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Abstract
Let Γ𝑔 be the fundamental group of a closed connected orientable surface of genus 𝑔 ≥ 2. We develop a new
method for integrating over the representation space X𝑔,𝑛 = Hom(Γ𝑔, 𝑆𝑛), where 𝑆𝑛 is the symmetric group of
permutations of {1, . . . , 𝑛}. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the
closed surface of genus g.

Given 𝜙 ∈ X𝑔,𝑛 and 𝛾 ∈ Γ𝑔, we let fix𝛾 (𝜙) be the number of fixed points of the permutation 𝜙(𝛾). The function
fix𝛾 is a special case of a natural family of functions on X𝑔,𝑛 called Wilson loops. Our new methodology leads to
an asymptotic formula, as 𝑛 → ∞, for the expectation of fix𝛾 with respect to the uniform probability measure on
X𝑔,𝑛, which is denoted by E𝑔,𝑛 [fix𝛾]. We prove that if 𝛾 ∈ Γ𝑔 is not the identity and q is maximal such that 𝛾 is a
qth power in Γ𝑔, then

E𝑔,𝑛
[
fix𝛾
]
= 𝑑 (𝑞) +𝑂 (𝑛−1)

as 𝑛 → ∞, where 𝑑 (𝑞) is the number of divisors of q. Even the weaker corollary that E𝑔,𝑛 [fix𝛾] = 𝑜(𝑛) as
𝑛 → ∞ is a new result of this paper. We also prove that E𝑔,𝑛 [fix𝛾] can be approximated to any order 𝑂 (𝑛−𝑀 ) by a
polynomial in 𝑛−1.
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1. Introduction

Let 𝑔 ≥ 2, and let Σ𝑔 be a closed orientable topological surface of genus g. We fix a base point 𝑜 ∈ Σ𝑔

and let

Γ𝑔
def
= 𝜋1
(
Σ𝑔, 𝑜
)
�
〈
𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔

�� [𝑎1, 𝑏1] · · ·
[
𝑎𝑔, 𝑏𝑔

]〉
(1.1)

be the fundamental group of Σ𝑔. Denote by

X𝑔,𝑛
def
= Hom

(
Γ𝑔, 𝑆𝑛

)
the representation space of all homomorphisms from Γ𝑔 to 𝑆𝑛, where 𝑆𝑛 is the symmetric group of
permutations of {1, . . . , 𝑛}. From another point of view, the space X𝑔,𝑛 can be viewed as the space of
degree-n covering maps of Σ𝑔. Indeed, for every not-necessarily-connected degree-n covering map

𝑝 : 𝑋 � Σ𝑔,

we may identify the fiber 𝑝−1 (𝑜) with {1, . . . , 𝑛}, and the monodromy action of 𝜋1
(
Σ𝑔, 𝑜
)

on the fiber
then gives rise to a homomorphism 𝜙 ∈ Hom(Γ𝑔, 𝑆𝑛). This gives a one-to-one correspondence between
X𝑔,𝑛 and degree-n covering maps with 𝑝−1 (𝑜) = {1, . . . , 𝑛}. This correspondence is discussed in more
detail in §§2.2.

The space X𝑔,𝑛 was studied by Liebeck and Shalev [LS04], who showed that a uniformly random
homomorphism 𝜙 : Γ𝑔 → 𝑆𝑛 satisfies 𝜙

(
Γ𝑔
)
⊇ 𝐴𝑛 a.a.s. (asymptotically almost surely, namely, with

probability tending to 1 as 𝑛 → ∞) [LS04, Thm. 1.12].1 In particular the image is a.a.s. transitive,
or, equivalently, the corresponding random degree-n covering space is a.a.s. connected. When Γ𝑔 is
replaced by a nonabelian free group, the analogous result holds by the famous theorem of Dixon [Dix69]
that two random permutations in 𝑆𝑛 a.a.s. generate 𝑆𝑛 or 𝐴𝑛.

In the current work we address the problem of integration over the space X𝑔,𝑛. Namely, our goal
is to analyze the expected value E𝑔,𝑛 [ 𝑓 ] of functions f on X𝑔,𝑛 with respect to the uniform measure

1The paper [LS04] considers, more generally, random homomorphisms from any Fuchsian group to 𝑆𝑛.
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onX𝑔,𝑛. The functions onX𝑔,𝑛 that we consider are natural functions that arise from loops in Σ𝑔. Given
an element 𝛾 ∈ Γ𝑔 and a character 𝜒 of 𝑆𝑛, we let

𝜒𝛾 (𝜙)
def
= 𝜒(𝜙(𝛾)), 𝜒𝛾 : X𝑔,𝑛 → R.

These functions are called Wilson loops in the physics literature [Lab13, Def. 6.4.1]. Our focus is on the
character fix of 𝑆𝑛 which assigns to every permutation its number of fixed points.

The main motivation behind this work is its relevance to the study of random covers of the closed
surface Σ𝑔. Given some 1 ≠ 𝛾 ∈ Γ𝑔, consider the geodesic 𝐶𝛾 in Σ𝑔 corresponding to the conjugacy
class of 𝛾. For every homomorphism 𝜙 ∈ X𝑔,𝑛, the number of fixed points fix𝛾 (𝜙) is precisely the
number of lifts of 𝐶𝛾 to a closed geodesic in the degree-n covering corresponding to 𝜙. Indeed, the
results of this paper are crucial ingredients in a subsequent work [MNP22] which gives new results on
spectral gaps of random covers of a closed surface.

Another source of motivation is the rich theory that has been discovered around similar questions
when surface groups are replaced by free groups (e.g., [Nic94, PP15, MP19, HP22] and see §§1.2
below). Expanding this theory to other groups is challenging, as the presence of a relation between the
generators presents a fundamental difficulty that is not present for free groups. Surface groups, among
the best understood and best behaved one-relator groups, are a natural starting point for this quest. To
overcome the difficulty brought up by the existence of a relation, we develop in this work new machinery,
both in representation theory of 𝑆𝑛 and in combinatorial group theory.

Expected number of fixed points

Recall that the expectation E𝑔,𝑛
[
fix𝛾
]

is the average number of fixed points in 𝜙 (𝛾) where 𝜙 : Γ𝑔 → 𝑆𝑛
is uniformly random. Our main results are the following two theorems.

Theorem 1.1. Fix 𝑔 ≥ 2 and 𝛾 ∈ Γ𝑔. Then there is an infinite sequence of rational numbers

𝑎1 (𝛾) , 𝑎0 (𝛾) , 𝑎−1 (𝛾) , 𝑎−2 (𝛾) , . . .

such that for any 𝑀 ∈ N, as 𝑛 → ∞,

E𝑔,𝑛
[
fix𝛾
]
= 𝑎1 (𝛾) 𝑛 + 𝑎0 (𝛾) +

𝑎−1 (𝛾)

𝑛
+ . . .

𝑎−(𝑀−1) (𝛾)

𝑛𝑀−1 +𝑂

(
1

𝑛𝑀

)
. (1.2)

Theorem 1.2. If 𝛾 ∈ Γ𝑔 is not the identity, then, as 𝑛 → ∞,

E𝑔,𝑛 [fix𝛾] = 𝑂 (1).

In fact, if 𝑞 ∈ N is maximal such that 𝛾 = 𝛾 𝑞
0 for some 𝛾0 ∈ Γ, then, as 𝑛 → ∞,

E𝑔,𝑛 [fix𝛾] = 𝑑 (𝑞) +𝑂

(
1
𝑛

)
,

where 𝑑 (𝑞) is the number of divisors function. In other words, 𝑎1 (𝛾) = 0 and 𝑎0 (𝛾) = 𝑑 (𝑞).

For example, consider the element a in Γ2 = 〈𝑎, 𝑏, 𝑐, 𝑑 | [𝑎, 𝑏] [𝑐, 𝑑]〉. This element is not a proper
power and soE2,𝑛 [fix𝑎] = 1+𝑂

(
𝑛−1) by Theorem 1.2. By Theorem 1.1, this average can be approximated

to any order 𝑛−𝑀 by a rational function in n. In this particular case, this rational function can be computed
to get for, for example, 𝑀 = 5,

E2,𝑛 [fix𝑎] = 1 +
1
𝑛2 +

2
𝑛3 +

10
𝑛4 +𝑂

(
1
𝑛5

)
.
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Given a finite group G, the number of homomorphisms Γ𝑔 → 𝐺 is related to the Witten zeta function
of G,

𝜁𝐺 (𝑠)
def
=
∑

𝜒∈Irr𝐺
𝜒 (1)−𝑠 ,

the summation being over the isomorphism classes of irreducible complex representations of G. These
functions were introduced by Zagier [Zag94] after Witten’s work in [Wit91]. The connection is given by��Hom

(
Γ𝑔, 𝐺
) �� = |𝐺 | 2𝑔−1𝜁𝐺 (2𝑔 − 2) . (1.3)

This result goes back to Hurwitz [Hur02], who gave a more general formula for arbitrary Fuchsian groups
(a proof in English is given in [LS04, Prop. 3.2]). It is also sometimes called ‘Mednykh’s formula’ in
the literature after [Med78]. For the case 𝐺 = 𝑆𝑛, the zeta function 𝜁𝑆𝑛 was studied in [Lul96, MP02,
LS04, Gam06]. Inter alia, these works show that, for every 𝑠 > 0,

𝜁𝑆𝑛 (𝑠) →
𝑛→∞

2.

Moreover, their results yield an asymptotic expansion in n which approximates 𝜁𝑆𝑛 (𝑠) as 𝑛 → ∞, in a
similar manner to the one in Theorem 1.1. As such, their results can be thought of as the special case of
𝛾 = 1 of a version of Theorem 1.1. We elaborate more in §§5.1.

Common fixed points of subgroups

Our proof also yields the following more general result that concerns not only elements of Γ𝑔 but
also f.g. (finitely generated) subgroups. We write 𝐽 ≤f.g. Γ𝑔 to denote a f.g. subgroup J of Γ𝑔. Given
𝐽 ≤f.g. Γ𝑔 and 𝜙 ∈ X𝑔,𝑛, we let fix𝐽 (𝜙) denote the number of elements in 1, . . . , 𝑛 that are fixed by all
permutations in 𝜙 (𝐽):

fix𝐽 (𝜙)
def
= |{𝑖 ∈ {1, . . . , 𝑛} | 𝜎 (𝑖) = 𝑖 for all 𝜎 ∈ 𝜙 (𝐽)}| .

In particular, fix〈𝛾〉 = fix𝛾 for all 𝛾 ∈ Γ𝑔. For 𝐽 ≤f.g. Γ𝑔, we let

𝜒max (𝐽)
def
= max

{
𝜒 (𝐾)
�� 𝐽 ≤ 𝐾 ≤f.g. Γ𝑔

}
(1.4)

denote the largest Euler characteristic2 of a f.g. subgroup 𝐾 ≤f.g. Γ𝑔 which contains J. Note that
𝜒
(
Γ𝑔
)
= 2 − 2𝑔 ≤ 𝜒max (𝐽) ≤ 1 and that 𝜒max (𝐽) ≥ 𝜒 (𝐽). It is also true that 𝜒max (𝐽) = 1 if and only

if 𝐽 = {1}, and 𝜒max (𝐽) ≥ 0 if and only if J is cyclic. In addition, we let

𝔐𝔒𝔊 (𝐽)
def
=
{
𝐾 ≤f.g. Γ𝑔

�� 𝐽 ≤ 𝐾 and 𝜒 (𝐾) = 𝜒max (𝐽)
}

denote the set of ‘maximal overgroups’ – f.g. subgroups achieving the maximum from equation (1.4).
This set is always finite – see Corollary 2.16.
Theorem 1.3. Let 𝐽 ≤f.g. Γ𝑔 be a f.g. subgroup. Then

E𝑔,𝑛 [fix𝐽 ] = |𝔐𝔒𝔊 (𝐽) | · 𝑛𝜒max (𝐽 ) +𝑂
(
𝑛𝜒max (𝐽 )−1

)
.

Theorem 1.3 generalizes Theorem 1.2, as for 𝛾 ≠ 1, 𝜒max (〈𝛾〉) = 0 and

𝔐𝔒𝔊 (〈𝛾〉) =
{ 〈

𝛾 𝑚
0
〉 �� 𝑚 |𝑞

}
.

2Every f.g. subgroup 𝐾 ≤ Γ𝑔 is either a free group, in which case 𝜒 (𝐾 ) = 1 − rank (𝐾 ) , or a surface group of genus ℎ ≥ 𝑔,
in which case 𝜒 (𝐾 ) = 2 − 2ℎ.
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The analog of Theorem 1.1 holds too for f.g. subgroups: There is an infinite sequence of rational numbers

𝑎1 (𝐽) , 𝑎0 (𝐽) , 𝑎−1 (𝐽) , . . .

such that for any 𝑀 ∈ N, as 𝑛 → ∞,

E𝑔,𝑛 [fix𝐽 ] =
1∑

𝑖=−(𝑀−1)
𝑎𝑖 (𝐽) 𝑛

𝑖 +𝑂
(
𝑛−𝑀
)
,

and such that 𝑎1 = 𝑎0 = . . . = 𝑎𝜒max (𝐽 )+1 = 0 and 𝑎𝜒max (𝐽 ) = |𝔐𝔒𝔊 (𝐽) |.

1.1. Related works I: Mirzakhani’s integral formulas

In [Mir07], Mirzakhani considered a similar problem to the one in this paper. Instead of integrating over
the finite space Hom(Γ𝑔, 𝑆𝑛), Mirzakhani obtained formulas for the integral of geometric functions over
the the moduli space M𝑔 of complete hyperbolic surfaces of genus g, with respect to the Weil–Petersson
volume form 𝑑Volwp.

The geometric functions that Mirzakhani considers are very much like our Wilson loops. Given any
closed curve 𝛾 ∈ Σ𝑔, for any complete hyperbolic metric J on Σ𝑔 there is a unique curve isotopic to
𝛾 that is shortest with respect to J, and the length of this curve is called the length of 𝛾, denoted by
ℓ𝐽 ([𝛾]). Here, [𝛾] is the isotopy class of 𝛾.

Mirzakhani requires that 𝛾 be simple, meaning that it does not intersect itself. This condition is not
present in the current paper and can be viewed as an advantage of our work. To obtain a function on
M𝑔, given a continuous function 𝑓 : R+ → R+, Mirzakhani considers the averaged function

𝑓𝛾 (𝐽)
def
=

∑
[𝛾′ ] ∈MCG(Σ𝑔) . [𝛾 ]

𝑓 (ℓ𝐽 ([𝛾
′])),

where MCG(Σ𝑔) is the mapping class group of Σ𝑔. Because of the averaging over the mapping class
group, 𝑓𝛾 descends to a function on M𝑔. This type of averaging is not necessary in the current paper
because X𝑔,𝑛 = Hom(Γ𝑔, 𝑆𝑛) is already finite; here, X𝑔,𝑛 is playing the role of the Teichmüller space
and not the moduli space. In [Mir07, Thm. 8.1], Mirzakhani gives a formula for∫

M𝑔

𝑓𝛾 𝑑Volwp

in terms of integrating f against Weil–Petersson volumes of moduli spaces. The power of this formula
is that in the same paper [Mir07], Mirzakhani gives explicit recursive formulas for the calculations of
Weil–Petersson volumes. For a more detailed discussion of these formulas, the reader should consult
Wright’s survey of Mirzakhani’s work [Wri20, §4].

1.2. Related works II: Free groups

Let F𝑟 denote a free group on r generators. For 𝛾 ∈ F𝑟 , the problem of integrating the Wilson loop

fix𝛾 (𝜙)
def
= fix(𝜙(𝛾)), fix𝛾 : Hom(F𝑟 , 𝑆𝑛) → R

over Hom(F𝑟 , 𝑆𝑛) with respect to the uniform probability measure is a basic problem that serves as
a precursor to that of the current paper. As mentioned above, many of the considerations used with
free groups no longer apply in the present paper. Indeed, Hom(F𝑟 , 𝑆𝑛) can be identified with 𝑆𝑟𝑛 and
hence techniques for integrating over groups are relevant in a much more direct way than in the case of
Hom
(
Γ𝑔, 𝑆𝑁

)
.
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Despite being an easier problem, the theory is very rich. It was proved by Nica in [Nic94] that the
analog of Theorem 1.2 holds for EF𝑟 ,𝑛 [fix𝛾]. A significantly sharper result was given by Puder and
Parzanchevski in [PP15] where they proved that if 𝛾 ∈ F𝑟 , then as 𝑛 → ∞

EF𝑟 ,𝑛
[
fix𝛾
]
= 1 +

𝑐(𝛾)

𝑛𝜋 (𝛾)−1 +𝑂

(
1

𝑛𝜋 (𝛾)

)
,

where 𝜋(𝛾) ∈ {0, . . . , 𝑟} ∪ {∞} is an algebraic invariant of 𝛾 called the primitivity rank and 𝑐(𝛾) ∈ N is
explained in terms of the enumeration of special subgroups of F𝑟 determined by 𝛾. Obtaining a similarly
sharp result in the context of Γ𝑔 is an interesting problem that should be taken up in the future.

Similar Laurent series expansions for the expected value of 𝜒𝛾 on Hom(F𝑟 , 𝐺 (𝑛)) have been proved
to exist, and studied, when 𝐺 (𝑛) is one of the families of compact Lie groups U(𝑛), O(𝑛), Sp(𝑛) [MP19,
MP22b], when 𝐺 (𝑛) is a generalized symmetric group [MP21], and when 𝐺 (𝑛) = GL𝑛 (F𝑞), where F𝑞
is a fixed finite field [EWPS21]. In all cases, 𝜒 is taken to be a natural character. For example, when
𝐺 (𝑛) = U(𝑛), one such 𝜒 is the trace of the matrix in the group. Moreover, for 𝐺 (𝑛) = U(𝑛), O(𝑛), Sp(𝑛)
and 𝜒 the trace, all the coefficients of the Laurent series are understood [MP19, MP22b].

In works undertaken after the completion of this paper, the first named author has obtained analogs
of Theorem 1.1 and the first part of Theorem 1.2 for3 Hom(Γ𝑔, U(𝑛)) and the standard matrix trace
[Mag22, Mag21]. The methods used in (ibid.) are inspired by those of the current work.

1.3. Related works III: Noncommutative probability

Theorem 1.2 has a direct consequence in the setting of Voiculescu’s noncommutative probability theory.
Following [VDN92, Def. 2.2.2], a 𝐶∗-probability space is a pair (B, 𝜏), where B is a unital 𝐶∗-algebra
and 𝜏 is a state4 on B. We say that a sequence {(B, 𝜏𝑛)}

∞
𝑛=1 of 𝐶∗-probability spaces converges to (B, 𝜏)

if for all elements 𝑏 ∈ B

lim
𝑛→∞

𝜏𝑛 (𝑏) = 𝜏(𝑏).

The functions 𝜏𝑛 : Γ𝑔 → R defined by 𝜏𝑛 (𝛾)
def
= 𝑛−1E𝑔,𝑛 [fix𝛾] extend to states on the full group

𝐶∗-algebra 𝐶∗(Γ𝑔) of Γ𝑔. There is also a unique state 𝜏reg on 𝐶∗(Γ𝑔) that satisfies 𝜏reg(𝑔) = 0 for 𝑔 ≠ 1;
we use the subscript reg because the GNS representation of 𝜏reg is the left regular representation. One
has the following corollary of Theorem 1.2:

Corollary 1.4. The 𝐶∗-probability spaces (𝐶∗(Γ𝑔), 𝜏𝑛) converge to (𝐶∗(Γ𝑔), 𝜏reg) as 𝑛 → ∞.

It is reasonable to hope that similar results can be obtained when Γ𝑔 is replaced by any residually
finite one-relator group (cf. §§1.4). We view Corollary 1.4 as an important first step in this program.

1.4. Related works IV: Residual finiteness

A f.g. discrete group Λ is residually finite if for any nonidentity 𝜆 ∈ Λ there is a finite index subgroup
𝐻 ≤ Λ such that 𝜆 ∉ 𝐻. The residual finiteness of Γ𝑔 has been known for a long time [Bau62, Hem72].
More recently, various quantifications of residual finiteness and of the related property of LERF5 have
been proposed by various authors [BR10, LLM23]. Theorem 1.2 can serve as a strengthening of the
residual finiteness of Γ𝑔, as we now explain.

3In this case, instead of the uniform measure on Hom(Γ𝑔 , 𝑆𝑛) that we use here, one should use a natural measure on
Hom(Γ𝑔 , U(𝑛)) that arises from the Atiyah–Bott–Goldman symplectic form [Gol84, AB83] on (a nonsingular part of) the
character variety Hom(Γ𝑔 , U(𝑛))/U(𝑛) .

4A state on a unital 𝐶∗ algebra is a positive linear functional such that 𝜏 (1) = 1.
5Locally extended residual finiteness.
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Note that residual finiteness of a group Λ is equivalent to, for all 𝑒 ≠ 𝜆 ∈ Λ, the existence of 𝑛 ∈ N
and 𝜙 ∈ Hom(Λ, 𝑆𝑛) such that 𝜙(𝜆) ≠ 1. Theorem 1.2 combined with Markov’s inequality implies the
following quantitative version of residual finiteness.
Corollary 1.5. Given a nonidentity element 𝑒 ≠ 𝛾 ∈ Γ𝑔, for large enough n,��{𝜙 ∈ Hom(Γ𝑔, 𝑆𝑛) : 𝜙(𝛾) ≠ 1

}��
|Hom(Γ𝑔, 𝑆𝑛) |

≥ 1 −
𝑑 (𝑞)

𝑛
−𝑂

(
1
𝑛2

)
, (1.5)

where q and 𝑑 (𝑞) are as in Theorem 1.2, and the implied constant in the big-O term depends on 𝛾.
In fact, the techniques of this paper can be used to show that, for example, for every 𝑚 ∈ N,

the expected value of fix 𝑚
𝛾 is of the form 𝑐 (𝑞) + 𝑂

(
𝑛−1) , where q is as in Theorem 1.2 and 𝑐 (𝑞)

is a positive integer. This would yield a probability bound similar to equation (1.5) but of the form
1 −

𝑐 (𝑞)
𝑛𝑚 +𝑂

(
𝑛−𝑚−1) . This is done explicitly in [PZ22, Corollary 1.8].

1.5. Related works V: Benjamini–Schramm convergence

In [BS01], Benjamini and Schramm introduced a notion of convergence of a sequence of finite graphs
to a limiting graph, known now as Benjamini–Schramm convergence. This concept was extended
to convergence of sequences of Riemannian manifolds in [ABB+11, ABB+17]. Theorem 1.2 has
consequences for the Benjamini–Schramm convergence of random covers of Riemannian surfaces;
there are various of these consequences but we present just one representative one here.6
Corollary 1.6. Let X be a closed hyperbolic surface of genus ≥ 2. Then as 𝑛 → ∞, uniformly random
degree-n covering spaces of X converge in the sense of Benjamini–Schramm to the hyperbolic upper
half plane H.

Concretely, this means that for any 𝐿 > 0 and 𝜀 > 0, if 𝑋𝑛 denotes a random degree-n cover of X (as
above), then a.a.s. as 𝑛 → ∞,

area
(
𝑋<𝐿
𝑛

)
area (𝑋𝑛)

< 𝜀,

where 𝑋<𝐿
𝑛 is the points of 𝑋𝑛 with local injectivity radius < 𝐿. To see how this follows from Theorem 1.2,

viewing L as a constant, any point in 𝑋<𝐿
𝑛 is in a neighborhood, with bounded area depending on L, of

some simple closed geodesic of 𝑋𝑛 with length < 2𝐿 [Bus10, proof of Thm. 4.1.6]. Any such geodesic
covers a closed (possibly nonprimitive) geodesic in X of length < 2𝐿, and these in turn correspond to a
finite list of conjugacy classes in Γ𝑔. Starting with a conjugacy class [𝛾], the number of corresponding
closed lifted geodesics in 𝑋𝑛 is at most fix𝛾 . Using Markov’s inequality with Theorem 1.2 gives therefore
a.a.s. that the number of simple closed geodesics of 𝑋𝑛 with length < 2𝐿 is bounded (depending on L).
This means area

(
𝑋<𝐿
𝑛

)
is bounded a.a.s. and as area (𝑋𝑛) is linear in n, this completes the proof.

1.6. Structure of the proofs and the issues that arise

The reader of the paper is advised to first read this §1.6, and then §6, where all the ideas of the paper are
brought together to give concise proofs of Theorems 1.1, 1.2 and 1.3, before reading the other sections.

There are two main ideas of the paper that we will discuss momentarily. Here, we give a ‘high-level’
account of the strategy of proving our main theorems. At times, we oversimplify definitions to be more
instructive. Let us fix 𝑔 = 2 and discuss only Theorems 1.1 and 1.2. The extension of these results from
cyclic groups to more general finitely generated subgroups is along the same lines. So fix 𝛾 ∈ Γ2.

Firstly, we view X𝑛 = X2,𝑛 as a space of random coverings of a fixed genus 2 surface Σ2. By fixing
an octagonal fundamental domain of Σ2, each covering of Σ2 is tiled by octagons. This leads us to the

6This consequence of Theorem 1.2 was first pointed out by Baker and Petri in [BP20].
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notion of a tiled surface, defined precisely in Definition 2.1. A tiled surface involves not just a tiling but
a labeling of the edges of the tiling by generators of the fundamental group of Σ2. Hence, all the main
theorems can be reinterpreted in terms of random tiled surfaces that are called 𝑋𝜙 for 𝜙 ∈ X𝑛.

The first observation is that E𝑛
[
fix𝛾
]
= E2,𝑛

[
fix𝛾
]
, the expected number of fixed points of 𝛾 under

𝜙 ∈ X𝑛, is the expected number of times that we see a fixed annulus A, specified by 𝛾, immersed in
the random tiled surface 𝑋𝜙 . This annulus A may be the ‘core surface’ corresponding to 〈𝛾〉 – see
Definition 2.6, the left part of Figure 2.3 and [MP22a, Lem. 5.1]. However, A needs not be embedded
in 𝑋𝜙 . On the other hand, it is possible to produce a finite collection R of tiled surfaces, each of which
has an immersed copy of A, such that

E𝑛
[
fix𝛾
]
=
∑
𝑌 ∈R
Eemb
𝑛 (𝑌 ), (1.6)

where Eemb
𝑛 (𝑌 ) is the expected number of times that Y is embedded in the random 𝑋𝜙 .

We formalize types of collections R that have the above property in Definition 2.8; we call them
resolutions (of A). Of course, there is a great deal of flexibility in how R is chosen; we will come back
to this point shortly. The benefit to having equation (1.6) brings us to the first main idea of the paper:

We have a new method of calculating Eemb
𝑛 (𝑌 ), using the representation theory of symmetric groups

𝑆𝑛 and more specifically, the approach to the representation theory of 𝑆𝑛 developed by Vershik and
Okounkov in [VO96].

This methodology is developed in §5. The necessary background on representation theory is given
in §3, and in §4 we prove some preliminary representation theoretic results needed for §5. The reader
may be interested to see that Theorem 1.1 has, at its source, Proposition 4.6. See also the overview of
§5 in §§5.1.

This new methodology to calculate Eemb
𝑛 (𝑌 ) is sufficient to prove Theorem 1.1. However, in the proof

of Theorem 1.2, a critical issue now intervenes. We expect, based on experience with similar projects
(e.g., [PP15, MP19]) that

Eemb
𝑛 (𝑌 ) ≈ 𝑛𝜒 (𝑌 ) (1.7)

as 𝑛 → ∞. However, this cannot always be the case. For example, if, roughly speaking, it is possible
to glue some octagons to Y to increase the Euler characteristic, forming 𝑌 ′, then the observation that
Eemb
𝑛 (𝑌 ) ≥ Eemb

𝑛 (𝑌 ′) breaks equation (1.7). Then it is not unsurprising that the bounds we obtain for
Eemb
𝑛 (𝑌 ) do not always agree with equation (1.7).

On the other hand, if Y has special properties that we call boundary reduced and strongly boundary
reduced, then we can get appropriate bounds on Eemb

𝑛 (𝑌 ). We give the precise definitions of these
properties in Definitions 2.4 and 2.5. They involve forbidding certain constellations from appearing in
the boundary of Y. Even though these constellations are dictated by representation theory, forbidding
them remarkably relates to natural geometric properties of Y. For example, if Y is not boundary reduced,
then it is possible to add octagons to Y to decrease the number of edges in its boundary. To give some
more intuition, being boundary reduced can be viewed as a discrete analog of a hyperbolic surface
having geodesic boundary. This means that these properties are closely related with the problem of
finding shortest representatives (with respect to word length) of elements of Γ𝑔 that is addressed by
Dehn’s algorithm [Deh12].

If Y is boundary reduced, then we can prove (Theorem 5.10 and Proposition 5.25)

Eemb
𝑛 (𝑌 ) = 𝑂

(
𝑛𝜒 (𝑌 )
)
,

and if Y is strongly boundary reduced, we can prove (Theorem 5.10 and Proposition 5.26)

Eemb
𝑛 (𝑌 ) = 𝑛𝜒 (𝑌 )

(
1 +𝑂

(
𝑛−1
))
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(see, again, Section 5.1 for a more detailed overview).7 Therefore, to prove Theorem 1.2, it suffices to
produce resolutions of the annulus A where we can control which elements are (strongly) boundary
reduced, control their Euler characteristics and count the number of elements with maximal Euler
characteristic. The design of these resolutions is the second main theme of the paper.

For any tiled surface Z, we describe an algorithm to produce finite resolutions of Z with careful
control on their properties as above. This is the main topic of §2. Precisely defining the annulus A that
should be used as input, as well as its generalization for noncyclic subgroups 𝐽 ≤ Γ, and counting the
outputs of our algorithm, requires introducing the concept of a core surface of a subgroup 𝐽 ≤ Γ. For
example, above, A should be taken to be the core surface of 〈𝛾〉. The theory of core surfaces that we
develop in a companion paper [MP22a] is analogous to that of Stallings’ core graphs for subgroups of
free groups due to Stallings [Sta83], and we hope that the results therein may be of independent interest.

Remark 1.7. Another perspective on the value of Eemb
𝑛 (𝑌 ) for arbitrary tiles surfaces is given in [PZ22,

Thm. 2.6]. Let Y be an arbitrary tiled surface, 𝑝 : 𝑌 → Σ𝑔 the restricted covering map, and 𝜒grp (𝑌 ) the
Euler characteristic of the subgroup 𝑝∗ (𝜋1 (𝑌 )) ≤ 𝜋1

(
Σ𝑔
)
= Γ𝑔. Then

Eemb
𝑛 (𝑌 ) = 𝑛𝜒grp (𝑌 )

(
𝑎0 +𝑂

(
𝑛−1
))

,

where 𝑎0 is some positive integer. This theorem heavily relies on the results of the current paper.

1.7. Notation

Write N for the natural numbers 1, 2, . . . and so on. For 𝑛 ∈ N, we use the notation [𝑛] for the set
{1, . . . , 𝑛}. For 𝑚 ≤ 𝑛, 𝑚, 𝑛 ∈ N we write [𝑚, 𝑛] for the set {𝑚, 𝑚 + 1, . . . , 𝑛}. If A and B are sets, we
write 𝐴\𝐵 for the elements of A that are not in B. We write (𝑛)ℓ for the Pochhammer symbol

(𝑛)ℓ
def
= 𝑛(𝑛 − 1) . . . (𝑛 − ℓ + 1).

If V is a vector space, we write End(𝑉) for the linear endomorphisms of V. If V is a unitary
representation of some group, we write �̌� for the dual representation. If 𝑃1, . . . , 𝑃𝑘 are a series of
expressions we write 1{𝑃1 ,...,𝑃𝑘 } for a value which is 1 if all the statements 𝑃𝑖 are true and 0 else. If V
is a vector space, we write Id𝑉 for the identity operator on that space. All integrals over finite sets are
with respect to the uniform probability measure on the set. If X is a CW-complex, we write 𝑋 (𝑖) for its
i-skeleton. If we use the symbol ± more than once in the same expression or equation, we mean that
the same sign is chosen each time. If implied constants in big-O notation depend on other constants, we
indicate this by adding the constants as a subscript to the O, for example, 𝑂 𝜀 ( 𝑓 (𝑛)) means the implied
constant depends on 𝜀. We use Vinogradov notation 𝑓 (𝑛) � 𝑔(𝑛) to mean that there are constants
𝑛0 ≥ 0 and 𝐶0 > 0 such that for 𝑛 > 𝑛0, | 𝑓 (𝑛) | ≤ 𝐶0𝑔(𝑛). We add subscripts to indicate dependence
of the implied constants on other quantities or objects. If 𝑎, 𝑏 are elements of the same group, we write
[𝑎, 𝑏]

def
= 𝑎𝑏𝑎−1𝑏−1 for their commutator.

2. Resolutions of core surfaces

2.1. Tiled surfaces and core surfaces

In this §§2.1, we summarize some definitions and results from [MP22a].8

7Example 3.16 and Figure 3.1 in [PZ22] illustrate that the coefficient of 𝑛𝜒 (𝑌 ) in Eemb
𝑛 (𝑌 ) for Y boundary reduced may indeed

be strictly larger than 1. In fact, [PZ22] proves it is always a positive integer.
8A significant chunk of [MP22a] was part of the first version of the current paper. As we believe the theory of core surfaces is

of independent interest and in order to keep the current paper to a manageable size, we decided to develop an expanded version
of this theory in a separate paper.
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Figure 2.1. The fixed CW-structure on Σ2.

2.1.1. Tiled surfaces
Consider the construction of the surface Σ𝑔 from a 4𝑔-gon by identifying its edges in pairs according
to the pattern 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 . . . 𝑎𝑔𝑏𝑔𝑎
−1
𝑔 𝑏−1

𝑔 . This gives rise to a CW-structure on Σ𝑔 consisting of one
vertex (denoted o), 2𝑔 oriented 1−cells (denoted 𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔) and one 2-cell which is the 4𝑔-gon
glued along 4𝑔1-cells.9 See Figure 2.1 (in our running examples with 𝑔 = 2, we denote the generators
of Γ2 by 𝑎, 𝑏, 𝑐, 𝑑 instead of 𝑎1, 𝑏1, 𝑎2, 𝑏2). We identify Γ𝑔 with 𝜋1

(
Σ𝑔, 𝑜
)

so that in the presentation
(1.1), words in the generators 𝑎1, . . . , 𝑏𝑔 correspond to the homotopy class of the corresponding closed
paths based at o along the 1-skeleton of Σ𝑔.

Note that every covering space 𝑝 : Υ → Σ𝑔 inherits a CW-structure from Σ𝑔: The vertices are the
preimages of o, and the open 1-cells (2-cells) are the connected components of the preimages of the
open 1-cells (2-cells, respectively) in Σ𝑔. In particular, this is true for the universal covering space Σ̃𝑔

of Σ𝑔, which we can now think of as a CW-complex. A subcomplex of a CW-complex is a subspace
consisting of cells such that if some cell belongs to the subcomplex, then so do the cells of smaller
dimension at its boundary.

Definition 2.1 (Tiled surface). [MP22a, Def. 3.1] A tiled surface Y is a subcomplex of a (not-necessarily-
connected) covering space of Σ𝑔. In particular, a tiled surface is equipped with the restricted covering
map 𝑝 : 𝑌 → Σ𝑔 which is an immersion. We write 𝔳 (𝑌 ) for the number of vertices of Y, 𝔢 (𝑌 ) for the
number of edges and 𝔣 (𝑌 ) for the number of 4𝑔-gons.

Alternatively, instead of considering a tiled surface Y to be a complex equipped with a restricted
covering map, one may consider Y to be a complex as above with directed and labeled edges: The
directions and labels (𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔) are pulled back from Σ𝑔 via p. These labels uniquely determine
p as a combinatorial map between complexes. Figures 2.1 and 2.3 feature examples of tiled surfaces.

Note that a tiled surface is not always a surface: It may also contain vertices or edges with no 2-cells
incident to them. However, as Y is a subcomplex of a covering space of Σ𝑔, namely, of a surface, any
neighborhood of Y inside the covering is a surface, and it is sometimes beneficial to think of Y as such.

Definition 2.2 (Thick version of a tiled surface). [MP22a, Def. 3.2] Given a tiled surface Y which is
a subcomplex of the covering space Υ of Σ𝑔, adjoin to Y a small, closed, tubular neighborhood in
Υ around every edge and a small closed disc in Υ around every vertex. The resulting closed surface,
possibly with boundary, is referred to as the thick version of Y.

We let 𝜕𝑌 denote the boundary of the thick version of Y and 𝔡 (𝑌 ) denote the number of edges along
𝜕𝑌 (so if an edge of Y does not border any 4𝑔-gon, it is counted twice).

In particular, 𝔡 (𝑌 ) = 2𝔢 (𝑌 ) −4𝑔𝔣 (𝑌 ). We stress that we do not think of Y as a subcomplex but rather
as a complex for its own sake, which happens to have the capacity to be realized as a subcomplex of a
covering space of Σ𝑔. See [MP22a, §3] for a more detailed discussion.

9We use the terms vertices and edges interchangeably with 0-cells and 1-cells, respectively.
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Figure 2.2. A long chain of total length 17 (blocks of sizes 4, 3, 3, 3, 4, in blue) and its complement of
length 15 (in red).

It is occasionally useful, for example in Section 5, to augment the tiled surface Y by adding some
new half-edges. Here, formally, a half-edge is a copy of the interval [0, 1

2 ) which is an (open) half of an
edge of a covering space of Σ𝑔.

Definition 2.3 (Tiled surface with hanging half-edges). [MP22a, §§3.2] Let Y be a tiled surface which
is a subcomplex of the covering space 𝑝 : Υ → Σ𝑔. We denote by 𝑌+ the tiled surface Y together with
half-edges of Υ which do not belong to Y but are incident to vertices of Y. Every half-edge of 𝑌+ added
to Y in this manner is called a hanging half-edge. The thick version of 𝑌+ is, as above, 𝑌+ together with
a small, closed, tubular neighborhood in Υ around every edge or hanging half-edge, and a small closed
disc in Υ around every vertex. We denote by 𝜕𝑌+ the boundary of the think version of 𝑌+.

Note that there are exactly 4𝑔 half-edges incident to every vertex in 𝑌+: Some of them originate from
edges in Y and some are hanging half-edges.

Morphisms of tiled surfaces
If𝑌1 and𝑌2 are tiled surfaces, a morphism from𝑌1 to𝑌2 is a map of 𝐶𝑊-complexes which maps i-cells

to i-cells for 𝑖 = 0, 1, 2 and respects the directions and labels of edges. Equivalently, this is a morphism
of CW-complexes which commutes with the restricted covering maps 𝑝 𝑗 : 𝑌 𝑗 → Σ𝑔 ( 𝑗 = 1, 2). In
particular, the restricted covering map from a tiled surface to Σ𝑔 is itself a morphism of tiled surfaces.
It is an easy observation that every morphism of tiled surfaces is an immersion (locally injective).

2.1.2. Blocks and chains
Some of the notions we use below are taken from [BS87]. See [MP22a, §§3.2] for a more detailed
account.

Given a covering space Υ of Σ𝑔, every path in the 1-skeleton Υ(1) corresponds to a word in{
𝑎±1

1 , . . . , 𝑏±1
𝑔

}
. A path that follows a (part of the) boundary of a 4𝑔-gon is called a block. If it has

length at least 2𝑔 + 1 it is called a long block, and if it has length exactly 2𝑔, it is called a half-block.
If a (noncyclic) block of length b sits along the boundary of a 4𝑔-gon O, the complement of the block
is the block of length 4𝑔 − 𝑏 consisting of the complement set of edges along O, so the block and its
complement share the same starting point and the same terminal point.

A chain is a path in Υ(1) that consists of a sequence of blocks 𝑏1, . . . , 𝑏𝑟 such that if the last vertex
of 𝑏𝑖 and the first vertex of 𝑏𝑖+1 is v, there is exactly one edge incident to v between the last edge of
𝑏𝑖 and the first edges of 𝑏𝑖+1. In other words, if the 4𝑔-gons corresponding to the blocks 𝑏1, . . . , 𝑏𝑟 are
𝑂1, . . . , 𝑂𝑟 , then 𝑂𝑖 and 𝑂𝑖+1 share an edge e with an endpoint v, and 𝑏𝑖 ends at v and 𝑏𝑖+1 starts at v.
See Figure 2.2. A long chain is a chain with corresponding blocks of lengths

2𝑔, 2𝑔 − 1, 2𝑔 − 1, . . . , 2𝑔 − 1, 2𝑔.

A half-chain is a cyclic chain (so the corresponding path is closed) consisting of blocks each of
which is of length 2𝑔 − 1. The complement of a long chain is the chain with blocks of lengths
2𝑔 − 1, 2𝑔 − 1, . . . , 2𝑔 − 1 which sits along the other side of the 4𝑔-gons bordering the long chain and
with the same starting point and endpoint. Note that the complement of a long chain is shorter by two
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Figure 2.3. Fix 𝑔 = 2, and let Γ2 = 〈𝑎, 𝑏, 𝑐, 𝑑 | [𝑎, 𝑏] [𝑐, 𝑑]〉. On the left is the core surface
Core
(〈

𝑎𝑏𝑎−2𝑏−1𝑐
〉)

. It consists of 12 vertices, 14 edges and two octagons and topologically it is an
annulus. On the right is the core surface Core (〈𝑎, 𝑏〉). It consists of four vertices, six edges and one
octagon and topologically it is a genus-1 torus with one boundary component.

edges from the long chain (see Figure 2.2). The complement of a half-chain is defined as follows. If the
half-chain sits along the boundary of the 4𝑔-gons 𝑂1, . . . , 𝑂𝑟 , its complement is the half-chain sitting
along the other sides of these 4𝑔-gons: A block (of length 2𝑔 − 1) of the half-chain along 𝑂𝑖 is replaced
by the path of length 2𝑔 − 1 along 𝑂𝑖 , with starting and terminal points one edge away from the starting
and terminal points, respectively, of the block. The complement of a half-chain has the same length as
the original half-chain. The left part of Figure 2.3 illustrates two complementing half-chains of length
6 each (with two octagons in between).

A boundary cycle of Y is a cycle in 𝑌 (1) corresponding to an oriented boundary component of the
thick version of Y (see Definition 2.2). We always choose the orientation so that there are no 4𝑔-gons
to the immediate left of the boundary component as it is traversed. Therefore, boundary components
of Y correspond to unique cycles. Note that 𝔡 (𝑌 ) is equal to the sum over boundary cycles of Y of the
number of edges in each such cycle.

2.1.3. Boundary reduced and strongly boundary reduced tiled surfaces
The following definitions came up from our results in representation theory in §5, but they fit perfectly
with classical results in combinatorial group theory [Deh12] and in particular with [BS87].
Definition 2.4 (Boundary reduced). A tiled surface Y is boundary reduced if no boundary cycle of Y
contains a long block or a long chain.

In particular, if Y is boundary reduced, then every path that reads [𝑎1, 𝑏1] . . .
[
𝑎𝑔, 𝑏𝑔

]
is not only

closed, but there is also a 4𝑔-gon attached to it. We also need a stronger version of this property.
Definition 2.5 (Strongly boundary reduced). A tiled surface Y is strongly boundary reduced if no
boundary cycle of Y contains a half-block or is a half-chain.

Because a long block contains (at least two) half-blocks and a long chain contains (two) half-blocks, a
strongly boundary reduced tiled surface is in particular boundary reduced. The relevance of the notions
of being (strongly) boundary reduced is that our techniques for estimating Eemb

𝑛 (𝑌 ) for a tiled surface Y
only give the right type of estimates when Y is boundary reduced – see Proposition 5.25. If Y is strongly
boundary reduced we get even better estimates – see Proposition 5.26.

Let Y be a compact tiled surface which is a subcomplex of the covering spaceΥ ofΣ𝑔. In [MP22a, §4],
we describe the ‘boundary reduced closure’ BR (𝑌 ↩→ Υ) of Y in Υ which is the smallest intermediate
tiled surface which is boundary reduced. By (ibid., Proposition 4.6), BR (𝑌 ↩→ Υ) is compact too.
Likewise, SBR (𝑌 ↩→ Υ), the strongly boundary reduced closure, is the smallest intermediate tiled
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surface which is strongly boundary reduced, but this one is not always compact. Our resolutions in
Section 2.3 are based on a ‘compromise’ between these two types of closures.

2.1.4. Core surfaces
Finally, let us define the main object which was introduced and analyzed in [MP22a], with motivation
coming from the current paper. In analogy to Stallings core graphs and their role in the study of free
groups and their subgroups, we introduced the notion of core surfaces which relates to subgroups of Γ𝑔:
Definition 2.6 (Core surfaces). [MP22a, Def. 1.1] Given a subgroup 1 ≠ 𝐽 ≤ Γ𝑔 = 𝜋1

(
Σ𝑔, 𝑜
)
, consider

the covering space 𝑝 : Υ → Σ𝑔 corresponding to J, so Υ = 𝐽\Σ̃𝑔. Define the core surface of J, denoted
Core (𝐽), as the tiled surface which is a subcomplex of Υ as follows: (𝑖) take the union of all shortest-
representative cycles in the 1-skeleton Υ(1) of every free-homotopy class of essential closed curve in Υ,
and (𝑖𝑖) add every connected component of the complement which contains finitely many 4𝑔-gons.

For completeness define the core surface of the trivial subgroup to be the zero-dimensional tiled
surface consisting of a single vertex.

Note that the quotient Υ = 𝐽\Σ̃𝑔 is invariant under conjugation of J, so Core (𝐽) depends only on the
conjugacy class of J in Γ𝑔. Figure 2.3 gives two examples of core surfaces. As another example, if J is
of finite index in Γ, Core (𝐽) is identical to 𝐽\Σ̃𝑔 and is a compact closed surface.

In [MP22a], we give an intrinsic definition of a core surface and show there is one-to-one corre-
spondence between core surfaces (labeled by 𝑎1, . . . , 𝑏𝑔) and conjugacy classes of subgroups of Γ𝑔,
we provide a ‘folding process’ to construct Core (𝐽) from a finite generating set of J (provided, of
course, that J is f.g.) and prove basic properties of core surfaces. In particular, Core (𝐽) is connected and
strongly boundary reduced (ibid., Proposition 5.3), and whenever J is f.g., Core (𝐽) is compact (ibid,
Proposition 5.8). We also show that whenever 𝐻 ≤ 𝐽 ≤ Γ𝑔, the natural morphism between the corre-
sponding covering spaces 𝐻\Σ̃𝑔 → 𝐽\Σ̃𝑔, restricts to a morphism Core (𝐻) → Core (𝐽).

2.2. Expectations and probabilities of tiled surfaces

Correspondence between Hom
(
𝚪𝒈 , 𝑺𝒏

)
and n-sheeted covering spaces of 𝚺𝒈

Let M be a connected topological space with basepoint m. Consider n-sheeted covering spaces of M
with the fiber above m labeled by [𝑛] so that every point in the fiber has a different label. If M is ‘nice
enough’, in particular if M is a surface, there is a one-to-one correspondence between these labeled n-
sheeted covering spaces and the set of homomorphisms Hom (𝜋1 (𝑀,𝑚) , 𝑆𝑛) (see, for instance, [Hat05,
pp. 68-70]). If �̂� is a labeled n-sheeted covering space and 𝑝 : �̂� → 𝑀 the covering map, the
corresponding homomorphism 𝜃 : 𝜋1 (𝑀,𝑚) → 𝑆𝑛 is given as follows: For ℎ ∈ 𝜋1 (𝑀,𝑚), consider 𝛾,
a closed path in M, based at m, which represents h. Then 𝜃 (ℎ) (𝑖) = 𝑗 if and only if the lift of 𝛾 at the
point i ends at the point j.10

In our case, this translates to a one-to-one correspondence between the representation space X𝑔,𝑛 =
Hom
(
Γ𝑔, 𝑆𝑛

)
and labeled n-sheeted covering spaces of Σ𝑔 (pointed at o). For 𝜙 : Γ𝑔 → 𝑆𝑛, denote

the corresponding covering space by 𝑝𝜙 : 𝑋𝜙 → Σ𝑔. As explained above, 𝑋𝜙 inherits a CW-structure
from Σ𝑔 and is, therefore, a tiled surface. The fiber above o is precisely the vertices of 𝑋𝜙 , and they are
labeled by [𝑛] in this construction.

Expected number of fixed points as expected number of lifts
Given a compact tiled surface Y, we are interested in the expected number of morphisms from Y to a
random n-covering of Σ𝑔, namely, in

E𝑛 (𝑌 )
def
= E𝜙∈X𝑔,𝑛

[
#
{
morphisms 𝑌 → 𝑋𝜙

}]
,

10There is a subtle issue here with the direction in which permutations are multiplied in 𝑆𝑛. The map 𝜃 : 𝜋1 (𝑀, 𝑚) → 𝑆𝑛 as
defined here is a homomorphism only if permutations in 𝑆𝑛 are composed from right to left. We refer to this issue in the case of
𝑀 = Σ2 in the beginning of Section 5.
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where 𝜙 is sampled uniformly at random from X𝑔,𝑛. Equivalently, this is the expected number of lifts
of the restricted covering map 𝑝 : 𝑌 → Σ𝑔 to the random n-covering 𝑋𝜙:

𝑋𝜙

𝑝𝜙
����

𝑌 𝑝
��

���
�

�
�

Σ𝑔 .

Note that if Y is connected and 𝜙 ∈ X𝑔,𝑛, the number of morphisms 𝑌 → 𝑋𝜙 is at most n, as any vertex
of Y can be lifted to one of the n vertices of 𝑋𝜙 , and each such lift can be extended in at most one way
to a lift of the whole of Y. For suitable choices of Y, E𝑛 (𝑌 ) is equal to the quantities E𝑔,𝑛

[
fix𝛾
]

and
E𝑔,𝑛 [fix𝐽 ] that feature in our main theorems (Theorems 1.1, 1.2 and 1.3):
Lemma 2.7. Let Y be a connected tiled surface and 𝑝 : 𝑌 → Σ𝑔 the restricted covering map. For
arbitrary vertex 𝑦 ∈ 𝑌 , assume that 𝑝∗ (𝜋1 (𝑌, 𝑦)) is conjugate to 𝐽 ≤f.g. Γ𝑔 (as a subgroup of
𝜋1
(
Σ𝑔, 𝑜
)
= Γ𝑔). Then for all 𝑛 ∈ N,

E𝑛 (𝑌 ) = E𝑔,𝑛 [fix𝐽 ] .

In particular, for 𝐽 ≤f.g. Γ𝑔,

E𝑛 (Core (𝐽)) = E𝑔,𝑛 [fix𝐽 ] .

Proof. In fact, the equality holds at the level of the individual representation 𝜙 ∈ X𝑛 = Hom
(
Γ𝑔, 𝑆𝑛

)
:

The number of morphisms 𝑌 → 𝑋𝜙 is equal to the number of common fixed points fix𝐽 (𝜙). Indeed,
because the number of common fixed points of 𝜙 (𝐽) is the same as the number of fixed points of any
conjugate, we may assume without loss of generality that 𝑝∗ (𝜋1 (𝑌, 𝑦)) = 𝐽. Now, 𝑖 ∈ [𝑛] is a common
fixed point of 𝜙 (𝐽) if and only if 𝐽 ≤ 𝜋1

(
𝑋𝜙 , 𝑣𝑖
)
, where 𝑣𝑖 is the vertex of 𝑋𝜙 labeled i, and 𝜋1

(
𝑋𝜙 , 𝑣𝑖
)

is identified with the subgroup (
𝑝𝜙
)
∗

(
𝜋1
(
𝑋𝜙 , 𝑣𝑖
) )

≤ Γ𝑔 .

By standard facts from the theory of covering spaces [Hat05, Prop. 1.33 and 1.34], there is a lift of p to
𝑋𝜙 mapping the vertex y to 𝑣𝑖 if and only if (the image in Γ𝑔 of) 𝜋1 (𝑌, 𝑦) is contained in (the image in
Γ𝑔 of) 𝜋1

(
𝑋𝜙 , 𝑣𝑖
)
, and this lift, if exists, is unique.

The statement about core surfaces follows from the fact that (the image in Γ𝑔 of) 𝜋1 (Core (𝐽)) is
conjugate to J [MP22a, Prop. 5.3]. �

Another type of expectation will also feature in this work. Given a compact tiled surface Y, denote

Eemb
𝑛 (𝑌 )

def
= E𝜙∈X𝑔,𝑛

[
#
{
injective morphisms 𝑌 → 𝑋𝜙

}]
,

where the expectation is over a uniformly random 𝜙 ∈ X𝑔,𝑛.

2.3. Resolutions

Definition 2.8 (Resolutions). A resolution R of a tiled surface Y is a collection of morphisms of tiled
surfaces

R =
{
𝑓 : 𝑌 → 𝑊 𝑓

}
,

such that every morphism ℎ : 𝑌 → 𝑍 of Y into a tiled surface Z with no boundary decomposes uniquely

as 𝑌
𝑓
→ 𝑊 𝑓

ℎ
↩→ 𝑍 , where 𝑓 ∈ R and ℎ is an embedding.
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The purpose of introducing resolutions is the following obvious lemma. Recall the notation E𝑛 (𝑌 )
and Eemb

𝑛 (𝑌 ) from Section 2.2.

Lemma 2.9. If Y is a compact tiled surface and R is a finite resolution of Y, then

E𝑛 (𝑌 ) =
∑
𝑓 ∈R
Eemb
𝑛

(
𝑊 𝑓
)
. (2.1)

Our main goal in the rest of this subsection is to prove the existence of a finite resolution whenever
we are given a compact tiled surface Y – this is the content of Theorem 2.14 below. This resolution will
consist strictly of boundary reduced tiled surfaces 𝑊 𝑓 , and some of these will even be strongly boundary
reduced. We shall make use of Theorem 2.14 mainly for Y a core surface of a finitely generated subgroup
of Γ. In this case, the resolution we construct has even nicer properties – see Proposition 2.15.

Ideally, we would have liked to get a resolution where all the elements are strongly boundary
reduced. Unfortunately, such a resolution does not always exist. For example, when 𝑔 = 2 and Γ2 =
〈𝑎, 𝑏, 𝑐, 𝑑 | [𝑎, 𝑏] [𝑐, 𝑑]〉, the core surface 𝑌 = Core (〈[𝑎, 𝑏]〉) does not admit such a resolution as can
be inferred from [MP22a, Fig. 4.2].

To prove the existence of a resolution with nice properties, we first define a process which out-
puts a ‘compromise’ between the BR-closure of a tiled surface and the SBR-closure, introduced in
[MP22a, §4].

Definition 2.10. Fix 𝜒0 ∈ Z. Assume that ℎ : 𝑌 → 𝑍 is a morphism between tiled surfaces where Y is
compact and Z has no boundary. Let 𝑊0 denote the h-image of Y in Z. Set 𝑖 = 0. Perform the following
algorithm we call the growing process:

1. If one of the following conditions holds:
(a) 𝑊𝑖 is strongly boundary reduced, or
(b) 𝑊𝑖 is boundary reduced and 𝜒 (𝑊𝑖) < 𝜒0,
terminate and return ℎ : 𝑌 → 𝑊𝑖 .

2. Obtain 𝑊𝑖+1 from 𝑊𝑖 by adding to 𝑊𝑖 (the closure of) every 4𝑔-gon in 𝑍 \𝑊𝑖 which touches along
its boundary an edge of 𝜕𝑊𝑖 which is part of a half-block (this includes the case of a long block), a
long chain or a half-chain. Set 𝑖 := 𝑖 + 1 and return to item 1.

It is clear that every step of this process is deterministic. Note that if the process ends when 𝑊𝑖

is strongly boundary reduced, then 𝑊𝑖 is the unique smallest strongly boundary reduced tiled surface
inside Z containing 𝑊0, denoted SBR(𝑌 ↩→ 𝑍) [MP22a, §4]. (In general, SBR(𝑌 ↩→ 𝑍) is not always
compact, but in this case it is.) The growing process always terminates after finitely many steps.

Lemma 2.11. The process described in Definition 2.10 always terminates.

Proof. Let 𝔥𝔢 (𝑊𝑖) denote the number of hanging half-edges along the boundary of (𝑊𝑖)+, and consider
the triple

(𝔡 (𝑊𝑖) , 𝜒 (𝑊𝑖) ,−𝔥𝔢 (𝑊𝑖)) . (2.2)

For every i, 𝑊𝑖 is a compact subsurface of Z, and so the three quantities are well-defined integers.
We claim that at every step in the growing process, the triple (2.2) strictly reduces with respect to the
lexicographic order.

Indeed, assume we do not halt after i steps, and let 𝑂1, . . . , 𝑂𝑘 be the list of 4𝑔-gons in 𝑍 \𝑊𝑖 which
are added to 𝑊𝑖 in order to obtain 𝑊𝑖+1. By the choice of 4𝑔-gons, it is clear that 𝔡 (𝑊𝑖+1) ≤ 𝔡 (𝑊𝑖). If
the inequality is strict, we are done. So assume 𝔡 (𝑊𝑖+1) = 𝔡 (𝑊𝑖). This means that 𝜕 (𝑊𝑖) contains no
long blocks nor long chains, so it is boundary reduced, and that the edges in the complements in Z of
the half-blocks and half-chains at 𝜕 (𝑊𝑖) all belong to 𝜕 (𝑊𝑖+1). In other words, let 𝑝1, . . . , 𝑝𝑚 be these
complements in Z: So 𝑝 𝑗 is either a half-block or a half-chain. The equality 𝔡 (𝑊𝑖+1) = 𝔡 (𝑊𝑖) means
that all the edges in 𝑝1, . . . , 𝑝𝑚 belong to 𝜕𝑊𝑖+1.
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It is easy to see that in this case 𝜒 (𝑊𝑖+1) ≤ 𝜒 (𝑊𝑖): The number of new 4𝑔-gons and vertices in 𝑊𝑖+1
at most balances the number of new edges. Let V denote the set of internal vertices in 𝑝1, . . . , 𝑝𝑚 (so not
at their endpoints). We have strict inequality 𝜒 (𝑊𝑖+1) < 𝜒 (𝑊𝑖) if and only if some 𝑣 ∈ 𝑉 belongs to
𝑊𝑖 or to two different complements from 𝑝1, . . . , 𝑝𝑚.

Now, assume that 𝔡 (𝑊𝑖+1) = 𝔡 (𝑊𝑖) and 𝜒 (𝑊𝑖+1) = 𝜒 (𝑊𝑖). Then 𝑊𝑖 is boundary reduced and each
of the complements 𝑝1, . . . , 𝑝𝑚 is a connected piece of 𝜕𝑊𝑖+1. If 𝑂 𝑗 touches a half-block of 𝜕𝑊𝑖 , its
annexation adds a net of (2𝑔 − 1) (4𝑔 − 2) − 2 = 8𝑔 (𝑔 − 1) hanging half-edges. Every 4𝑔-gon along
a half-chain of 𝜕𝑊𝑖 also adds on average a net of 8𝑔 (𝑔 − 1) hanging half-edges. So if we add at least
one 4𝑔-gon at the (𝑖 + 1)st step, −𝔥𝔢 strictly decreases. So indeed the triple (2.2) strictly decreases
lexicographically in every step.

Finally, there are at most finitely many steps in which 𝔡 (𝑊𝑖) decreases because this is a nonnegative
integer. So it is enough to show there cannot be infinitely many steps in which 𝔡 (𝑊𝑖) is constant. If
𝔡 (𝑊𝑖+1) = 𝔡 (𝑊𝑖), then 𝑊𝑖 is boundary reduced. If 𝜒 (𝑊𝑖) keeps decreasing, then eventually we hit the
bound 𝜒 (𝑊𝑖) < 𝜒0 and halt. If 𝔡 (𝑊𝑖) and 𝜒 (𝑊𝑖) are constant, then 𝔥𝔢 (𝑊𝑖) increases constantly, but
in every tiled surface W, 𝔥𝔢 (𝑊) ≤ 4𝑔𝔡 (𝑊), so there cannot be infinitely many steps of this type too.
This proves the lemma. �

Lemma 2.12. There is a bound 𝐵 = 𝐵 (𝑌 ), independent of ℎ : 𝑌 → 𝑍 , such that in the entire growing
process, at most 𝐵 = 𝐵 (𝑌 ) 4𝑔-gons are added to 𝑊0.
Proof. Note that every boundary edge of 𝑊0 is necessarily an h-image of a boundary edge of Y so that
𝔡 (𝑊𝑖) ≤ 𝔡 (𝑊0) ≤ 𝔡 (𝑌 ). In every step, we add at most 𝔡 (𝑊𝑖)

2𝑔−1 ≤
𝔡 (𝑌 )
2𝑔−1 4𝑔-gons. So it is enough to bound

the number of steps performed in the growing process until it terminates. There are at most 𝔡 (𝑌 ) steps
in which 𝔡 (𝑊𝑖) strictly decreases11 (𝔡 (𝑊𝑖+1) < 𝔡 (𝑊𝑖)), so there are at most 𝔡 (𝑌 ) + 1 possible values
of 𝔡 (𝑊𝑖). In steps where 𝔡 (𝑊𝑖) is unchanged, 𝑊𝑖 is boundary reduced, so by definition 𝜒 (𝑊𝑖) ≥ 𝜒0
(otherwise, the process terminates). Let 𝜋0 (𝑌 ) denote the number of connected components of Y. For
all i, 𝑊𝑖 is a subsurface of Z with at most 𝜋0 (𝑌 ) connected components, and by the classification of
surfaces, 𝜒 (𝑊𝑖) ≤ 2𝜋0 (𝑌 ). There are at most 2𝜋0 (𝑌 ) − 𝜒0 steps with 𝔡 (𝑊𝑖) fixed and 𝜒 (𝑊𝑖) strictly
decreasing. Finally, when 𝔡 (𝑊𝑖) is constant there are at most 2𝜋0 (𝑌 ) − 𝜒0 + 1 possible values of
𝜒 (𝑊𝑖), and if 𝔡 (𝑊𝑖+1) = 𝔡 (𝑊𝑖) and 𝜒 (𝑊𝑖+1) = 𝜒 (𝑊𝑖), then 𝔥𝔢 (𝑊𝑖+1) ≥ 𝔥𝔢 (𝑊𝑖) + 8𝑔 (𝑔 − 1) and
𝔥𝔢 (𝑊𝑖) ≤ 4𝑔𝔡 (𝑊𝑖) ≤ 4𝑔𝔡 (𝑌 ), so there are at most 𝔡 (𝑌 )

2(𝑔−1) steps with the same value of 𝔡 (𝑊𝑖) and
𝜒 (𝑊𝑖). Overall there are at most

𝔡 (𝑌 ) + (𝔡 (𝑌 ) + 1)
[
(2𝜋0 (𝑌 ) − 𝜒0) + (2𝜋0 (𝑌 ) − 𝜒0 + 1) ·

𝔡 (𝑌 )
2 (𝑔 − 1)

]
(2.3)

steps in the growing process. Define 𝐵 (𝑌 ) to be 𝔡 (𝑌 )
2𝑔−1 times equation (2.3). �

We can now define the sought-after resolution for compact tiled surfaces.
Definition 2.13. Suppose that Y is a compact tiled surface and 𝜒0 ∈ Z a fixed integer. Define the
𝜒0-resolution of Y to be the collection

R = R (𝑌, 𝜒0) =
{
𝑓 : 𝑌 → 𝑊 𝑓

}
obtained from all possible morphisms ℎ : 𝑌 → 𝑍 from Y to a tiled surface Z with no boundary via the
growing process (the process applied with the parameter 𝜒0).
Theorem 2.14. Suppose Y is a compact tiled surface and 𝜒0 ∈ Z a fixed integer. The collection
R = R (𝑌, 𝜒0) from Definition 2.13 is a finite resolution of Y which satisfies further
R1 for every 𝑓 ∈ R, the tiled surface 𝑊 𝑓 is compact and boundary reduced, and
R2 for every 𝑓 ∈ R with 𝜒

(
𝑊 𝑓
)
≥ 𝜒0, the tiled surface 𝑊 𝑓 is strongly boundary reduced.

11In fact, there are at most 𝔡 (𝑌 )
2 such steps as 𝔡 (𝑊𝑖) = 2𝔢 (𝑊𝑖) − 4𝑔𝔣 (𝑊𝑖) is always even.
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Proof. By Lemma 2.11 and the halting conditions of the growing process, it is clear that every such
morphism in R satisfies R1 and R2. Given a morphism ℎ : 𝑌 → 𝑍 as in Definition 2.13, ℎ (𝑌 ) (also
named 𝑊0) is a quotient of Y and therefore the number of cells in ℎ (𝑌 ) is bounded. From Lemma 2.12,
we now conclude that that there is a bound on the number of cells in any 𝑊 𝑓 with 𝑓 ∈ R. This shows
that R is finite as there are finitely many tiled surfaces with given bounds on the number of cells and
finitely many morphisms between two given compact tiled surfaces.

It remains to show thatR is a resolution. By the way it was constructed, it is clear that every morphism
ℎ : 𝑌 → 𝑍 with 𝜕𝑍 = ∅ decomposes as

𝑌
𝑓
→ 𝑊 𝑓 ↩→ 𝑍 (2.4)

and that 𝑓 ∈ R. To show uniqueness, assume that h decomposes in an additional way

𝑌
𝜑
→ 𝑊𝜑 ↩→ 𝑍, (2.5)

where 𝑊𝜑 is the result of the growing process for some ℎ′ : 𝑌 → 𝑍 ′ with 𝜕𝑍 ′ = ∅. We claim that
equations (2.4) and (2.5) are precisely the same decompositions of h. Indeed, the growing process
defined by ℎ′ : 𝑌 → 𝑍 ′ takes place entirely inside 𝑊𝜑 and does not depend on the structure of 𝑍 ′\𝑊𝜑:
In the (𝑖 + 1)st step of the growing process, the decision whether or not to annex more 4𝑔-gons and
where depends only on the structure and boundary of 𝑊𝑖 . Consequently, the growing process defined
by the morphism ℎ′ : 𝑌 → 𝑍 ′ has the exact same output, in terms of the resulting element we add to R,
as the growing process defined by the composition 𝑌

𝜑
→ 𝑊𝜑 ↩→ 𝑍 . But because the growing process is

deterministic, the latter is identical to the growing process defined by ℎ : 𝑌 → 𝑍 . �

As mentioned above, we will use Theorem 2.14 mainly with Y being a core surface. In this case,
the theorem can be strengthened as follows. Recall from Section 1 that, given 𝐽 ≤f.g. Γ𝑔, we denote
by 𝔐𝔒𝔊 (𝐽) the set of f.g. overgroups of J with maximal Euler characteristic, and by 𝜒max (𝐽) this
maximal Euler characteristic.

Proposition 2.15 (Addendum to Theorem 2.14). Let 𝐽 ≤f.g. Γ𝑔, and let 𝜒0 ∈ Z. Let R𝐽 ,𝜒0 ={
𝑓 : Core (𝐽) → 𝑊 𝑓

}
be the resolution R (Core (𝐽) , 𝜒0) from Definition 2.13. Then R𝐽 ,𝜒0 satisfies

further the following two properties.

R2 For every 𝑓 ∈ R𝐽 ,𝜒0 with 𝜒
(
𝑊 𝑓
)
≥ 𝜒0, the tiled surface 𝑊 𝑓 is the core surface of some 𝐾 ≤f.g. Γ𝑔

with 𝐽 ≤ 𝐾 and f is the natural morphism between the two core surfaces (the restriction of
𝐽\Σ̃𝑔 → 𝐾\Σ̃𝑔).

R4 Assume that 𝜒0 ≤ 𝜒max (𝐽). Then for every 𝐾 ∈ 𝔐𝔒𝔊 (𝐽), the natural morphism Core (𝐽) →

Core (𝐾) belongs to R𝐽 ,𝜒0 .

For 𝐾 ≤f.g. Γ𝑔, we have 𝜒 (𝐾) = 𝜒 (Core (𝐾)) [MP22a, Prop. 5.3]. Proposition 2.15 thus shows
that, as long as 𝜒0 ≤ 𝜒max (𝐽), there is a bijection between the elements of 𝔐𝔒𝔊 (𝐽) and the elements
in the resolution with maximal Euler characteristic.

Corollary 2.16. For every 𝐽 ≤f.g. Γ𝑔, the set 𝔐𝔒𝔊 (𝐽) of f.g. overgroups of maximal Euler character-
istic is finite.

Proof of Proposition 2.15. Suppose that 𝑓 : Core (𝐽) → 𝑊 𝑓 satisfies 𝜒
(
𝑊 𝑓
)
≥ 𝜒0. In particular, 𝑊 𝑓

is strongly boundary reduced by R2. Let 𝑗 ∈ Core (𝐽) be a vertex and assume without loss of generality
that 𝐽 = 𝑝∗ (𝜋1 (Core (𝐽) , 𝑗)) (the fact that 𝑝∗ (𝜋1 (Core (𝐽) , 𝑗)) ≤ 𝜋1

(
Σ𝑔, 𝑜
)
= Γ𝑔 is conjugate to J

follows from [MP22a, Prop. 5.3 and Cor. 4.11]). Define 𝐾
def
= 𝜋1
(
𝑊 𝑓 , 𝑓 ( 𝑗)

)
. As 𝑊 𝑓 is compact, K is

finitely generated. Let 𝑝𝐾 :
(
𝐾\Σ̃𝑔, 𝑘

)
→ Σ𝑔 be the pointed covering space with 𝜋1

(
𝐾\Σ̃𝑔, 𝑘

)
= 𝐾 .

By the unique lifting property from the theory of covering spaces [Hat05, Prop. 1.33 and 1.34], as 𝑊 𝑓
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is connected, there is a unique lift 𝛼 of the restricted covering map 𝑝𝑊 𝑓 : 𝑊 𝑓 → Σ𝑔 to 𝐾\Σ̃𝑔, which
maps 𝑓 ( 𝑗) to k. We will show that 𝛼 gives an isomorphism between 𝑊 𝑓 and Core (𝐾).

(Core (𝐾) , 𝑘)
� � 𝜄 ��

(
𝐾\Σ̃𝑔, 𝑘

)
𝑝𝐾
����

(Core (𝐾) , 𝑘)
� � 𝜄 ��

(
𝐾\Σ̃𝑔, 𝑘

)
𝑚

��
(Core (𝐽) , 𝑗)

𝑓
��

��������������� (
𝑊 𝑓 , 𝑓 ( 𝑗)

)
𝑝𝑊𝑓

��

∃!𝛼
���

�
�

�
� (

Σ𝑔, 𝑜
) (

𝑊 𝑓 , 𝑓 ( 𝑗)
) � � �� (𝑍, 𝑓 ( 𝑗)) .

First, we show that 𝛼
(
𝑊 𝑓
)
⊆ Core (𝐾). Recall that 𝑊 𝑓 is the result of the growing process for some

ℎ : Core (𝐽) → 𝑍 with 𝜕𝑍 = ∅. Consider 𝑊0
def
= ℎ (Core (𝐽)) ⊆ 𝑍 . Recall that 𝑊 𝑓 = SBR (𝑊0 ↩→ 𝑍).

By the unique lifting property, 𝛼 ◦ 𝑓 is the natural morphism Core (𝐽) → 𝐾\Σ̃𝑔, which, by [MP22a,
Lem. 5.4], has an image contained in Core (𝐾). Hence, 𝛼 (𝑊0) ⊆ Core (𝐾). As Core (𝐾) is strongly
boundary reduced [MP22a, Prop. 5.3], we have that SBR

(
𝛼 (𝑊0) ↩→ 𝐾\Σ̃𝑔

)
is contained in Core (𝐾).

By [MP22a, Lem. 4.7],

𝛼
(
𝑊 𝑓
)
= 𝛼 (SBR (𝑊0 ↩→ 𝑍)) ⊆ SBR

(
𝛼 (𝑊0) ↩→ 𝐾\Σ̃𝑔

)
⊆ Core (𝐾) .

Now, Z is a covering space of Σ𝑔 and we may assume it is connected (because Core (𝐽) is). Thus,
Z is identical to 𝐿\Σ̃𝑔 for some 𝐿 = 𝜋1 (𝑍, ℎ ( 𝑗)). By property R2, 𝑊 𝑓 is strongly boundary reduced,
and so by [MP22a, Cor. 4.11] its embedding in Z is 𝜋1-injective. In other words, 𝐾 ≤ 𝐿 and, therefore,
there is a morphism 𝑚 :

(
𝐾\Σ̃𝑔, 𝑘

)
→ (𝑍, 𝑓 ( 𝑗)). By the unique lifting property, the composition

𝑚 ◦ 𝛼 :
(
𝑊 𝑓 , 𝑓 ( 𝑗)

)
→ (𝑍, 𝑓 ( 𝑗)) must be identical to the embedding

(
𝑊 𝑓 , 𝑓 ( 𝑗)

)
↩→ (𝑍, 𝑓 ( 𝑗)) and

therefore 𝛼 is injective. So 𝛼
(
𝑊 𝑓
)

is a strongly boundary reduced subtiled surface of Core (𝐾) with
fundamental group K. By [MP22a, Lem. 5.7], it follows that 𝛼

(
𝑊 𝑓
)
⊇ Core (𝐾). We conclude that

𝛼 : 𝑊 𝑓 → Core (𝐾) is an isomorphism, and R3 is proven.
To prove R4, suppose that 𝐾 ∈ 𝔐𝔒𝔊 (𝐽). Let ℎ : Core (𝐽) → 𝐾\Σ̃𝑔 be the natural morphism. By

the definition of the resolution R𝐽 , the morphism h factors as Core (𝐽)
𝑓
→ 𝑊 𝑓 ↩→ 𝐾\Σ̃𝑔 for some

𝑓 ∈ R𝐽 . Because ℎ (Core (𝐽)) ⊆ Core (𝐾) (by [MP22a, Lem. 5.4]) and because Core (𝐾) is strongly
boundary reduced, we have 𝑊 𝑓 ⊆ Core (𝐾).

Let C be a connected component of the difference between the thick version of Core (𝐾) and the
thick version of 𝑊 𝑓 . As Core (𝐾) is compact, 𝐶 is compact. As Core (𝐾) is connected, 𝐶 must intersect
𝜕𝑊 𝑓 and in particular has at least one boundary component. Since 𝑊 𝑓 is boundary reduced, 𝐶 is not
homeomorphic to a disc, and so 𝜒

(
𝐶
)
≤ 0. Now,

𝜒 (𝐾) = 𝜒 (Core (𝐾)) = 𝜒
(
𝑊 𝑓
)
+
∑
𝐶

𝜒
(
𝐶
)
,

the sum being over all connected components as above. We conclude that 𝜒
(
𝑊 𝑓
)

≥ 𝜒 (𝐾) =
𝜒max (𝐽) ≥ 𝜒0. By R2, 𝑊 𝑓 is strongly boundary reduced and by R3, 𝑊 𝑓 = Core (𝑀) for some
subgroup M. But then 𝑀 ∈ 𝔐𝔒𝔊 (𝐽), 𝜒 (Core (𝑀)) = 𝜒 (𝐾), and every connected component
C as above satisfies 𝜒

(
𝐶
)
= 0. As 𝐶 has at least one boundary component, it must be an annu-

lus. But then Core (𝑀) is a deformation retract of Core (𝐾), so 𝑀 = 𝐾 up to conjugation and so
𝑊 𝑓 = Core (𝑀) = Core (𝐾). �

Corollary 2.17. Suppose 1 ≠ 𝛾 ∈ Γ𝑔 is a nontrivial element. Let q be the maximal natural number such
that 𝛾 = 𝛾 𝑞

0 for some 𝛾0 ∈ Γ𝑔, and 𝑑 (𝑞) the number of positive divisors of q. Then Core (〈𝛾〉) has a
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finite resolution R𝛾 =
{
𝑓 : Core (〈𝛾〉) → 𝑊 𝑓

}
with 𝑊 𝑓 boundary reduced for every 𝑓 ∈ 𝑅𝛾 and with

exactly 𝑑 (𝑞) elements 𝑓 ∈ R𝛾 with 𝜒
(
𝑊 𝑓
)
≥ 0. Moreover, these 𝑑 (𝑞) elements are precisely

𝑓𝑚 : Core (〈𝛾〉) → Core
(〈

𝛾 𝑚
0
〉)

(2.6)

for 𝑚 | 𝑞, where 𝑓𝑚 is the natural morphism between the core surfaces.

Proof. Construct R𝛾 =
{
𝑓 : Core (〈𝛾〉) → 𝑊 𝑓

}
as R (Core (〈𝛾〉) , 0) from Definition 2.13. By

Theorem 2.14 and Proposition 2.15, the elements in R𝛾 with 𝜒
(
𝑊 𝑓
)
= 0 are precisely the core surfaces

of the subgroups in 𝔐𝔒𝔊 (〈𝛾〉). So it only remains to show that 𝔐𝔒𝔊 (〈𝛾〉) are precisely
〈
𝛾 𝑚

0
〉

with
𝑚 | 𝑞.

But f.g. subgroups 𝐾 ≤ Γ𝑔 with 𝜒 (𝐾) = 0 are necessarily cyclic. Assume 𝐾 = 〈𝛿〉 ∈ 𝔐𝔒𝔊 (〈𝛾〉),
so 𝛾 ∈ 〈𝛿〉, and we may assume that 𝛾 is a positive power of 𝛿 (otherwise switch to 𝛿−1). Every finitely
generated subgroup of Γ of infinite index is free (e.g., [Sco78]), and a subgroup of finite index of Γ𝑔 is
isomorphic to Γℎ for some ℎ ≥ 𝑔 and so cannot be generated by less then 2𝑔 elements. We conclude
that the subgroup 〈𝛿, 𝛾0〉 ≤ Γ is free. Because there is a relation 𝛾 𝑞

0 = 𝛿𝑘 for some 𝑘 ∈ N, it must be a
cyclic subgroup. By definition, 𝛾0 is not a proper power, and so 𝛿 must be a positive power of 𝛾0, and
hence 𝛿 = 𝛾 𝑚

0 for some 𝑚 | 𝑞. �

3. Background: representation theory of the symmetric group

In this section, we give background on the complex representation theory of 𝑆𝑛 that will be used in
the sequel. We follow the Vershik–Okounkov approach to the representation theory of 𝑆𝑛 developed in
[VO96].

3.1. Young diagrams

A partition is a sequence 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆ℓ) with each 𝜆𝑖 ∈ N and 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆ℓ . If
∑

𝜆𝑖 = 𝑛,
we write this as 𝜆 � 𝑛. Such partitions are in one-to-one correspondence with Young diagrams (YD). A
YD consists of a collection of left-aligned rows of identical square boxes, where the number of boxes in
each row is nonincreasing from top to bottom. Given a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆ℓ), the corresponding
YD has ℓ rows and 𝜆𝑖 boxes in the ith row, where i increases from top to bottom. We think of partitions
as YDs, and vice versa, freely throughout the sequel. If 𝜆 and 𝜇 are two YDs, we say 𝜇 ⊂ 𝜆 if every box
of 𝜇 is a box of 𝜆. We say 𝜇 ⊂𝑘 𝜆 if 𝜇 ⊂ 𝜆 and 𝜇 and 𝜆 differ by k boxes.

A skew YD (SYD) is formally a pair of YDs 𝜇 and 𝜆 with 𝜇 ⊂ 𝜆 and is denoted by 𝜆/𝜇. We also
think of 𝜆/𝜇 as a diagram consisting of the boxes of 𝜆 that are not in 𝜇. We can think of a YD 𝜆 also as
a skew diagram 𝜆 = 𝜆/∅, where ∅ is the empty diagram with no boxes. Therefore, statements that we
make about SYDs apply in this way also to YDs.

The size |𝜆/𝜇 | of an SYD 𝜆/𝜇 is the number of boxes that it contains, or
∑

𝜆𝑖 −
∑

𝜇𝑖 . If � is a
particular box appearing in an SYD, we let 𝑖(�) be the row number (starting at 1, counting from top to
bottom) of the box and 𝑗 (�) the column number (starting at 1, counting from left to right) of the box.
The content of a box � in an SYD is

𝑐(�)
def
= 𝑗 (�) − 𝑖(�).

If �1 and �2 are two boxes in an SYD, we let

ax(�1,�2)
def
= 𝑐(�1) − 𝑐(�2);

this is called the axial distance between �1 and �2.
If 𝜆 is a YD, we write �̌� for the YD obtained from 𝜆 by swapping rows and columns, namely, by

transposing. This �̌� is called the conjugate of 𝜆.
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3.2. Young tableaux

Let 𝜆/𝜇 be an SYD with 𝜆 � 𝑛 and 𝜇 � 𝑚. A standard Young tableau of shape 𝜆/𝜇 is a filling of the
boxes of 𝜆/𝜇 with the numbers 𝑚 + 1, . . . , 𝑛 such that

• each number appears in exactly one box of 𝜆/𝜇, and
• the numbers in the boxes are strictly increasing from left to right and from top to bottom.

In the sequel, we will refer to standard Young tableaux simply as tableaux. For 𝜆/𝜇 an SYD, we write
Tab(𝜆/𝜇) for the collection of tableaux of shape 𝜆/𝜇. If 𝜆 � 𝑛, 𝑇 ∈ Tab(𝜆) and 𝑚 ∈ [𝑛], we write
𝜇𝑚 (𝑇) for the YD obtained by deleting the boxes containing 𝑚 + 1, . . . , 𝑛 from T, so 𝜇𝑚 (𝑇) � 𝑚.
We also write 𝑇 |≤𝑚∈ Tab (𝜇𝑚 (𝑇)) for the tableau formed by the numbers-in-boxes of T that are ≤ 𝑚,
and 𝑇 |>𝑚 for the tableau formed by the numbers-in-boxes of T that are > 𝑚. In general, the shape of
𝑇 |>𝑚 will be an SYD. If T is a tableau of shape 𝜆/𝜇, where 𝜆 � 𝑛 and 𝜇 � 𝑚, and 𝑚 < 𝑖 ≤ 𝑛, we write
𝑖
𝑇

for the box containing i in T.
If 𝜆 � 𝑛 and 𝜇 ⊂ 𝜆, then we have a concatenation between Tab(𝜇) and Tab(𝜆/𝜇): If 𝑇 ∈ Tab(𝜇) and

𝑅 ∈ Tab(𝜆/𝜇), let 𝑇 � 𝑅 be the tableau obtained by adjoining R to T.

3.3. Representations of symmetric groups

The irreducible unitary representations of 𝑆𝑛 are parameterized, up to unitary equivalence, by YDs of
size n. This correspondence between YDs and representations is denoted by

𝜆 ↦→ 𝑉𝜆.

Each 𝑉𝜆 is a finite-dimensional complex vector space with a unitary action of 𝑆𝑛 and is also a module
for the group algebra C[𝑆𝑛]. Let 𝑑𝜆

def
= dim𝑉𝜆. It is known that 𝑑𝜆 = |Tab (𝜆) |.

We now follow Vershik–Okounkov [VO96]. The natural ordering of [𝑛] induces a filtration

𝑆1 ⊂ 𝑆2 ⊂ · · · ⊂ 𝑆𝑛−1 ⊂ 𝑆𝑛

of 𝑆𝑛, where 𝑆𝑚 is the subgroup of 𝑆𝑛 fixing each of the numbers in [𝑚 + 1, 𝑛]. If W is any unitary
representation of 𝑆𝑛, for 𝑚 ∈ [𝑛] and 𝜇 a YD of size m, we write 𝑊𝜇 for the linear span in W of
all elements in the image of Hom𝑆𝑚 (𝑉

𝜇,𝑊). In other words, 𝑊𝜇 is the span of copies of 𝑉 𝜇 in the
restriction of W to 𝑆𝑚. This 𝑊𝜇 is called the 𝜇-isotypic subspace of W.

Vershik and Okounkov describe a specific orthonormal basis of 𝑉𝜆, called a Gelfand–Tsetlin basis,
that will be useful to us here. The basis is indexed by 𝑇 ∈ Tab(𝜆); each such T gives a basis vector
𝑣𝑇 . The vectors 𝑣𝑇 can be characterized up to multiplication by complex scalars of modulus 1 in the
following way. The intersection of subspaces(

𝑉𝜆
)
𝜇1 (𝑇 )

∩
(
𝑉𝜆
)
𝜇2 (𝑇 )

∩ · · · ∩
(
𝑉𝜆
)
𝜇𝑛−1 (𝑇 )

is one-dimensional and contains the unit vector 𝑣𝑇 [VO96, §1]. One important corollary of this is that
if 𝜇 � 𝑚 ∈ [𝑛], then

(
𝑉𝜆
)
𝜇 ≠ {0} if and only if 𝜇 ⊂ 𝜆. Also, note that if 𝜇1, 𝜇2 ⊂ 𝜆, 𝜇1, 𝜇2 � 𝑚 ∈ [𝑛],

and 𝜇1 ≠ 𝜇2, then
(
𝑉𝜆
)
𝜇1

is orthogonal to
(
𝑉𝜆
)
𝜇2

.
More generally, if 𝜆/𝜇 is an SYD with 𝜆 � 𝑛 and 𝜇 � 𝑚, then there is a skew module 𝑉𝜆/𝜇 that is a

unitary representation of 𝑆′
𝑛−𝑚 where we write 𝑆′

𝑛−𝑚 for the copy of 𝑆𝑛−𝑚 in 𝑆𝑛 that fixes the elements
[𝑚]. Formally,

𝑉𝜆/𝜇 def
= Hom𝑆𝑚

(
𝑉 𝜇, 𝑉𝜆

)
,
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where the action of 𝑆′
𝑛−𝑚 is by left multiplication: for 𝜑 ∈ Hom𝑆𝑚

(
𝑉 𝜇, 𝑉𝜆

)
, 𝜏 ∈ 𝑆′

𝑛−𝑚 and 𝑣 ∈ 𝑉 𝜇,
(𝜏.𝜑) (𝑣)

def
= 𝜏. (𝜑 (𝑣)). This action preserves 𝑉𝜆/𝜇 as 𝑆′

𝑛−𝑚 is in the centralizer of 𝑆𝑚 in C[𝑆𝑛]. We
write 𝑑𝜆/𝜇 for the dimension of 𝑉𝜆/𝜇. Since 𝑑𝜆/𝜇 is the multiplicity of 𝑉 𝜇 in the restriction of 𝑉𝜆 to
𝑆𝑚, by Frobenius reciprocity, it is also the multiplicity of 𝑉𝜆 in the induced representation Ind𝑆𝑛𝑆𝑚𝑉

𝜇. By
calculating the dimension of Ind𝑆𝑛𝑆𝑚𝑉

𝜇 in two ways, we obtain the following result that will be useful later.

Lemma 3.1. Let 𝑛 ∈ N, 𝑚 ∈ [𝑛] and 𝜇 � 𝑚. Then,

∑
𝜆�𝑛 : 𝜇⊂𝜆

𝑑𝜆/𝜇𝑑𝜆 =
𝑛!
𝑚!

𝑑𝜇 .

The module 𝑉𝜆/𝜇 has an orthonormal basis 𝑤𝑇 indexed by 𝑇 ∈ Tab(𝜆/𝜇) [VO96, §7]. One also has
the following property that we will use later [CSST10, Eq. (3.65)].

Lemma 3.2. Let 𝑛 ∈ N, 𝑚 ∈ [𝑛], 𝜆 � 𝑛 and 𝜇 � 𝑚 and assume that 𝜇 ⊂ 𝜆. Then the map

𝑣𝑇 ⊗ 𝑤𝑅 ↦→ 𝑣𝑇�𝑅, 𝑇 ∈ Tab(𝜇), 𝑅 ∈ Tab(𝜆/𝜇)

linearly extends to an isomorphism of unitary
(
𝑆𝑚 × 𝑆′

𝑛−𝑚

)
-representations 𝑉 𝜇 ⊗ 𝑉𝜆/𝜇 �

(
𝑉𝜆
)
𝜇.

There is also an explicit formula for the action of 𝑆′
𝑛−𝑚 on 𝑉𝜆/𝜇. A full exposition of this formula

can be found in [VO96, §6]. Recall that 𝑆′
𝑛−𝑚 is generated by the Coxeter generators

𝑠𝑖
def
= (𝑖 𝑖 + 1)

for 𝑚 < 𝑖 < 𝑛, where (𝑖 𝑖 + 1) is our notation for a transposition switching i and 𝑖 + 1. Therefore, it is
sufficient to describe how the 𝑠𝑖 act on 𝑉𝜆/𝜇. Say that T is admissible for 𝑠𝑖 if the boxes containing i and
𝑖 + 1 in T are neither in the same row nor the same column.

For 𝑇 ∈ Tab(𝜆/𝜇), let

𝑠𝑖𝑇 =

{
𝑇 if 𝑇 is not admissible for 𝑠𝑖

𝑇 ′ if 𝑇 is admissible for 𝑠𝑖 ,

where 𝑇 ′ is the tableaux obtained from T by swapping i and 𝑖 + 1. The admissibility condition ensures
𝑇 ′ is a valid standard Young tableau. Then one has Young’s orthogonal form

𝑠𝑖𝑤𝑇 =
1

ax( 𝑖 + 1
𝑇
, 𝑖

𝑇
)
𝑤𝑇 +

√
1 −

1
ax( 𝑖 + 1

𝑇
, 𝑖

𝑇
)2

𝑤𝑠𝑖𝑇 . (3.1)

Note that as a special case of this formula, if T is not admissible for 𝑠𝑖 , then ax( 𝑖 + 1
𝑇
, 𝑖

𝑇
) = ±1 and

𝑠𝑖𝑤𝑇 =
1

ax( 𝑖 + 1
𝑇
, 𝑖

𝑇
)
𝑤𝑇 =

{
𝑤𝑇 if 𝑖 and 𝑖 + 1 are in the same row,

−𝑤𝑇 if 𝑖 and 𝑖 + 1 are in the same column.
(3.2)

Remark 3.3. For completeness of some of our statements, we need to define the notions above also
for 𝑆0, the symmetric group of the empty set. This is the trivial group. Whenever 𝜇 = 𝜆, we have
Tab (𝜆/𝜇) = {∅}, and the representation 𝑉𝜆/𝜇 is one-dimensional with basis 𝑤𝑇 , for T the empty
tableau.
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4. Preliminary representation theoretic results

In this section, we give some preliminary results on representation theory that will be used in the rest
of the paper. Although some results here seem to be novel (in particular Proposition 4.4), this section
plays only a supporting role in the paper.

4.1. Commutants

Recall that if V is a finite-dimensional vector space andA is a subalgebra of End(𝑉), then the commutant
of A in End(𝑉) is the algebra of elements 𝑏 ∈ End(𝑉) such that

𝑏𝑎 = 𝑎𝑏

for all 𝑎 ∈ A. For 𝑚 ∈ [𝑛] and 𝜆 � 𝑛, let 𝑍 (𝜆, 𝑚, 𝑛) denote the commutant of the image of C[𝑆𝑚] in
End(𝑉𝜆). We identify

End(𝑉𝜆) � 𝑉𝜆 ⊗ 𝑉𝜆 (4.1)

and give End(𝑉𝜆) the Hermitian inner product induced from 𝑉𝜆.

Lemma 4.1. Let 𝑚 ∈ [𝑛] and 𝜆 � 𝑛. The algebra 𝑍 (𝜆, 𝑚, 𝑛) has an orthonormal basis given by

⎧⎪⎪⎨⎪⎪⎩E
𝜆
𝜇,𝑅1 ,𝑅2

def
=

1√
𝑑𝜇

∑
𝑇 ∈Tab(𝜇)

𝑣𝑇�𝑅1 ⊗ �̌�𝑇�𝑅2 : 𝜇 � 𝑚, 𝜇 ⊂ 𝜆, 𝑅1, 𝑅2 ∈ Tab(𝜆/𝜇)
⎫⎪⎪⎬⎪⎪⎭ . (4.2)

Proof. Let A ⊆ End(𝑉𝜆) be the algebra generated by the E𝜆
𝜇,𝑅1 ,𝑅2

(over all 𝜇) and A𝜇 ⊆ A be the
algebra generated by the E𝜆

𝜇,𝑅1 ,𝑅2
with a fixed value of 𝜇. Suppose that 𝑄 ∈ Tab(𝜆). The formula for the

action of E𝜆
𝜇,𝑅1 ,𝑅2

on 𝑣𝑄 is

E𝜆
𝜇,𝑅1 ,𝑅2

(
𝑣𝑄
)
= 1 {𝜇𝑚(𝑄) = 𝜇, 𝑄 |>𝑚= 𝑅2}

1√
𝑑𝜇

𝑣𝑄 |≤𝑚�𝑅1 . (4.3)

It is clear that the E𝜆
𝜇,𝑅1 ,𝑅2

are an orthonormal set of elements in End(𝑉𝜆). It follows from equation
(4.3) that

E𝜆
𝜇1 ,𝑅1 ,𝑅2

E𝜆
𝜇2 ,𝑅3 ,𝑅4

= 1 {𝜇1 = 𝜇2, 𝑅3 = 𝑅2}
1√
𝑑𝜇1

E𝜆
𝜇1 ,𝑅1 ,𝑅4

,

so the E𝜆
𝜇,𝑅1 ,𝑅2

are an orthonormal basis for the algebra A, and those with a fixed 𝜇 are an orthonormal
basis for 𝐴𝜇. Furthermore, we have

A =
⊕

𝜇⊂𝜆,𝜇�𝑚

A𝜇 .

For 𝜇 � 𝑚, let 𝑝𝜇 ∈ C[𝑆𝑚] be the central idempotent projection onto the 𝜇-isotypic component of
C[𝑆𝑚] and let 𝑃 𝜆

𝜇 be the image of 𝑝𝜇 in End(𝑉𝜆). The element 𝑃 𝜆
𝜇 is the orthogonal projection onto(

𝑉𝜆
)
𝜇, and 𝑃 𝜆

𝜇 is in the center of 𝑍 (𝜆, 𝑚, 𝑛). Hence, for every 𝑧 ∈ 𝑍 (𝜆, 𝑚, 𝑛), we can write

𝑧 =
⊕

𝜇�𝑚, 𝜇⊂𝜆

𝑧 (𝜇) ,
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where 𝑧 (𝜇)
def
= 𝑃𝜆

𝜇𝑧𝑃
𝜆
𝜇 . Moreover, if we let B𝜇 be the algebra generated by the image of C[𝑆𝑚] in

End(𝑉𝜆
𝜇 ), each 𝑧 (𝜇) must be in the commutant B′

𝜇 of B𝜇 in End(𝑉𝜆
𝜇 ). On the other hand, if 𝑧 =⊕

𝜇�𝑚, 𝜇⊂𝜆 𝑧 (𝜇) and each 𝑧 (𝜇) ∈ B′
𝜇, then 𝑧 ∈ 𝑍 (𝜆, 𝑚, 𝑛). This shows that

𝑍 (𝜆, 𝑚, 𝑛) =
⊕

𝜇�𝑚, 𝜇⊂𝜆

B′
𝜇 . (4.4)

Since 𝑉 𝜇 is an irreducible module for C[𝑆𝑚], the algebra generated by C[𝑆𝑚] in End(𝑉 𝜇) is the
whole of End(𝑉 𝜇). Hence, under the isomorphism of Lemma 3.2, the algebra B𝜇 is identified with
End(𝑉 𝜇) ⊗ CId𝑉𝜆/𝜇 . By a classical theorem, due to Tomita [Tom67] in the generality of von Neumann
algebras,12 the commutant of a tensor product is the tensor product of the two commutants. Therefore,
still using the isomorphism of Lemma 3.2, we have

B′
𝜇 � CId𝑉 𝜇 ⊗ End(𝑉𝜆/𝜇).

This space is the algebra A𝜇, so B′
𝜇 = A𝜇 and

𝑍 (𝜆, 𝑚, 𝑛) =
⊕

𝜇�𝑚, 𝜇⊂𝜆

B′
𝜇 =
⊕

𝜇�𝑚, 𝜇⊂𝜆

A𝜇 = A

as required. �

4.2. Bounds for the dimensions of irreducible representations

In this section, we give bounds related to the dimensions of irreducible representations that we use later.
We first note a very simple bound for the dimensions of irreducible representations of 𝑆𝑛. For a YD,
denote by 𝑏𝜆

def
= |𝜆 | − 𝜆1 the number of boxes outside the first row.

Lemma 4.2. Let 𝜆 � 𝑛. Suppose that 𝜆1 = 𝑛 − 𝑏𝜆 ≥ 𝑛
2 . Then(

𝜆1
𝑏𝜆

)
≤ 𝑑𝜆 ≤ 𝑛𝑏𝜆 .

Proof. The first inequality is given by Liebeck and Shalev in [LS04, Lem. 2.1]. To bound 𝑑𝜆 from
above, note that the standard tableaux of shape 𝜆 can be obtained by choosing which 𝜆1 elements of [𝑛]
are in the first row (of which there are at most

( 𝑛
𝑏𝜆

)
choices) and choosing the remaining 𝑏𝜆 numbers’

locations outside the first row, of which there are at most 𝑏𝜆! choices. Hence,

𝑑𝜆 ≤ 𝑏𝜆!
(
𝑛

𝑏𝜆

)
≤ 𝑛𝑏𝜆 . �

Lemma 4.3. Let 𝜆 � 𝑛, 𝜈 ⊂𝑘 𝜆. If 𝑛 ≥ 𝑘 + 2𝑏𝜆, then

(𝑛 − 𝑏𝜆)
𝑏𝜆

𝑏 𝑏𝜆
𝜆 (𝑛 − 𝑘)𝑏𝜈

≤
𝑑𝜆
𝑑𝜈

≤
𝑏 𝑏𝜈
𝜈 𝑛𝑏𝜆

(𝑛 − 𝑘 − 𝑏𝜈)
𝑏𝜈

. (4.5)

Proof. By assumption, 𝑛 ≥ 𝑘 + 2𝑏𝜆 ≥ 𝑘 + 2𝑏𝜈 , so 𝑛 − 𝑏𝜆 ≥ 𝑛
2 and 𝑛 − 𝑘 − 𝑏𝜈 ≥ 𝑛−𝑘

2 and Lemma 4.2
applies. The statement now follows from Lemma 4.2 together with the inequality

(𝑝
𝑞

)
≥ (

𝑝
𝑞 )

𝑞 , holding
for 𝑝, 𝑞 ∈ N with 𝑝 ≥ 𝑞 ≥ 1. �

12This is, however, easy to prove in the special case here that we use it.
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4.3. An estimate for matrix coefficients in skew modules

Recall that the Coxeter generators of 𝑆𝑛 are 𝑠𝑖 = (𝑖 𝑖 + 1) for 𝑖 ∈ [𝑛 − 1]. If 𝜏 ∈ 𝑆𝑛, we write ℓcox(𝜏)
for the minimal length of a word of Coxeter generators that equals 𝜏. Assume that 𝜆 � 𝑛, 𝑚 ∈ [𝑛] and
𝜈 � 𝑚. For 𝑇 ∈ Tab (𝜆/𝜈), we write top(𝑇) ⊆ [𝑚 + 1, 𝑛] for the set of elements in the top row of T
(which may be empty: It is of size 𝜆1 − 𝜈1).

For any two subsets 𝐴, 𝐵 of [𝑛], we define 𝑑 (𝐴, 𝐵) = |𝐴 \ 𝐵 |. When restricted to subsets of [𝑛] with
exactly p elements, for some 𝑝 ∈ [0, 𝑛], this function is a metric. Moreover, the function d is clearly
invariant under 𝑆𝑛, that is, if 𝜎 ∈ 𝑆𝑛 and 𝐴, 𝐵 ⊆ [𝑛], then 𝑑 (𝜎(𝐴), 𝜎(𝐵)) = 𝑑 (𝐴, 𝐵) .

Proposition 4.4. Suppose 𝑚 ≤ 𝑛, 𝜆 � 𝑛, 𝜈 � 𝑚 and 𝜈 ⊂ 𝜆, and write 𝑘 = 𝑛 − 𝑚. If 𝜆1 + 𝜈1 > 𝑛 + 𝑘2,
then for any 𝑇,𝑇 ′ ∈ Tab(𝜆/𝜈) and 𝜎 ∈ 𝑆′

𝑘 we have

|〈𝜎𝑤𝑇 , 𝑤𝑇 ′ 〉 | ≤

(
𝑘2

𝜆1 + 𝜈1 − 𝑛

)𝑑 (𝜎top(𝑇 ) ,top(𝑇 ′))

. (4.6)

Note that if the top row of 𝜆/𝜈 is empty, namely, if 𝜈1 = 𝜆1, then top (𝑇) = ∅ for every 𝑇 ∈ Tab (𝜆/𝜈)

and the upper bound in equation (4.6) is trivial:
(
𝑘2/(𝜆1 + 𝜈1 − 𝑛)

)0
= 1. In particular, this is the case

if 𝑚 = 𝑛, in which case 𝑘 = 0, the bound is 00 = 1 and we have an action of the trivial group on a
one-dimensional space spanned by 𝑤𝑇 for T the empty tableau (see Remark 3.3).

Proof. If 𝑘 = 0 the statement is trivial, so we may assume 𝑘 ≥ 1. We prove equation (4.6) as a
consequence of the following slightly stronger statement:

(S) If 𝜆1 + 𝜈1 ≥ 𝑛 + ℓcox(𝜎), then for any 𝑇 ∈ Tab(𝜆/𝜈), 𝐴0 ⊆ [𝑚 + 1, 𝑛] of size 𝜆1 − 𝜈1 and any unit
vector u in

𝑊𝐴0
def
= span ({𝑤𝑇 ′ | 𝑇 ′ ∈ Tab(𝜆/𝜈), top(𝑇 ′) = 𝐴0})

we have

|〈𝜎𝑤𝑇 , 𝑢〉| ≤

(
ℓcox(𝜎)

𝜈1 + 𝜆1 − 𝑛

)𝑑 (𝜎top(𝑇 ) ,𝐴0)

. (4.7)

The proposition follows from (S) by using the bound ℓcox(𝜎) ≤ 𝑘2 and setting 𝐴0 = top(𝑇 ′), 𝑢 = 𝑤𝑇 ′ .
Let 𝐷 def

= 𝑑 (𝜎top(𝑇), 𝐴0). We prove (S) by induction on ℓ
def
= ℓcox(𝜎). The base case of the induction

is ℓ = 0. Then 𝜎 = id and

|〈𝜎𝑤𝑇 , 𝑢〉| = |〈𝑤𝑇 , 𝑢〉| = 0

unless top(𝑇) = 𝐴0, meaning 𝐷 = 0. On the other hand, if 𝐷 = 0, then

|〈𝜎𝑤𝑇 , 𝑢〉| ≤ 1 = 00 =

(
ℓ

𝜈1 + 𝜆1 − 𝑛

)𝐷
as required.

For the inductive step, for ℓ ≥ 1 we write 𝜎 = 𝑠 𝑗𝜎
′, where ℓcox(𝜎

′) = ℓ − 1 and 𝑗 ∈ [𝑚 + 1, 𝑛 − 1].
Two scenarios can occur.

(i) Suppose 𝑠 𝑗𝐴0 = 𝐴0. In this case, by the definition of the action of the Coxeter generators in
equation (3.1), 𝑠 𝑗𝑢 is a unit vector in 𝑊𝐴0 . Also, by the invariance of the distance function under 𝑠 𝑗 ,

𝑑 (𝜎′top(𝑇), 𝐴0) = 𝑑 (𝜎top(𝑇), 𝑠 𝑗𝐴0) = 𝑑 (𝜎top(𝑇), 𝐴0) = 𝐷.
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The inductive hypothesis then yields

|〈𝜎𝑤𝑇 , 𝑢〉| = |〈𝜎′𝑤𝑇 , 𝑠 𝑗𝑢〉| ≤

(
ℓ − 1

𝜈1 + 𝜆1 − 𝑛

)𝐷
≤

(
ℓ

𝜈1 + 𝜆1 − 𝑛

)𝐷
,

as required.
(ii) Suppose otherwise that 𝑠 𝑗𝐴0 ≠ 𝐴0. This means that exactly one of j and 𝑗 +1 are in 𝐴0. We write

𝑢 =
∑

𝑇 ′ ∈Tab(𝜆/𝜈) : top(𝑇 ′)=𝐴0

𝛽𝑇 ′𝑤𝑇 ′ . (4.8)

For each 𝑇 ′ with top(𝑇 ′) = 𝐴0, we have

|ax( 𝑗 + 1
𝑇 ′

, 𝑗
𝑇 ′
) | ≥ 𝜈1 + 𝜆1 − 𝑛.

From equation (4.8) and the formula for the action of Coxeter generators (3.1), we can therefore
write 𝑠 𝑗𝑢 = 𝑤1 + 𝑤2, where 𝑤1 ∈ 𝑊𝑠 𝑗 𝐴0 and 𝑤2 ∈ 𝑊𝐴0 are orthogonal vectors with ‖𝑤1‖ ≤ 1 and
‖𝑤2‖ ≤ (𝜈1 + 𝜆1 − 𝑛)−1. Hence,

|〈𝜎𝑤𝑇 , 𝑢〉| =
��〈𝜎′𝑤𝑇 , 𝑠 𝑗𝑢〉

�� ≤ |〈𝜎′𝑤𝑇 , 𝑤1〉| + |〈𝜎′𝑤𝑇 , 𝑤2〉| .

Note that 𝑑 (𝜎′top(𝑇), 𝑠 𝑗𝐴0) = 𝑑 (𝜎top(𝑇), 𝐴0) = 𝐷, so by the inductive hypothesis

|〈𝜎𝑤𝑇 , 𝑢〉| ≤

(
ℓ − 1

𝜈1 + 𝜆1 − 𝑛

)𝐷
+

1
𝜈1 + 𝜆1 − 𝑛

(
ℓ − 1

𝜈1 + 𝜆1 − 𝑛

)𝑑 (𝜎′top(𝑇 ) ,𝐴0)

. (4.9)

By the triangle inequality,

𝐷 − 1 = 𝑑 (𝜎′top(𝑇), 𝑠 𝑗𝐴0) − 𝑑 (𝑠 𝑗𝐴0, 𝐴0) ≤ 𝑑 (𝜎′top(𝑇), 𝐴0),

so using 𝜈1 + 𝜆1 ≥ 𝑛 + ℓ we obtain from equation (4.9)

|〈𝜎𝑤𝑇 , 𝑢〉| ≤

(
ℓ − 1

𝜈1 + 𝜆1 − 𝑛

)𝐷
+

1
𝜈1 + 𝜆1 − 𝑛

(
ℓ − 1

𝜈1 + 𝜆1 − 𝑛

)𝐷−1

=
(ℓ − 1)𝐷−1ℓ

(𝜈1 + 𝜆1 − 𝑛)𝐷
≤

(
ℓ

𝜈1 + 𝜆1 − 𝑛

)𝐷
,

as required. �

4.4. Families of YDs and zeta functions

Recall from §1 that the zeta function of 𝑆𝑛 is defined by

𝜁𝑆𝑛 (𝑠)
def
=
∑
𝜆�𝑛

1
𝑑 𝑠
𝜆

,

and that for 𝑔 ≥ 2 ��X𝑔,𝑛

�� = ��Hom
(
Γ𝑔, 𝑆𝑛

) �� = (𝑛!)2𝑔−1 𝜁𝑆𝑛 (2𝑔 − 2) .

Let Λ(𝑛, 𝑏) denote the collection of 𝜆 � 𝑛 such that 𝑏𝜆 ≥ 𝑏 and 𝑏�̌� ≥ 𝑏. In other words, Λ(𝑛, 𝑏) is
the collection of YDs of size n with at least b boxes outside the first row and at least b boxes outside
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Figure 4.1. This figure depicts two elements of a family of SYDs 𝜆(𝑛)/𝜈(𝑛− 10) for 𝑛 = 16 and 𝑛 = 18.
Here, we can take 𝜆 = (6, 3, 2, 1) and 𝜈 = (1, 1).

the first column. One has the following useful result of Liebeck and Shalev [LS04, Prop. 2.5] and,
independently, Gamburd [Gam06, Prop. 4.2]:

Proposition 4.5. For fixed 𝑏 ≥ 0 and real 𝑠 > 0, as 𝑛 → ∞∑
𝜆∈Λ(𝑛,𝑏)

1
𝑑 𝑠
𝜆

= 𝑂𝑏

(
𝑛−𝑠𝑏
)
.

The proof of Theorem 1.1 will crucially depend on certain families of YDs that interact nicely with
the skew modules 𝑉𝜆/𝜈 . Given a YD 𝜆, we will write 𝜆(𝑛) for the unique YD 𝜆(𝑛) � 𝑛 which is obtained
from 𝜆 by either deleting boxes from or adding boxes to the first row of 𝜆, if it exists. To be precise,
𝜆(𝑛) exists if and only if 𝑛 ≥ |𝜆 | − (𝜆1 − 𝜆2), interpreting 𝜆2 = 0 if 𝜆 only has one row.

Now, given 𝑘 ∈ N, and YDs 𝜈 ⊂𝑘 𝜆, assume that 𝑛1 and 𝑛2 are large enough so that 𝜆(𝑛𝑖) and
𝜈(𝑛𝑖 − 𝑘) both exist and so that the first row (of length 𝜆1 − 𝜈1, which could be zero) of the SYD
𝜆 (𝑛𝑖) /𝜈 (𝑛𝑖 − 𝑘) does not border the second row, namely, 𝜈 (𝑛𝑖 − 𝑘)1 ≥ 𝜆2. Then there is a natural way
to identify Tab (𝜆(𝑛1)/𝜈(𝑛1 − 𝑘)) with Tab (𝜆(𝑛2)/𝜈(𝑛2 − 𝑘)) by simply adding 𝑛2 − 𝑛1 to all numbers
in boxes of a tableau in Tab (𝜆(𝑛1)/𝜈(𝑛1 − 𝑘)) and shifting the first row right or left as needed. If 𝜈1 ≥ 𝜆2
and 𝑇 ∈ Tab (𝜆/𝜈), we write 𝑇 (𝑛) for the resulting tableau in Tab (𝜆(𝑛)/𝜈(𝑛 − 𝑘)).

Given 𝑛 ∈ N and 𝑘 ∈ [𝑛], recall that we write 𝑆′
𝑘 for the subgroup of 𝑆𝑛 that acts as the identity on

[𝑛 − 𝑘]. Throughout the paper, we fix isomorphisms

𝑆𝑘
≈
−→ 𝑆′

𝑘 , 𝜎 ↦→ 𝜌−1
𝑘 ◦ 𝜎 ◦ 𝜌𝑘 , (4.10)

where we view 𝑆𝑘 ≤ 𝑆𝑛 in the usual way and

𝜌𝑘 (𝑖) =

{
𝑖 + 𝑘 if 𝑖 ∈ [𝑛 − 𝑘]

𝑖 − 𝑛 + 𝑘 if 𝑖 ∈ [𝑛 − 𝑘 + 1, 𝑛].

Using these isomorphisms allows us to identify the different subgroups 𝑆′
𝑘 as n varies: This will recur at

several points of the sequel. It also allows us to note in the following proposition that matrix coefficients
of skew modules 𝑉𝜆(𝑛)/𝜈 (𝑛−𝑘) are holomorphic functions of 𝑛−1, for sufficiently large n. Recall that
𝑤𝑇𝑖 (𝑛) are elements of the Gelfand–Tsetlin basis for 𝑉𝜆(𝑛)/𝜈 (𝑛−𝑘) .

Proposition 4.6. Let 𝑘 ∈ N, 𝜎 ∈ 𝑆𝑘 , and 𝜈 ⊂𝑘 𝜆 be two YDs that differ by k boxes. Suppose that
𝜈1 ≥ 𝜆2. Given 𝑇1, 𝑇2 ∈ Tab(𝜆/𝜈), there is a function 𝐹 = 𝐹𝜎,𝜆,𝜈,𝑇1 ,𝑇2 that is holomorphic in the ball of
radius |𝜆 | −1 around zero, has Taylor expansion around 0 with rational coefficients and such that for all
𝑛 ≥ |𝜆 |, viewing 𝜎 as an element of 𝑆′

𝑘 ≤ 𝑆𝑛 via the isomorphism (4.10),〈
𝜎𝑤𝑇1 (𝑛) , 𝑤𝑇2 (𝑛)

〉
= 𝐹
(
𝑛−1
)
.

Proof. Since 𝑉𝜆(𝑛)/𝜈 (𝑛−𝑘) is finite-dimensional with dimension independent of n (as long as 𝑛 ≥ |𝜆 |),
it suffices to prove the result in the case that 𝜎 ∈ 𝑆𝑘 is a Coxeter generator 𝑠𝑖 with 𝑖 ∈ [𝑘 − 1].
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Interpreted as an element of 𝑆′
𝑘 ≤ 𝑆𝑛 via equation (4.10), 𝜎 corresponds to the Coxeter generator

𝑠𝑖+𝑛−𝑘 ∈ 𝑆𝑛.
Let a be the axial distance between 𝑗

def
= 𝑖 + |𝜆 | − 𝑘 and 𝑗 + 1 = 𝑖 + 1 + |𝜆 | − 𝑘 in 𝑇1. Note that

ax
(
𝑖 + 𝑛 − 𝑘

𝑇1 (𝑛)
, 𝑖 + 1 + 𝑛 − 𝑘

𝑇1 (𝑛)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎 + 𝑛 − |𝜆 | if 𝑗 in the first row of 𝑇1 and 𝑗 + 1 not,
𝑎 − (𝑛 − |𝜆 |) if 𝑗 + 1 in the first row of 𝑇1 and 𝑗 not,
𝑎 otherwise.

In the first, case 𝑎 > 0, and in the second case, 𝑎 < 0. By the description in equation (3.1) of how the
Coxeter generators act, 〈𝑠𝑖+𝑛−𝑘𝑤𝑇1 (𝑛) , 𝑤𝑇2 (𝑛) 〉 is therefore one of the following functions of n:

0,
1

𝑎 − 𝑛 + |𝜆 |
,

1
𝑎 + 𝑛 − |𝜆 |

,

√
1 −

1
(𝑎 − 𝑛 + |𝜆 |)2 ,

√
1 −

1
(𝑎 + 𝑛 − |𝜆 |)2 .

If one replaces n by 𝑧−1, each of these yields a holomorphic function of z when |𝑧 | is sufficiently
small. �

The dimensions of representations in a family 𝜆(𝑛) are polynomials in n.

Lemma 4.7. Given a YD 𝜆, consider the family of YDs 𝜆(𝑛). There is a polynomial 𝐺 = 𝐺𝜆 ∈ Q [𝑡] of
degree 𝑏𝜆 with rational coefficients such that for every n such that 𝜆 (𝑛) exists,

𝑑𝜆(𝑛) = 𝐺 (𝑛).

Furthermore, the complex zeros of G are integers n with 𝑛 ∈ [0, |𝜆 |], and the leading coefficient is 1
𝑚

for some integer m.

For example, if 𝜆 (𝑛) = (𝑛 − 4, 3, 1), then 𝑑𝜆(𝑛) =
𝑛(𝑛−1) (𝑛−3) (𝑛−6)

8 for every 𝑛 ≥ 7.

Proof. This easily follows from the hook-length formula for the dimension 𝑑𝜆 [FRT54]. �

Lemma 4.7 together with Proposition 4.5 have the following nice consequence for the zeta function
𝜁𝑆𝑛 that will be crucial in proving Theorem 1.1.

Proposition 4.8. For any 𝑠 ∈ N and 𝑀 ∈ N, there is a polynomial 𝑃𝑠,𝑀 ∈ Z [𝑡] with integer coefficients
of degree < 𝑀 such that

𝜁𝑆𝑛 (𝑠) = 2 · 𝑃𝑠,𝑀

(
𝑛−1
)
+𝑂
(
𝑛−𝑀
)

as 𝑛 → ∞. The constant coefficient of 𝑃𝑠,𝑀 is equal to 1.

For example, for 𝑠 = 2 and 𝑀 = 5 we have

𝜁𝑆𝑛 (2) = 2
(
1 +

1
𝑛2 +

2
𝑛3 +

11
𝑛4

)
+𝑂

(
1
𝑛5

)
.

Proof. Fix 𝑠 ∈ N and 𝑀 ∈ N as in the statement of the proposition. Let 𝑏 = �𝑀𝑠 �. Proposition 4.5
implies that

𝜁𝑆𝑛 (𝑠) =
∑
𝜆�𝑛

𝜆∉Λ(𝑛,𝑏)

1
𝑑 𝑠
𝜆

+𝑂 (𝑛−𝑀 )
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as 𝑛 → ∞. The 𝜆 in the sum above have either < 𝑏 boxes outside their first row or < 𝑏 boxes outside
their first column. For 𝑛 > 2𝑏, these options are mutually exclusive. Moreover, the map 𝜆 ↦→ �̌� maps
YDs of the first kind to YDs of the second kind bijectively and vice versa. Hence, if we let Λ𝑏𝜆<𝑏 (𝑛) be
the collection of 𝜆 � 𝑛 with < 𝑏 boxes outside their first row, then as 𝑛 → ∞,

𝜁𝑆𝑛 (𝑠) =
∑

𝜆∈Λ𝑏𝜆<𝑏 (𝑛)

(
1
𝑑 𝑠
𝜆

+
1
𝑑 𝑠
�̌�

)
+𝑂
(
𝑛−𝑀
)

= 2
∑

𝜆∈Λ𝑏𝜆<𝑏 (𝑛)

1
𝑑 𝑠
𝜆

+𝑂
(
𝑛−𝑀
)
.

Now, if 𝑛 > 2𝑏, there is a finite collection of YDs {𝜇1, . . . , 𝜇ℓ }, depending on b, with |𝜇𝑖 | < 2𝑏 for all i,
such that for each 𝑛 > 2𝑏

Λ𝑏𝜆<𝑏 (𝑛) = {𝜇1 (𝑛), 𝜇2 (𝑛), . . . , 𝜇ℓ (𝑛)} .

For each of these 𝜇𝑖 , let 𝐺𝜇𝑖 be the polynomial provided by Lemma 4.7. No 𝐺𝜇𝑖 has any zero z with
|𝑧 | > 2𝑏. Hence,

𝜁𝑆𝑛 (𝑠) = 2
ℓ∑
𝑖=1

1(
𝐺𝜇𝑖 (𝑛)

)𝑠 +𝑂
(
𝑛−𝑀
)

as 𝑛 → ∞. Because of the special structure of 𝐺𝜇𝑖 , as elaborated in Lemma 4.7,
(
𝐺𝜇𝑖 (𝑛)

)−1 is equal to
a power series in 𝑛−1 with integer coefficients. Since 𝑠 ∈ N,

(
𝐺𝜇𝑖 (𝑛)

)−𝑠 is too equal to a power series in
𝑛−1 with integer coefficients. This proves the first statement. Because the degree of 𝐺𝜇𝑖 (𝑛) is positive
unless 𝜇𝑖 (𝑛) = (𝑛) in which case 𝐺𝜇𝑖 (𝑛) = 1, the constant coefficient of 𝑃𝑠,𝑀 must be 1. �

In fact, it is the following direct corollary of Proposition 4.8 that we will need.

Corollary 4.9. For any 𝑠 ∈ N and 𝑀 ∈ N, there is a polynomial 𝑄𝑠,𝑀 ∈ Z [𝑡] of degree < 𝑀 and
constant coefficient 1 such that as 𝑛 → ∞,

1
𝜁𝑆𝑛 (𝑠)

=
1
2
𝑄𝑠,𝑀

(
𝑛−1
)
+𝑂
(
𝑛−𝑀
)
.

5. The probability of an embedded tiled surface

5.1. Overview of this section

This short overview is meant to make the results of this section more transparent and to stress an
analogy with known results about the zeta function of 𝑆𝑛. For simplicity, we assume 𝑔 = 2 throughout
this Section §5 and denote Γ = Γ2 = 〈𝑎, 𝑏, 𝑐, 𝑑 | [𝑎, 𝑏] [𝑐, 𝑑]〉.

As explained in Section §1,

|X𝑛 | =
��X2,𝑛
�� = (𝑛!)3 ·

∑
𝜆�𝑛

1
𝑑 2
𝜆

. (5.1)

If {𝜆 (𝑛)}𝑛≥𝑛0 is a family of YDs obtained by extending the first row, as in Section 4.4, then 𝑑𝜆(𝑛) is a
polynomial in n of degree 𝑏𝜆 (Lemma 4.7), and so the contribution of 𝜆 (𝑛) and of ˇ𝜆 (𝑛) to equation
(5.1) is a rational function in n for every 𝑛 ≥ 𝑛0. Proposition 4.5 (due to [LS04, Gam06]) states that
up to order 𝑂

(
𝑛−2𝑏 ) , the zeta function in equation (5.1) is determined by those families of YDs with

𝑏𝜆 < 𝑏 and their transpose.
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In this Section 5, we prove something analogous for Eemb
𝑛 (𝑌 ), where Y is a compact tiled surface.

We write 𝔳 = 𝔳(𝑌 ), 𝔢 = 𝔢(𝑌 ), 𝔣 = 𝔣(𝑌 ) for the number of vertices, edges and octagons of Y, respectively.
We will use the letter f for an element of {𝑎, 𝑏, 𝑐, 𝑑} and write 𝔢 𝑓 = 𝔢 𝑓 (𝑌 ) for the number of f -
labeled edges of Y. The first major result is that, depending on a choice of four constant permutations
𝜎±

𝑓 , 𝜏
±
𝑓 ∈ 𝑆′

𝔳 per letter (defined in Section 5.3), we have

Eemb
𝑛 (𝑌 ) =

(𝑛!)3

|X𝑛 |
·
(𝑛)𝔳 (𝑛)𝔣∏

𝑓 (𝑛)𝔢 𝑓
·
∑
𝜈�𝑛−𝔳

𝐻𝑌 (𝜈) , (5.2)

where 𝐻𝑌 (𝜈) is some explicit function. This follows from Theorem 5.10. Notice that as 𝑛 → ∞,
the first fraction in equation (5.2) is (𝑛!)3

|X𝑛 |
= 1

2 + 𝑂
(
𝑛−2) by Proposition 4.5, and the second one is

(𝑛)𝔳 (𝑛) 𝔣∏
𝑓 (𝑛)𝔢 𝑓

= 𝑛𝜒 (𝑌 )
(
1 +𝑂

(
𝑛−1) ) . So equation (5.2) gives that

Eemb
𝑛 (𝑌 ) =

(
1
2
+𝑂
(
𝑛−1
))

𝑛𝜒 (𝑌 ) ·
∑
𝜈�𝑛−𝔳

𝐻𝑌 (𝜈) . (5.3)

Next, our analysis shows that by considering, as above, families of YDs {𝜈 (𝑛)}𝑛≥𝑛0 , then for large
enough n, 𝐻𝑌 (𝜈 (𝑛)) is equal to a converging series

∑𝐾
𝑗=−∞ 𝛽 𝑗𝑛

𝑗 , with 𝐾 = 𝐾 (𝑌, 𝜈) some integer.
Section 5.8 then shows that, for any given M, there is finite set of families 𝜈 (𝑛), with 𝑏𝜈 and 𝑏 �̌�

bounded, such that all remaining summands in
∑

𝜈�𝑛−𝔳 𝐻𝑌 (𝜈) outside these families contribute jointly
𝑂
(
𝑛−𝑀
)

– this is analogous to Proposition 4.5. Because every tiled surface admits finite resolutions as
in Section 2.3, this quickly leads to the proof of Theorem 1.1 in Section 6.

In fact, the analysis so far could have been carried out with graphs (core graphs à la Stallings)
rather than with tiled surfaces. The importance of tiled surfaces and, moreover, of (strongly) boundary
reduced tiled surfaces, is in our ability to determine the order of magnitude of 𝐻𝑌 (𝜈). Our analysis here
culminates in Proposition 5.21 and Section 5.9, from which it follows that when Y is boundary reduced,

𝐻𝑌 (𝜈 (𝑛)) =
1
𝑑 2
𝜈

· 𝑂 (1)

as 𝑛 → ∞, and when Y is strongly boundary reduced,

𝐻𝑌 (𝜈 (𝑛)) =
1
𝑑 2
𝜈

(
1 +𝑂

(
1
𝑛

))
. (5.4)

This shows that the analysis of the zeta function in equation (5.1) can be viewed as a special case of
our results. Indeed, when 𝑌 = 𝑌∅ is the empty tiled surface (which is, in particular, strongly boundary
reduced), equation (5.2) together with equation (5.4) yields that

|X𝑛 | = |X𝑛 | · E
emb
𝑛 (𝑌∅) = (𝑛!)3 ·

∑
𝜈�𝑛

𝐻𝑌∅ (𝜈) = (𝑛!)3 ·
∑
𝜈�𝑛

1
𝑑 2
𝜈

(
1 +𝑂

(
1
𝑛

))
.

What we achieve here is the extension of this result to general strongly boundary reduced tiled surfaces,
with an extra factor of 𝑛𝜒 (𝑌 ) appearing. If Y is merely boundary reduced, we obtain the same result up
to multiplicative constants.

A remark about composing permutations
A technical but important remark is due. The bijection

𝜙 ↦→ 𝑋𝜙

Hom(Γ, 𝑆𝑛) → {degree-𝑛 covers of Σ2}
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described previously involves the version of 𝑆𝑛 where permutations are composed with the left-most
permutation acting first. On the other hand, since in the rest of the paper, we work with permutations in
detail and specifically with the representation theory of 𝑆𝑛, it is more standard to view permutations as
functions from [𝑛] to [𝑛] and hence to multiply according to composition of functions (functions acting
from the left). So in the rest of the paper, permutations will be composed with the right-most permutation
acting first. These two versions of 𝑆𝑛 are isomorphic, of course, and one isomorphism is given by
inv: 𝑆𝑛 → 𝑆𝑛 defined by 𝜎 ↦→ 𝜎−1.

Accordingly, by postmultiplication with inv, we turn a homomorphism

𝜙 ∈ X𝑛 = Hom (Γ2, 𝑆𝑛 (left−to−right version))

into a homomorphism

𝜙
def
= inv ◦ 𝜙 ∈ Hom (Γ2, 𝑆𝑛 (right−to−left version)) .

The homomorphism 𝜙 satisfies 𝜙 (𝛾) = 𝜙 (𝛾)−1 for every 𝛾 ∈ Γ2. In particular, with composition of
permutations from right to left, the four permutations 𝜙 (𝑎) , 𝜙 (𝑏) , 𝜙 (𝑐) , 𝜙 (𝑑) ∈ 𝑆𝑛 satisfy[

𝜙 (𝑎)−1 , 𝜙 (𝑏)−1] [𝜙 (𝑐)−1 , 𝜙 (𝑑)−1] = [𝜙 (𝑎), 𝜙 (𝑏)
] [

𝜙 (𝑐), 𝜙 (𝑑)
]
= 1,

or, equivalently (taking the inverse of the resulting permutation),[
𝜙(𝑑)−1, 𝜙(𝑐)−1] [𝜙(𝑏)−1, 𝜙(𝑎)−1] = 1.

This means that the word
[
𝑑−1, 𝑐−1] [𝑏−1, 𝑎−1] will appear below at several points. Note that the image

of 𝛾 ∈ Γ under 𝜙 is the inverse of 𝜙 (𝛾). But since a permutation and its inverse have the same cycle-
structure in 𝑆𝑛, this does not affect the statistics we study in this paper.

5.2. Tiled surfaces and cosets

We assume that Y is a compact tiled surface. In this section, we assume 𝑛 ∈ N with 𝑛 ≥ 𝔳. We fix
an arbitrary bijection J : 𝑌 (0) → [𝔳] and view (𝑌,J ) as fixed in this §5. We modify J slightly for
technical reasons13 by letting

J𝑛 : 𝑌 (0) → [𝑛 − 𝔳 + 1, 𝑛], J𝑛 (𝑣)
def
= J (𝑣) + 𝑛 − 𝔳. (5.5)

Then (𝑌,J𝑛) is a vertex-labeled tiled surface for each n. We are interested in the quantity Eemb
𝑛 (𝑌 ), but

because the uniform measure on X𝑛 is invariant under conjugation by 𝑆𝑛 and 𝑆𝑛 acts transitively on
ordered tuples of size 𝔳 in [𝑛], we have

Eemb
𝑛 (𝑌 ) =

𝑛!
(𝑛 − 𝔳)!

|X𝑛 (𝑌,J𝑛) |

|X𝑛 |
, (5.6)

where

X𝑛 (𝑌,J𝑛)
def
=
{
𝜙 ∈ X𝑛 : there is an embedding 𝑌 ↩→ 𝑋𝜙 inducing J𝑛

}
.

(Recall from §§2.2 that the vertices of 𝑋𝜙 are labeled by [𝑛]. Also, recall that an embedding 𝑌 ↩→ 𝑋𝜙

inducing J𝑛, if it exists, is unique.) Hence, we are interested in the size of the setX𝑛 (𝑌,J𝑛). Henceforth,
we use the map J𝑛 and the previous labelings of the vertices of 𝑋𝜙 to identify the vertex sets of Y and
𝑋𝜙 with subsets of N.

13The reason for using this modification comes from a convention in the representation theoretic methods we use below.
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For each letter 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, let V−
𝑓 = V−

𝑓 (𝑌 ) ⊂ [𝑛 − 𝔳 + 1, 𝑛] be the subset of vertices of Y with
outgoing f -labeled edges, and V+

𝑓 ⊂ [𝑛 − 𝔳 + 1, 𝑛] those vertices of Y with incoming f -labeled edges.
Note that 𝔢 𝑓 = |V±

𝑓 |. We let 𝐺 𝑓 denote the subgroup of 𝑆𝑛 that fixes V−
𝑓 and write

𝐺
def
= 𝐺𝑎 × 𝐺𝑏 × 𝐺𝑐 × 𝐺𝑑 ≤ 𝑆 4

𝑛 .

For each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, we let 𝑔0
𝑓 ∈ 𝑆𝑛 be a fixed element with the property that for every pair of

vertices 𝑖, 𝑗 of Y (so 𝑖, 𝑗 ∈ [𝑛 − 𝔳 + 1, 𝑛]) with a directed f -labeled edge from i to j, we have 𝑔0
𝑓 (𝑖) = 𝑗 .

Recall the notation 𝑆′
𝔳 for the subgroup of 𝑆𝑛 fixing [𝑛−𝔳] pointwise. We choose the 𝑔0

𝑓 consistently for
each n in the sense that 𝑔0

𝑓 is chosen when 𝑛 = 𝔳 and then defined for arbitrary n by the isomorphisms

𝑆𝔳 � 𝑆′
𝔳 given in equation (4.10). We write 𝑔0 def

= (𝑔0
𝑎, 𝑔

0
𝑏 , 𝑔

0
𝑐 , 𝑔

0
𝑑). Notice that 𝑔0

𝑓 (V−
𝑓 ) = V+

𝑓 .
In the rest of the paper, whenever we write an integral over a group, it is performed with respect to

the uniform probability measure. Let

Θ𝜆 (𝑌,J𝑛)
def
=
∫
ℎ 𝑓 ∈𝐺 𝑓

𝜒𝜆

( [(
𝑔0
𝑑ℎ𝑑

)−1
,
(
𝑔0
𝑐ℎ𝑐

)−1
] [(

𝑔0
𝑏ℎ𝑏

)−1
,
(
𝑔0
𝑎ℎ𝑎

)−1
] )

, (5.7)

where 𝜒𝜆 is the character of 𝑆𝑛 corresponding to the irreducible representation 𝑉𝜆. We will calculate
the size of X𝑛 (𝑌,J𝑛) using the following result.

Proposition 5.1. We have

|X𝑛 (𝑌,J𝑛) | =

∏
𝑓 ∈𝑎,𝑏,𝑐,𝑑 (𝑛 − 𝔢 𝑓 )!

𝑛!

∑
𝜆�𝑛

𝑑𝜆Θ𝜆 (𝑌,J𝑛) .

Proof. We begin by observing that with 𝑔0
𝑎, 𝑔

0
𝑏 , 𝑔

0
𝑐 , 𝑔

0
𝑑 as above, the map

X𝑛 → 𝑆4
𝑛, 𝜙 ↦→ (𝜙(𝑎), 𝜙(𝑏), 𝜙(𝑐), 𝜙(𝑑))

restricts to a bijection between X𝑛 (𝑌,J𝑛) and the tuples (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑) ∈ 𝑆4
𝑛 such that both

(𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑) is in the coset (𝑔0
𝑎, 𝑔

0
𝑏 , 𝑔

0
𝑐 , 𝑔

0
𝑑)𝐺 and

[
𝑔−1
𝑑 , 𝑔−1

𝑐

] [
𝑔−1
𝑏 , 𝑔−1

𝑎

]
= 1.

Now, let

𝐼 =
∫
ℎ 𝑓 ∈𝐺 𝑓

1
{[(

𝑔0
𝑑ℎ𝑑

)−1
,
(
𝑔0
𝑐ℎ𝑐

)−1
] [(

𝑔0
𝑏ℎ𝑏

)−1
,
(
𝑔0
𝑎ℎ𝑎

)−1
]
= 1
}
.

Then it is immediate that

|X𝑛 (𝑌,J𝑛) | = |𝐺 | · 𝐼 =
∏

𝑓 ∈𝑎,𝑏,𝑐,𝑑

(𝑛 − 𝔢 𝑓 )! · 𝐼 .

Finally, use Schur orthogonality to write, as functions on 𝑆𝑛,

1{𝑔 = 1} =
1
𝑛!

∑
𝜆�𝑛

𝑑𝜆𝜒𝜆 (𝑔),

insert this into the definition of I and interchange summation and integration to complete the proof. �

In the next sections, we will focus our attention on the quantities Θ𝜆 (𝑌,J𝑛).
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Figure 5.1. The figure on the left shows a local picture of a vertex v in the thick version of some tiled
surface with hanging half-edges 𝑌+, and the correspondence between the 16 maps 𝜎±

𝑓 , 𝜏
±
𝑓 and the 16

sides of half-edges incident to v. The figure on the right illustrates how numbering of octagons, of
exposed sides of full-edges and of hanging half-edges determines the values of 𝜎±

𝑓 , 𝜏
±
𝑓 at v. In this figure,

continuous black lines mark pieces of the boundary of the thick version of 𝑌+, whereas dotted black lines
mark boundary pieces of 𝑌 (1)

+ to which ocagons are glued in 𝑌+. The vertex v in the center of the figure
is incident with two octagons, numbered 9 and 10; with three hanging half-edges numbered 3 (outgoing
b and incoming d) and 4 (incoming c) and with five half-edges belonging to full-edges, with a total of
six exposed sides, the numbering of which is described in the figure. The images of this vertex under 𝜎±

𝑓

and 𝜏±𝑓 are listed in page 53.

5.3. Construction of auxiliary permutations

In order to obtain an expression for Θ𝜆 (𝑌,J𝑛) that leads to good analytic estimates, we introduce further
maps

𝜎+
𝑓 , 𝜎

−
𝑓 , 𝜏

+
𝑓 , 𝜏

−
𝑓 ∈ 𝑆′

𝔳 ⊂ 𝑆𝑛

for each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}. These should be thought of as orderings of the vertices with indices from
[𝑛 − 𝔳 + 1, 𝑛], other than the one fixed by J𝑛. We will first describe the construction of these maps and
then note their properties.

Recall from §§2.1 that 𝑌 (1) carries the structure of a ribbon graph and this gives us a way to thicken
it up to an oriented surface with boundary with an embedded copy of the graph 𝑌 (1) . Also recall, from
§§2.1, that we constructed a larger object𝑌+ by adding extra hanging half-edges to the vertices. The one-
skeleton 𝑌 (1)

+ also has a cyclic ordering of the half-edges (hanging or otherwise) at each vertex and so
𝑌 (1)
+ can be thickened up to a ‘cut’ ribbon graph with some half-ribbon edges. In this picture, every edge

is thickened to a thin rectangle, and every hanging half-edge is thickened up to a thin half-rectangle.
So every vertex of Y has eight incident half-edges (hanging or otherwise), and each of these half-

edges has two sides. The 16 maps
{
𝜎±

𝑓 , 𝜏
±
𝑓

}
𝑓 ∈{𝑎,𝑏,𝑐,𝑑 }

correspond to these 16 sides of half-edges at each
vertex: 𝜎−

𝑓 and 𝜏−𝑓 correspond to the sides of the outgoing f -half-edge, while 𝜎+
𝑓 and 𝜏+𝑓 correspond to the

sides of the incoming f -half-edge. Finally, 𝜎±
𝑓 correspond to the left side of the outgoing and incoming

f -half-edges, while 𝜏±𝑓 correspond to the right side of these f -half-edges, where ‘left’ and ‘right’ here are
with respect to the direction of the half-edge. (We keep our convention from §§2.1 that boundary cycles
are oriented so that the object lies to the right. In particular, the boundary of an octagon is [𝑎, 𝑏] [𝑐, 𝑑]
when followed in counterclockwise direction.) See the left-hand side of Figure 5.1.
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The definition of 𝜎±
𝑓 , 𝜏

±
𝑓 is based on the following choices:

• Numbering octagons: Number the 𝔣 octagons of Y by distinct elements in [𝔳 − 𝔣 + 1, 𝔳].
• Numbering full edges at 𝜕𝑌 : For every 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, there are 𝔢 𝑓 − 𝔣 left-sides of full f -edges

that belong to the boundary 𝜕𝑌 (as compared with 𝔣 left sides of full f -edges that meet octagons of
Y). Number them by distinct values in

[
𝔳 − 𝔢 𝑓 + 1, 𝔳 − 𝔣

]
. Similarly, number the 𝔢 𝑓 − 𝔣 right sides of

full f -edges belonging to 𝜕𝑌 by distinct values in the same range
[
𝔳 − 𝔢 𝑓 + 1, 𝔳 − 𝔣

]
.

• Numbering hanging half-edges: For each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, there are precisely 𝔳 − 𝔢 𝑓 outgoing f -
labeled hanging half-edges, and we number them by distinct numbers in [𝔳−𝔢 𝑓 ]. Using the matching
determined by 𝑔0

𝑓 between outgoing and incoming f -labeled hanging half-edges, the numbering we
have just chosen induces a numbering also of the incoming f -labeled hanging half-edges by numbers
in [𝔳 − 𝔢 𝑓 ].

We now define 𝜎±
𝑓 and 𝜏±𝑓 as follows. For every vertex v of Y and a side of an incident half-edge (hanging

or otherwise), we need to determine the image of v under the permutation among 𝜎±
𝑓 , 𝜏

±
𝑓 corresponding

to this side-of-half-edge.
• If the half-edge is part of a full-edge of Y, then

– if the side in question meets an octagon numbered i, we map 𝑣 ↦→ 𝑛 − 𝔳 + 𝑖, and
– if the side in question belongs to 𝜕𝑌 and the full-edge is numbered j, map 𝑣 ↦→ 𝑛 − 𝔳 + 𝑗 .

• If this is a hanging half-edge numbered k, we map 𝑣 ↦→ 𝑛 − 𝔳 + 𝑘 .
This is illustrated in the right-hand side of Figure 5.1, which shows some vertex v of some tiled

surface Y, and the numbering of incident octagons, of exposed sides of full-edges and of hanging half-
edges. In that case, the images of v under 𝜎±

𝑓 and 𝜏±𝑓 are the following:

𝜎−
𝑎 (𝑣) = 𝑛 − 𝔳 + 9 𝜎−

𝑏 (𝑣) = 𝑛 − 𝔳 + 3 𝜎−
𝑐 (𝑣) = 𝑛 − 𝔳 + 6 𝜎−

𝑑 (𝑣) = 𝑛 − 𝔳 + 4
𝜎+
𝑎 (𝑣) = 𝑛 − 𝔳 + 7 𝜎+

𝑏 (𝑣) = 𝑛 − 𝔳 + 5 𝜎+
𝑐 (𝑣) = 𝑛 − 𝔳 + 4 𝜎+

𝑑 (𝑣) = 𝑛 − 𝔳 + 3
𝜏−𝑎 (𝑣) = 𝑛 − 𝔳 + 10 𝜏−𝑏 (𝑣) = 𝑛 − 𝔳 + 3 𝜏−𝑐 (𝑣) = 𝑛 − 𝔳 + 5 𝜏−𝑑 (𝑣) = 𝑛 − 𝔳 + 9
𝜏+𝑎 (𝑣) = 𝑛 − 𝔳 + 3 𝜏+𝑏 (𝑣) = 𝑛 − 𝔳 + 10 𝜏+𝑐 (𝑣) = 𝑛 − 𝔳 + 4 𝜏+𝑑 (𝑣) = 𝑛 − 𝔳 + 3.

The following properties of the maps we defined are all evident from the construction.
Lemma 5.2. When the vertices of Y are identified with [𝑛 − 𝔳 + 1, 𝑛] according to J𝑛, the 16 maps
𝜎+

𝑓 , 𝜎
−
𝑓 , 𝜏

+
𝑓 , 𝜏

−
𝑓 we defined indeed belong to 𝑆′

𝔳 ⊂ 𝑆𝑛. Moreover, they satisfy the following properties:

P1 For all 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, 𝜎±
𝑓 (V±

𝑓 ) = 𝜏±𝑓 (V±
𝑓 ) = [𝑛 − 𝔢 𝑓 + 1, 𝑛].

P2 For all 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, (𝜎+
𝑓 )

−1𝜎−
𝑓 = (𝜏+𝑓 )

−1𝜏−𝑓 = 𝑔0
𝑓 .

P3 For all 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, 𝜎±
𝑓 |[𝑛]\V±

𝑓
= 𝜏±𝑓 |[𝑛]\V±

𝑓
.

P4 Each of the following permutations fixes every element of [𝑛 − 𝔣 + 1, 𝑛]:

𝜎−
𝑏

(
𝜎+
𝑎

)−1
, 𝜏+𝑎
(
𝜎+
𝑏

)−1
, 𝜏+𝑏
(
𝜏−𝑎
)−1

, 𝜎−
𝑐

(
𝜏−𝑏
)−1

, 𝜎−
𝑑

(
𝜎+
𝑐

)−1
, 𝜏+𝑐
(
𝜎+
𝑑

)−1
, 𝜏+𝑑
(
𝜏−𝑐
)−1

, 𝜎−
𝑎

(
𝜏−𝑑
)−1

.

P5 The permutations 𝜎±
𝑓 , 𝜏

±
𝑓 are the same for each n in the sense that they change with n via the fixed

isomorphisms between 𝑆𝔳 and 𝑆′
𝔳 ≤ 𝑆𝑛 in equation (4.10).

From now on, assume that we have fixed 𝜎±
𝑓 , 𝜏

±
𝑓 with properties P1–P5. We do this once and for all

for every tiled surface Y (including the choice of J ).

5.4. Integrating over cosets

We briefly review some linear algebra. Recall that �̌�𝜆 is the vector space of complex linear functionals
on 𝑉𝜆. If 𝑉𝜆 has orthonormal basis {𝑣𝑖}, then �̌�𝜆 has a dual basis {�̌�𝑖} defined by �̌�𝑖 (𝑣)

def
= 〈𝑣, 𝑣𝑖〉.

Requiring the 𝑣𝑖 to be orthonormal defines a Hermitian inner product on �̌�𝜆. The action of 𝑆𝑛 on �̌�𝜆 is by
𝑔[𝜙] (𝑣)

def
= 𝜙(𝑔−1𝑣). If 𝐴 𝑗𝑖

def
= 〈𝑔𝑣𝑖 , 𝑣 𝑗〉 so that g acts by the matrix 𝐴 = (𝐴𝑖 𝑗 ) on 𝑉𝜆 in this basis, then
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𝑔[�̌�𝑖] (𝑣𝑘 ) = �̌�𝑖

[∑
ℓ

(𝐴−1)ℓ𝑘𝑣ℓ

]
=
(
𝐴−1
)
𝑖𝑘

,

so

𝑔[�̌�𝑖] =
∑
𝑘

(
𝐴−1
)
𝑖𝑘

�̌�𝑘 .

We now give some motivation for what follows. We wish to integrate the function

𝑆4
𝑛 → R, (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑) ↦→ 𝜒𝜆

( [
𝑔−1
𝑑 , 𝑔−1

𝑐

] [
𝑔−1
𝑏 , 𝑔−1

𝑎

] )
,

over a coset in 𝑆4
𝑛. This function can clearly be written as a finite sum of finite products of matrix

coefficients of the 𝑔 𝑓 and 𝑔−1
𝑓 in 𝑉𝜆. However, this is not the route we wish to take. Instead, following a

philosophy similar to that used in the development of the Weingarten calculus (see, for example, [CŚ06]),
we aim to write this function more holistically as (what is essentially) one single matrix coefficient in
one single representation. To this end, consider the vector space

𝑊𝜆 def
= 𝑉𝜆

𝑎 ⊗ 𝑉𝜆
𝑎 ⊗ 𝑉𝜆

𝑏 ⊗ 𝑉𝜆
𝑏 ⊗ 𝑉𝜆

𝑐 ⊗ 𝑉𝜆
𝑐 ⊗ 𝑉𝜆

𝑑 ⊗ 𝑉𝜆
𝑑 (5.8)

as a unitary representation of 𝑆4
𝑛. We write an element of 𝑆4

𝑛 as (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑) and the subscripts above
indicate which coordinate acts on which factor.

Let 𝐵𝜆 ∈ End(𝑊𝜆) be defined via matrix coefficients by the formula

〈𝐵𝜆 (𝑣1 ⊗ �̌�2 ⊗ 𝑣3 ⊗ 𝑣4 ⊗ 𝑣5 ⊗ �̌�6 ⊗ 𝑣7 ⊗ 𝑣8) , 𝑤1 ⊗ �̌�2 ⊗ 𝑤3 ⊗ 𝑤4 ⊗ 𝑤5 ⊗ �̌�6 ⊗ 𝑤7 ⊗ 𝑤8〉
def
=

〈𝑣1, 𝑤3〉 〈𝑣3, 𝑣2〉 〈𝑤2, 𝑣4〉 〈𝑤4, 𝑤5〉 〈𝑣5, 𝑤7〉 〈𝑣7, 𝑣6〉 〈𝑤6, 𝑣8〉 〈𝑤8, 𝑤1〉 . (5.9)

Remark 5.3. One could also order the tensor factors in equation (5.8) according to the order specified
by the word [𝑎, 𝑏] [𝑐, 𝑑], namely 𝑉𝜆

𝑎 ⊗ 𝑉𝜆
𝑏

ˇ⊗𝑉𝜆
𝑎 ⊗ 𝑉𝜆

𝑏 ⊗ 𝑉𝜆
𝑐 ⊗ 𝑉𝜆

𝑑 ⊗ 𝑉𝜆
𝑐 ⊗ 𝑉𝜆

𝑑 . In this case, the definition
of 𝐵𝜆 would be more natural: 〈𝑣1, 𝑤2〉 〈𝑣2, 𝑣3〉 〈𝑤3, 𝑣4〉 〈𝑤4, 𝑤5〉 〈𝑣5, 𝑤6〉 〈𝑣6, 𝑣7〉 〈𝑤7, 𝑣8〉 〈𝑤8, 𝑤1〉 and
easily generalizable to arbitrary words. We chose to stick with the order in equation (5.8) for ease of
notation in the sequel, for example, in Lemma 5.6.

Lemma 5.4. For any (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑) ∈ 𝑆4
𝑛, we have

tr𝑊 𝜆 (𝐵𝜆 ◦ (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑)) = 𝜒𝜆

( [
𝑔−1
𝑑 , 𝑔−1

𝑐

] [
𝑔−1
𝑏 , 𝑔−1

𝑎

] )
.

Proof. Let 𝑣𝑖 be any orthonormal basis of 𝑉𝜆. Let 𝑎 𝑗𝑖
def
= 〈𝑔𝑎𝑣𝑖 , 𝑣 𝑗〉 be the matrix coefficients of the

matrix 𝑎 = (𝑎𝑖 𝑗 ) by which g acts on 𝑉𝜆 with respect to {𝑣𝑖}. Similarly, define matrices 𝑏, 𝑐, 𝑑 for
𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑 in 𝑉𝜆. We have

tr𝑊 𝜆 (𝐵𝜆 ◦ (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑)) =
∑

𝑖1 ,...,𝑖8

〈𝐵𝜆 ◦ (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑑)𝑣𝑖1 ⊗ �̌�𝑖2 ⊗ 𝑣𝑖3 ⊗ 𝑣𝑖4 ⊗ 𝑣𝑖5 ⊗ �̌�𝑖6 ⊗ 𝑣𝑖7 ⊗ �̌�𝑖8 ,

𝑣𝑖1 ⊗ �̌�𝑖2 ⊗ 𝑣𝑖3 ⊗ �̌�𝑖4 ⊗ 𝑣𝑖5 ⊗ �̌�𝑖6 ⊗ 𝑣𝑖7 ⊗ �̌�𝑖8〉

=
∑

𝑖1 ,...,𝑖8
𝑗1 ,..., 𝑗8

𝑎 𝑗1𝑖1 (𝑎
−1)𝑖2 𝑗2𝑏 𝑗3𝑖3 (𝑏

−1)𝑖4 𝑗4𝑐 𝑗5𝑖5 (𝑐
−1)𝑖6 𝑗6𝑑 𝑗7𝑖7 (𝑑

−1)𝑖8 𝑗8 ·

〈
𝐵𝜆𝑣 𝑗1 ⊗ �̌� 𝑗2 ⊗ 𝑣 𝑗3 ⊗ �̌� 𝑗4 ⊗ 𝑣 𝑗5 ⊗ �̌� 𝑗6 ⊗ 𝑣 𝑗7 ⊗ �̌� 𝑗8 ,

𝑣𝑖1 ⊗ �̌�𝑖2 ⊗ 𝑣𝑖3 ⊗ �̌�𝑖4 ⊗ 𝑣𝑖5 ⊗ �̌�𝑖6 ⊗ 𝑣𝑖7 ⊗ �̌�𝑖8〉
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which equals

=
∑

𝑗1 , 𝑗2 , 𝑗4 , 𝑗5 , 𝑗6 , 𝑗8 ,𝑖1 ,𝑖4

𝑎 𝑗1𝑖1 (𝑎
−1) 𝑗4 𝑗2𝑏 𝑗2 𝑗1 (𝑏

−1)𝑖4 𝑗4𝑐 𝑗5𝑖4 (𝑐
−1) 𝑗8 𝑗6𝑑 𝑗6 𝑗5 (𝑑

−1)𝑖1 𝑗8

=
∑

𝑗1 , 𝑗2 , 𝑗4 , 𝑗5 , 𝑗6 , 𝑗8 ,𝑖1 ,𝑖4

(𝑑−1)𝑖1 𝑗8 (𝑐
−1) 𝑗8 𝑗6𝑑 𝑗6 𝑗5𝑐 𝑗5𝑖4 (𝑏

−1)𝑖4 𝑗4 (𝑎
−1) 𝑗4 𝑗2𝑏 𝑗2 𝑗1𝑎 𝑗1𝑖1

=𝜒𝜆

( [
𝑔−1
𝑑 , 𝑔−1

𝑐

] [
𝑔−1
𝑏 , 𝑔−1

𝑎

] )
.

The third equality used equation (5.9). �

Using Lemma 5.4 allows us to relate Θ𝜆 (𝑌,J𝑛) to orthogonal projections in the space 𝑊𝜆. For each
𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, let 𝑃 𝑓 be the orthogonal projection in 𝑊𝜆 onto the vectors that are invariant by 𝐺 𝑓 .
We let 𝑄 def

= 𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑑 .

Lemma 5.5. We have Θ𝜆 (𝑌,J𝑛) = tr𝑊 𝜆

(
𝐵𝜆𝑔

0𝑄
)
.

Proof. Using Lemma 5.4, we can write

Θ𝜆 (𝑌,J𝑛) =
∫
ℎ
𝑓
∈𝐺 𝑓

𝜒𝜆

( [(
𝑔0
𝑑ℎ𝑑

)−1
,
(
𝑔0
𝑐ℎ𝑐

)−1
] [(

𝑔0
𝑏ℎ𝑏

)−1
,
(
𝑔0
𝑎ℎ𝑎

)−1
] )

= tr𝑊 𝜆

(
𝐵𝜆𝑔

0𝑃𝑎𝑃𝑏𝑃𝑐𝑃𝑑

)
= tr𝑊 𝜆

(
𝐵𝜆𝑔

0𝑄
)
. �

Hence, we now wish to calculate tr𝑊 𝜆

(
𝐵𝜆𝑔

0𝑄
)
. For each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑} and 𝑇 ∈ Tab(𝜆), let

𝑣
𝜎±
𝑓

𝑇

def
=
(
𝜎±

𝑓

)−1
(𝑣𝑇 ) , 𝑣

𝜏±𝑓
𝑇

def
=
(
𝜏±𝑓

)−1
(𝑣𝑇 ) . (5.10)

Similarly, if 𝜈 ⊂𝔳 𝜆, recalling that if 𝑇 ∈ Tab(𝜆/𝜈), 𝑤𝑇 denotes the corresponding Gelfand–Tsetlin
basis element of 𝑉𝜆/𝜈 , we define

𝑤
𝜎±
𝑓

𝑇

def
=
(
𝜎±

𝑓

)−1
(𝑤𝑇 ) , 𝑤

𝜏±𝑓
𝑇

def
=
(
𝜏±𝑓

)−1
(𝑤𝑇 ) ;

this makes sense as 𝜎±
𝑓 and 𝜏±𝑓 are in 𝑆

′

𝔳. Recalling the notation E𝜆
𝜇,𝑅1 ,𝑅2

from Lemma 4.1 (where
𝜇 ⊂ 𝜆), we define

E𝜆, 𝑓 ,±
𝜇,𝑅1 ,𝑅2

def
=
(
𝜎±

𝑓

)−1
⊗
(
𝜏±𝑓

)−1 (
E𝜆
𝜇,𝑅1 ,𝑅2

)
. (5.11)

Lemma 5.6. For 𝜆 � 𝑛, the elements{
E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

: 𝜇 𝑓 ⊂𝔢 𝑓 𝜆, 𝑆 𝑓 , 𝑇 𝑓 ∈ Tab(𝜆/𝜇 𝑓 )
}

(5.12)

are an orthonormal basis for the G-invariant vectors in 𝑊𝜆.

Proof. Consider 𝑊𝜆 as a module for G def
= 𝑆 (1)

𝑎 × 𝑆 (2)
𝑎 × 𝑆 (1)

𝑏 × 𝑆 (2)
𝑏 × 𝑆 (1)

𝑐 × 𝑆 (2)
𝑐 × 𝑆 (1)

𝑑 × 𝑆 (2)
𝑑 , where

all the 𝑆 (𝑖)
𝑓 are isomorphic copies of 𝑆𝑛, 𝑆 (1)

𝑓 acts on the 𝑉𝜆
𝑓 factor and 𝑆 (2)

𝑓 acts on the �̌�𝜆
𝑓 factor of

𝑊𝜆. Given subgroups 𝐻 𝑓 of 𝑆𝑛 for each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, write Δ (𝐻𝑎, 𝐻𝑏 , 𝐻𝑐 , 𝐻𝑑) for the subgroup
consisting of tuples of the form (𝑔𝑎, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑏 , 𝑔𝑐 , 𝑔𝑐 , 𝑔𝑑 , 𝑔𝑑) with each 𝑔 𝑓 ∈ 𝐻 𝑓 . The statement of
Lemma 5.6 is equivalent to the statement that the set given in equation (5.12) is an orthonormal basis
for the Δ (𝐺𝑎, 𝐺𝑏 , 𝐺𝑐 , 𝐺𝑑)-invariant elements.
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We have

E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

=(
𝜎−
𝑎 , 𝜏−𝑎 , 𝜎−

𝑏 , 𝜏−𝑏 , 𝜎−
𝑐 , 𝜏−𝑐 , 𝜎−

𝑑 , 𝜏−𝑑
)−1 E𝜆

𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎
⊗ E𝜆

𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏
⊗ E𝜆

𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐
⊗ E𝜆

𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑
.

We note that (𝜎−
𝑎 , 𝜏−𝑎 , 𝜎−

𝑏 , 𝜏−𝑏 , 𝜎−
𝑐 , 𝜏−𝑐 , 𝜎−

𝑑 , 𝜏−𝑑 ) acts unitarily on 𝑊𝜆, and by Lemma 4.1,
the vectors E𝜆

𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎
⊗ E𝜆

𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏
⊗ E𝜆

𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐
⊗ E𝜆

𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑
are an orthonormal basis for the

Δ (𝑆𝑛−𝔢𝑎 , 𝑆𝑛−𝔢𝑏 , 𝑆𝑛−𝔢𝑐 , 𝑆𝑛−𝔢𝑑 )-invariant vectors in 𝑊𝜆. Therefore, the set given in equation (5.12) is
an orthonormal basis of invariant vectors for the group(

𝜎−
𝑎 , 𝜏−𝑎 , 𝜎−

𝑏 , 𝜏−𝑏 , 𝜎−
𝑐 , 𝜏−𝑐 , 𝜎−

𝑑 , 𝜏−𝑑
)−1 Δ
(
𝑆𝑛−𝔢𝑎 , 𝑆𝑛−𝔢𝑏 , 𝑆𝑛−𝔢𝑐 , 𝑆𝑛−𝔢𝑑

) (
𝜎−
𝑎 , 𝜏−𝑎 , 𝜎−

𝑏 , 𝜏−𝑏 , 𝜎−
𝑐 , 𝜏−𝑐 , 𝜎−

𝑑 , 𝜏−𝑑
)
.

It remains to prove that this group is Δ (𝐺𝑎, 𝐺𝑏 , 𝐺𝑐 , 𝐺𝑑). By property P1, this group is contained in
𝐺𝑎 × 𝐺𝑎 × 𝐺𝑏 × 𝐺𝑏 × 𝐺𝑐 × 𝐺𝑐 × 𝐺𝑑 × 𝐺𝑑 . Combining this with property P3, the group displayed
above is equal to Δ (𝐺𝑎, 𝐺𝑏 , 𝐺𝑐 , 𝐺𝑑), as required. �

Lemma 5.7. We have

𝑔0
(
E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

)
= E𝜆,𝑎,+

𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎
⊗ E𝜆,𝑏,+

𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏
⊗ E𝜆,𝑐,+

𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐
⊗ E𝜆,𝑑,+

𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑
.

Proof. This follows from property P2 together with the definitions of E𝜆, 𝑓 ,±
𝜇 𝑓 ,𝑆 𝑓 ,𝑇𝑓

in equation (5.11). �

Proposition 5.8. Recalling the definition of Θ𝜆 (𝑌,J𝑛) from equation (5.7), we have

Θ𝜆 (𝑌,J𝑛) =
∑

𝜈⊂𝔳−𝔣𝜆′ ⊂𝔣𝜆

𝑑𝜆/𝜆′𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆
′

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈,
{
𝜇 𝑓

}
, 𝜆′
)
, (5.13)

where

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈,
{
𝜇 𝑓

}
, 𝜆′
)

def
=

∑
𝑟+𝑓 , 𝑟

−
𝑓 ∈ Tab

(
𝜇 𝑓 /𝜈
)

𝑠 𝑓 , 𝑡 𝑓 ∈ Tab
(
𝜆′/𝜇 𝑓

)
M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
(5.14)

and M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
is the following product of matrix coefficients

M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
def
=
〈
𝜎−
𝑏

(
𝜎+
𝑎

)−1
𝑤𝑟+𝑎�𝑠𝑎 , 𝑤𝑟−

𝑏
�𝑠𝑏

〉 〈
𝜏+𝑎
(
𝜎+
𝑏

)−1
𝑤𝑟+

𝑏
�𝑠𝑏 , 𝑤𝑟+𝑎�𝑡𝑎

〉
·〈

𝜏+𝑏
(
𝜏−𝑎
)−1

𝑤𝑟−𝑎�𝑡𝑎 , 𝑤𝑟+
𝑏
�𝑡𝑏

〉 〈
𝜎−
𝑐

(
𝜏−𝑏
)−1

𝑤𝑟−
𝑏
�𝑡𝑏 , 𝑤𝑟−𝑐 �𝑠𝑐

〉
·〈

𝜎−
𝑑

(
𝜎+
𝑐

)−1
𝑤𝑟+𝑐�𝑠𝑐 , 𝑤𝑟−

𝑑
�𝑠𝑑

〉 〈
𝜏+𝑐
(
𝜎+
𝑑

)−1
𝑤𝑟+

𝑑
�𝑠𝑑 , 𝑤𝑟+𝑐�𝑡𝑐

〉
·〈

𝜏+𝑑
(
𝜏−𝑐
)−1

𝑤𝑟−𝑐 �𝑡𝑐 , 𝑤𝑟+
𝑑
�𝑡𝑑

〉 〈
𝜎−
𝑎

(
𝜏−𝑑
)−1

𝑤𝑟−
𝑑
�𝑡𝑑 , 𝑤𝑟−𝑎�𝑠𝑎

〉
. (5.15)

Before proving Proposition 5.8, we say a word about the interpretation of the formula. Recall that the
permutations 𝜎±

𝑓 and 𝜏±𝑓 all belong to 𝑆′
𝔳 ≤ 𝑆𝑛. But by property P4, the eight permutations appearing

in equation (5.15) all restrict to the identity on [𝑛 − 𝔣 + 1, 𝑛], and so can be seen as permutations on
[𝑛 − 𝔳 + 1, 𝑛 − 𝔣]. For every 𝜋 ∈

{
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜋−1 ([𝑛 − 𝔳 + 1, 𝑛 − 𝔣]) correspond to vertices where the

corresponding side-of-half-f -edge belongs either to a hanging half-edge, or to an exposed side of a
full-edge. One should think of 𝑟−𝑓 as the skew Young tableau consisting of indices of outgoing hanging
half-edges labeled f, of 𝑟+𝑓 as the tableau of incoming hanging half-edges labeled f, of 𝑠 𝑓 as the tableau
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of exposed left-sides of full f -edges and of 𝑡 𝑓 as the tableau of exposed right-sides of full f -edges.
Then indeed, for example, the indices corresponding to 𝜎−

𝑓 are 𝑟−𝑓 � 𝑠 𝑓 , those corresponding to 𝜎+
𝑓 are

𝑟+𝑓 � 𝑠 𝑓 , those corresponding to 𝜏−𝑓 are 𝑟−𝑓 � 𝑡 𝑓 , and those corresponding to 𝜏+𝑓 are 𝑟+𝑓 � 𝑡 𝑓 .

Proof of Proposition 5.8. By Lemmas 5.5, 5.6 and 5.7, we have

Θ𝜆 (𝑌,J𝑛) = tr𝑊 𝜆

(
𝐵𝜆𝑔

0𝑄
)

=
∑

𝜇 𝑓 ⊂𝔢 𝑓 𝜆,

𝑆 𝑓 , 𝑇 𝑓 ∈ Tab
(
𝜆/𝜇 𝑓
)
〈
𝐵𝜆𝑔

0
[
E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

]
,

E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

〉

=
∑

𝜇 𝑓 ⊂𝔢 𝑓 𝜆,

𝑆 𝑓 , 𝑇 𝑓 ∈ Tab
(
𝜆/𝜇 𝑓
)
〈
𝐵𝜆

[
E𝜆,𝑎,+
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,+
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,+
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,+
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

]
,

E𝜆,𝑎,−
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,−
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,−
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,−
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

〉
.

(5.16)

Using equations (4.2), (5.9) and (5.11), we obtain

〈
𝐵𝜆

[
E𝜆,𝑎,+
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,+
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,+
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,+
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

]
, E𝜆,𝑎,−

𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎
⊗ E𝜆,𝑏,−

𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏
⊗ E𝜆,𝑐,−

𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐
⊗ E𝜆,𝑑,−

𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

〉
=

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

∑
𝑅+
𝑓
,𝑅−
𝑓
∈Tab(𝜇 𝑓 )〈

𝐵𝜆

[
𝑣
𝜎+
𝑎

𝑅+
𝑎�𝑆𝑎

⊗ �̌�
𝜏+𝑎
𝑅+
𝑎�𝑇𝑎

⊗ 𝑣
𝜎+
𝑏

𝑅+
𝑏
�𝑆𝑏

⊗ �̌�
𝜏+𝑏
𝑅+
𝑏
�𝑇𝑏

⊗ 𝑣
𝜎+
𝑐

𝑅+
𝑐�𝑆𝑐

⊗ �̌�
𝜏+𝑐
𝑅+
𝑐�𝑇𝑐

⊗ 𝑣
𝜎+
𝑑

𝑅+
𝑑
�𝑆𝑑

⊗ �̌�
𝜏+𝑑
𝑅+
𝑑
�𝑇𝑑

]
,

𝑣
𝜎−
𝑎

𝑅−
𝑎�𝑆𝑎

⊗ �̌�
𝜏−𝑎
𝑅−
𝑎�𝑇𝑎

⊗ 𝑣
𝜎−
𝑏

𝑅−
𝑏
�𝑆𝑏

⊗ �̌�
𝜏−𝑏
𝑅−
𝑏
�𝑇𝑏

⊗ 𝑣
𝜎−
𝑐

𝑅−
𝑐�𝑆𝑐

⊗ �̌�
𝜏−𝑐
𝑅−
𝑐�𝑇𝑐

⊗ 𝑣
𝜎−
𝑑

𝑅−
𝑑
�𝑆𝑑

⊗ �̌�
𝜏−𝑑
𝑅−
𝑑
�𝑇𝑑

〉
=

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

∑
𝑅±
𝑓
∈Tab(𝜇 𝑓 )

〈
𝑣
𝜎+
𝑎

𝑅+
𝑎�𝑆𝑎

, 𝑣
𝜎−
𝑏

𝑅−
𝑏
�𝑆𝑏

〉 〈
𝑣
𝜎+
𝑏

𝑅+
𝑏
�𝑆𝑏

, 𝑣
𝜏+𝑎
𝑅+
𝑎�𝑇𝑎

〉 〈
𝑣
𝜏−𝑎
𝑅−
𝑎�𝑇𝑎

, 𝑣
𝜏+𝑏
𝑅+
𝑏
�𝑇𝑏

〉
·

〈
𝑣
𝜏−𝑏
𝑅−
𝑏
�𝑇𝑏

, 𝑣
𝜎−
𝑐

𝑅−
𝑐�𝑆𝑐

〉 〈
𝑣
𝜎+
𝑐

𝑅+
𝑐�𝑆𝑐

, 𝑣
𝜎−
𝑑

𝑅−
𝑑
�𝑆𝑑

〉 〈
𝑣
𝜎+
𝑑

𝑅+
𝑑
�𝑆𝑑

, 𝑣
𝜏+𝑐
𝑅+
𝑐�𝑇𝑐

〉 〈
𝑣
𝜏−𝑐
𝑅−
𝑐�𝑇𝑐

, 𝑣
𝜏+𝑑
𝑅+
𝑑
�𝑇𝑑

〉 〈
𝑣
𝜏−𝑑
𝑅−
𝑑
�𝑇𝑑

, 𝑣
𝜎−
𝑎

𝑅−
𝑎�𝑆𝑎

〉
.

Since 𝜎±
𝑓 , 𝜏

±
𝑓 ∈ 𝑆′

𝔳 for all 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, the only way the product of matrix coefficients above can be
nonzero is if there is 𝜈 � 𝑛 − 𝔳 such that 𝜈 ⊂ 𝜇 𝑓 for all 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, and all 𝑅+

𝑓 |≤𝑛−𝔳, 𝑅−
𝑓 |≤𝑛−𝔳 are

equal and of shape 𝜈. Also, recall from Section 3.3 that the action of 𝜎 ∈ 𝑆′
𝔳 on a tableau of shape 𝜆 � 𝑛

depends only on the boxes with numbers from [𝑛 − 𝔳 + 1, 𝑛]. This gives

〈
𝐵𝜆

[
E𝜆,𝑎,+
𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎

⊗ E𝜆,𝑏,+
𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏

⊗ E𝜆,𝑐,+
𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐

⊗ E𝜆,𝑑,+
𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

]
, E𝜆,𝑎,−

𝜇𝑎 ,𝑆𝑎 ,𝑇𝑎
⊗ E𝜆,𝑏,−

𝜇𝑏 ,𝑆𝑏 ,𝑇𝑏
⊗ E𝜆,𝑐,−

𝜇𝑐 ,𝑆𝑐 ,𝑇𝑐
⊗ E𝜆,𝑑,−

𝜇𝑑 ,𝑆𝑑 ,𝑇𝑑

〉
=
∑
𝜈⊂𝔳𝜆

𝑑𝜈
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

∑
𝑟+
𝑓
,𝑟−
𝑓
∈Tab(𝜇 𝑓 /𝜈)〈

𝑤
𝜎+
𝑎

𝑟+𝑎�𝑆𝑎
, 𝑤

𝜎−
𝑏

𝑟−
𝑏
�𝑆𝑏

〉
·
〈
𝑤

𝜎+
𝑏

𝑟+
𝑏
�𝑆𝑏

, 𝑤
𝜏+𝑎
𝑟+𝑎�𝑇𝑎

〉
·
〈
𝑤

𝜏−𝑎
𝑟−𝑎�𝑇𝑎

, 𝑤
𝜏+𝑏
𝑟+
𝑏
�𝑇𝑏

〉
·
〈
𝑤

𝜏−𝑏
𝑟−
𝑏
�𝑇𝑏

, 𝑤
𝜎−
𝑐

𝑟−𝑐 �𝑆𝑐

〉
·〈

𝑤
𝜎+
𝑐

𝑟+𝑐�𝑆𝑐
, 𝑤

𝜎−
𝑑

𝑟−
𝑑
�𝑆𝑑

〉
·
〈
𝑤

𝜎+
𝑑

𝑟+
𝑑
�𝑆𝑑

, 𝑤
𝜏+𝑐
𝑟+𝑐�𝑇𝑐

〉
·
〈
𝑤

𝜏−𝑐
𝑟−𝑐 �𝑇𝑐

, 𝑤
𝜏+𝑑
𝑟+
𝑑
�𝑇𝑑

〉
·
〈
𝑤

𝜏−𝑑
𝑟−
𝑑
�𝑇𝑑

, 𝑤
𝜎−
𝑎

𝑟−𝑎�𝑆𝑎

〉
. (5.17)
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Putting equations (5.16) and (5.17) together yields

Θ𝜆 (𝑌,J𝑛) =
∑
𝜈⊂𝔳𝜆

𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 𝜆

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

∑
𝑟+
𝑓
,𝑟−
𝑓
∈Tab(𝜇 𝑓 /𝜈)

∑
𝑆 𝑓 ,𝑇𝑓 ∈Tab(𝜆/𝜇 𝑓 )〈

𝑤
𝜎+
𝑎

𝑟+𝑎�𝑆𝑎
, 𝑤

𝜎−
𝑏

𝑟−
𝑏
�𝑆𝑏

〉 〈
𝑤

𝜎+
𝑏

𝑟+
𝑏
�𝑆𝑏

, 𝑤
𝜏+𝑎
𝑟+𝑎�𝑇𝑎

〉 〈
𝑤

𝜏−𝑎
𝑟−𝑎�𝑇𝑎

, 𝑤
𝜏+𝑏
𝑟+
𝑏
�𝑇𝑏

〉 〈
𝑤

𝜏−𝑏
𝑟−
𝑏
�𝑇𝑏

, 𝑤
𝜎−
𝑐

𝑟−𝑐 �𝑆𝑐

〉
〈
𝑤

𝜎+
𝑐

𝑟+𝑐�𝑆𝑐
, 𝑤

𝜎−
𝑑

𝑟−
𝑑
�𝑆𝑑

〉 〈
𝑤

𝜎+
𝑑

𝑟+
𝑑
�𝑆𝑑

, 𝑤
𝜏+𝑐
𝑟+𝑐�𝑇𝑐

〉 〈
𝑤

𝜏−𝑐
𝑟−𝑐 �𝑇𝑐

, 𝑤
𝜏+𝑑
𝑟+
𝑑
�𝑇𝑑

〉 〈
𝑤

𝜏−𝑑
𝑟−
𝑑
�𝑇𝑑

, 𝑤
𝜎−
𝑎

𝑟−𝑎�𝑆𝑎

〉
.

Now, 〈𝑤𝜎+
𝑎

𝑟+𝑎�𝑆𝑎
, 𝑤

𝜎−
𝑏

𝑟−
𝑏
�𝑆𝑏

〉 = 〈𝜎−
𝑏

(
𝜎+
𝑎

)−1
𝑤𝑟+𝑎�𝑆𝑎 , 𝑤𝑟−

𝑏
�𝑆𝑏 〉 and so on, and property P4 implies that each pair

of skew Young tableaux occurring in the same matrix coefficient above have the elements [𝑛− 𝔣+1, 𝑛] in
the same boxes, if the matrix coefficient is nonzero. This implies that if the product of matrix coefficients
is nonzero then all the skew Young tableaux above have the elements [𝑛 − 𝔣 + 1, 𝑛] in the same boxes
and there is 𝜆′ ⊂ 𝜆 such that 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆′ for all f. Therefore, the above is equal to

Θ𝜆 (𝑌,J𝑛) =
∑

𝜈⊂𝔳−𝔣𝜆′ ⊂𝔣𝜆

𝑑𝜆/𝜆′𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆
′

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

∑
𝑟+
𝑓
,𝑟−
𝑓
∈Tab(𝜇 𝑓 /𝜈)

∑
𝑠 𝑓 ,𝑡 𝑓 ∈Tab(𝜆′/𝜇 𝑓 )〈

𝜎−
𝑏

(
𝜎+
𝑎

)−1
𝑤𝑟+𝑎�𝑠𝑎 , 𝑤𝑟−

𝑏
�𝑠𝑏

〉
·
〈
𝜏+𝑎
(
𝜎+
𝑏

)−1
𝑤𝑟+

𝑏
�𝑠𝑏 , 𝑤𝑟+𝑎�𝑡𝑎

〉
·〈

𝜏+𝑏
(
𝜏−𝑎
)−1

𝑤𝑟−𝑎�𝑡𝑎 , 𝑤𝑟+
𝑏
�𝑡𝑏

〉
·
〈
𝜎−
𝑐

(
𝜏−𝑏
)−1

𝑤𝑟−
𝑏
�𝑡𝑏 , 𝑤𝑟−𝑐 �𝑠𝑐

〉
·〈

𝜎−
𝑑

(
𝜎+
𝑐

)−1
𝑤𝑟+𝑐�𝑠𝑐 , 𝑤𝑟−

𝑑
�𝑠𝑑

〉
·
〈
𝜏+𝑐
(
𝜎+
𝑑

)−1
𝑤𝑟+

𝑑
�𝑠𝑑 , 𝑤𝑟+𝑐�𝑡𝑐

〉
·〈

𝜏+𝑑
(
𝜏−𝑐
)−1

𝑤𝑟−𝑐 �𝑡𝑐 , 𝑤𝑟+
𝑑
�𝑡𝑑

〉
·
〈
𝜎−
𝑎

(
𝜏−𝑑
)−1

𝑤𝑟−
𝑑
�𝑡𝑑 , 𝑤𝑟−𝑎�𝑠𝑎

〉
.

This finishes the proof. �

It is also useful to know the following.

Lemma 5.9. We have Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

′
)
= Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, �̌�, {�̌� 𝑓 }, �̌�

′
)
.

Proof. This uses that as 𝑆𝑛−𝔣 modules, 𝑉𝜆′ and 𝑉𝜆′ ⊗ sign are isomorphic by the map 𝑤𝑇 ↦→ 𝑤�̌� . This
gives

M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
= sign

(
𝜎−
𝑑

(
𝜎+
𝑐

)−1
)

sign
(
𝜏+𝑐
(
𝜎+
𝑑

)−1
)

sign
(
𝜏+𝑑
(
𝜏−𝑐
)−1
)

sign
(
𝜎−
𝑎

(
𝜏−𝑑
)−1
)

· sign
(
𝜎−
𝑏

(
𝜎+
𝑎

)−1
)

sign
(
𝜏+𝑎
(
𝜎+
𝑏

)−1
)

sign
(
𝜏+𝑏
(
𝜏−𝑎
)−1
)

sign
(
𝜎−
𝑐

(
𝜏−𝑏
)−1
)
·

·M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
= M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
,

where the last line used P2 to get (𝜏+𝑓 )
−1𝜏−𝑓 = (𝜎+

𝑓 )
−1𝜎−

𝑓 = 𝑔
𝑓
0 . Using this identity gives the result. �

We are now ready to give an exact expression for Eemb
𝑛 (𝑌 ), which is the main result of this §§5.4.

Theorem 5.10. For 𝑛 ≥ 𝔳, we have14

Eemb
𝑛 (𝑌 ) =

(𝑛!)3

|X𝑛 |
·
(𝑛)𝔳 (𝑛)𝔣∏

𝑓 (𝑛)𝔢 𝑓
Ξ𝑛 (𝑌 ), (5.18)

14For general 𝑔 ≥ 2, the exponent of (𝑛!) in equation (5.18) is 2𝑔 − 1.
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where

Ξ𝑛 (𝑌 )
def
=
∑

𝜈⊂𝔳−𝔣𝜆
′� 𝑛−𝔣

𝑑𝜆′𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆
′

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

′
)
. (5.19)

Remark 5.11. Although the expression (5.19) seems to depend on the choices of 𝜎±
𝑓 etc. that we have

made already, the relation (5.18) shows that it only depends on Y.

Proof of Theorem 5.10. Recall from equation (5.6) that Eemb
𝑛 (𝑌 ) = 𝑛!

(𝑛−𝔳)!
|X𝑛 (𝑌 ,J𝑛) |

|X𝑛 |
. Combining this

with Propositions 5.1 and 5.8 gives

Eemb
𝑛 (𝑌 ) =

∏
𝑓 ∈𝑎,𝑏,𝑐,𝑑 (𝑛 − 𝔢 𝑓 )!
(𝑛 − 𝔳)! |X𝑛 |

∑
𝜈⊂𝔳−𝔣𝜆′ ⊂𝔣𝜆�𝑛

𝑑𝜆𝑑𝜆/𝜆′𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣
𝜆′

1
𝑑𝜇𝑎 𝑑𝜇𝑏 𝑑𝜇𝑐 𝑑𝜇𝑑

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

′
)
.

Applying Lemma 3.1 to the summation over 𝜆, for fixed 𝜆′, yields

Eemb
𝑛 (𝑌 ) =

𝑛!
∏

𝑓 ∈𝑎,𝑏,𝑐,𝑑 (𝑛 − 𝔢 𝑓 )!
(𝑛 − 𝔳)!(𝑛 − 𝔣)! |X𝑛 |

∑
𝜈⊂𝔳−𝔣𝜆′� 𝑛−𝔣

𝑑𝜆′𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆
′

1
𝑑𝜇𝑎 𝑑𝜇𝑏 𝑑𝜇𝑐 𝑑𝜇𝑑

Υ𝑛

({
𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

′
)
.

�

In view of Theorem 5.10, from now on we will not need to refer to the partition 𝜆 � 𝑛, but only to
the partitions 𝜈 ⊂𝔳−𝔢 𝑓 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆′ � 𝑛 − 𝔣. For ease of notation, from now on we shall abuse notation
and write 𝜆 instead of 𝜆′.

Before moving on, we prove that the recently defined functions Υ𝑛 ({𝜎
±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆) are analytic

functions of 𝑛−1 when 𝜈, 𝜇 𝑓 , 𝜆 each vary in a family of YDs. Recall the notation 𝜆 (𝑛) and 𝑇 (𝑛) from
Section 4.4.

Lemma 5.12. Still assume that (𝑌,J ), 𝜎±
𝑓 and 𝜏±𝑓 are all fixed in the sense of Sections 5.4 and 5.6.

Suppose that we are given YDs 𝜈 ⊂𝔳−𝔣 𝜆 and for each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑} a YD 𝜇 𝑓 with

𝜈 ⊂𝔳−𝔢 𝑓 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆.

There is a function Υ∗
(
𝜈, {𝜇 𝑓 }, 𝜆, •

)
that is holomorphic in some open disc in C with center 0 such that

for all n sufficiently large (depending on Y), 𝜆(𝑛 − 𝔣), 𝜇 𝑓 (𝑛 − 𝔢 𝑓 ) and 𝜈(𝑛 − 𝔳) all exist and

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈(𝑛 − 𝔳),

{
𝜇 𝑓 (𝑛 − 𝔢 𝑓 )

}
, 𝜆(𝑛 − 𝔣)

)
= Υ∗
(
𝜈, {𝜇 𝑓 }, 𝜆, 𝑛

−1
)
.

In addition, the coefficients of the Taylor series of Υ∗
(
𝜈, {𝜇 𝑓 }, 𝜆, •

)
are in Q.

Proof. The proof relies crucially on property P5 of the permutations 𝜎±
𝑓 , 𝜏

±
𝑓 stating that they are obtained

from fixed permutations in 𝑆𝔳. This means that each of the summands

M
({

𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑠 𝑓 (𝑛 − 𝔣) , 𝑡 𝑓 (𝑛 − 𝔣) , 𝑟−𝑓

(
𝑛 − 𝔢 𝑓

)
, 𝑟+𝑓
(
𝑛 − 𝔢 𝑓

)})
of

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈(𝑛 − 𝔳),

{
𝜇 𝑓 (𝑛 − 𝔢 𝑓 )

}
, 𝜆(𝑛 − 𝔣)

)
(cf. equation (5.14)) agrees with a function of 𝑛−1 that is holomorphic in an open disc with center 0
and with rational coefficients of its Taylor series by Proposition 4.6. Since there are only finitely many
summands in equation (5.14), this proves the lemma. �

https://doi.org/10.1017/fmp.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.13


40 M. Magee and D. Puder

We also give a coarse bound for the quantities Υ𝑛 ({𝜎
±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆); this will be improved later

in Proposition 5.21.
Lemma 5.13. We have ���Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈,
{
𝜇 𝑓

}
, 𝜆
)��� ≤ (𝑑𝜆/𝜈 )8 ≤ ((𝔳 − 𝔣)!)8 .

Proof. For fixed 𝜈, {𝜇 𝑓 }, 𝜆, the range of summation in equation (5.14) is parameterized 1 : 1 by the
eight tableaux of the form

𝑟+𝑓 � 𝑠 𝑓 , 𝑟
−
𝑓 � 𝑡 𝑓 ∈ Tab(𝜆/𝜈).

Also, since the matrix coefficients in equation (5.15) involve unit vectors in a unitary representation,
each summand in equation (5.15) is ≤ 1 in absolute value. Hence, the lemma follows. �

5.5. A geometric bound for products of matrix coefficients

We continue to keep all the notations and assumptions of §§5.4. We will show that we can give improved
bounds for the product of matrix coefficients M({𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 }) defined in equation (5.15) in

terms of geometric properties of Y. Recall the definitions of the functions top and d from §§4.3. We
define

𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
def
= (5.20)

𝑑
(
𝜎−
𝑏

(
𝜎+
𝑎

)−1 top(𝑟+𝑎 � 𝑠𝑎), top(𝑟−𝑏 � 𝑠𝑏)
)
+ 𝑑
(
𝜏+𝑎
(
𝜎+
𝑏

)−1 top(𝑟+𝑏 � 𝑠𝑏), top(𝑟+𝑎 � 𝑡𝑎)
)
+

𝑑
(
𝜏+𝑏
(
𝜏−𝑎
)−1 top(𝑟−𝑎 � 𝑡𝑎), top(𝑟+𝑏 � 𝑡𝑏)

)
+ 𝑑
(
𝜎−
𝑐

(
𝜏−𝑏
)−1 top(𝑟−𝑏 � 𝑡𝑏), top(𝑟−𝑐 � 𝑠𝑐)

)
+

𝑑
(
𝜎−
𝑑

(
𝜎+
𝑐

)−1 top(𝑟+𝑐 � 𝑠𝑐), top(𝑟−𝑑 � 𝑠𝑑)
)
+ 𝑑
(
𝜏+𝑐
(
𝜎+
𝑑

)−1 top(𝑟+𝑑 � 𝑠𝑑), top(𝑟+𝑐 � 𝑡𝑐)
)
+

𝑑
(
𝜏+𝑑
(
𝜏−𝑐
)−1 top(𝑟−𝑐 � 𝑡𝑐), top(𝑟+𝑑 � 𝑡𝑑)

)
+ 𝑑
(
𝜎−
𝑎

(
𝜏−𝑑
)−1 top(𝑟−𝑑 � 𝑡𝑑), top(𝑟−𝑎 � 𝑠𝑎)

)
.

Proposition 4.4 directly implies the following result.
Lemma 5.14. If 𝜆1 + 𝜈1 > 𝑛 − 𝔣 + (𝔳 − 𝔣)2, then

���M ({𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})��� ≤ ( (𝔳 − 𝔣)2

𝜆1 + 𝜈1 − (𝑛 − 𝔣)

)𝐷top
({
𝜎±
𝑓 ,𝜏

±
𝑓 ,𝑟

±
𝑓 ,𝑠 𝑓 ,𝑡 𝑓

})
.

Remark 5.15. If 𝜈 has a fixed bound on the number of boxes outside its first row and Y is fixed, then
the hypothesis of Lemma 5.14 is satisfied for sufficiently large n.

The quantities 𝐷top ({𝜎
±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 }) have a useful interpretation in terms of the combinatorics

of the boundary cycles of Y. To explain this, we construct from the data {𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 } a labeling

of the sides/half-sides of rectangles/half-rectangles in 𝑌 (1)
+ .

5.6. Construction of labelings of tiled surfaces from collections of tableaux

In this section, we keep all of the notation from the previous sections. In particular, we have a fixed
vertex-labeled compact tiled surface (𝑌,J𝑛) with 𝔳 vertices,𝔢 𝑓 𝑓 -labeled edges for each 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑},
and 𝔣 octagons. We fix the data

𝜈 � 𝑛 − 𝔳, 𝜆 � 𝑛 − 𝔣

𝜈 ⊂ 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆 ∀ 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}

𝑟+𝑓 , 𝑟
−
𝑓 ∈ Tab(𝜇 𝑓 /𝜈), 𝑠 𝑓 , 𝑡 𝑓 ∈ Tab(𝜆/𝜇 𝑓 ) ∀ 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}. (5.21)
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Figure 5.2. Illustration of how the tableaux 𝑟−𝑓 , 𝑟
+
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 induce the ‘top’ labeling.

All this data uniquely determine one summand of Υ𝑛 ({𝜎
±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆) as in equation (5.15) and

hence also of Ξ𝑛 (𝑌 ) as in equation (5.19).
Recall that in §§5.3 we constructed the maps 𝜎±

𝑓 and 𝜏±𝑓 according to numbering in [𝔳 − 𝔣] of
octagons, of exposed sides of full-edges and of hanging half-edges of𝑌+. By adding 𝑛−𝔳, these numbers
are in [𝑛 − 𝔳 + 1, 𝑛 − 𝔣], give rise to the images of the corresponding vertices of Y through 𝜎±

𝑓 , 𝜏
±
𝑓 , and

are the elements in the tableaux 𝑟±𝑓 , 𝑠 𝑓 , 𝑡 𝑓 . Given these tableaux, we assign a ‘top’ label to the hanging
half-edges and exposed sides of full-edges which appear in the top row of the corresponding tableau.
Namely,

• Every exposed left side (resp. right side) of an f -full-edge is labeled ‘top’ if the corresponding element
in 𝑠 𝑓 (resp. 𝑡 𝑓 ) lies in the top row.15

• Every outgoing (resp. incoming) hanging f -half-edge is labeled ‘top’ if the corresponding element in
𝑟−𝑓 (resp. 𝑟+𝑓 ) lies in the top row.

This labeling scheme is illustrated in Figure 5.2.
The purpose of introducing these labelings is the following diagrammatic interpretation of 𝐷top. We

view the boundary 𝜕𝑌+ of (the thick version of)𝑌+ to consist of hanging half-edges and of exposed sides
of full-edges.

Lemma 5.16. The quantity 𝐷top({𝜎
±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 }) is half the number of incidences between two

consecutive parts of 𝜕𝑌+ among which one is labeled ‘top’ and other one is not.

Proof. This follows simply by careful consideration of the definition (5.20) of 𝐷top, as the permutations
appearing in that definition map the index of one part of 𝜕𝑌+ to a neighboring part. For example,
𝜎−
𝑏

(
𝜎+
𝑎

)−1 maps the index on an exposed left side of an a-full-edge to the neighboring index which
either belongs to an exposed left side of a b-full-edge or to a hanging outgoing b-half-edge.

The reason for the factor 1
2 is that for 𝐴, 𝐵 of the same size, 𝑑 (𝐴, 𝐵) is half the size of the symmetric

difference of A and B. While in the definition of 𝐷top we count differences 𝑑 (𝐴, 𝐵), in counting switches
between ‘top’ parts to ‘nontop’ parts of 𝜕𝑌+ and vice versa, we refer to symmetric differences. �

15To be sure, the top row in this case is row number one of 𝜆/𝜇 𝑓 , which may be empty: its length is 𝜆1 −
(
𝜇 𝑓
)
1.
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The benefit of Lemma 5.16 is that it allows us to connect the possible properties of Y being boundary
reduced or strongly boundary reduced to nontrivial bounds for matrix coefficients.

A piece of 𝜕𝑌+ is a contiguous collection of exposed sides of full-edges and of hanging half-edges.
Given a piece P, we write 𝔢(𝑃) for the number of exposed sides-of-full-edges in P, 𝔥𝔢(𝑃) for the number
of hanging half-edges in P and 𝜒 (𝑃) for the Euler characteristic of P, which may by 0 (if P is a circle)
or 1 (if P is topologically a path). A piece collection P of 𝜕𝑌+ is a collection of disjoint pieces of 𝜕𝑌+
(without intersection even of endpoints).

Definition 5.17. Define

Defect(𝑃) def
= 𝔢(𝑃) − 3𝔥𝔢(𝑃)

and16

max Defect(𝑌 ) def
= max

P≠∅

∑
𝑃∈P

Defect(𝑃) − 8𝜒(𝑃),

where the maximum is over all nonempty piece collections of 𝜕𝑌+.

Lemma 5.18. If Y is boundary reduced, then

max Defect(𝑌 ) ≤ 0. (5.22)

If Y is strongly boundary reduced, then

max Defect(𝑌 ) ≤ −2. (5.23)

Proof. Assume first that Y is boundary reduced. Recall that Y has no long blocks, so no blocks of size
> 4 and no long chains, so between every two blocks of size 4 in the same piece, there must be either
two consecutive hanging edges or one block of size ≤ 2. As a result, for every piece P of 𝜕𝑌+ that is a
circle, we have Defect(𝑃) ≤ 0 so Defect(𝑃) − 8𝜒(𝑃) ≤ 0. For every piece P of 𝜕𝑌+ that is a path, we
have Defect(𝑃) ≤ 4: This bound is attained for example when P corresponds to a block of size 4 or to
two consecutive blocks of size 4 and 3. Therefore, Defect(𝑃) − 8𝜒(𝑃) ≤ −4. Hence, all contributions
to max Defect(𝑌 ) are nonpositive, and we obtain equation (5.22).

If Y is strongly boundary reduced, there are no blocks in 𝜕𝑌 of length > 3, and so every piece
P of 𝜕𝑌+ which is a path that satisfies Defect(𝑃) ≤ 3 and Defect(𝑃) − 8𝜒(𝑃) ≤ −5: This bound
is attained when P corresponds to a chain of consecutive blocks of size 3 each. If P is a piece of
𝜕𝑌+ that is a circle but not a cyclic chain, then there are two consecutive hanging half-edges and
Defect(𝑃) = Defect(𝑃) − 𝜒(𝑃) ≤ −3. If P is a cyclic chain, then by [MP22a, Lem. 3.6] it cannot have
only one block of size 2, so Defect(𝑃) = Defect(𝑃) − 𝜒(𝑃) ≤ −2. This proves equation (5.23). �

The following result relates the structure of the pieces of 𝜕𝑌 to the quantities 𝐷top and 𝐷left appearing
in our previous bound (Lemma 5.14) for matrix coefficients. Given an SYD 𝜆/𝜈, we write 𝑏𝜆/𝜈 for the
number of boxes of 𝜆/𝜈 outside the first row.

Proposition 5.19. Suppose we are given 𝜈, 𝜇 𝑓 , 𝜆, 𝑟
±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 as in equation (5.21). If 𝑏𝜆/𝜈 > 0, then17

𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 − 𝐷top

({
{𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
≤

1
8

max Defect(𝑌 ).

Proof. We define a collection of pieces P of 𝜕𝑌+ according to the ‘top’ labels: Pieces are contiguous
segments of 𝜕𝑌+ (hanging half-edges or exposed sides of full edges) which are not labeled ‘top’. This

16For general genus 𝑔 ≥ 2, the definitions are Defect (𝑃) = 𝔢 (𝑃) − (2𝑔 − 1) 𝔥𝔢 (𝑃) and max Defect (𝑌 ) = maxP Defect (𝑃) −
4𝑔𝜒 (𝑃) .

17For general 𝑔 ≥ 2 the bound is 1
4𝑔 max Defect (𝑌 ) .
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collection is nonempty if and only if 𝑏𝜆/𝜈 > 0, which holds by assumption. Let P0 denote the collection
of such pieces that are circles, P1 denote the collection of such pieces that are paths and P = P0 � P1.
It follows from Lemma 5.16 that

𝐷top
def
= 𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
= |P1 | .

Now, 𝑏𝜆/𝜈 = 1
8
∑

𝑃∈P [𝔢 (𝑃) + 𝔥𝔢 (𝑃)] because for every 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, every square outside the top
row of 𝜆/𝜈 corresponds either to two hanging half-edges (in case this square belongs to 𝜇 𝑓 /𝜈) or to two
exposed-sides-of-full-edges (in case this square belongs to 𝜆/𝜇 𝑓 ). Similarly, 𝑏𝜇𝑎/𝜈 + 𝑏𝜇𝑏/𝜈 + 𝑏𝜇𝑐/𝜈 +

𝑏𝜇𝑑/𝜈 = 1
2
∑

𝑃∈P 𝔥𝔢 (𝑃). Thus,

𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 − 𝐷top =
∑
𝑃∈P

(
1
8
(𝔢(𝑃) + 𝔥𝔢(𝑃)) −

1
2
𝔥𝔢(𝑃)

)
−
∑
𝑃∈P1

1

=
∑
𝑃∈P0

1
8

Defect(𝑃) +
∑
𝑃∈P1

1
8
(Defect(𝑃) − 8)

=
∑
𝑃∈P

1
8
(Defect(𝑃) − 8𝜒(𝑃)) ≤

1
8

max Defect(𝑌 ).

�

Proposition 5.20. Suppose we are given 𝜈, 𝜇 𝑓 , 𝜆, 𝑟
−
𝑓 , 𝑟

+
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 as in equation (5.21).

1. If Y is boundary reduced,

𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
≥ 𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 . (5.24)

2. If Y is strongly boundary reduced, then equation (5.24) becomes an equality if and only if

𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
= 𝑏𝜆/𝜈 = 𝑏𝜇𝑎/𝜈 = 𝑏𝜇𝑏/𝜈 = 𝑏𝜇𝑐/𝜈 = 𝑏𝜇𝑑/𝜈 = 0. (5.25)

Otherwise,

𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
≥ 𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 + 1. (5.26)

Proof. Note that, for any Y, if 𝑏𝜆/𝜈 = 0, then 𝐷top ({𝜎
±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 }) = 𝑏𝜇𝑎/𝜈 = 𝑏𝜇𝑏/𝜈 = 𝑏𝜇𝑐/𝜈 =

𝑏𝜇𝑑/𝜈 = 0. Otherwise, Proposition 5.19 applies, and we obtain the statement of the proposition by com-
bining Proposition 5.19 with the inequalities (5.22) and (5.23). To obtain equation (5.26) from equation
(5.23) (instead of a bound featuring 1

4 ), one uses that all 𝑏• quantities and 𝐷top({𝜎
±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 })

are integer valued. �

Proposition 5.20 together with Lemma 5.16 have the following important consequence for the
quantities Υ𝑛 ({𝜎

±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆).

Proposition 5.21. Suppose that 𝜈, {𝜇 𝑓 }, 𝜆 are as in equation (5.21) and that 𝜆1 + 𝜈1 > 𝑛 − 𝔣 + (𝔳 − 𝔣)2.

1. If Y is boundary reduced, then

���Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)��� ≤ ((𝔳 − 𝔣)!)8
(

(𝔳 − 𝔣)2

𝜈1 + 𝜆1 − (𝑛 − 𝔣)

)𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈
. (5.27)
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2. If Y is strongly boundary reduced and 𝑏𝜆/𝜈 > 0, then

���Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)��� ≤ ((𝔳 − 𝔣)!)8
(

(𝔳 − 𝔣)2

𝜈1 + 𝜆1 − (𝑛 − 𝔣)

)1+𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈
. (5.28)

3. For any Y, if 𝑏𝜆/𝜈 = 0, then

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)
= 1.

Proof. Part 1. Suppose that Y is boundary reduced. As argued in the proof of 5.13, there are at most
(𝑑𝜆/𝜈)

8 ≤ ((𝔳 − 𝔣)!)8 summands in the definition (5.14) of Υ𝑛 ({𝜎
±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆). Each summand

is some M({𝜎±
𝑓 , 𝜏

±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓 }), so by Lemma 5.14 and Proposition 5.20 Part 1, we get that each

summand of equation (5.14) has absolute value

≤

(
(𝔳 − 𝔣)2

𝜈1 + 𝜆1 − (𝑛 − 𝔣)

)𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈
.

This proves equation (5.27).
Part 2. Suppose now that Y is strongly boundary reduced and that 𝑏𝜆/𝜈 > 0. This time, Lemma

5.14 and Proposition 5.20 give that each summand of Υ𝑛 ({𝜎
±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆) in equation (5.14) has

absolute value

≤

(
(𝔳 − 𝔣)2

𝜈1 + 𝜆1 − (𝑛 − 𝔣)

)1+𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈
.

As in Part 1, there are ≤ ((𝔳 − 𝔣)!)8 summands of equation (5.14), so this proves equation (5.28).
Part 3. Suppose that 𝑏𝜆/𝜈 = 0. Then there is only one possible choice for the tableaux 𝑟−𝑓 , 𝑟

+
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

in equation (5.14). Moreover, 𝑉𝜆/𝜈 is the trivial module for the relevant copy of 𝑆𝔳−𝔣, hence the product
of matrix coefficients appearing in equation (5.15) is equal to 1, and Υ𝑛 ({𝜎

±
𝑓 , 𝜏

±
𝑓 }, 𝜈, {𝜇 𝑓 }, 𝜆) = 1. �

5.7. Stronger bounds for matrix coefficients

In this section, we give a strengthening of Proposition 5.19 that is used in a sequel to this paper [MNP22].
A reader who is only interested in the current paper may skip this short §§5.7.

Proposition 5.22. Suppose we are given YDs 𝜈 � 𝑛 − 𝔳, 𝜆 � 𝑛 − 𝔣 and 𝜇 𝑓 such that

𝜈 ⊂ 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆, ∀ 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑},

and tableaux 𝑟+𝑓 , 𝑟
−
𝑓 ∈ Tab(𝜇 𝑓 /𝜈) and 𝑠 𝑓 , 𝑡 𝑓 ∈ Tab(𝜆/𝜇 𝑓 ). Fix 𝜀 ≥ 0, and suppose in addition that

for every piece P of 𝜕𝑌 we have

Defect(𝑃) − 4𝜒(𝑃) ≤ −𝜀 (𝔢(𝑃) + 𝔥𝔢(𝑃)) .

Then

𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 − 𝐷top

({
𝜎±

𝑓 , 𝜏
±
𝑓 , 𝑟

±
𝑓 , 𝑠 𝑓 , 𝑡 𝑓

})
≤ −𝜀𝑏𝜆/𝜈 .

Proof. We follow the same construction of a piece collection P as in the proof of Proposition 5.19. This
leads to
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𝑏𝜆/𝜈 − 𝑏𝜇𝑎/𝜈 − 𝑏𝜇𝑏/𝜈 − 𝑏𝜇𝑐/𝜈 − 𝑏𝜇𝑑/𝜈 − 𝐷top =
1
8

∑
𝑃∈P

Defect(𝑃) − 8𝜒(𝑃) ≤
1
8

∑
𝑃∈P

Defect(𝑃) − 4𝜒(𝑃)

≤ −
𝜀

8

∑
𝑃∈P

(𝔢(𝑃) + 𝔥𝔢(𝑃)) = −𝜀𝑏𝜆/𝜈 ,

as required. �

5.8. Approximating 𝚵𝒏 (𝒀) by Laurent polynomials

In this section, we keep all the notations and assumptions of §§5.4. We want to show that we can replace
the summation over 𝜈, 𝜇 𝑓 , and 𝜆 given the definition of Ξ𝑛 (𝑌 ) in equation (5.19) by a sum of finite size,
independent of n, at the cost of a controllable error term. To state this precisely, recalling the definition
of Λ(𝑛, 𝑏) from §§4.4, and letting 𝑏 ∈ N, we introduce the quantity

Ξ(𝑏)
𝑛 (𝑌 )

def
=
∑

𝜈⊂𝔳−𝔣𝜆� 𝑛−𝔣
𝜈∉Λ(𝑛−𝔳,𝑏)

𝑑𝜆𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ𝑛

({
𝜎±

𝑓 , 𝜏
±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)
. (5.29)

In this summation, we restrict to 𝜈 that have less than b boxes either outside the first row or outside the
first column. Note that whereas Ξ𝑛 (𝑌 ) does not depend on any of the choices of 𝑔0 and numberings we
made in Sections 5.2 and 5.3 (see Remark 5.11), Ξ(𝑏)

𝑛 (𝑌 ) may depend on these choices.

Lemma 5.23. For a fixed tiled surface Y and 𝑏 ∈ N, for any vertex-ordering J of Y as above, we have

Ξ𝑛 (𝑌 ) = Ξ(𝑏)
𝑛 (𝑌 ) +𝑂

(
𝑛𝔳−𝔣−2𝑏

)
as 𝑛 → ∞. The implied constant depends on b, 𝔳 and 𝔣.

Proof. Note that 𝑑𝜇 𝑓 ≥ 𝑑𝜈 , and for fixed 𝜈 and 𝜆 the number of 𝜇 𝑓 with 𝜈 ⊂ 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆 is ≤ (𝔳 − 𝔣)!
(there is an injection from the collection of such 𝜇 𝑓 to Tab(𝜆/𝜈) by filling the boxes of 𝜇 𝑓 /𝜈 with
[𝑛−𝔳+1, 𝑛−𝔢 𝑓 ] and the other boxes of 𝜆/𝜈 arbitrarily). Using these observations together with Lemma
5.13, we obtain

���Ξ𝑛 (𝑌 ) − Ξ(𝑏)
𝑛 (𝑌 )

��� =
��������
∑

𝜈⊂𝔳−𝔣𝜆� 𝑛−𝔣
𝜈∈Λ(𝑛−𝔳,𝑏)

𝑑𝜆𝑑𝜈
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆

1
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)��������
≤ ((𝔳 − 𝔣)!)12

∑
𝜈⊂𝔳−𝔣𝜆� 𝑛−𝔣
𝜈∈Λ(𝑛−𝔳,𝑏)

𝑑𝜆

𝑑3
𝜈

.

By Lemma 3.1, for a fixed 𝜈 � 𝑛 − 𝔳, we have∑
𝜆: 𝜈⊂𝔳−𝔣𝜆

𝑑𝜆 ≤
∑

𝜆:𝜈⊂𝔳−𝔣𝜆

𝑑𝜆𝑑𝜆/𝜈 =
(𝑛 − 𝔣)!
(𝑛 − 𝔳)!

𝑑𝜈 .

Therefore, by Proposition 4.5,���Ξ𝑛 (𝑌 ) − Ξ(𝑏)
𝑛 (𝑌 )

��� ≤ ((𝔳 − 𝔣)!)12 (𝑛 − 𝔣)!
(𝑛 − 𝔳)!

∑
𝜈∈Λ(𝑛−𝔳,𝑏)

1
𝑑2
𝜈

= 𝑂𝑏,𝔳,𝔣

(
𝑛𝔳−𝔣−2𝑏

)
. �
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Proposition 5.24. For any 𝑀 ∈ N, there is a Laurent polynomial Ξ∗
𝑀 (𝑌 ) ∈ Q

[
𝑡, 𝑡−1] such that as

𝑛 → ∞

Ξ𝑛 (𝑌 ) = Ξ∗
𝑀 (𝑌 ) [𝑛] +𝑂

(
𝑛−𝑀
)
.

Proof. Let 𝑏 =
⌈
𝔳−𝔣+𝑀

2

⌉
. Then Lemma 5.23 yields that as 𝑛 → ∞,

Ξ𝑛 (𝑌 ) = Ξ(𝑏)
𝑛 (𝑌 ) +𝑂

(
𝑛−𝑀
)
. (5.30)

Similarly to the proof of Proposition 4.8, we note that for 𝑛 − 𝔳 > 2𝑏, the collection of 𝜈 � 𝑛 − 𝔳 such
that 𝜈 ∉ Λ(𝑛 − 𝔳, 𝑏) is the disjoint union of Λ𝑏𝜆<𝑏 (𝑛 − 𝔳) = {𝜈 � 𝑛 − 𝔳 | 𝜈1 > 𝑛 − 𝔳 − 𝑏} and the dual
partitions {�̌� | 𝜈 ∈ Λ𝑏𝜆<𝑏 (𝑛 − 𝔳)}. Because each 𝜇 𝑓 and 𝜆 in equation (5.29) extend 𝜈 by a fixed number
of boxes, there is a finite number ℓ of tuples of YDs(

𝜈𝑖 , 𝜇𝑖
𝑎, 𝜇

𝑖
𝑏 , 𝜇

𝑖
𝑐 , 𝜇

𝑖
𝑑 , 𝜆

𝑖 ) , 1 ≤ 𝑖 ≤ ℓ

with 𝜈𝑖 ∈ Λ𝑏𝜆<𝑏 (2𝑏) such that for each 1 ≤ 𝑖 ≤ ℓ and 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}

𝜈𝑖 ⊂𝔳−𝔢 𝑓 𝜇𝑖
𝑓 ⊂𝔢 𝑓 −𝔣 𝜆𝑖 .

Thus, equation (5.29) can be rewritten as

Ξ(𝑏)
𝑛 (𝑌 ) =

ℓ∑
𝑖=1

𝑑𝜆𝑖 (𝑛−𝔣)𝑑𝜈𝑖 (𝑛−𝔳)

𝑑𝜇𝑖𝑎 (𝑛−𝔢𝑎)𝑑𝜇𝑖
𝑏
(𝑛−𝔢𝑏 )𝑑𝜇𝑖𝑐 (𝑛−𝔢𝑐 )𝑑𝜇𝑖

𝑑
(𝑛−𝔢𝑑 )

·
[
Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈𝑖 (𝑛 − 𝔳),

{
𝜇𝑖
𝑓 (𝑛 − 𝔢 𝑓 )

}
, 𝜆𝑖 (𝑛 − 𝔣)

)
+Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, ˇ𝜈𝑖 (𝑛 − 𝔳),

{
ˇ𝜇𝑖

𝑓 (𝑛 − 𝔢 𝑓 )
}
, ˇ𝜆𝑖 (𝑛 − 𝔣)

)]
= 2

ℓ∑
𝑖=1

𝑑𝜆𝑖 (𝑛−𝔣)𝑑𝜈𝑖 (𝑛−𝔳)

𝑑𝜇𝑖𝑎 (𝑛−𝔢𝑎)𝑑𝜇𝑖
𝑏
(𝑛−𝔢𝑏 )𝑑𝜇𝑖𝑐 (𝑛−𝔢𝑐 )𝑑𝜇𝑖

𝑑
(𝑛−𝔢𝑑 )

· Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈𝑖 (𝑛 − 𝔳),

{
𝜇𝑖
𝑓 (𝑛 − 𝔢 𝑓 )

}
, 𝜆𝑖 (𝑛 − 𝔣)

)
,

where the last line used Lemma 5.9. For each i, the ratio of dimensions above agrees with a rational
function Q𝑖 (𝑛) ∈ Q(𝑛) of n (at least when 𝑛−𝔳 ≥ 2𝑏) by Lemma 4.7. Combining this with Lemma 5.12
gives that

Ξ(𝑏)
𝑛 (𝑌 ) = 2

ℓ∑
𝑖=1

Q𝑖 (𝑛)Υ
∗
(
𝜈𝑖 ,
{
𝜇𝑖
𝑓

}
, 𝜆𝑖 , 𝑛−1

)
agrees with 𝐹 (𝑛−1), where F is a function of a complex variable z that is meromorphic in an open disc
with center 0, and with coefficients of its Laurent series in Q. Hence, 𝐹 (𝑛−1) itself can be approximated
to order 𝑂 (𝑛−𝑀 ) as 𝑛 → ∞ by a Laurent polynomial in n with coefficients in Q. �

5.9. Estimating 𝚵𝒏 (𝒀)

In this §§5.9, we give estimates for Ξ𝑛 (𝑌 ) for fixed Y which is boundary reduced or strongly boundary
reduced.

Proposition 5.25. If Y is a boundary reduced tiled surface then as 𝑛 → ∞,

Ξ𝑛 (𝑌 ) = 𝑂𝑌 (1).
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Proof. By Proposition 5.23, there is some 𝑏 = 𝑏(𝑌 ) such that

Ξ𝑛 (𝑌 ) = Ξ(𝑏)
𝑛 (𝑌 ) +𝑂𝑌

(
𝑛−1
)
.

As before, let 𝑏𝜆
def
= |𝜆 | − 𝜆1. As in the proof of Proposition 5.24, for 𝑛 − 𝔳 > 2𝑏 we can write

Ξ(𝑏)
𝑛 (𝑌 ) = 2

∑
𝜈 � 𝑛 − 𝔳 : 𝑏𝜈 < 𝑏

𝜈 ⊂𝔳−𝔢 𝑓 𝜇 𝑓 ⊂𝔢 𝑓 −𝔣 𝜆

𝑑𝜆𝑑𝜈
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)
. (5.31)

Note that in equation (5.31), each of

𝜆/𝜈, 𝜇𝑎/𝜈, 𝜇𝑏/𝜈, 𝜇𝑐/𝜈, 𝜇𝑑/𝜈

has ≤ 𝔳 − 𝔣 boxes outside their first row, so Lemma 4.3 implies that

𝑑𝜆𝑑𝜈
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

�𝑌
1
𝑑 2
𝜈

𝑛𝑏𝜆−𝑏𝜇𝑎−𝑏𝜇𝑏−𝑏𝜇𝑐−𝑏𝜇𝑑+3𝑏𝜈 =
1
𝑑 2
𝜈

𝑛𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈 , (5.32)

(recall the notation � from §§1.7). Since all 𝜆, 𝜈 in the sum (5.31) have a bounded number of boxes
outside their first row, depending on Y, for sufficiently large n, the condition 𝜆1 + 𝜈1 > 𝑛 − 𝔣 + (𝔳 − 𝔣)2

of Proposition 5.21 is met for large n. Hence, by Proposition 5.21 Part 1,

���Ξ(𝑏)
𝑛 (𝑌 )

��� �𝑌

∑
𝜈�𝑛−𝔳 : 𝑏𝜈<𝑏

1
𝑑2
𝜈

⎡⎢⎢⎢⎢⎣
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆

(
𝑛 ·

(𝔳 − 𝔣)2

𝜆1 + 𝜈1 − (𝑛 − 𝔣)

)𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈 ⎤⎥⎥⎥⎥⎦
�𝑌

∑
𝜈�𝑛−𝔳 : 𝑏𝜈<𝑏

1
𝑑2
𝜈

⎡⎢⎢⎢⎢⎣
∑

𝜈⊂𝜇 𝑓 ⊂𝔢 𝑓 −𝔣𝜆

1
⎤⎥⎥⎥⎥⎦ �𝑌

∑
𝜈�𝑛−𝔳 : 𝑏𝜈<𝑏

1
𝑑2
𝜈

≤ 𝜁𝑆𝑛−𝔳 (2) = 2 +𝑂

(
1
𝑛2

)
,

where the second asymptotic inequality follows as 𝑛 · (𝔳−𝔣)2

𝜆1+𝜈1−(𝑛−𝔣)
� 1 uniformly over all 𝜈, 𝜆 in play and

𝑏𝜆/𝜈−𝑏𝜇𝑎/𝜈−𝑏𝜇𝑏/𝜈−𝑏𝜇𝑐/𝜈−𝑏𝜇𝑑/𝜈 is bounded from above by a constant, the third asymptotic inequality
follows as the number of YDs that extend a given 𝜈 by at most 𝔳 boxes is bounded independently of n,
and the last asymptotic inequality follows by Proposition 4.5 with 𝑏 = 1. �

If Y is strongly boundary reduced, then we get a finer estimate.

Proposition 5.26. If Y is a strongly boundary reduced tiled surface, then as 𝑛 → ∞,

Ξ𝑛 (𝑌 ) = 2 +𝑂𝑌

(
𝑛−1
)
. (5.33)

Proof. We begin as in the proof of Proposition 5.25 by choosing 𝑏(𝑌 ) such that Ξ𝑛 (𝑌 ) = Ξ(𝑏)
𝑛 (𝑌 ) +

𝑂𝑌 (𝑛
−1) and equation (5.31) holds. It now suffices to prove the proposition with Ξ𝑛 (𝑌 ) replaced with

Ξ(𝑏)
𝑛 (𝑌 ).

There are summands of equation (5.31) corresponding to 𝜆/𝜈 having all boxes in the first row. By
Proposition 5.21 Part 3, each of these summands contributes 2 · 𝑑𝜆𝑑𝜈

𝑑𝜇𝑎 𝑑𝜇𝑏 𝑑𝜇𝑐 𝑑𝜇𝑑
to Ξ(𝑏)

𝑛 , but in this case

𝜈, 𝜇 𝑓 , 𝜆 all belong to the same family of YDs, so this contribution is 2
𝑑2
𝜈

(
1 +𝑂

(
𝑛−1) ) . As there is one

of these summands for each 𝜈 � 𝑛 − 𝔳 with 𝑏𝜈 < 𝑏, together these contribute
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2
(
1 +𝑂

(
1
𝑛

)) ∑
𝜈�𝑛−𝔳 : 𝑏𝜈<𝑏

1
𝑑2
𝜈

= 2 +𝑂

(
1
𝑛

)
(5.34)

by Lemma 4.7. The constant term 2 appearing in equation (5.34) is the main term of equation (5.33).
For any other summand of equation (5.31) 𝑏𝜆/𝜈 > 0 and so by Proposition 5.21 Part 2 combined

with equation (5.32),

𝑑𝜆𝑑𝜈
𝑑𝜇𝑎𝑑𝜇𝑏𝑑𝜇𝑐𝑑𝜇𝑑

Υ
({

𝜎±
𝑓 , 𝜏

±
𝑓

}
, 𝜈, {𝜇 𝑓 }, 𝜆

)
�𝑌

1
𝑑2
𝜈

·
1
𝑛
,

so as argued in the proof of Proposition 5.25, the total contribution of these summands is 𝑂𝑌
(
𝑛−1) .

Hence

Ξ(𝑏)
𝑛 (𝑌 ) = 2 +𝑂𝑌

(
1
𝑛

)
. �

6. Proofs of main theorems

6.1. Proof of Theorem 1.1 and its extension to finitely generated subgroups

We give the proof when 𝑔 = 2; the extension to other 𝑔 ≥ 2 is clear. We are given a finitely generated
subgroup 𝐽 ≤ Γ = Γ2 and 𝑀 ∈ N and we wish to show that E𝑛 [fix𝐽 ]

def
= E2,𝑛 [fix𝐽 ] can be approximated

to order 𝑂 (𝑛−𝑀 ) by a Laurent polynomial of n with rational coefficients. Given this, the trivial bound
E𝑛 [fix𝐽 ] ≤ 𝑛 implies that the Laurent polynomial takes the form (1.2). The fact that the 𝑎𝑖 (𝐽) do not
depend on M is clear. By setting 𝐽 = 〈𝛾〉, we obtain Theorem 1.1 from this.

By Lemma 2.7, we have

E𝑛 [fix𝐽 ] = E𝑛 (Core(𝐽)) . (6.1)

Now, let R be any finite resolution of Core(𝐽); by Theorem 2.14 at least one exists.
Each element of this resolution is a morphism ℎ : Core(𝐽) → 𝑊ℎ of tiled surfaces. By Lemma 2.9,

E𝑛 (Core(𝐽)) =
∑
ℎ∈R
Eemb
𝑛 (𝑊ℎ) .

Now, using Theorem 5.10 for each of the terms Eemb
𝑛 (𝑊ℎ) gives

E𝑛 [fix𝐽 ] =
(𝑛!)3

|X𝑛 |

∑
ℎ∈R

(𝑛)𝔳(𝑊ℎ)
(𝑛)𝔣 (𝑊ℎ)∏

𝑓 ∈{𝑎,𝑏,𝑐,𝑑 } (𝑛)𝔢 𝑓 (𝑊ℎ)

Ξ𝑛 (𝑊ℎ) ,

where 𝔳(𝑊ℎ), 𝔢 𝑓 (𝑊ℎ) and 𝔣(𝑊ℎ) are the number of vertices, f -labeled edges ( 𝑓 ∈ {𝑎, 𝑏, 𝑐, 𝑑}) and
octagons, respectively, of 𝑊ℎ . Also, recall the definition of Ξ𝑛 from Theorem 5.10. By equation (1.3),
|X𝑛 | = (𝑛!)3 · 𝜁𝑆𝑛 (2), and so

E𝑛 [fix𝐽 ] =
1

𝜁𝑆𝑛 (2)

∑
ℎ∈R

(𝑛)𝔳(𝑊ℎ) (𝑛)𝔣 (𝑊ℎ)∏
𝑓 ∈{𝑎,𝑏,𝑐,𝑑 } (𝑛)𝔢 𝑓 (𝑊ℎ)

Ξ𝑛 (𝑊ℎ) . (6.2)

Now, we note:
• By Corollary 4.9, there is a polynomial 𝑄2,𝑀 ∈ Z[𝑡] with 1

𝜁 𝑆𝑛 (2) =
1
2𝑄2,𝑀

(
𝑛−1) +𝑂

(
𝑛−𝑀
)
.

• For any fixed ℓ ≥ 0, both (𝑛)ℓ and (𝑛)−1
ℓ agree with Laurent polynomials of n with Q-coefficients up

to order 𝑂 (𝑛−𝑀 ) as 𝑛 → ∞.
• By Proposition 5.24, there is a Laurent polynomial Ξ∗

𝑀 (𝑊ℎ) ∈ Q[𝑡, 𝑡−1] such that Ξ𝑛 (𝑊ℎ) =
Ξ∗
𝑀 (𝑊ℎ) [𝑛] +𝑂 (𝑛−𝑀 ) as 𝑛 → ∞.
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Hence, all terms in equation (6.2) can be approximated by Laurent polynomials of n with rational
coefficients to order 𝑂 (𝑛−𝑀 ) as 𝑛 → ∞. This proves Theorem 1.1. �

6.2. Proof of Theorems 1.2 and 1.3

Again, we give the proofs of Theorems 1.2 and 1.3 when 𝑔 = 2. Given a finitely generated subgroup
𝐽 ≤ Γ = Γ2, let 𝜒max(𝐽) be as in equation (1.4). We can assume J is nontrivial since Theorem 1.3 is
obvious in this case (as is Theorem 1.2 when 𝛾 is the identity).

Let R = R(Core(𝐽), 𝜒max(𝐽)) be the resolution of Core(𝐽) defined in Definition 2.13, certified to
be a resolution by Theorem 2.14. Let Rmax(𝛾) (resp. R<max(𝛾)) be the morphisms ℎ : Core(𝐽) → 𝑊ℎ

of R with 𝜒(𝑊ℎ) = 𝜒max(𝐽) (resp. 𝜒(𝑊ℎ) < 𝜒max(𝐽)), so

R = Rmax �R<max.

By Theorem 2.14, all elements of Rmax are strongly boundary reduced and all elements of R are
boundary reduced. Repeating the argument of §§6.1 we obtain equation (6.2) again.

Now, we observe:

• By Proposition 4.5 with 𝑏 = 1, 𝜁𝑆𝑛 (2) = 2 +𝑂 (𝑛−2) as 𝑛 → ∞.
• For each ℎ : Core(𝐽) → 𝑊ℎ ∈ R, the ratio of Pochhammer symbols satisfies as 𝑛 → ∞

(𝑛)𝔳(𝑊ℎ) (𝑛)𝔣 (𝑊ℎ)∏
𝑓 ∈{𝑎,𝑏,𝑐,𝑑 } (𝑛)𝔢 𝑓 (𝑊ℎ)

= 𝑛𝜒 (𝑊ℎ) +𝑂
(
𝑛𝜒 (𝑊ℎ)−1

)
. (6.3)

• By Proposition 5.26, for each ℎ : Core(𝐽) → 𝑊ℎ ∈ Rmax we have Ξ𝑛 (𝑊ℎ) = 2 +𝑂𝑊ℎ

(
𝑛−1) .

• By Proposition 5.25, for each ℎ : Core(𝐽) → 𝑊ℎ ∈ R<max we have Ξ𝑛 (𝑊ℎ) = 𝑂𝑊ℎ (1).

Hence, from equation (6.2),

E𝑛 [fix𝐽 ] =
1

𝜁𝑆𝑛 (2)

[ ∑
ℎ∈Rmax

𝑛𝜒max (𝐽 )
(
1 +𝑂

(
𝑛−1
))

·
(
2 +𝑂

(
𝑛−1
))

+
∑

ℎ∈R<max

𝑂
(
𝑛𝜒max (𝐽 )−1

)
· 𝑂 (1)

]

=
1

2 +𝑂
(
𝑛−2) [2 · |Rmax | · 𝑛

𝜒max (𝐽 ) +𝑂
(
𝑛𝜒max (𝐽 )−1

)]
= |Rmax | · 𝑛

𝜒max (𝐽 ) +𝑂
(
𝑛𝜒max (𝐽 )−1

)
,

where all implied constants depend on J. By Proposition 2.15, |Rmax | = |𝔐𝔒𝔊(𝐽) | which proves
Theorem 1.3.

Finally, if 𝐽 = 〈𝛾〉, and q is maximal such that 𝛾 = 𝛾 𝑞
0 for some 𝛾0 ∈ Γ, then Corollary 2.17 tells us

that |Rmax | = 𝑑 (𝑞). This proves Theorem 1.2. �
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