add, and so the
quantities Jm and ζ nm can be partitioned into subsets corresponding
to the individual detectors.

Notably, any linear scaling of χ n does not matter, as the conse-
quent scaling of ζ nm will cancel out in eq. (88). Even the dimensions
of χ n do not matter, and so the geological quantities can be any form
of variation in any unit, so long as they are approximately linearly
related to the muon flux density.

The information rate is linearly related to the flux density Jm,
but quadratically related to the contrast terms 	χ n. These relations
are useful in detector position optimization, as they show that it
is important to view as many muons as possible, but even more
important to achieve an arrangement where the difference between
the expectation values of the count rates is maximized. A similar
result was discovered by Lesparre et al. (2010), for the purpose of
achieving a given contrast in an image of muon flux density.

In certain cases, the geological quantities to be measured will
overlap, for example by a muon passing through multiple regions,
when these regions are to be measured independently. In such cases,
it is necessary to convert these quantities into an orthogonal basis,
such that

χ ′
i =

N∑
n

Xinχn (89)

ζ ′
im =

N∑
n

X−1
in ζnm, (90)

where X is the rotation matrix described in Section 2.2. This will
exist so long as the expected change in muon observations caused
by variation in one geological quantity is not identical to that caused
by variation in any other geological quantity, or a linear combination
thereof.

When the geological quantities are independent, X becomes the
identity matrix, and for only a single quantity, it simply becomes
one. The X matrix is a necessary foundation for muon tomography,
in which multiple detectors are used to infer three dimensional
structure. Such tomography, however, has yet to be done using real
data.

In order to differentiate between geological hypotheses, it is nec-
essary to calculate a test statistic, which can be compared to mod-
elled values. The most obvious choice of test statistic is the sum of
muon counts from all appropriate directions. However, an improved
test statistic is

i =
M∑
m

ζ ′
imkm, (91)

where km are the counts from the mth direction. This will have an
expected value

ψi =
M∑
m

ζ ′
imλm, (92)
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where for an observation time t, the expectation values of the counts,
λm are given by

λm = Jmam	�mt. (93)

This form of test statistic is also a total, but the count for each direc-
tion has been weighted by the corresponding ζ ′

im coefficient. This
allows for more efficient data analysis, by better taking into account
prior information. The time to resolve between two hypotheses,
labelled A and B, can be estimated as

ti = 1
ln(2)

8

∑M
m ζ ′2

im

(
χ ′A

i − χ ′B
i

)2
J̃ mam	�m

, (94)

where χ ′A
i and χ ′B

i are the corresponding values of χ i for the two
hypotheses.

In order to apply this method, a form of probability based muon
flux modelling has been developed, which provides Jm directly. In
contrast with conventional Monte Carlo based methods, it lacks
random error, and so the differentiation required to calculate the
ζ nm coefficients [as per eq. (87)] can be done without numerical
error. It has the additional advantage of being much faster than
Monte Carlo techniques.

The technique does however make several approximations. The
muons are assumed to travel in straight lines, whereas in reality
deflections will be present. Changes in material are modelled only
in terms of deviations in density, as referenced from some material
with fixed chemical composition. This density change is accounted
for by assuming propagation along an effective distance, having
the same integrated density as the default material. In reality, dif-
ferences to muon survival will depend on more than density. This
will include the composition of preceding materials, as different
materials will reshape the muon energy spectrum in different ways.
The implementation neglects low energy muons, and so to work at
depths of less than 200 m, models of low energy (<100 GeV) muon
flux and scattering would have to be incorporated.

Given the above advantages and disadvantages of the ray tracing
method, it is best used to complement existing Monte Carlo meth-
ods. One approach would be to use it to calculate ζ nm coefficients,
and thus construct a superior test statistic, but otherwise use the
higher accuracy of Monte Carlo methods, as has been done in other
papers (Klinger et al. 2015; Gluyas et al. 2018). Given that Monte
Carlo methods are extremely computationally expensive (Gluyas
et al. 2018), the ray tracing method has a speed advantage, and
so might also be better in situations where large numbers of sim-
ulations are required, such as optimizing detector arrangements.
Another potential use, given that simpler models tend to provide
more reliable extrapolations, is to verify that the more complex
Monte Carlo simulations produce reasonable results when applied
to novel situations.

When analysing real geophysical data, models of any sort might
not be used directly, but instead used to augment other muon ob-
servations. This is essential if systematic errors in the model are
comparable to the changes being measured. While modelled values
for the changes themselves will not be greatly affected (as sys-
tematic errors will largely cancel out) absolute values such as J̃ m

will be directly affected, causing similar systematic errors in the
calculated expectation values for the test statistics. In cases where
changes in the geology are to be measured, this problem can be
avoided by making additional observations prior to the main pro-
gram of observations. Data from this learning phase can then be
used to estimate the expectation value of the test statistic in the case
where no change has occurred. Expectation values for other cases

can then be estimated by applying model derived changes to this
baseline value.

The information theory approach has been applied to a case study
based on geological CO2 storage, where muon tomography is used
to monitor the emplacement of the injected CO2. This suggests that
using such methods can reduce the detector cross-sectional area
required to achieve a certain result by about half. Given the high
costs of manufacturing and deploying detectors, this might result in
substantial cost reductions, making the methods described in this
paper of prime importance to experimental geophysics.
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A P P E N D I X A : D E R I VAT I O N O F M I M O
C H A N N E L C A PA C I T Y F O R M U L A I N
N O I S Y L I M I T

It is stated in Section 2.1 that the approach of Davis (1980) can
be combined with that of Haas & Shapiro (2002) to give the result
stated in eq. (9). The purpose of this appendix is not to derive the
formula from first principles, but to justify how the stated result
follows from these papers.

In the MIMO case, Haas and Shapiro show that a lower bound
to the information capacity when using an on-off keying (OOK)
approach (i.e. when data is modulated by turning the sources on
and off) is given by

COOK−LB =
M∑
m

hm

(
N∑
n

γnm An p∗
)

, (A1)

where the function hm(z) is defined as

hm (z) = z

Rm
φm (Rm) − φm (z) (A2)

the functions φm are defined as

φm (z) = (�m + z) ln (�m + z) − �m ln (�m) (A3)

the functions Rm are defined as

Rm =
N∑
n

γnm An (A4)

and p∗ is a quantity which tends towards

p∗ = 1

2
(A5)

in the very noisy limit. The OOK case is important, as in the very
noisy limit, this lower bound is equivalent to the general MIMO
rate. That is

COOK−LB = CMIMO (A6)

These equations can be combined to give

CMIMO =
M∑
m

(
1

2
φm (Rm) − φm

(
1

2
Rm

))
(A7)

In the very noisy limit, where z  �m, the functions φm can be
approximated as

φm (z) ≈ z ln (�m) + z + 1

2�m
z2 (A8)

Using this to approximate eq. (A7) gives

CMIMO =
M∑
m

1

8�m

(
N∑
n

γnm An

)2

(A9)

as stated.
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A P P E N D I X B : O RT H O G O NA L
C O M B I NAT I O N S O F G E O L O G I C A L
Q UA N T I T I E S

In Section 2.2 it is necessary to choose a value of the matrix Xin,
as specified in eq. (22), so that the values of ζ ′

im satisfy eq. (23). In
matrix notation, these equations can be written, respectively, as

ζ ′ = X−1ζ (B1)

and

ζ ′ζ ′� = diag (ξ ) , (B2)

where it is assumed that the i index specifies row, and the m index
specifies column. Substituting eq. (B1) into eq. (B2) gives

X−1T
(
X−1
)� = diag (ξ ) , (B3)

where the N × N symmetric matrix T is defined as

T = ζ ζ� (B4)

which is equivalent to the definition given in eq. (24). If ζ contains
N linearly independent columns, then it will be of full rank, and
so the quantity ζx for an arbitrary non-zero vector x will also be a
non-zero vector. Therefore

xζ ζ�x� > 0 (B5)

and so T is positive definite. A symmetric matrix can be diagonalized
as

A = U DU�, (B6)

where D is a diagonal matrix containing the eigenvalues of T, and U
is a unitary matrix composed of the corresponding eigenvectors. As
T is positive definite, these eigenvalues will be positive. Substituting
eq. (B6) into eq. (B3) gives

X−1U DU� (X−1
)� = diag (ξ ) . (B7)

This is solved by

X = U (B8)

D = diag (ξ ) (B9)

which gives the result stated.

A P P E N D I X C : G E N E R A L I T Y O F
L I N E A R C O M B I NAT I O N T E S T
S TAT I S T I C

It is assumed in Section 2.3 that a test statistic of the form

 =
M∑
m

γmkm (C1)

will not greatly differ from an optimal test statistic. The expectation
value of an optimal test statistic can be written in the general form

ψ = f (λ1, λ2, · · · ) + w, (C2)

where f is an unknown function, and w is an arbitrary constant. The
value of this constant is unimportant, as the method of analysis can
be chosen so as to subtract it out. In Section 2.3, this is implicitly
done by the choice of the bihn threshold values. Taylor expanding

eq. (C2) gives

ψ = w + f
(
λ̃1, λ̃2, · · ·

)+
M∑
m

∂ f

∂λm

∣∣∣∣
λ̃m

(
λm − λ̃m

)
(C3)

+O
((

λm − λ̃m

)2)
,

where the expansion points λ̃m are typical values for λm. In the
low contrast case, λm will not greatly differ from λ̃m and hence the
Taylor series can be truncated to first order as

ψ =
M∑
m

∂ f

∂λm

∣∣∣∣
λ̃m

λm, (C4)

where w has been chosen to cancel all the other constants in this
expression. Therefore the expected values of an optimal test statistic
are approximately equal to a weighted sum of the expectation values
of the muon counts. This suggests that the optimal test statistic is
likewise similar to a weighted sum of the muon counts.

A P P E N D I X D : N O R M A L
A P P ROX I M AT I O N O F P RO B A B I L I T Y
D I S T R I B U T I O N S

It is assumed in Section 2.3, that given a set of independent Poisson
distributed variables km with expectation values λm, then in the case
where

∑M
m λm � 1, the probability mass function of the weighted

sum

 =
M∑
m

γmkm (D1)

has values which can be approximated by the probability density
function of a normal distribution with mean

ψ =
M∑
m

γmλm (D2)

and standard deviation σ given by

σ 2 =
M∑
m

γ 2
mλm (D3)

A weaker version of this theorem, applicable only to the special case
λm � 1 can be derived by noting that the normal approximation
will apply to the individual values of km, and hence to their sum. In
the stronger theorem, however, the normal approximation need not
apply to the individual values of km.

To proceed, it is simpler to work with the standardized quantity

s =  − ψ

σ
(D4)

which if the theorem is correct, should tend towards a standard
normal distribution, that is a normal distribution with zero mean
and unit standard deviation. The moment generating function of s

is defined as

M (h) = E [exp (hs))] , (D5)

where E denotes expectation value. This evaluates to

M (h) = exp

(
−ψh

σ
+

M∑
m

λm

(
exp

(
γmh

σ

)
− 1

))
. (D6)
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Taylor expanding the innermost exponential and substituting in eq.
(D3) gives

M (h) = exp

(
h2

2
+

M∑
m

(
λmγ 3

mh3

6σ 3

)
+ O

(
λm

σ 4

))
. (D7)

In the limit
∑M

m λm � 1, it follows that σ � 1, and so eq. (D7) can
be approximated as

M (h) ≈ exp

(
h2

2

)
(D8)

which is the moment generating function of a standard normal
distribution, as required.

A P P E N D I X E : M A X I M I Z I N G
P RO B A B I L I T Y W I T H R E S P E C T T O
W E I G H T I N G C O E F F I C I E N T S

It is assumed in Section 2.3, that q, as defined by

q (γm) =
(∑M

m μ̃m zmγm

)2

∑M
m μ̃mγ 2

m

(E1)

is maximized when γ m ∝ zm. The point zm can be investigated by
observing how q reacts to changes from this point. Defining

	q = q (zm + εm) − q (zm) , (E2)

where εm is the change from zm, gives

	q =
(∑M

m μ̃m zm (zm + εm)
)2

∑M
m μ̃m (zm + εm)2

−
M∑
m

μ̃m z2
m (E3)

which can be rearranged to give

	q =
(∑M

m umvm

)2
−
(∑M

m u2
m

) (∑M
m v2

m

)
∑M

m (um + vm)2
, (E4)

where um ≡ √
μ̃m zm and vm ≡ √

μ̃mεm . The Cauchy Schwarz in-
equality states that(

M∑
m

umvm

)2

≤
(

M∑
m

u2
m

)(
M∑
m

v2
m

)
(E5)

which together with the denominator of eq. (E4) being positive,
implies that

	q ≤ 0. (E6)

The equality in this expression corresponds to the special case
where um is related to vm by a common multiplier, which in turn
corresponds to the fact that q is unaffected by the multiplication
of γ m by a common constant. In all other cases, 	q is negative,
showing that γ m ∝ zm maximizes q.

A P P E N D I X F : L I M I T T O A N G U L A R
R E S O LU T I O N

In Section 2.4, it is stated that eq. (63) gives an approximate limit
to image resolution, due to the random nature of muon arrival. The
situation involves variations in observed muon flux, and not the
individual geological quantities that underly these variations. It is
therefore necessary to take the sum of the contribution from each
geological quantity. It follows from eq. (4) that 	ηm, the relative

modification to the mean count rate for the mth measurement is
given by

	ηm =
N∑
n

ζnm	χn . (F1)

This can be used to simplify eq. (60), giving

Cb = ln (2)

8

M∑
m

Jm (	ηm)2 am	�m . (F2)

If the measurement for each set of directions is to be distinct, then
each element of the image must be informed by at least one data bit.
Therefore, for an observation time t, each term in the summation
must make a contribution to the data rate of at least 1/t, and so the
condition

	�m ≥ 1
ln(2)

8 Jmamt (	ηm)2
(F3)

must apply. The relation between the solid angle of a directional
element, and the angle of separation from neighboring elements, is
dependent on the geometric arrangement. However, it is reasonable
to impose the condition 	� ≤ φ2, where φ is the angular separation.
This is true for square grids (	� = φ2 in the small angle approxi-
mation), hexagonal grids (	� ≈ 0.866 φ2), and neighboring circles
(	� ≈ 0.785 φ2). Consequently, the approximate condition

φm ≥ 1

	ηm

√
ln(2)

8 Jmamt
(F4)

applies if the properties of two different regions are to be measured
independently. This condition is related to the limiting angular res-
olution of the detector, beyond which improvements will provide
little improvement to the resulting image. The definition of this
point is somewhat arbitrary, but it is sensible to choose it to be
some fraction of φm. A convenient fraction is

√
ln (2) /8 ≈ 0.294,

which is chosen so as to remove numerical factors from the resulting
equation. Choosing this fraction gives the result stated by eq. (63).

A P P E N D I X G : M U O N E N E RG Y
S A M P L I N G

The simplest approach for calculating the survival probability func-
tion is to initialize the simulation with random energies chosen
from the probability density function of muon energy at ground
level. The survival probability �, as a function of distance s can
then be estimated as

� (s) = 1 − 1

N

N∑
n=1

{sn ≤ s} , (G1)

where sn is the distance attained by the nth simulation out of N. The
curly brackets denote a value of 1 if the condition within is true,
and 0 otherwise.

This approach is problematic for several reasons. At large (multi
kilometre) propagation distances, the surviving muons are usually
those which started with uncommonly high energy. When only a
few of these muons are sampled, there will be large random error.
Another problem is that the ground level energy distributions are
dependent on direction, and so a separate set of simulations would
be required for each zenith angle.

An alternative approach is to calculate muon survival functions
for fixed energies, and then to combine these with the initial en-
ergy spectrum to produce an overall survival function (Kudryavtsev
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2009). This, however, requires a two dimensional set of simulations,
as a set of simulations must be performed for each individual energy
value.

Instead, the simulations were initialized with randomly chosen
energies, but from a distribution which overrepresented the high
energy values. A power law distribution of the form

P (E) = α − 1

E0

{
0 ; E < E0(

E
E0

)−α

; E ≥ E0
(G2)

was used, which is constructed so as to exclude muons below the
energy cutoff at E0 = 100 GeV. This is only valid when α > 1, as
for lower values, power law integrals are divergent, and hence the
distribution cannot be normalized.

Random numbers conforming to this distribution can be gener-
ated using inverse transform sampling. A random value for E can
be obtained by generating a random value x following a continuous
uniform distribution between 0 and 1, and then using the formula

E = E0 x
1

α−1 (G3)

to generate a value following the power law distribution. To calculate
the survival probability function, eq. (G1) was modified to give

� (s, θ ) = 1 −
∑N

n=1 p (En, θ ) {sn ≤ s}∑N
n=1 p (En, θ )

, (G4)

where En is the initial energy for the nth simulation, and p(En, θ )
is a correction for the over representation of higher energies. It is
given by

p (E, θ ) = g (E, θ )

(
E

E0

)α

, (G5)

where g(E, θ ) is the real probability density function of muon energy
at ground level. eq. (G4) was used to produce the survival probability
functions shown in Fig. 4. A power law value of α = 1.5 was chosen,
to give good representation to the higher energies, while retaining
normalizability.

A P P E N D I X H : I M P L E M E N TAT I O N O F
R AY T R A C I N G

To perform muon rayt racing, it is first necessary to parametrize
directions of arrival in a convenient form. This is done by back-
projecting the directions onto a horizontal plane at ground level.
Such a projection (which is equivalent to gnomonic projection in
map-making) is used for the images shown in Section 4. A small
region on the image plane with area 	Am will cover a solid angle
of

	�m = cos (θm)

s2
m

	Am, (H1)

where sm is the distance from region to the detector, and θm is
zenithal angle. The image plane can then be rasterized, where each
pixel corresponds to a ray tracing path and represents an element of
solid angle given, as by eq. (H1).

Once a set of paths have been constructed, each path is passed
to a ray tracing function which determines the regions of the model
that the path intersects, and calculates the path length of each in-
tersection. The ray tracer output is then used to calculate effective
distance for each path, as given by eq. (67). Putting these into eq.
(71) then gives the muon flux for each pixel.

The model used in Section 4 is represented using corner-point
geometry, a grid system which is widely used in hydrocarbon reser-
voir simulations (Ponting 1989). This is similar to a Cartesian grid
system (which remains a special case), but instead of the cells being
cuboids, they can be distorted into irregular hexahedra. This is done
by constructing a set of x × y cell columns, where the edges at which
each column meets its neighbours (together with the outer boundary
of the grid) are specified by a set of (x + 1) × (y + 1) quasi-vertical
reference lines. The individual cells within each column are then
defined by specifying their corners in terms of the distances along
the reference lines. As the cell faces have corners that are not neces-
sarily coplanar, the faces are in fact constructed from four triangles
(one for each edge) which join together at the centroid of the cor-
ners (i.e. the mean of their Cartesian coordinates). Therefore, each
cell may in fact have more than six faces, albeit while retaining an
approximately hexahedral shape.

The corner-point system is designed to naturally accommodate
uneven geological layering and fault lines, while retaining the con-
venience of storing the geological data in ordinary 3-D arrays. The
shape of the geological layers are specified by the shape of the grid
system, and so the grid geometry is just as much a part of the geolog-
ical model as the data within the 3-D arrays. In fact, the modelling
used in Section 4 was done not by assigning values to each cell in
a grid, but by taking an array of known values for the substances
involved, and then shaping the corresponding grid system such that
their boundaries matched that of the geology.

A P P E N D I X I : M O D E L O F C A R B O N
D I OX I D E M OV E M E N T

To describe the subsurface movement of the injected CO2, an ana-
lytical model based on that of Mathias et al. (2009) was used.

The model assumes that a set fraction of the Bunter sandstone
consists of a brine filled pore space, with the remainder being solid.
The porosity φ is defined as the fraction (by volume) that the pore
space occupies. The structure of the rock is assumed to vary over
length scales far shorter than the resolution of the muon images, so
that bulk averages of the material properties can be used. Therefore,
prior to CO2 injection, the bulk density of the rock is given by

ρunfilled = (1 − φ) ρs + φρw, (I1)

where ρw and ρs are the intrinsic phase averaged densities of the
brine and solid rock, respectively. When supercritical CO2 is added,
it displaces some of the brine, but a fraction is assumed to be
immobile. Therefore, the bulk density of rock considered filled to
its maximum extent with CO2 is given by

ρfilled = (1 − φ) ρs + φSrwρw + φ (1 − Srw) ρn, (I2)

where ρn is the density of the supercritical CO2, and Srw is the
fraction of brine assumed to be immobile. (The brine and the su-
percritical CO2 are in some sources referred to as the ‘wetting’ and
‘non-wetting’ phases, hence the subscripts ‘w’ and ‘n’. Similarly,
the subscript ‘rw’ stands for residual wetting.) The densities are
assumed to be constants. This requires that they be calculated for
some reference temperature and pressure, with variations in these
properties assumed to have negligible effect. The multiphase com-
ponents are assumed to be immiscible and non-reactive. The rock
porosity and the residual wetting are also assumed to be constants.
The wetting and non-wetting components have relative permeabil-
ities krw and krn, and fluid viscosities μn and μw, which are also
assumed to be constants.
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It is assumed that there is a well defined fluid interface between
the filled and unfilled regions. The filled region, being less dense,
floats on top, reaching to the top of the Bunter layer. The purpose
of the flow model is therefore to calculate the shape of the surface
separating the filled and unfilled regions. This flow is assumed to be
largely driven by the increased fluid pressure at the injection point,
which represents a vertical injection well. It is also assumed that
the flow is non-inertial, the pore system is undeformable, capillary
pressure is negligible, and that the horizontal boundaries of the
Bunter layer are too distant to have any effect on fluid movement.

If CO2 is injected at a rate Mn along a vertical injection well
penetrating through a Bunter layer of height H, then an approximate
analytical solution for the plume thickness h, as a function of time
t and radial horizontal distance from the injection point x can be
derived from Mathias et al. (2009) as

h (x, t) ≈

⎧⎪⎪⎨
⎪⎪⎩

H ; x ≤ γ θ
√

t
Hγ θ

1 − γ

√
t

x
− Hγ

1 − γ
; γ θ

√
t < x < θ

√
t

0 ; θ
√

t ≤ x

(I3)

where the constant terms γ and θ are given by

γ = μnkrw

krnμw
(I4)

θ =
√

Mn

π Hφ (1 − Srw) ρnγ
(I5)

Geometrically, this solution describes a cylindrical central region
[the first domain in eq. (I3)] surrounded by an outer hyperboloidal
region [the second domain in eq. (I3)] which extends to a radius
of θ

√
t before reaching a value of zero [the final domain in eq.

(I3)]. Both horizontal dimensions scale with time as
√

t . The total
volume is therefore proportional to t, and hence proportional to the
mass of CO2 injected. The applicability of these equations has been
explored by Mathias et al. (2009, 2011b), Nordbotten et al. (2005)
and Nordbotten & Celia (2006).

Two further assumptions are made to adapt this model to the real
geology. First, to account for the fact that the boundary between
the Bunter sandstone and the layer above is uneven, the depth of
the fluid interface between the filled and unfilled regions is altered
so that the thickness, h, of the CO2 plume conforms to eq. (I3).
Secondly, to account for the fact that the well does not penetrate
to the base of the Bunter sandstone (as the derivation of eq. (I3)
assumes) an impermeable layer is assumed to exist beneath the base
of the well. This is partially justified by the fact that the supercritical
CO2 is less dense than the brine and hence would not sink, but in
reality, the injection pressure will drive the boundary between the
filled and unfilled regions slightly below the bottom of the well.
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