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ABSTRACT: The threat posed by plastic pollution to marine
ecosystems and human health is under increasing scrutiny. Much of
the macro- and microplastic in the ocean ends up on the seafloor, with
some of the highest concentrations reported in submarine canyons
that intersect the continental shelf and directly connect to terrestrial
plastic sources. Gravity-driven avalanches, known as turbidity currents,
are the primary process for delivering terrestrial sediment and organic
carbon to the deep sea through submarine canyons. However, the
ability of turbidity currents to transport and bury plastics is essentially
unstudied. Using flume experiments, we investigate how turbidity
currents transport microplastics, and their role in differential burial of
microplastic fragments and fibers. We show that microplastic fragments become relatively concentrated within the base of turbidity
currents, whereas fibers are more homogeneously distributed throughout the flow. Surprisingly, the resultant deposits show an
opposing trend, as they are enriched with fibers, rather than fragments. We explain this apparent contradiction by a depositional
mechanism whereby fibers are preferentially removed from suspension and buried in the deposits as they are trapped between
settling sand-grains. Our results suggest that turbidity currents potentially distribute and bury large quantities of microplastics in
seafloor sediments.

■ INTRODUCTION

The global input of plastic waste into the oceans is estimated
to be ∼10 million tons per year1,2 and is predicted to rise by 1
order of magnitude by 2025.3 Plastics in the marine
environment can cause harm to the structure and function of
ecosystems.4 The component of the ocean plastic budget that
comprises microplastics (estimated as 16%,5 either manufac-
tured or derived from the breakdown of macroplastics6) is of
particular growing concern, as microplastics are readily
ingested by organisms, can be transferred across the food
chain, and may transmit adsorbed or integral toxins such as
plasticizers, persistent organic pollutants, and endocrine
disrupters on to humans.7,8

To date, most studies have focused on sea surface
accumulations of plastics, largely concentrated by currents
within the five “great garbage patches” on the sea surface.4,9

These sea surface accumulations only account for <1% of the
known marine plastics budget,5 however, and the remainder is
most likely in the deep sea.10,11 Recent seafloor sampling has
identified plastics, including microplastics, in marine environ-
ments ranging from shallow to the deepest locations on the
planet.10,12,13 The seafloor is therefore an important sink for
ocean plastics, including microplastics.5,10

It is important to understand how microplastics are
transported to different marine seafloor environments, as
many settings where microplastics have been found at seafloor

(e.g., submarine canyons,12,14 trenches,15,16 seamounts14) host
important but vulnerable deep-sea benthic communities that
underpin ocean ecosystems.17−23 The exposure level of these
ecosystems is determined by the incoming microplastics flux,
their residence time, and burial efficiency.24

Seafloor sampling reveals that submarine canyons are sites of
preferential plastic accumulation; featuring approximately
twice the documented concentrations of open slope,
continental shelf, and abyssal plain settings.13,25 Submarine
canyons are conduits for gravity-driven avalanches of sediment
called turbidity currents, which are known to be highly efficient
agents for transferring sediment and organic carbon from
shallow to deep water.26,27 These often-powerful seafloor flows
occur when sediment particles are suspended above the
seafloor by waves, storms, incoming river plumes, or undersea
landslides, and the turbid and relatively dense seawater
cascades down the continental slope due to the pull of
gravity.28−30 Turbidity currents can last for several days, travel
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over 1000s of km, and transport prodigious volumes of sand as
well as cohesive particles of clay and silt with associated
compounds (e.g., organic carbon,26,29 nutrients and contam-
inants31,32). Many of these fine-grained particles share
hydraulic equivalence with some microplastics.13,29,33−36

Deposits resulting from turbidity currents form some of the
world’s largest sediment accumulations; hence, it has been
proposed that turbidity currents may play a role in the
dispersal or concentration of microplastics in the deep
sea.13,24,37

Using laboratory modeling, we investigate whether turbidity
currents act as agents of dispersal or accumulation of
microplastics. We pose three specific questions: (1) How are
microplastic fragments and fibers transported and distributed
within a turbidity current? (2) How effectively do turbidity
currents sequester different types of microplastic into seafloor
deposits? (3) Where should we expect to find microplastics
hotspots within deep-sea submarine depositional-systems and
what are the implications for the long-term burial and storage
of microplastics?

■ MATERIALS AND METHODS
Experimental Setup and Procedure. To investigate the

transport and burial of microplastics by turbidity currents,
microplastic fragments and fibers were added to scaled
turbidity currents in flume experiments. The turbidity currents
are scaled down from natural to experimental size by applying
the theory of hydrodynamic similarity of sediment mobi-
lity38−40 to turbidity current experiments.41,42,89 This scaling
approach was termed Shields scaling by de Leeuw et al.
(2016).41 For Shields scaling, the sediment transport regime of
the experimental currents (characterized by the particle
Reynolds number and the Shields parameter) is kept similar
to that reported for natural turbidity currents.41,42 In the
experiments, this can be achieved by adjusting the slope, the
sediment concentration, and the flow rate of the experimental
turbidity current. To study the behavior of microplastic
particles in a turbidity current, the density ratios between the
suspended sediment, microplastics, and water, as well as their
particle size, should be equal or close to that occurring in
nature. The sediment used in the experiments was quartz sand
with a density of 2.65 g/cm3. The microplastics added to the
turbidity currents have densities of 1.5 g/cm3 for the melamine
fragments and 1.38 g/cm3 for the polyester fibers. The quartz
sand has a grain-size range similar to that encountered in
natural turbidite systems (d10 = 35 μm, d50 = 133 μm, d90 =
214 μm).42,89 The melamine fragments have a median size of
200−300 μm, and the polyester fibers have a length of 6 mm
and a diameter of 12.5 μm (Figure 1A,B). Our experiments do
not include cohesive clay, which would complicate scaling
considerably;43 hence, our approach does not take into
account cohesive particle interactions,44 flocculation pro-
cesses,45,46 or particle support by elasticity.47 It is also noted
that our experiments do not include interfacial forces that act
between the microplastics and the sand grains. However, by
using only quartz sand and no cohesive clay, our experiments
appropriately represent turbidity currents in sand-dominated
canyon systems, such as the well-studied Monterey Canyon
offshore California,30,48,49 that typify many of the world’s
continental slopes50,51 and have been observed to be active
conduits for shallow-deep-sea sediment transport.48,49,52,53

Our aim was to analyze the microplastic content in sediment
samples collected from turbidity currents and the resultant

deposits. To achieve this, two experiments were conducted in a
4 m × 0.5 m × 0.2 m (length × height × width) flume tank
filled with fresh water (Figure 2). In the first experiment,
sediment samples were collected by siphoning from within the
turbidity current. This experiment was conducted with an 8°
inclined flume-tank floor, resulting in a completely “bypassing”
turbidity current (sensu Stevenson et al. (2015)54) that left no
sediment in the flume tank. Bypassing conditions are necessary
to ensure optimal siphon sampling conditions, as a
depositional turbidity current would bury the siphon tubes
during sampling. Therefore, a second experiment was
conducted on a lower angle flume-tank floor of 4°, resulting
in a turbidity current that deposited part of its sediment load
on the flume-tank floor. It should be noted that while these
slope angles are steeper than that encountered in most natural
canyon systems, steeper slopes are necessary in Shields scaled
experiments to achieve similarity of sediment transport and
deposition between the scaled-down flows and nature.41,42

To generate the turbidity currents, a mixture of sediment
and fresh water with a volume of 0.45 m3 was prepared in a
mixing tank. The sediment concentration in the mixture was
set to 15%Vol, or a bulk density of 1.25 g/cm3. To this
mixture, 49 g of melamine fragments and 4 g of polyester fibers
were added, which resulted in approximately 200 fragments
and 100 fibers in 10 g of sediment (Table 1). The mixture was
vigorously mixed for 2 min to ensure a homogeneous
distribution of microplastics. The short exposure of the
microplastics with the sand/water mixture of about 2 min
before the start of the experiment, reduces the effect of possible
chemical or biological reactions (e.g., degradation or
biofouling). To account for any potential background environ-
mental plastic contamination and to measure the exact
microplastics concentrations of the mixture, the mixture was
siphon-sampled before and after the microplastics were added.
After its preparation, the mixture was pumped at a controlled
discharge of 12.5 m3/h into the flume tank through an inlet
box (Figure 2). The turbidity current flowed through the flume
tank driven by gravity acting on its excess density and left the
flume through a free overfall into an expansion tank (Figure 2),
where it expanded freely and diminished. The duration of an
experiment was ca. 100 s until the mixing tank was drained.
During the experiment on the 8° slope, sediment samples of

the turbidity current were collected by siphoning, and the flow
velocity was monitored with an Ultrasonic Velocity Probe

Figure 1. Microplastic melamine-fragments (a) and polyester fibers
(b) used in the experiments. Melamine fragments and polyester fibers
on a filter paper (c) after the high-density-fluid settling separation.
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(UVP; Figure 2). The UVP was positioned 2.8 m downstream
of the inlet box and 0.11 m above the flume-tank floor, angled
60° relative to the local bed slope. Siphoning was conducted 3
m downstream of the inlet (i.e., 0.2 m downstream of the
UVP) at four different elevations above the flume-tank floor
(1, 2, 4, and 8 cm). The inner diameter of the siphon tubes was
7 mm. Siphoning commenced 10 s after the turbidity current
entered the flume tank to sample the body of the flow.
Siphoning was continued for ∼50 s until 2 L was collected
from each siphon. The volume and weight of each siphon-tube
sample was measured, and sediment concentration was
calculated from the bulk density of the sample and the specific
densities of the water and sediment. The siphon-tube sample
containers were immediately covered and stored for >4 h until
all sediments and microplastics had settled. After settling, the
melamine fragments and polyester fibers, lying on the top of
the sediment, were clearly visible. Clear water was slowly
removed with a small hose connected to a slow-moving rotary-
pump. This was done with extra caution to ensure that no
melamine fragments and polyester fibers were accidently
removed with the water. The concentration of melamine
fragments and polyester fibers in the siphon-tube samples was
measured by optical microscopy (see section Microplastic
extraction).
After the experiment was run on the 4° slope, deposit

thickness was measured through the glass side wall and the
flume tank was slowly drained to expose the deposits. Visual
inspection through the side glass wall revealed that the
thickness of the deposits was constant over the width of the 10

cm wide channel. A vertical section of the deposits was
sampled 1.8 m downstream of the inlet box. Samples were
collected with a metal spoon. The vertical sampling interval
was 1 cm. Approximately 100 g of sediment was collected for
each sample. The samples collected from the deposit were also
analyzed for their microplastic concentrations.

Microplastic Extraction. Sediment samples were handled
in a clean lab by individuals wearing only natural fiber clothing
(cotton laboratory coats and headwear) and latex gloves
following Woodall et al. (2014).14 A subsample with a wet-
weight of 10.3−11.2 g was extracted from each of the sediment
samples with a small metal spoon (Table 1). Prior to
subsampling, the sediment samples were vigorously mixed to
ensure homogenization of the sample. Microplastics were
separated from the quartz sediment using a high-density-fluid
settling approach. ZnCl2 solution with a density of 1.7 g/cm3

was used to ensure sufficient separation of the quartz grains
(2.65 g/cm3) from the microplastics (1.35 and 1.5 g/cm3).
Settling was conducted in a Sediment-Microplastic-Isolation
unit (settling tube with ball valve to isolate the floating
microplastics) following the protocol of Coppock et al.
(2017),55 which was specifically developed for microplastic
extraction. Prior to use, the Sediment-Microplastic-Isolation
unit was thoroughly rinsed with deionized water. After the
settling of the quartz grains to the bottom of the unit, the ball
valve was closed and the fluid containing the microplastics was
poured and vacuum filtered over a 20 μm filter. In addition, the
Sediment-Microplastic-Isolation unit was rinsed with deionized
water to flush any remaining microplastics. The filter papers

Figure 2. Sketch of the experiment setup. The slope of the flume-tank floor can be adjusted to 4° and 8°. The turbidity current was monitored by
an Ultrasonic Velocity Probe (UVP) and sampled with siphon tubes.

Table 1. Results of the Siphon Sampling and the Microplastics Quantification

Counted microplastics
(np)

No. of plastics per
standard sample volume

(Cp)

Sample
Flume-tank
floor [deg]

Sampling
location

Height above the
bed [cm]

Sample
vol [ml]

Sediment conc
(C) [%Vol]

Sediment wt
(w) [g]

Melamine
fragments

Polyester
fibers

Melamine
fragments

Polyester
fibers

1 8 Mixture 27.9 15.0 11.1 194 97 6.95 3.40
2 8 Mixture 26.9 15.0 10.7 178 95 6.61 3.83
3 8 Siphon 8 555.7 0.7 10.5 48 94 0.09 0.17
4 8 Siphon 4 91.5 4.2 10.3 119 58 1.30 0.63
5 8 Siphon 2 36.4 11.8 11.4 119 35 3.26 0.96
6 8 Siphon 1 19.3 20.3 10.4 130 29 6.73 1.50
7 4 Mixture 28.2 15.0 11.2 204 103 7.24 3.44
8 4 Deposits −1 6.5 60.0 10.4 28 43 4.28 6.57
9 4 Deposits −2 6.5 60.0 10.4 19 29 2.90 4.43
10 4 Deposits −3 6.5 60.0 10.3 17 35 2.62 5.40
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were placed on a glass Petri dish, immediately covered, and
dried for further analysis by optical microscopy. Optical
microscopy was performed using a Zeiss Axio Zoom-V1
stereomicroscope at 20−50× magnification. Melamine frag-
ments and polyester fibers were clearly visible on the filter
paper (Figure 1C). The filter papers were traversed with the
microscope to systematically count the total number of
melamine fragments and polyester fibers. Analysis of the
blank samples from the mixing tank revealed no contamination
from the melamine fragments or polyester fibers.
Microplastics Quantification. The number of micro-

plastic fragments or fibers (np) per mass of sediment (w) was
converted into number of plastic particles per standard sample
volume (Cp) with equation

i
k
jjj

y
{
zzzρ= · ·C C

n

wp
p

where C is the sediment concentration per volume, ρ is the
density of the suspended sediment (2.65 g/cm3), and w is the

weight of the sediment sample from which the plastics were
extracted. For the sediment samples that were siphoned from
the turbidity current, C was the volume concentration of
sediment in the turbidity current at the height of each siphon
tube. For the deposit samples, the concentration was
determined in table-top settling experiments as 60%Vol. The
microplastics concentration per volume (Cp) was then
normalized by dividing through the input Cp obtained from
the mixing tank samples.

■ RESULTS

Description of the Experimental Turbidity Currents.
The maximum velocities of the turbidity currents in the
experiments were 0.9 m/s on the 4° slope and 1.1 m/s on the
8° slope (Figure 3A). On the 4° flume-tank floor, the turbidity
current deposited part of its sediment load as it was flowing
through the flume tank. The thickness of this deposit increased
away from the inlet to a maximum thickness of 3.8 cm (Figure
4). The turbidity current on the 8° flume-tank floor bypassed,

Figure 3. Velocity profiles of the turbidity current (a) measured by the Ultrasonic Velocity Probe located 2.8 m downstream of the inlet box.
Vertical sediment concentration per volume of the turbidity current (b). Concentration of melamine fragments and polyester fibers (c) in the
turbidity current and in the deposits. Values are normalized with the initial concentrations in the mixing tank.

Figure 4. Thickness of the deposits on the flume-tank floor. A vertical section of the deposits was sampled 2.8 m downstream of the inlet box (i.e.,
0.2 m in front of the siphon tubes).
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leaving no deposit in the flume tank. Siphoning of the turbidity
current in the 8° experiment revealed a vertical stratification of
the suspended sediment, which is typical for turbidity currents
(Figure 3B).56,57

Vertical Distribution of Microplastics within a
Turbidity Current. Microplastic concentrations within the
turbidity current were generally lower than the concentration
of the initial mixture (Table 1 and Figure 3C). The
distribution of microplastics in the flow was vertically stratified
with increasing concentrations toward the base of the flow.
The vertical distribution of the melamine fragments was more
stratified than that of the polyester fibers. In the lower half of
the flow, at 1 and 2 cm above the bed, the concentration of
melamine fragments was higher than the concentration of
polyester fibers (Figure 3C). Only the two samples in the
upper part of the flow, at 4 and 8 cm above the bed, show a
similar concentration of melamine fragments and polyester
fibers. An exponential fitting function through the four
measurement points suggests that the concentration of
melamine fragments at the base of the flow was twice that of
the polyester fibers (Figure 3C).
Distribution of Microplastics within the Resultant

Deposit. The deposit in the 4° experiment was sampled 2.8 m
downstream of the inlet box at three different depths from the
bed top. Relative to the initial microplastics concentrations in
the mixing tank, the deposits were enriched in polyester fibers
but depleted in melamine fragments (Figure 3C). The relative
concentrations of polyester fibers in the deposits was almost
twice as high as the concentrations of melamine fragments
(Table 1).

■ DISCUSSION
Transport and Burial of Microplastics by Turbidity

Currents. The results of the flume experiments allow us to
address the questions of how different types of microplastics
are transported and deposited by turbidity currents (i.e.,
research questions 1 and 2 of this paper). Our experiments
demonstrate that turbidity currents can transport microplastics.
The vertical concentration of melamine fragments in the
turbidity current is higher toward the flow base (Figure 3C).
This vertical stratification is comparable to that of fine-grained
sediment, such as fine-grained quartz sand, silt, or clay as
observed in other experimental,56,58 or inferred for natural
turbidity currents.59−62 Polyester fibers are less stratified and
appear to be more homogeneously distributed in the turbidity
current (Figure 3C). The difference in the vertical distribution
between the microplastic fragments and fibers observed in our
experiment thus confirms the vertical distribution of micro-
plastic fragments and fibers as conceptualized by Kane and
Clare (2019).13

The vertical distribution of sediment within a turbidity
current is controlled by turbulence and mixing with the
ambient fluid, and by settling of the suspended sediment.58,63

The efficiency of these two processes strongly depends on the
density and shape of the suspended sediment and thus, of the
suspended microplastics. Elongated fibers will settle more
slowly than fragments due to their larger surface to volume
ratio.36,64 In addition, the larger surface to volume ratio of
fibers makes it easier for them to be mixed upward by
turbulent eddies.64 Thus, the vertical concentration of
microplastic fragments in a turbidity current is expected to
be more stratified than that of microplastic fibers, which is
confirmed by our experiments (Figure 3C).

Other factors which can determine the vertical sediment
distribution within a turbidity current are grain-to-grain
interactions and cohesive forces between suspended particles.
Grain-to-grain interactions and mechanical sorting can result in
a upward migration of larger grains within the flows.65 These
mechanical sorting mechanisms may represent an additional
factor leading to the more homogeneous distribution of the
microplastic fibers in our experiments. However, whether these
effects translate though to turbidity current dynamics, remains
unknown. The experiments presented in this paper are not
designed to quantify the effect of mechanical sorting. The
second factor that may influence the vertical sediment
distribution is the effect of cohesive forces between suspended
particles. In our experiments, noncohesive sand was the
dominant mass in suspension, and flows were dominated by
noncohesive forces. It should be noted, however, that turbidity
currents in natural settings often also contain cohesive
materials such as clay, which are likely to affect the suspension
and deposition behavior of microplastics.
The resultant deposits of microplastic-laden turbidity

currents are enriched in polyester fibers. This is a surprising
result, because the slow settling of fibers and the relatively low
concentration at the base of the turbidity current would
suggest a relatively lower abundance in the deposits. The
observed concentration of the polyester fibers in the deposits,
however, is twice as high as the concentration of the melamine
fragments (Table 1 and Figure 3C). The high abundance of
fibers in the deposits cannot be explained with settling as the
predominant deposition mechanism alone (i.e., competence-
driven deposition), as the slow settling of fibers would result in
a lower concentration than that of the faster settling melamine
fragments. An alternative depositional mechanism to com-
petence-driven deposition is capacity-driven deposition, where
sediment gets deposited because the total sediment concen-
tration at the base of the turbidity current reaches the capacity
limit.66,67 According to this mechanism, sediment is deposited
from suspension regardless of its size and density, and thus, the
sediment composition of the deposit would reassemble the
composition at the base of the flow. However, this appears not
to be the case in our experiments as the concentration of
polyester fibers and melamine fragments at the base of the flow
in the experiment on the 8° slope is different compared to the
concentrations in the deposits beneath the experiment on the
4° slope (Figure 3C). Thus, the depositional mechanism for
microplastic fibers in a turbidity current seems to work
differently and is not captured sufficiently by either conven-
tional depositional mechanism.
Here, we explain the enrichment of fibers in the deposits

with a depositional mechanism whereby fibers are removed
from suspension as they are trapped between settling sand
grains. Due to the elongated size of the fibers and the very
large ratio of surface area to volume, it is more likely that they
are impacted and dragged downward by settling sand grains
(Figure 5). Thus, fibers that are located close to the base of the
flow are more likely to get trapped and buried by depositing
sand. Fibers may also only be buried partly, and held captive,
before they become completely buried at a later stage (Figure
5). This mechanism results in an enrichment of microplastic
fibers in the deposits and eventually in a depletion of fibers in
the turbidity current. Thus, turbidity currents and other
sediment-laden flows (e.g., in flashy bedload-dominated rivers)
that feature rapid deposition of coarse grains may represent an
efficient segregation and burying mechanism for microplastic

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.9b07527
Environ. Sci. Technol. 2020, 54, 4180−4189

4184

pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b07527?ref=pdf


fibers. However, the depositional mechanism for microplastic
fragments is less influenced by the particle shape. Instead, the
deposition of fragments is more strongly controlled by their
low density, making fragments more likely to stay in
suspension and therefore less prone to deposition. This may
also explain why we observe lower concentrations of melamine
fragments in the deposits than at the base of the turbidity
current (Figures 3C and 5).
Implications and Hypotheses for Distribution of

Microplastics in Deep-Sea Environments. These specific
results of our experiments give rise to a range of predictions

and hypotheses about the distribution and fate of microplastics
in deep-sea systems (i.e., research question 3 of this paper).
These ideas are discussed here with the aim of identifying
possible focus areas for further work in deep-sea microplastics
research. The role of the experimental results is thus to direct
our thinking about the transport of microplastic in real-world
submarine channels (Figure 6).
Terrestrially-sourced plastic litter is transported onto the

continental shelf via rivers, deltas, and beaches together with
natural sediment (Figure 6).68−70 Shelf currents and storm
events move plastic litter along the shelf and flush them into
the upper part of submarine canyons if present, where plastic
accumulates, before being transported further (Figure
6).24,69,71,72 Occasionally, sediment stored in the canyon
head is remobilized, resulting in the formation of sediment
gravity flows, such as debris flows or turbidity currents (Figure
6).73 These flows can flush huge volumes of sediment down
the canyon into deeper waters,29,74,75 including high
concentrations of plastic litter as discovered in canyons in
the Messina Strait, South Italy.69 Turbidity currents flow down
the canyon driven by their excess density, transport their entire
sediment load, and can erode into the underlying sub-
strate.54,76,77 Thus, turbidity currents will likely entrain and
remobilize sediments from the canyon floor including plastic
litter. This implies that larger flows are anticipated to re-
exhume previously deposited/buried plastic and transport it
farther down the system. Due to changes in the local canyon
bathymetry, turbidity currents may also deposit part of their
sediment load in so-called lag deposits.78 Our experiments
would suggest that these lag deposits may become enriched in
microplastic fibers (Figures 5 and 6).
On the flat abyssal plain at the bottom of the continental

slope, turbidity currents build up leveed-channels,60 which can

Figure 5. Deposition mechanism of microplastic fragments and fibers
in a turbidity current. Fibers are removed from suspension by settling
sand grains and become enriched in the deposits. The deposition of
the microplastic fragments is more controlled by their low density and
high buoyancy resulting in a lower abundance in the deposits. Not to
scale.

Figure 6. Input pathways of microplastics into the ocean and further transport form the shelf into the deep-marine realm by turbidity currents.
Turbidity currents may serve as an efficient segregation and burial mechanism for microplastics resulting in sediments with high microplastic
concentrations. Not to scale.
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extend over 1000s of kilometers across the ocean floor.79

These levees are usually built from sediment that was
suspended at the top of the flow.59,60,80 On the basis of our
experiments, we hypothesize that levee sediments are likely to
be rich in microplastic fibers, as the sediment mass suspended
at the top of the experimental turbidity currents was rich in
microplastic fibers (Table 1). Further down the channel,
turbidity currents exit the channel end and deposit lobe-shaped
sediment bodies.81,82 We hypothesize that the proximal lobe
sediments are enriched in microplastic fibers due to their
exceptional sedimentation process as discussed above (Figure
5). Due to deposition of fibers in proximal lobe settings,
turbidity currents may be depleted in fibers as they flow
farther. Thus, the microplastic fragments may become
relatively more important in distal lobe deposits (Figure 6).
Our results indicate that turbidity currents will bury a high

proportion of the microplastics they carry. Thus, channel,
levee, and lobe deposits and hadal trenches that occur at the
termination of some deep-sea submarine channels may act as a
sink that is highly concentrated in microplastics. The time
scales over which this transport arises will depend upon the
frequency of the turbidity currents that transit these systems.
Some submarine canyon systems, in particular, those that are
highly disconnected from sediment inputs in the present-day
sea level highstand, feature none or very rare (one per 100
years or more) turbidity currents.13 Microplastic transport in
such systems is therefore likely to be more strongly controlled
by other transport processes, such as internal tides (which can
even have a net up-slope advective effect), lateral advection
controlled by weak ocean circulation, or vertical settling.83,84

We consider systems that are connected directly to sediment
input sources, particularly those linked to rivers or that
intersect littoral cells on the shelf, to be most likely to transfer
microplastics to submarine channels and hence will be most
effective for their deep-sea transfer.29,30,85 Many such systems
have been shown to be very active, with multiple long run-out
(>10s of km) turbidity currents occurring within an individual
year; hence, these effects are likely to overprint any influence of
slow vertical settling on the distribution of microplastic.29,30 In
particular, sediments on the levees are likely to have much
higher microplastic concentrations than pelagic seafloor
sediments adjacent to the leveed-channel. Benthic organisms,
in particular sediment-feeders, living in these microplastic
hotspots will be most likely to encounter high microplastic
concentrations. The consequences for these organisms are still
unknown, but studies have shown that benthic organisms
ingest microplastics.7,86−88 Furthermore, turbidity currents can
segregate microplastic fibers from fragments and generate fiber
hotspots (i.e., lag deposits in the canyon or channel thalweg
and deposits in the proximal lobe). Benthic organisms in these
areas will encounter particularly high concentrations of
microplastic fibers. It is noted that microplastic lying on the
top of the turbiditic deposits may also be transported further
by other processes, such as bottom currents, resulting in
further redistribution of microplastics across the seafloor.13

Our study underlines the importance of modeling sediment
and microplastic-laden flows to understand how turbidity
currents may enhance incorporation of microplastics into
sediments. Sediment samples from natural turbidity systems
are required to test the hypotheses raised in this paper.
Sediment traps within canyons, for example, could provide
insights into the microplastic distribution within natural
turbidity currents. These measurements could also allow us

to quantify the microplastics funneled into deeper water by
turbidity currents. Microplastic concentration within the flow
should be linked to concentrations in the resultant deposits on
the seafloor. Deposit samples should be taken from lag
deposits in the canyon or channel thalweg, as well as from the
levees and the associated lobe. Many previous studies report
microplastic concentrations in seafloor sediments without
providing information on the sedimentary subenvironment or
the grain size of the host sediment. Such information is
essential to understand the nature of past transport processes
and hence explain the variations in seafloor microplastic
concentrations. Our research provides the first experimental
modeling results on the transportation, redistribution, and
burial of microplastic by turbidity currents. These results are
highly relevant for the planning of sampling and monitoring
campaigns in submarine canyon systems in order to under-
stand the dispersal and ultimate fate of microplastics in seafloor
sediments.
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(84) Rebesco, M.; Hernańdez-Molina, F. J.; Van Rooij, D.; Wåhlin,
A. Contourites and Associated Sediments Controlled by Deep-Water
Circulation Processes: State-of-the-Art and Future Considerations.
Mar. Geol. 2014, 352, 111−154.
(85) Hage, S.; Cartigny, M. J. B.; Sumner, E. J.; Clare, M. A.; Hughes
Clarke, J. E.; Talling, P. J.; Lintern, D. G.; Simmons, S. M.; Silva
Jacinto, R.; Vellinga, A. J.; Allin, J. R.; Azpiroz-Zabala, M.; Gales, J. A.;
Hizzett, J. L.; Hunt, J. E.; Mozzato, A.; Parsons, D. R.; Pope, E. L.;
Stacey, C. D.; Symons, W. O.; Vardy, M. E.; Watts, C. Direct
Monitoring Reveals Initiation of Turbidity Currents From Extremely
Dilute River Plumes. Geophys. Res. Lett. 2019, 46 (20), 11310−11320.
(86) Graham, E. R.; Thompson, J. T. Deposit- and Suspension-
Feeding Sea Cucumbers (Echinodermata) Ingest Plastic Fragments. J.
Exp. Mar. Biol. Ecol. 2009, 368 (1), 22−29.
(87) Hall, N. M.; Berry, K. L. E.; Rintoul, L.; Hoogenboom, M. O.
Microplastic Ingestion by Scleractinian Corals. Mar. Biol. 2015, 162,
725−732.
(88) Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.
Plastic Microfibre Ingestion by Deep-Sea Organisms. Sci. Rep. 2016, 6
(May), 1−9.
(89) Pohl, F.; Eggenhuisen, J. T.; Cartigny, M. J. B.; Tilston, M. C.;
De Leeuw, J.; Hermidas, N. The influence of a slope break on
turbidite deposits: An experimental investigation. J. Margeo 2020,
DOI: 10.1016/j.margeo.2020.106160, in press.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.9b07527
Environ. Sci. Technol. 2020, 54, 4180−4189

4189

https://dx.doi.org/10.1007/978-94-011-1234-5_26
https://dx.doi.org/10.1007/978-94-011-1234-5_26
https://dx.doi.org/10.1007/978-94-011-1234-5_26
https://dx.doi.org/10.1007/978-94-011-1234-5_26?ref=pdf
https://dx.doi.org/10.1130/0016-7606(1998)110<0022:MASOAD>2.3.CO;2
https://dx.doi.org/10.1130/0016-7606(1998)110<0022:MASOAD>2.3.CO;2
https://dx.doi.org/10.1130/0016-7606(1998)110<0022:MASOAD>2.3.CO;2
https://dx.doi.org/10.2110/jsr.2018.46
https://dx.doi.org/10.2110/jsr.2018.46
https://dx.doi.org/10.2110/jsr.2018.46
https://dx.doi.org/10.1016/j.sedgeo.2010.09.010
https://dx.doi.org/10.1016/j.sedgeo.2010.09.010
https://dx.doi.org/10.1007/978-1-4684-8276-8_4
https://dx.doi.org/10.1007/978-1-4684-8276-8_4
https://dx.doi.org/10.1007/978-1-4684-8276-8_4?ref=pdf
https://dx.doi.org/10.1007/978-1-4684-8276-8_4?ref=pdf
https://dx.doi.org/10.1016/j.dsr2.2011.04.004
https://dx.doi.org/10.1016/j.dsr2.2011.04.004
https://dx.doi.org/10.1016/j.margeo.2014.03.011
https://dx.doi.org/10.1016/j.margeo.2014.03.011
https://dx.doi.org/10.1029/2019GL084526
https://dx.doi.org/10.1029/2019GL084526
https://dx.doi.org/10.1029/2019GL084526
https://dx.doi.org/10.1016/j.jembe.2008.09.007
https://dx.doi.org/10.1016/j.jembe.2008.09.007
https://dx.doi.org/10.1007/s00227-015-2619-7
https://dx.doi.org/10.1038/srep33997
https://dx.doi.org/10.1016/j.margeo.2020.106160
https://dx.doi.org/10.1016/j.margeo.2020.106160
https://dx.doi.org/10.1016/j.margeo.2020.106160?ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b07527?ref=pdf

