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ABSTRACT
We analyse the anisotropic clustering of the Sloan Digital Sky Survey-IV Extended Baryon
Oscillation Spectroscopic Survey (eBOSS) Luminous Red Galaxy Data Release 14 (DR14)
sample combined with Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of
galaxies in the redshift range 0.6 < z < 1.0, which consists of 80 118 galaxies from eBOSS and
46 439 galaxies from the BOSS-CMASS sample. The eBOSS-CMASS Luminous Red Galaxy
sample has a sky coverage of 1844 deg2, with an effective volume of 0.9 Gpc3. The analysis
was made in configuration space using a Legendre multipole expansion. The Redshift Space
Distortion signal is modelled as a combination of the Convolution Lagrangian Perturbation
Model and the Gaussian Streaming Model. We constrain the logarithmic growth of structure
times the amplitude of dark matter density fluctuations, f(zeff)σ 8(zeff) = 0.454 ± 0.134,
and the Alcock-Paczynski dilation scales which constraints the angular diameter distance
DA(zeff) = 1466.5 ± 133.2(rs/r

fid
s ) and H (zeff) = 105.8 ± 15.7(rfid

s /rs)km s−1 Mpc−1, where
rs is the sound horizon at the end of the baryon drag epoch and rfid

s is its value in the
fiducial cosmology at an effective redshift zeff = 0.72. These results are in full agreement
with the current �-Cold Dark Matter (�-CDM) cosmological model inferred from Planck
measurements. This study is the first eBOSS LRG full-shape analysis i.e. including Redshift
Space Distortions simultaneously with the Alcock-Paczynski effect and the Baryon Acoustic
Oscillation scale.
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1 IN T RO D U C T I O N

The standard cosmological model (�-CDM) accurately describes
most observations. However, the acceleration of the expansion
of our Universe requires the existence of a dominating source of
exotic energy, i.e. the Dark Energy. This energy remains undetected
to this day, which has led to many searches for an alternative
explanation. One possibility is to modify the geometric part of
Einstein’s equations, which corresponds to changing the General
Relativity (hereafter GR) equations rather than invoking a new
component in the stress–energy tensor. A common modification to
GR is the addition of a cosmological constant, �, coupled to the

� E-mail: miguel.a.de-icaza-lizaola@durham.ac.uk (MI-L);
mmarianav@gmail.com (MV-M); sfroment@icf.unam.mx (SF)

metric. However, it is not possible to distinguish between � and
a specific case of Dark Energy with a constant equation of state
w = −1.

Another way to reproduce cosmological observations is to modify
the gravity model. Various alternative gravitational models have
been studied during the past 50 yr which can be grouped in different
families. Extra-field theories, such as f(R) (Sotiriou & Faraoni
2010), Tensor-Scalar theories, extra-dimension theories, such as
DGP (Fang et al. 2008), braneworld, and string gravity models, and
higher order theories such as the Galileons model (Joyce et al. 2015)
are some of them.

All modified gravity models must recover the GR results at the
local scale (i.e. for high density) where GR has been strongly
tested; this is generally solved by invoking screening mechanisms.
Therefore, any modification has to appear in the context of weak
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gravity and large scales; this is the reason why cosmology, and
more particularly Large-Scale-Structures (LSS) observations, is the
appropriate framework for this study.

Cosmological constraints on the theory of gravity are primarily
produced from LSS observations, the most important of these being
Supernovae (Riess et al. 1998; Perlmutter et al. 1999), Baryon
Acoustic Oscillations (BAOs; Eisenstein et al. 2005; Alam et al.
2017a) and weak lensing (Sheldon et al. 2004), and from the early
Universe through Cosmic Microwave Background observations,
when the density contrast was of the order of ∼10−5 (Planck
Collaboration XIII 2016).

Large-scale peculiar velocities, combined with standard cluster-
ing, are a unique framework to distinguish between the various
models of gravity. However, obtaining precise relative velocity
measurements at large scales ((>10 h−1 Mpc)) is challenging. The
Kinetic Sunyaev–Zel’dovich effect is a possibility (Mueller et al.
2014) but requires measurements of massive galaxy clusters with
high precision on the SZ signal estimation. Conversely, we can
directly use the imprint of these velocities on the redshift mea-
surement through the Redshift Space Distortions (RSD) in the
anisotropic correlation function of galaxies (or other tracers of
the dark matter) (Kaiser 1987; Hamilton 1992; Cole, Fisher &
Weinberg 1995; Peacock et al. 2001; Cabré & Gaztañaga 2009;
Alam et al. 2015; Satpathy et al. 2017; Zarrouk et al. 2018). The
measured redshift is the sum of the Hubble flow, the Doppler effect
due to the peculiar velocities of the observer, and the observed
galaxies, and a small contribution from gravitational redshift. If
the peculiar velocities are randomly distributed (i.e. from satellite
galaxies inside clusters), then they only contribute as a noise.
They are, however, correlated with the density field, revealing
cosmological information, in particular allowing us to distinguish
between dark energy models or deviations from GR. The Redshift
Distortion introduces anisotropies in the galaxy–galaxy two-point
correlation function, particularly if we stack the information around
overdensities, where these tracers live. Performing an anisotropic
study, i.e. using the angle with respect to the line of sight as a
statistical breakdown, we can detect the coherent deformations of
the 3D two-point correlation function predicted by the Kaiser (1987)
effect.

BAO and supernova measurements are constraints on the expan-
sion history of the Universe. However, it has been shown that an
appropriate choice of the equation of state w(a) can allow different
cosmological models to have the same expansion history (Linder
2005). In order to break this degeneracy one can complement
expansion history observations with the clustering history of the
structures through the measurement of the linear growth rate:

f (a) = d ln D(a)

d ln a
, (1)

where D(a) is the linear growth factor as a function of the scale
factor a, and it quantifies the degree of structure at that time. In
this paper we extend the growth rate f measurement from previous
surveys to an effective redshift of z = 0.72 using the Luminous
Red Galaxies (LRGs) sample from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al. 2016).

The paper is organized as follows: Section 2 presents the data,
Section 3 describes the mock catalogues used for the estimation
of the covariance matrix and for our systematics checks. Section 4
presents the modelling of the RSD signal as well as the parametriza-
tion used for the Alcock-Paczynski (AP) test. Section 5 describes
the methodology followed in our analysis. Section 6 presents our
analysis, using mock catalogues, of the systematic effects associated

with our methodology. The results for the eBOSS–CMASS sample
are presented in Section 7. Finally, the cosmological implications
of this work are reviewed in Section 8.

2 DATA

Our sample of spectroscopic data were collected during the first
2 yr of eBOSS (Dawson et al. 2016), which is the cosmological
component of the fourth generation of the Sloan Digital Sky Survey
(SDSS-IV; Blanton et al. 2017). All of our spectra were obtained
by the Sloan 2.5 m telescope using two multiobject spectrographs
(Smee et al. 2013) at Apache Point Observatory in New Mexico,
USA (Gunn et al. 2006). All of these data belong to the SDSS
Data Release 14 (Abolfathi et al. 2017), of which we analyse the
Luminous Red Galaxies (LRG) Sample. The LRG targets were
selected based on updated photometric data from SDSS I/II/III
imaging (Fukugita et al. 1996; Gunn et al. 1998) for which the
calibration of the photometric data was updated following the
procedure presented in Schlafly & Finkbeiner (2011). The target
selection process also used infrared photometry data from the
Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010).
The WISE satellite observed the entire sky using four infrared
channels, respectively, centred at 3.4μm (W1), 4.6μm (W2), 12μm
(W3), and 22μm (W4). The eBOSS LRG sample uses the W1
and W2 bands. Given that stars have different properties than
galaxies in infrared (particularly due to the galactic dust), the
WISE data allow us to reduce the stellar contamination, it is also
useful for extending the redshift range with respect to BOSS. The
target selection follows the algorithm described in Prakash et al.
(2016).

2.1 eBOSS-CMASS sample

Our eBOSS DR14 LRG sample includes data of the first 2 yr of
the eBOSS program combined with the BOSS CMASS data (Alam
et al. 2017a) which overlaps with the eBOSS footprint in a redshift
range of 0.6 < z < 1.0. This approach allows construction of a more
complete sample without decreasing the median redshift.

The eBOSS–CMASS sample is composed of 80 118 galaxies
from eBOSS and 46 439 from CMASS, yielding a total of 126 557
galaxies. The numbers separated by Galactic hemisphere are listed
in Table 1. The sky coverage in the North Galactic Cap (hereafter
NGC) is 1011.15 and 788.09 deg2 in the South Galactic Cap
(hereafter SGC), giving a total solid angle of 1844.0 deg2. The
effective volume of eBOSS is 0.618 Gpc3 which increases up to
0.9 Gpc3 when considering the eBOSS–CMASS sample.

Fig. 1 shows the number density of the sample as a function of
redshift for both hemispheres, the solid blue lines correspond to
the NGC and the dashed red lines to the SGC; the dashed vertical
lines indicate the redshift cuts applied for our analysis. The median
redshift of the sample is z = 0.72, which is represented by the
vertical dotted line.

2.2 Footprint and masks

The left-hand and right-hand panels of Fig. 2 display the sky
coverage of the galaxy sample for the NGC and SGC, respectively,
where the colour scale indicates the targeting completeness defined
as:

C = Ngal + Nqso + Nstar + Ncp + Nzfail

Ntarget
, (2)
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Table 1. Characteristics of the LRG data catalogues used. The left-hand panel corresponds to the BOSS CMASS
sample from DR12, the right to the eBOSS LRG DR14 sample. Nstar and Nqso are the number of objects whose
spectra were determined to be stars or quasars instead of LRGs. Nzfail is the number of objects whose redshift
measurement was not reliable, and Ncp the number of objects without spectra due to close pair effects. The last
line reports the number of galaxies and the effective volume of our final sample, which is a combination of the
CMASS and eBOSS samples.

Catalogue Area (deg2) Total redshifts

CMASS LRG sample DR12
CMASS–BOSS NGC 1011.15 26 149 – – – – –
CMASS–BOSS SGC 788.09 20 290 – – – – –

Catalogue Ngal Nstar Nqso Ncp Nzfail Aeff (deg2) Veff (Gpc3)
eBOSS LRG DR14 sample

eBOSS NGC 45 826 2897 18 2263 4957 1033.4 0.356
eBOSS SGC 34 292 4273 18 1687 4366 811.6 0.262
Total 80 118 7170 36 3950 9323 1844.0 0.618

eBOSS-CMASS 126 557 – – – – – 0.900

Figure 1. Number density of the LRG sample as a function of the redshift
for both hemispheres, the solid blue lines correspond to the North Galactic
Cap (NGC) and the dashed red lines to the South Galactic Cap (SGC);
the dashed vertical lines indicate the redshift cuts applied. The median
redshift of the sample is z = 0.72 and is represented by the vertical dotted
line.

Figure 2. Angular mask of the North Galactic Cap NGC (left-hand
panel) and the South Galactic Cap SGC (right-hand panel). The colour
indicates the targeting completeness of the DR14 LRG sample in a given
area of the sky, which is computed using equation (2). Regions of low
targeting completeness (where C < 0.5) were not included in the final
sample.

where

(i) Ngal is the number of galaxies with good quality eBOSS
spectra.

(ii) Ncp is the number of galaxies without spectra due to the fibre
collision effect. Two fibres cannot be closer than 62 arcsec on a
given plate.

(iii) Nstar denotes the number of observed objects which are
spectroscopically confirmed to be stars.

(iv) Nzfail denotes the number of objects for whom the measured
spectra lacks sufficient qualities to provide a confident redshift
measurement.

The targeting completeness is computed by sector, and the mean
completeness is 96.3 per cent (where the NGC has an average
completeness of 95.9 per cent and the SGC 96.9 per cent). We only
use data from regions with a completeness higher than 0.5 (this
value is smaller than the completeness used in BOSS).

Certain areas in the sky have to be excluded from the final data
sample. The maps of these excluded regions are known as veto
masks and have to be removed from our random catalogues as well.
The veto masks used in eBOSS were:

(i) The collision priority veto mask that excludes regions that are
closer than 62 arcsec from an already observed target, as any object
inside this radius would not be observed due to fibre collision.

(ii) The bright veto mask which excludes regions around stars
that are part of the Tycho catalogue (Høg et al. 2000) with Tycho
BT magnitudes larger than 6 and lower than 11.5. The excluded
radius is magnitude-dependent and it goes from 0.8 to 3.4 arcmin.
An additional mask excludes regions around bright galaxies and
other objects (Rykoff et al. 2014); it is also magnitude-dependent
and goes from a radius of 0.1 to 1.5 arcmin.

(iii) The bad fields veto mask excludes regions of the sky with
bad photometry. If the local sky is badly determined (as occasionally
happens in regions with complex backgrounds), the core of an object
can be strongly negative.

(iv) The extinction mask excludes regions where the Galactic
extinction is such that E(B − V) > 0.15 or where the seeing full width
at half-maximum (FWHM) is larger than 2.3, 2.1, and 2.0 arcsec in
g, r, and i bands, respectively.

(v) The centre focal plane mask excludes LRG targets that lie
within 92 arcsec of the centre of the telescope focal plane, where a
centre post holds the plate and prevents fibres from being assigned.
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The total masked area is 12.3 per cent for the NGC and
18.2 per cent for the SGC.

2.3 Catalogue for LSS analysis

Two data catalogues that differ in their treatment of the photometric
systematics and of spectroscopic incompleteness were used to create
the sample for our study. The first is a BOSS-like catalogue where
traditional weighting schemes are applied, described in Ross et al.
(2017), to the data. The second is denoted as the ‘official catalogue’,
and it was used in Bautista et al. (2018) for performing the BAO
analysis. Here some improvements with respect to previous analysis
were implemented: the forward modelling of the randoms for the
spectroscopic incompleteness and the multilinear regression and
subsampling of the randoms for the photometric systematics.

In this section, we briefly review both methodologies, first
describing the different treatments of the photometric systematics,
and then the procedures used for dealing with the redshift incom-
pleteness. Finally, we summarize the weights applied to the data for
both cases and also the subsampling techniques used in the random
catalogues in each case.

2.3.1 Correcting for photometric systematics

Here we will give a brief description of the two methodologies for
correcting photometric systematics:

(i) Iterative method (‘BOSS-like’) was developed in Ross et al.
(2017). The basic idea is to include the systematics in an iterative
way and estimate at each step the associated weights. For the eBOSS
LRG sample, we studied the correlation of the mean density as a
function of seven potential observational systematics related with
SDSS photometry: stellar density, i-band depth, z-band sky flux, z-
FWHM, and r-band extinction.1 We followed the iterative method
starting with the main systematics reported in previous works. Fig. 3
displays the mean density of data, Ngal, normalized by the random
number density, Nran, as a function of six of the seven systematics
considered in the analysis before and after corrections. The most
significant weights are those due to stellar density (wstar), followed
by the r-band extinction (wext), airmass (wair), and z-band sky flux
(wsky). The systematics related with the WISE maps did not have
any strong correlation requiring correction, thus we decided not
to include them in the weight estimation. We calculate a weight
for each galaxy that takes in account a linear relationship for each
potential systematic.

w(sys) = 1

mx + b
. (3)

The total systematic weight wsystot, is defined as

wSYSTOT = wstar wext wair wsky (4)

(ii) Multiregression method: We followed the same methodology
presented in Bautista et al. (2018), where the correlation between
systematic maps and density were computed using a multilinear
regression of the seven systematic maps instead of the iterative
method. The advantage of this method is that it does not assume

1Additionally we explored two additional maps derived from WISE pho-
tometry: one for the median number of single-exposure frames per pixel
in the WISE W1 band (denoted as WISE W1 Cov Med) and the median of
accumulated flux per pixel in the WISE W1 band (denoted by WISE W1
Med).

Figure 3. We show the mean density of data, Ngal, normalized by the
random number density, Nran as a function of six of the nine systematics
considered in the analysis. The most significant weights were those due to
stellar density (wstar), r-band extinction (wext), airmass (wair), and z-band
sky flux (wsky).
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Figure 4. Multipoles for eBOSS sample (NGC left and SGC right) com-
paring the iterative and multilinear regression methods. The monopole from
both hemispheres without corrections shows a large spurious correlation at
large scales in monopole that is reduced when either of the methods for
correcting the observational systematics is applied.

the systematics are independent, as does the iterative method.
Additionally, in the official catalogues, instead of using weights
associated with galaxies, the randoms are subsampled following the
correlation found with the multiregression method; the subsampling
of the randoms or the weighting scheme of the galaxies should yield
the same results; the main differences observed in the catalogues
should be derived uniquely from the Iterative/Multiregression
methodologies.

Fig. 4 presents the multipoles for the eBOSS sample (NGC and
SGC separated), comparing the iterative and multilinear regression
methods. The monopole from both hemispheres without corrections
shows a large spurious correlation at large scales that is reduced
when either of the methods for correcting the observational system-
atics is applied. There is an excellent agreement in both methods
for correcting photometric systematics. The SGC does show slightly
better performance using the multiregression method.

2.3.2 Correcting for spectroscopic completeness

Previous analyses on the eBOSS LRG sample reported that fluctu-
ations in the (S/N) significantly affect the probability of obtaining a
confident redshift (see fig. 5 of Bautista et al. 2018). Additionally,
the probability of obtaining a confident redshift varies across the
focal plane, decreasing near the edges (see fig. 6 of Bautista et al.
2018). We define the failure rate as:

η = Ngal

Nzfail + Ngal
, (5)

where the failure rate in eBOSS LRGs sample is 10 per cent,
which is significantly higher than previous surveys; for example, in
BOSS the failure rate was only 1.8 per cent (This is due to eBOSS
targeting fainter galaxies than BOSS).

The variations of the failure rate across the focal plane could bias
the clustering measurements. In order to account for the effect of
this redshift incompleteness, we applied two methods to mitigate
the effect on the clustering measurements; in particular, we studied
how the two techniques affect the RSD analysis.

(i) Nearest-neighbour up-weighting. The procedure followed in
BOSS (Reid et al. 2012) was to upweight the nearest neighbour
with a good redshift and spectroscopic classification in its target
class, within a sector. It has been shown that this method introduces
structure into the monopole at small scales, and also modifies the
quadrupole amplitude, which could potentially affect the growth
factor measurements.

(ii) Forward-modelling. This approach uses a probabilistic model
that depends on the position of its fibre in the focal plane and the
overall signal-to-noise ratio of the plate. The model for failures
is then applied to the random sample by subsampling, mimicking
the patterns retrieved in the model. For more details about this
modelling we refer the reader to Bautista et al. (2018).

2.3.3 Data weights

We now specify the weights applied for each catalogue and the
randoms treatment.

(i) wSYSTOT. As described previously, these weights account for
the fluctuations of the observational conditions that can impact
the clustering signal. For the BOSS-like method these weights are
computed as described in the iterative method.

(ii) wFKP. These weights are used for both set of catalogues. They
serve to optimize clustering signal-to-noise ratio for a survey with
density varying with respect to the redshift. Also known as FKP
weights (Feldman, Kaiser & Peacock 1994), they are defined as:

wFKP = 1

1 + n̄(z)P0
, (6)

where n̄(z) is the average comoving density of galaxies as a function
of redshift and P0 is the value of the power spectrum at scales
relevant for our study (k = 0.14h Mpc−1). For the eBOSS LRG
sample we adopt a value of P0 = 104h−3 Mpc3, which is the same
value used in the final BOSS CMASS clustering measurements.

(iii) wCP. This weight accounts for the fibre collisions and is
used for both catalogues. Targets missed due to fibre collisions do
not happen randomly on the sky; they are more likely to occur
in overdense regions. For mitigating this effect we followed the
up-weighting technique described previously.

(iv) wNOZ. This weight accounts for the redshift failures. For
the BOSS-like method this weight is computed for each galaxy
following the up-weighting technique described in the previous
section.

For the official catalogues these weights are set to 1, as the spec-
troscopic incompleteness is modelled to subsample the randoms as
described in the previous section.

3 MO C K S

We use three different sets of mock catalogues in our analysis.
The first is a collection of 1000 Quick Particle Mesh (QPM) mocks
(White, Tinker & McBride 2014), which will be used for computing
the covariance matrices and for doing several systematic tests. The
second one is a set of 1000 Effective Zeldovich approximation
method (EZ) mocks Chuang et al. (2015), that are used to test
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Figure 5. The black solid lines are the mean of our 1000 QPM mocks for the Monopole (left-hand panel), Quadrupole (centre), and Hexadecapole (right-hand
panel); the shaded regions are the 1-σ variations. The blue dots represent the data points and the associated error bars and are equal to the 1-σ variation shown
in the shaded contours.

variance of our fitting methodology. The third catalogue is a set of
84 high-fidelity mocks called CutSky-Mocks Alam et al. (2017a).
These catalogues will be necessary for testing the accuracy of the
model used.

3.1 QPM mock catalogues

We use 1000 realizations of QPM mocks using the following
cosmology �M = 0.29, h = 0.7, and �bh2 = 0.02247. A Halo
Occupation Distribution (HOD) framework is adopted for popu-
lating haloes with galaxies following the five-parameter method
described in Tinker et al. (2012) but taking into account the HOD
parameters tuning to the DR14 eBOSS LRG sample in Zhai et al.
(2017).

The same boxes were used for generating NGC and SGC mocks,
thus there should be a small correlation between them (particularly
in the large modes). In order to mitigate this effect, we combined
mocks produced by different realizations of the NGC and the
SGC. The mask that we applied to the mocks will be described
in Section 2.2.

Our QPM mocks are needed for two reasons: to compute an
estimate of the covariance matrix and to test our methodology.
Fig. 5 shows the mean of the mocks compared with the data; the
solid lines represent the mean of the mocks correlation function
and the blue dots the data correlation function multipoles with their
associated error bars. There is a good agreement between the data
and the mocks for scales larger that 30 h−1 Mpc; at smaller radii a
mismatch appears, which might be related to the resolution of the
mocks.

3.2 EZ mock catalogues

EZ simulations are light-cone mock catalogues created following
the Effective Zeldovich methodology described in Chuang et al.
(2015). In order to construct the eBOSS + CMASS sample, the
CMASS and eBOSS mocks are calibrated and generated sepa-
rately and then combined. The CMASS mocks are constructed in
four redshift bins: (0.55, 0.65), (0.65, 0.7), (0.7, 0.8), and (0.8,
1.0025), while the eBOSS mocks are constructed at five redshift
bins: (0.55, 0.65), (0.65, 0.7), (0.7, 0.8), (0.8, 0.9), and (0.9,
1.05). The fiducial cosmology is a flat �CDM model with �M

= 0.307115, h = 0.6777, σ 8 = 0.8225, �b = 0.048206, and ns =
0.9611. We will use these mocks to test the variance of the fitting
methodology.

3.3 N-series cut sky mocks

Our N-series cut sky mock library contains 84 mocks generated with
N-body simulations that where done using GADGET2 (Springel
2005). Our mocks have the angular and radial mask of BOSS
NGC DR12 based on simulations with 20483 particles in a volume
of (2.6 h−1Gpc)3 corresponding to resolution particle mass about
1.5 × 1011M� h−1. We used these mock catalogues to test the
theoretical systematics related to our modelling methodology. The
N-Series cosmology is �M = 0.286 , h = 0.7, �b = 0.047, σ 8 =
0.820, and ns = 0.96.

4 MODELLI NG R EDSHI FT SPACE
DI STORTI ONS

In order to model the different multipoles of the two-point cor-
relation function, we use the combined Convolutional Lagrangian
Perturbation Theory (CLPT) and Gaussian Streaming RSD (CLPT-
GSRSD) formalism, developed by Wang, Reid & White (2014),
Reid & White (2011), and Carlson, Reid & White (2013). In this
section we briefly describe this theoretical framework.

4.1 CLPT

CLPT provides a non-perturbative resummation of Lagrangian
perturbation to the two-point statistic in real space for biased tracers.
The starting point for the Lagrangian framework is the relation
between the Lagrangian coordinates �q that are related to the Eulerian
coordinates �x as:

�x(�q, t) = �q + ��(�q, t), (7)

where �(�q, t) is the displacement field at each time t. The two-
point correlation function is expanded in its Lagrangian coordinates
considering the tracer X, in our case the LRGs, to be locally biased
with respect to the initially Cold Dark Matter overdensity δ(�q). The
expansion is performed over different orders of the Lagrangian bias
function F [δ(�q)], defined as:

1 + δX(�q, t) = F [δ(�q)]. (8)

The Eulerian contrast density field is computed convolving with the
displacements:

1 + δX(�x) =
∫

d3F
[
δ(�q)

] ∫ d3k

(2π)3
ei�k(�x−�q− �ψ(�q)). (9)
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Assuming that the expectation value of the nth derivative of the
Lagrangian bias function F is given by:

〈Fn〉 =
∫

dδ√
2πσ

e−δ2/2σ 2 dnF

dδn
, (10)

the two-point correlation function is obtained by evaluating the ex-
pression ξX(�r) = 〈δX(�x)δX(�x + �r)〉 corresponding to equation (19)
of Carlson et al. (2013) and which can be simplified using the bias
expansion as in their equation (43):

1 + ξX(�r) =
∫

d3qM(�r, �q), (11)

where M(�r, �q) is the kernel of convolution taking into account
the displacements and bias expansion up to its second derivative
term. The bias derivative terms are computed using a linear power
spectrum (LPS). The LPS that we used was computed using the code
CAMB (Lewis, Challinor & Lasenby 2000) for a fixed cosmology
described as the fiducial cosmology of our analysis.

As we are interested in studying RSD, we also must model
the peculiar velocity’s effect on the clustering statistic. CLPT can
compute the pairwise velocity distribution �v12 and the pairwise
velocity dispersion σ 12. This calculation is done following the
formalism of Wang et al. (2014) which is similar to the one describe
above but modifying the kernel to take into account the velocities
rather than the density:

�v12(r) = (1 + ξ (�r))−1
∫

M1(�r, �q)d3q, (12)

and

σ12(r) = (1 + ξ (�r))−1
∫

M2(�r, �q)d3q. (13)

The kernels M1,2(�r, �q) also depend on the first two derivatives of the
Lagrangian bias 〈F′ 〉 and 〈F′′ 〉, which are free parameters, in addition
to the growth factor f, for our model. Hereafter we eliminate the
brackets for the Lagrangian bias terms to have a less cumbersome
notation in the following sections.

4.2 CLPT-GSRSD

While CLPT generates more accurate multipoles than the La-
grangian Resummation Theory (LRT) from Matsubara (2008) and
the linear theory, we still require better performance to study the
smaller scales of our quadrupoles. This represents an issue that
is particularly important when doing RSD measurements as the
peculiar velocities are generated by interactions that occur on the
scales of clusters of galaxies.

In order to achieve the required precision, we map the real
space CLPT models of the two-point statistics into redshift space
following the Gaussian Streaming Model (GSM). This formalism
was proposed by Reid & White (2011). Here, the pairwise velocity
distribution of tracers is assumed to have a Gaussian distribution
that is dependent on both the separation of tracers r and the angle
between their separation vector and the line-of-sight μ.

The methodology of using CLPT to model the necessary inputs
of a GSM was implemented by Wang et al. (2014). Its predictions
are computed via the following integral:

1 + ξ (r⊥, r‖) =
∫

1√
2π(σ 2

12(r, μ) + σ 2
FoG)

[1 + ξ (r)]

× exp − [r‖ − y − μv12(r, μ)]2

2(σ 2
12(r, μ) + σ 2

FoG)
dy,

(14)

where, as stated , ξ (r), v12(r), and σ 12(r) are computed from CLPT.
Reid & White (2011) demonstrated that GSM can predict accura-

cies of ≈ 2 per cent when DM haloes are used as tracers. However,
not all LRGs are central halo galaxies; approximately 20 per cent
of them are satellite galaxies with a peculiar velocity respect to
their host halo. Therefore, we need to consider a contribution to
the velocity dispersion due to the Fingers of God (FoG) effects on
non-linear scales. We have addressed this point by adding the σ FoG

parameter to equation (14).
To summarize, given a fiducial cosmology, our model has four

free parameters [f, F
′
, F

′′
, σ FoG]. The cosmology determines the

LPS used in the model. The following subsection describes how
we include variations of the cosmological parameters around the
fiducial values using the Alcock–Paczynski Test.

4.3 Including the Alcock–Paczynski effect

We described above the model for the RSD signal given a fixed
fiducial cosmology that determines the LPS to be used. However,
we can extract additional information by measuring the galaxy
clustering along the line of sight and perpendicular to the line of
sight, and we can extract geometrical information via the Alcock–
Paczynski (AP) test (Alcock & Paczynski 1979). In this work, for
extracting AP information, we use the parametrization described in
Xu et al. (2012), Vargas-Magaña et al. (2014), and Anderson et al.
(2014), which derives measurements of the isotropic dilation of the
coordinates parametrized by α and the anisotropic warping of the
coordinates parametrized by ε.2 We remind the connection with the
other parametrization, that we will further use for comparison with
previous works, is given by:

α = α
2/3
⊥ α

1/3
|| ,

1 + ε =
(

α||
α⊥

)1/3

, (15)

where α⊥ and α|| are defined in terms of dilation in the transverse
and line-of-sight directions.

5 M E T H O D O L O G Y

5.1 Fiducial cosmology

Our analysis is performed using the following fiducial cosmology:

�M = 0.31,

�� = 0.69,

�k = 0,

�b h2 = 0.022,

�ν h2 = 0.00064,

w = −1,

wa = 0,

h = 0.676,

ns = 0.97,

σ8 = 0.8.

2Note that α = 1 and ε = 0 for the mocks, if we use their natural cosmology
as the fiducial cosmology for the analysis.
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4196 M. Icaza-Lizaola et al.

This fiducial cosmology is different from the ones used to compute
the mocks; this additional bias in our methodology has to be
considered. This extra bias will be defined in Section 6.

5.2 2PCF estimator

The following section will describe the methodology used to
compute the two-point clustering statistics of the DR14 LRG sample
described in Section 2.

We are interested in constraining RSD parameters. Therefore,
we must study the clustering of galaxies in two directions: the one
parallel to the LOS, where peculiar velocities of infalling galaxies
generate RSD, and its perpendicular direction, where no distortion
occurs. We decompose the vector �r , which represents the distance
between two galaxies, into two components: r|| parallel to the LOS
and r⊥ that is perpendicular to it:

r2 = r2
|| + r2

⊥. (16)

Let θ denote the angle between the galaxy pair separation and
the LOS direction, and let μ be defined as μ = cos θ . We then have
the relation:

μ2 = cos2 θ = r2
||

r2
, (17)

and our two direction parameters will be [r, μ].
The 2D-correlation function ξ (r, μ) is computed using the

Landy–Szalay estimator (Landy & Szalay 1993):

ξ (r, μ) = DD(r, μ) − 2DR(r, μ) + RR(r, μ)

RR(r, μ)
, (18)

where DD(r, μ), RR(r, μ), and DR(r, μ) are the number of pairs of
galaxies which are separated by a radial separation r and angular
separation μ. The three symbols represent the data–data, random–
random, and data–random pairs, respectively.

The multipoles are Legendre moments of the 2D-correlation
function ξ (r, μ), and can be computed using the following equation:

ξ�(r) = 2� + 1

2

∫ +1

−1
dμ ξ (r, μ) L�(μ), (19)

where L�(μ) is the �-th order Legendre polynomial.
We will focus primarily on the monopole, the quadrupole, and

the hexadecapole (� = 0, � = 2, and � = 4).
The pair-counts were computed using the public code CUTE

(Alonso 2012). However, there are three corrections to be consid-
ered when using the LS equation (18):

(i) The number of galaxies in the Data catalogues (ND) is
approximately 50 times smaller than the ones in our random
catalogues (NR). Therefore the Random and Data pairs should be
compared as

DD(r, μ)

RR(r, μ)
× NR(NR − 1)

2
× 2

ND(ND − 1)
.

(ii) The number of galaxies in the SGC (ND, S) is smaller than
those in the NGC (ND, N). Therefore the total number of pairs should
be added as:

DD(r, μ) = 2(DDN (r, μ) + DDS(r, μ))

(ND,N (ND,N − 1) + ND,S(ND,S − 1))
.

(iii) Each galaxy has a particular weight wi as described in
Section 2. Hence, the total number of galaxies in any catalogue
is weighted as

Nw =
∑

wi.

5.3 Fitting

Unless stated otherwise, we will be using 13 bins of 8 h−1 Mpc in
width, in the interval between [28 h−1 Mpc, 124 h−1 Mpc]. Given
that we will be working with either the first two non-zero multipoles
or the first three (depending on the test), the analysis will have a
total of either 26 or 39 bins.

We will now compare our measured two-point statistics with
those predicted by our model and try to find the best-fitting model
parameters.

In order to find identify best-fitting parameters, we minimize the
χ2 function,

χ2 = ( �m − �d)T C−1( �m − �d), (20)

where �m is the vector formed by the model predictions, and �d is the
equivalent vector observed from our data. Examining equation (20)
reveals that the smaller the value of χ2, the more similar �m is to �d .

The sample covariance is defined as:

Cij =
Nmocks∑
m=1

(ξm
i − ξ̄i)(ξ

m
j − ξ̄j ), (21)

where Nmocks is the number of mocks, and ξ̄i is the average of the
ith bin.

We scale the inverse sample covariance matrix, C−1
s , using

equation (17) of Hartlap, Simon & Schneider (2007):

C−1 = C−1
s

Nmocks − Nbins − 2

Nmocks − 1
. (22)

This procedure corrects for the fact that the matrix in equation (21)
is a biased estimate of the true inverse covariance matrix C−1.

Fig. 6 shows the covariance and correlation matrix computed
from 1000 QPM mocks. Most of our error arises from the elements
on the diagonal (variance of a given bin), but there is also a sig-
nificant contribution coming from elements outside of the diagonal
(covariance between different bins).

In order to identify the best-fitting parameters, we minimize the
χ2 function.The minimization of the χ2 is done using the Powell
algorithm (Press et al. 2002). This algorithm will find a unique
solution if the parameter space is Gaussian, which should be a fair
assumption when fitting our mocks. This method is adequate for our
work as it does not require us to compute the gradient of the CLPT-
GSRD model with respect to the model parameters, which would be
challenging. Due to the nature of the algorithm it is not necessary to
specify any prior, just some starting points, if our assumption about
the parameter space being somewhat Gaussian is correct then any
starting point should work fine and one that is close to the Best Fit
should reduce the running time.

The estimate of the errors on our fits will be computed using
MCMC chains, but we will only do this analysis for our data sets
(Section 7) and not for the mocks.

6 TESTING FOR SYSTEMATIC
UNCERTAI NTI ES

6.1 Testing accuracy of GSRSD hexadecapole model with
high-resolution simulations

This section is dedicated to testing the performance of the method-
ology developed in Section 5. Here, we will use the N-Series CutSky
mocks described in Section 3 to check the reliability of the CLPT
model with regards to recovering the cosmological parameters.
These high resolution mocks are built with the BOSS–CMASS
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Growth rate measurement from LRG clustering 4197

Figure 6. Density map of the Covariance matrix (left-hand panel) computed from our 1000 QPM Mocks simulations. The matrix has 13 bins in r and 3

multipoles. The right-hand panel presents the correlation matrix defined as Corrij = Cij√
CiiCjj

. The normalization is done such that the diagonal is always

unity, and it shows how much covariance (off-diagonal) there is compared to our variance (diagonal).

properties that allow us to study the accuracy of the model. We will
run our fitting methodology on these high-fidelity mocks in order
to test if their fiducial parameters can be recovered. The N-Series
CutSky mocks have been used previously in the literature for testing
the monopole- and quadrupole-only methodologies.

We fit our N-series CutSky mocks twice, the first using only the
monopole and the quadrupole, and the second including the hex-
adecapole. The fits are done following the methodology described
in Section 5.3, but here we will be using 21 bins of 5 h−1 Mpc
in width, in the interval between [27.5 h−1 Mpc, 127.5 h−1 Mpc].
We decided to choose a smaller bin-size to facilitate comparisons
with other previous results. The sample covariance matrix used
to perform these fits is computed using the QPM-BOSS CMASS
sample re-scaled to match the mocks volume, and provides our
error estimate (the covariance matrix obtained from N-Series
would be quite noisy given the limited number of realizations
available). The pair-counts of our mocks were computed using
the mocks cosmology to transform angular positions and redshifts
into comoving coordinates. To be consistent, the CLPT-GSRSD
input template was also computed using the cosmology of the
mocks.

The expected values of the linear growth rate of f (fexp) are
reported in Table 2 for the natural cosmology of the mocks. We
define the bias of the growth factor estimation bf as:

bf = 〈fmeasured〉 − fexp. (23)

We use the measurement of the Eulerian bias b = 2.3 performed by
Zhai et al. (2017) as reference. This estimate was computed using
our same sample with the addition of an HOD model.

The left-hand panel of Fig. 7 shows the mean of the multipoles;
the error bars are the diagonal terms of the covariance matrix divided
by 1/

√
NMock. The different colours (and line-styles) represent the

best-fitting model for the mean of the mocks using the fiducial range
at different minimum scales of the fits when the cuts are applied to
all multipoles.

The model using the hexadecapole fitted at the full range (blue
lines) does not match the hexadecapole of the mean of the mocks
accurately at any scale, this can be seen in the corresponding residual
plot (bottom panel of the figure) where the value of the residuals

is close to 50 per cent of the value of the model, this is very large
when compared to the residuals of the monopole and quadrupole
that are around 10 per cent and 2 per cent, respectively (second and
third panels of the figure). Increasing the minimum range of the fit
mostly affects the quadrupole at large scales and has little effect
on the monopole and hexadecapole at any scale. By comparing the
residuals of the quadrupole (third panel of the figure) of the full-
range fit and the reduced-range fit we can tell that the full range fits
adjusts the quadrupole better (i.e. the blue solid line is a better fit
than the green dotted one).

The right-hand panel of Fig. 7 displays a similar exercise to the
one in the left panel, except this time we only cut the minimum
scale of the hexadecapole while leaving the other two multipoles in
the full range. The changes on the quadrupole are now less severe
than when varying all multipoles. By looking at the residual plot
of the quadrupole (third panel of the figure) we see that the model
considering the hexadecapole in the full range (green dash-dotted
line) matches the quadrupole slightly better than the model using
only the monopole and quadrupole (purple solid line), but it does
not improve the other multipoles significantly. It is not clear that
including the hexadecapole improves the fits significantly when
compared to the monopole and quadrupole only case.

Table 3 reveals that the bias in f is slightly larger when we
include the hexadecapole in the full range than when we only use
the monopole and the quadrupole (bf = 0.005 compared to bf =
0.004). However, the bias in ε is smaller when the hexadecapole is
left out of the fits (bε = 0.002 compared to bε = 0.0005). The bias
in alpha is the same for both cases (bα = 0.001). The right panel of
Fig. 7 shows that the best fit model for both cases are very similar,
only showing small differences in the quadrupole at the scales in
the range [80,110] h−1 Mpc.

Reducing the range for all multipoles (second block of the table)
increases the biases in f and ε. If by contrast we constrain the range
only for the hexadecapole (third block), we reduce the bias in f and
α to bf = 0.001 and bα < 0.001, respectively, leaving the bias value
for ε unchanged.

In summary, there is no clear preference between the case with the
multipoles and just considering monopole and quadrupole. There
is a trade-off between the biases in ε and f: The smaller bias in f is
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4198 M. Icaza-Lizaola et al.

Table 2. Expected values of cosmological parameters for the QPM mocks and fiducial
cosmology at different redshift ranges/model. The units for H(z) are km s−1Mpc−1) and
(Mpc) for DA(z).

Model z-range zeff f(z) σ 8(z) f(z)σ 8(z) H(z) DA(z)

QPM [0.6, 1.0] 0.72 0.806 0.557 0.449 – –
Fiducial [0.6, 1.0] 0.72 0.819 0.550 0.450 101.94 1535
Nseries [0.43, 0.7] 0.5 0.740 0.637 0.471 – –

Figure 7. The mean of the mocks is shown as the black line in both plots. The error bars are computed from the re-scaled QPM mocks covariance. The
left-hand panel shows the best-fitting models from different lower ranges of the multipoles. In the right-hand panel only the lower range of the hexadecapole is
varied. The error plots show the quotient between the best-fitting model and the mean of the mocks. For all cases are residuals in the hexadecapole, the smaller
residuals are obtained by the monopole + quadrupole.

Table 3. Results from fitting the mean of N-series Mocks. The expected values for the N-series mocks are f (z = 0.5)
= 0.740, α = 1.0 and ε = 0.0. The fits are done over bins of 5 h−1 Mpc each so that the full range of each multipole
(27.5h −1 Mpc, 127.5h −1 Mpc) will have 21 bins.

Model Range F
′

F
′′

f α ε σ FoG χ2/d.o.f

ξ0 + ξ2 with cuts in all multipoles
ξ0 + ξ2 27.5–127.5 0.999 0.637 0.736 1.001 5e−4 1.076 68.5/36 = 1.9

ξ0 + ξ2 + ξ4 with cuts in all multipoles
ξ0 + ξ2 + ξ4 27.5–127.5 1.003 1.034 0.745 1.001 −0.002 1.770 91.2/57 = 1.60
ξ0 + ξ2 + ξ4 37.5–127.5 1.014 1.708 0.735 1.001 −0.003 2.239 84.0/51 = 1.65
ξ0 + ξ2 + ξ4 42.5–127.5 1.022 1.870 0.731 0.999 −0.004 0.530 78.7/48 = 1.64
ξ0 + ξ2 + ξ4 47.5–127.5 1.027 3.149 0.721 0.997 −0.004 1.018 70.8/45 = 1.57

ξ0 + ξ2 + ξ4 with a cut in hexadecapole only
ξ0 + ξ2 + ξ4 37.5–127.5 1.010 1.543 0.742 1.000 −0.002 2.793 86.15/55 = 1.57
ξ0 + ξ2 + ξ4 42.5–127.5 1.011 1.649 0.741 1.000 −0.002 2.938 86.18/54 = 1.60
ξ0 + ξ2 + ξ4 47.5–127.5 1.012 1.697 0.741 1.000 −0.002 2.984 86.28/53 = 1.62

obtained when using the hexadecapole while the smaller bias in ε

comes from using only the monopole and quadrupole. As there is
not a clear trend we will explore the hexadecapoles impact on the
LRG sample analysis further.

Fig. 8 displays the model behaviour for variations of the pa-
rameters, and is included to explain the different trends observed
with mocks when using multipoles up to order � = 2 compared to

� = 4. We also indicate the variations in our model predicted by
changes of ∼ 20 per cent in the input parameters, that correspond to
deviations of �f = 0.15, �α = 0.2, and �ε = 0.2 around the fiducial
cosmology expected value. The error bars were obtained from the
diagonal of the mocks covariance matrix. The variations in ε have
a large impact on the predicted hexadecapole at all scales (middle
curve), while the variations of the hexadecapole due to variations
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Growth rate measurement from LRG clustering 4199

Figure 8. Left-hand panel: Model variations for �f, �α, and �ε compared to the error bars coming from covariance: the behaviour for the monopole (top),
the hexadecapole (middle), and the quadrupole (bottom). The variations in ε have a large impact on the hexadecapole, while the variations in α and growth
factor are of the same order of magnitude for the hexadecapole. This behaviour explains why fits are driven by ε when the hexadecapole is taken into account.
Right-hand panel: Model variations for �F

′
, �α, and �σ FoG compared to the errors produced by covariance: the behaviour for the monopole (top), the

hexadecapole (middle), and the quadrupole (bottom).

on α and f are significantly smaller and of a comparable order of
magnitude. This behaviour explains why the fits are driven by ε

when the hexadecapole is included. Considering that the error bars
between 20 and 60 h−1 Mpc are smaller, their constraining power
is significantly larger.

As stated before, even if our results using the hexadecapole do not
show significant biases, Fig. 7 shows that the model obtained using
the cosmology of the mocks does not accurately match the mean
of the hexadecapole mocks at any scale, in particular at the lower
scales that have more weight in the likelihood. This mismatch in the
hexadecapole is pushing ε to higher values and as a consequence the
correlated parameters follow. Therefore, the accuracy of the model
at all scales is critical for not biasing the fitted parameters.

We now analyse the individual mocks for three cases: (1) fitting
the complete range [27.5,127.5] h−1 Mpc using monopole and
quadrupole, (2) fitting the complete range [27.5,127.5] h−1 Mpc
using monopole, quadrupole, and hexadecapole, and (3) fitting the
complete range [27.5,127.5] h−1 Mpc for monopole and quadrupole
and reducing the range to [47.5,127.5] h−1 Mpc for the hexade-
capole. Fig. 9 show the results of the individual fits in all three cases
and for the four parameters of interest [fσ 8, bσ 8, α, ε], as well as
their respective best-fitting distributions histograms. The coloured
dashed lines indicate the mean of the best fits, and the dotted line
represents the expected value of the parameters. Table 4 presents
the results of the individual fits for the parameters of interest.

The monopole- and quadrupole-only fits show a bias in the
estimation of the three parameters of |bf σ8 | = 0.003, |bα| = 0.002,
and |bε | = 0.0004. The standard deviation of the distributions are
Sf = 0.051, Sα = 0.014, and Sε = 0.019 respectively; the expected
values are within the dispersion. Thus the significance of the biases
are 0.5σ , 1.1σ , and 0.2σ . These numbers are in agreement with
the test performed for the BOSS sample and these numbers are
comparable with the results obtained in Alam et al. (2017a).3 The

3The BOSS analysis only reported the result of �fσ 8 for the N-Series Mocks
Challenge.

full range hexadecapole fits show a lower bias in the f parameters,
with a value of |bf σ8 | = 0.0007, |bα| = 0.00008, and |bε | =
0.0002, respectively. The standard deviation of the distributions
decreases for f, α, and ε, with Sf = 0.037, α = 0.013, and Sε =
0.010. The significance of the biases decreases significantly to
<0.1σ , 0.1σ , and 0.2σ , respectively. Constraining the range of
hexadecapole fits, produces biases of |bf σ8 | = 5e − 4, |bα| = 0.001,
and |bε | = 5e − 4, while also decreasing the standard deviation of
the distributions compared with the monopole and quadrupole fits,
Sf σ8 = 0.042, Sα = 0.013, and Sε = 0.014, giving a significance of
the biases of 0.1σ , 0.9σ , and 0.4σ , respectively.

Fig. 10 shows the summary of the analysis for our three cases in
the same format as the results reported in Alam et al. (2017a): the
points correspond to the mean of the results obtained from fitting
our 84 SkyCut with the BOSS mask mocks, the three quantities
shown are (from left to right) the mean of �f = f − fexp, �α = α

− αexp, and �ε = ε − εexp, and the error indicated is the standard
deviation of our fits. The panels contain the results from: (1) the
fits with monopole and quadrupole (left), (2) the fits also including
the hexadecapole (middle), and (3) the fits using multipoles up to
� = 4 and using a constrained range on the hexadecapole (right).
We also include the result for the growth factor obtained by BOSS
and reported in Alam et al. (2017a) (far right value of the left-hand
panel).

These results suggest that the most accurate results (smaller
parameter biases in all parameters normalized by the dispersion)
are obtained using the multipoles up to � = 4 in the full range.

However, we would like to highlight that we noticed that the
best model of the hexadecapole does not accurately match the mean
of the mocks (the value of the residuals is close to 50 per cent
of the value of the model compared to 10 per cent and 4 per cent
for the monopole and quadrupole, respectively). For the individual
fits, given the large error bars on the hexadecapole, this mismatch
does not bias our individual measurements, but produces small bias
in the best fit of the mean in ε. Bearing all of this in mind we
choose to analyse both cases (with and without hexadecapole), but
we will take a conservative approach and report the monopole and
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4200 M. Icaza-Lizaola et al.

Figure 9. Results from the best fits of all of the individual mocks for the four parameters of interest [f, b, α, ε]. Also shown are their respective best fits
distributions histograms and the 1σ confidence region. The dotted black lines represent the expected value of each parameter. The coloured lines in each
histogram indicate the mean value of that parameter found by our fits. We present three cases: (1) fitting the complete range [27.5,127.5] h−1 Mpc using
monopole and quadrupole (blue dots), (2) fitting the complete range [27.5,127.5] h−1 Mpc using monopole, quadrupole, and hexadecapole (red x’s), and (3)
fitting the complete range [27.5,127.5] h−1 Mpc for monopole and quadrupole and reducing the range to [47.5,127.5] h−1 Mpc for the hexadecapole (green
crosses).

Table 4. Results from fitting the 84 N-Series sky mocks with our fiducial methodology. The columns denoted by x̃ are the mean,
Sx denotes the standard deviation, and the bias (defined by equation 23) is denoted by bx, with x = f , α, ε.

Model ˜f σ8 Sf bf α̃ Sα bα ε̃ Sε bε Nmocks

Results for fiducial methodology with N-series sky mocks
�max = 2 [27.5,117.5] 0.459 0.051 −0.003 0.998 0.014 −0.002 4e−4 0.019 4e−4 81
�max = 4 [27.5,117.5] 0.471 0.037 −7e−5 1.0 0.013 −8e−5 1e−4 0.010 2e−4 83
�max = 4 [47.5,117.5] 0.471 0.042 −5e−4 0.999 0.013 −0.001 −5e−4 0.014 −5e−4 84
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Growth rate measurement from LRG clustering 4201

Figure 10. Systematic errors in RSD and AP parameters from using different multipole combinations in the fit. From left to right: mean of �f = f − fexp,
�α = α − αexp, and �ε = ε − εexp. These measurements were obtained from fitting N-Series sky mocks using two configurations: (1) multipoles up to order
� = 2 and (2) multipoles up to order � = 4. The left-hand panel includes the result from the previous work (Alam et al. 2017a). The less significant biases are
obtained by the monopole + quadrupole fits. Including the hexadecapole reduces the bias and variance producing more significant bias in f and larger biases
in α and ε.

quadrupole only analysis as our final result of this work. Based on
the results from N-Series we adopt σSYS

f σ8
= 0.004, σSYS

α = 0.001,
and σSYS

ε = 5e−4 as an estimate of the potential bias of f, α, and ε.

6.2 Testing systematics with eBOSS-mocks

We will dedicate this section to test the variance of the methodology
developed in Section 4. This analysis will be done using two sets of
approximative mocks, the QPM and EZ described in Section 3, both
built with the same properties of our eBOSS sample. The mocks
were calibrated to match the data, however, these approximative
mocks lack the accuracy to study the biases of our methodology.
As shown in Fig. 11, the QPM and EZ mock have a small
mismatch in the monopole at small scales. Additionally, both seem
to systematically underestimate the hexadecapole. Bearing this in
mind, our estimates of the bias will only come from the results of the
N-Series Cut-sky mocks obtained in the last section,4 we proceed
to quantify the dispersion of the fitting methodology. Our specific
goal is to estimate the dispersion expected around the parameters
of interest of our model. This will be done by applying the fitting
methodology from Section 5.3 to 100 of our individual QPM an EZ
mocks, which will give us 100 estimates of the best-fitting values.

We test two cases: (1) Considering only the multipoles up to
� = 2 (skipping the hexadecapole), and therefore following the
methodology used in previous analysis performed with the LRG
sample, which we will refer to as ‘ξ 0 + ξ 2’. We also consider the
effect of extending the multipoles up to � = 4 and using the full
range for all multipoles, which we will refer to as ‘ξ 0 + ξ 2 + ξ 4’.

We used the cosmology use for the QPM mocks generation
in order to compute their comoving coordinates, and the fiducial
cosmology for computing those of the EZ mocks. Table 5 sum-
marizes the results from our fits. The first block corresponds to
the monopole + quadrupole fits using the QPM/EZ mocks; the
second block describes the analysis adding the hexadecapole to
our fits. The dispersions obtained from our two sets of mocks

4The N-series mocks provided an estimate of the biases on a sample that is
similar to that of BOSS-LRG; the mean redshift was slightly lower than the
one from the eBOSS LRG sample considered in this work but it had similar
clustering properties, i.e. the galaxy bias.

when only using the monopole and the quadrupole in the fits (first
block of Table 5) are fairly consistent for all of the parameters
of interest: S

QPM
f σ8

= 0.113 and SEZ
f σ8

= 0.122, SQPM
α = 0.039 and

SEZ
α = 0.043, and SQPM

ε = 0.053 and SEZ
ε = 0.044. The dispersion

is also consistent with previous results found on the anisotropic
LRG DR14 BAO analysis from Bautista et al. (2018) where:
SBAO

α = 0.048 and SBAO
ε = 0.055.

In order to compare with the previous results from BOSS reported
in Alam et al. (2017b), we need to rescale the variance using
the differences in volume between the two samples; the effective
volume of our sample is 0.9 Gpc3 while BOSS–CMASS accounts
for 4.1 Gpc3 in the [0.5,0.75] redshift slice. The CMASS sample
reported the following standard deviations for the [0.5,0.75] redshift
slice: SBOSS

f σ8
= 0.058, SBOSS

α = 0.016, and SBOSS
ε = 0.022 (table 6

of Alam et al. 2017b), we can scale them roughly to the eBOSS
volume using SeBOSS2

X = (SBOSS2

X × 4.1 Gpc3)/0.9 Gpc3, yielding the
following scaled dispersions: SBOSS

f σ8
= 0.124, SBOSS

α = 0.034, and
SBOSS

ε = 0.047. These values are in agreement with the dispersion
obtained with our QPM/EZ mocks.

Now, let us examine the fits that include the hexadecapole. The
dispersion obtained from the two sets of mocks is also consistent
for the parameters f and ε: S

QPM
f σ8

= 0.090 and SEZ
f σ8

= 0.089,
and SQPM

ε = SEZ
ε 0.050 and SQPM

α = SEZ
α = 0.028. Also we observe

the dispersion in all parameters decreases when considering the
hexadecapole as expected.

Fig. 12 shows the distribution of the differences between the
parameters of interest and their expected values on a mock-by-
mock basis, i.e. �fσ 8 = fσ 8 − fσ 8exp〉, �α = 〈α − α exp〉, �ε = 〈ε
− ε exp〉, and for b = 1 + F

′
, �b = 〈bσ 8 − bσ 8exp〉, for both the

analyses using multipoles up to � = 2 and up to � = 4. Reviewing
the monopole + quadrupole fits (in blue dots) reveals that both sets
of mocks show a well-behaved distribution that is centred close to
zero and is symmetric. From the hexadecapole fits (red x’s), we
also observe symmetric distributions centred around zero, however,
especially the 1D distributions for the fσ 8 and ε parameters are
slightly shifted.

These shifts in the distributions when considering the hexade-
capole are related to the QPM/EZ mocks poor precision and to the
fact that the model and the mean multipoles present mismatches,
the following paragraphs will briefly show these mismatches. As
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4202 M. Icaza-Lizaola et al.

Figure 11. Mean QPM (dotted blue line) and EZ (solid red line) mocks and DR14 correlation function (black dots), all computed in the fiducial cosmology.
QPM and EZ mock underestimate the hexadecapole. The monopole (left) shows small mismatches between the mocks and the data at small scales, the
quadrupole data (centre) presents a large correlation in the large scale quadrupole that lies outside the 1σ variation observed in the mocks, the hexadecapole
data (centre) has a larger amplitude than the one predicted by the mocks.

Table 5. Results from fitting the 100 QPM/EZ mocks for FS analysis. We include the analysis for
both cases using the hexadecapole in addition to the monopole and quadrupole. The columns denoted
by x̃ are the mean, and the Sx denotes the standard deviation. The variables are the difference of the
parameters of interest compared to their expected values on a mock-by-mock basis, i.e. �fσ 8 = 〈fσ 8

− fσ 8exp〉, �α = 〈α − α exp〉, �ε = 〈ε − ε exp〉, for both the analysis using multipoles up to � = 2
and using multipoles up to � = 4.

Model ˜�f σ8 S�f σ8
˜�α S�α

˜�ε S�ε χ2/d.o.f Nmock

Monopole-Quadrupole fits
FS-QPM MQ −0.036 0.113 0.003 0.039 0.006 0.053 1.0 97
FZ-EZ MQ −0.007 0.122 0.009 0.043 0.001 0.044 1.0 91

Including Hexadecapole
FS-QPM −0.018 0.090 −0.011 0.050 0.009 0.028 1.1 84
FS-EZ −0.024 0.089 0.005 0.050 0.008 0.028 1.0 97

we will see, the biggest mismatch between mock and model occurs
in the hexadecapole for the QPM mocks and in the quadrupole for
the EZ mocks.

Fig. 13 shows a comparison between the mean of the mocks and
the model templates built with the true cosmology of the mocks5

denoted by ‘Model GS f(z = 0.72)’. The left-hand panel shows the
comparison between the mean of the QPM mocks and its model
template and the equivalent comparison for the EZ mocks is in the
right-hand panel. The growth factor used for building the model in
the right-hand panel is at the effective redshift of the mocks.

The figure reveals that the mean of the QPM mocks does not
match the model with the cosmology used for their generation (grey
solid line), which is evident in the quadrupole residuals. However,
a template using a growth factor corresponding to a lower redshift
(z = 0.56) is a better match with the mean of the mocks (red dotted
line); this model is denoted by ‘Model GS f(z = 0.56)’ and is shown
with red dotted lines.

From this analysis we can draw the following conclusions. First,
the GSRSD model cannot match the multipoles of the QPM mocks,
as they show a mismatch in the mean of the mocks and the model
for the quadrupole, giving rise to a higher value than the input
value of the simulations. Secondly, the model of the hexadecapole
is systematically larger than the mean of the mocks, and in particular

5the cosmology used for building the mocks.

any conclusion about the bias of the hexadecapole cannot be
extracted from the fits of the QPM mocks.

The right-hand panel of Fig. 13 shows an equivalent comparison
between mean and model template using the EZ mocks. As for the
QPM mocks we also see a mismatch, but this time between the
small scales of the quadrupole: the template with the cosmology
and redshift of the EZ mocks (red dotted line) does not match with
the mean quadrupole of the mocks (black solid line).

It is interesting to notice that the mean hexadecapole matches the
template. EZ mocks describes better the hexadecapole than QPM
because the effective bias model encoded in EZ mocks accounts for
both 2- and 3-point statistics (Chuang et al. (2015), EZmock paper).
Indeed, the 3-point correlation function of EZmocks (fig. 8, Chuang
et al. (2015)) is more consistent with N-body simulations, compared
to QPM (Fig. 10, White et al. 2014, QPM paper). Since the high
order statistics of EZmocks are better, the high order multipoles are
also more reliable. Thus we can expect to get better fits when using
the hexadecapole information.

We also notice that the mismatch in the quadrupole behaves
different for different scales, the scales lower than 50 h−1 Mpc are
overestimated and the scales larger than 50 h−1 Mpc are underes-
timated. Thus, the EZ mocks seem to not be reproducible by the
model. Apparently, the template with the mocks cosmology fits the
mean better, but the template is not capable of fitting all of the scales
of the quadrupole and the hexadecapole simultaneously.
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Growth rate measurement from LRG clustering 4203

Figure 12. Scatter triangle plots comparing fits for full shape fits using ξ0 + ξ2 (blue dots) and ξ0 + ξ2 + ξ4 (red x’s) for QPM (up) and EZ (down) mocks.
We show the difference of the best-fitting values with respect to the expected values for each of the parameters of interest. The means are indicated as solid
lines for the two cases explored. The dotted lines indicate the expected values, which are zero for all cases.

MNRAS 492, 4189–4215 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/3/4189/5691332 by U
niversity of D

urham
 user on 05 February 2020



4204 M. Icaza-Lizaola et al.

Figure 13. Mean QPM/EZ mocks versus template with mock cosmology. The error bars are smaller than the size of the points. For QPM mocks, the template
with the mocks cosmology does not match the mean of the mocks (black line), this is evident in the quadrupole and hexadecapole residuals. For the EZ
mocks, the template with the mocks cosmology fits the mean better, but the template does not match all of the scales of the quadrupole and the hexadecapole
simultaneously.

We can summarize the results of this section as follow: (1) the
dispersion obtained from both sets is consistent with each other and
with previous results from BOSS (Alam et al. 2017b) and from the
DR14 BAO group (Bautista et al. 2018). (2) both sets of eBOSS
mocks lack the accuracy to study the biases of our methodology: the
QPM mocks seem to slightly overpredict the quadrupole expected
by the GSRSD model and are not a good match to the hexadecapole.
The EZ mocks have a better match to the hexadecapole, but cannot
match the quadrupole at small scales (lower than 50 h−1 Mpc).

6.3 Comparison of AP parameters results with BAO-only fits

In this section, we compare our results to those obtained in Bautista
et al. (2018), which is a previous analysis using this same sample.
The left-hand panel of Fig. 14 shows the difference between our
QPM FS fits to the combined sample and the expected value
compared to those from the anisotropic BAO parameters, the later
taken from Bautista et al. (2017). The dispersion for the anisotropic
warping, ε, from BAO fits is slightly larger compared to the FS best
fits. In an RSD analysis other parameters that affect the quadrupole
are included (most significantly the growth factor f), so it is not
surprising that FS analysis breaks some degeneracies in ε and
reduces its dispersion. There is also a small shift in the isotropic
dilation parameter, α, when comparing the FS analysis best fits to
those coming from BAO. The left-hand panel of Fig. 14 shows the
scatter plot for α, with a Pearson correlation factor of r = 0.5. There
are several differences in the fitting methodology between these two
fits. Obviously the modelling of the signal is different in BAO and
in our RSD + AP model, but in addition the fitting range used in
BAO is wider in its r-range that is extended to 180 Mpc h−1 while
our FS analysis is constrained to r-values lower than 130 Mpc h−1.
Also, the binning used in BAO is 5 Mpc in width, while this work
is using bins with a width of 8 Mpc.

6.4 Testing the impact of spectroscopic incompleteness

To test the effect of redshift incompleteness in our clustering, we
consider three cases: the first is our mock catalogues with no redshift
failures. Then, we study the effect of the two mitigation techniques
described in Section 2.3.2. The redshift failures are added to the
mocks by associating a position in the plate to each galaxy, then the
catalogue of binned probabilities is used to mimic the effect of the
redshift failures observed in our data. The second case explored is
the up-weighting methodology, and finally, for the third case, the
forward-modelling technique.

Fig. 15 displays the impact of different mitigation methods on
the average of all 1000 mock catalogue correlation functions. The
three lines represent the case without redshift failure corrections
and the up-weighting and forward modelling corrections. While
the monopole is equally well recovered in all three cases, the
quadrupole shows a clear shift (i.e. bias) at all scales when using the
up-weighting method. The forward-modelling corrections recover
the expected values for scales smaller than r = 140 Mpc h−1, but
show slight discrepancies at larger scales.

Table 6 lists the results of the best-fitting parameters found by
fitting all 100 QPM mocks using both correction schemes. We
compared the results of the mocks where redshift failures are applied
and corrected by one of the two mitigation techniques with the case
where no redshift failures are considered. We report the difference of
the mean of the best fits as an indicator of the systematic bias related
to the spectroscopic completeness denoted by �f , �α, and �ε; we
also report the dispersion Sx, where x = f , α, ε. We observe that
the up-weighting technique differs from the case without redshift
failures by |�f| = 0.016 (�f /(Sf /

√
Nsim) ∼ 0.7σ ), |�α| = 0.001

(0.1σ ), |�ε| = 0.003 (0.7σ ). When using the forward modelling,
the systematic error reduces to |�f| = 0.004 (0.1σ ), |�α| =
<0.001 (<0.1σ ), and |�ε| = 0.005 (0.8σ ). There is an increase
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Growth rate measurement from LRG clustering 4205

Figure 14. Left-hand panel: A comparison of the BAO fits and full shape using ξ0 + ξ2 for the mocks. Right-hand panel: comparison of best fits in isotropic
dilation parameter for FS and BAO for the mocks. The dispersion for the anisotropic warping, ε, from BAO fits is slightly larger compared to the FS best fits.
FS analysis breaks some degeneracies in ε and reduces its dispersion.

Figure 15. Impact of the redshift completeness on the multipoles and
the effect of the mitigation techniques for correcting potential biases. The
monopole (top), the quadrupole (bottom), and hexadecapole (middle) are
presented in three cases: without redshift failures, correcting by the up-
weighting technique, and correcting using the Forward modelling technique.
While the monopole is well recovered by the two correction techniques, the
quadrupole/hexadecapole shows a clear shift (i.e. bias) at all scales when
corrected with the up-weighting method. The forward-modelling recovers
the expected values for scales smaller than r = 140 Mpc h−1.

of the dispersion for the case of the up-weighting technique in the
parameters f and ε, which decreases for f for the forward modelling
scheme but is still larger when compared to the case without redshift
failures, but increases the shift by 0.002 on ε. In any cases the
biases are less than 1σ . Given these results, we conclude that the
forward modelling scheme performs slightly better than the up-
weighting scheme. Therefore, in the rest of our analysis, we will
adopt the forward modelling scheme for correcting the redshift
failures.

7 R E S U LT S O N T H E LR G D R 1 4 SA M P L E

We performed the analysis on the eBOSS–CMASS sample com-
bining the NGC and SGC (if not otherwise stated). The covariance
matrices used in our fits were rescaled by a factor of 0.9753 in order
to account for the slight mismatch between the footprint area of the
data and of the mocks.

Before running a full Monte Carlo Markov Chains (MCMC)
analysis, we will compute the best-fitting parameters using the
minimization methodology of the last chapter, which will help
us understand how susceptible our models are to changes in the
distance range of our analysis.

While these results were not expected to provide any information
on the confidence contours of our parameters (as an MCMC would),
they give an idea of the maximum likelihood values. The main
reason for performing these tests is that our MCMC analysis in
its current implementation is prohibitively time-consuming; we
simply cannot afford to run all the tests on our data using a full
MCMC approach (as we will see in appendix A, our models can
be degenerated when using broad biases, how large the biases
can be depends on the range of the bins and on the error sizes.
These degeneracies make the convergence significantly slower).
Further development needs to be done in order to reduce the time of
convergence of our final analysis. These maximum likelihood tests
can also be used as a check of the robustness of our MCMC results.

Our first test compares the robustness of the fit against variations
in the maximum fitting range (the maximum distance in h−1 Mpc
where the correlation function is measured). This test is particularly
important in our analysis. Fig. 5 shows that the quadrupole estimates
made with the data show large correlations at scales larger than
100 h−1 Mpc, which are outside the variance observed in the mocks.
This anomalous correlation at large scales affects the capability of
our model to fit the data multipoles. We suspect this behaviour could
be related to an unknown systematic or a statistical fluctuation.
Given that we could not identify any systematic that affects the
quadrupole, and that we cannot exclude a large fluctuation, we
also analysed the behaviour of the fits when those large scales are
eliminated in all multipoles with � ≥ 2. Our main result, however,
is quoted with the complete range. If this behaviour is repeated in
the DR16 analysis, that will indicate a systematic error that needs to
be analysed properly to provide non-biased results. If the origin of
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4206 M. Icaza-Lizaola et al.

this correlation is a statistical fluctuation, this feature will probably
be diluted with an increase in volume.

Thus, before exploring the likelihood surface, we performed some
maximum likelihood fits using a variety of ranges. The fiducial
case uses the complete range between [28,124] h−1 Mpc for the
multipoles up to � = 0, 2, 4. We also tested some variants of this
range to investigate the impact of cutting the large scale of each
multipole on the best fits.

Table 7 lists the results of the best fits for the fiducial cases and
several variants and Fig. 16 shows how the best fit models compare
to the data. From Table 7, we conclude that reducing the range
of the fit from 128 to 92 h−1 Mpc improves the goodness of the
fit for both the monopole + quadrupole fit and the monopole +
quadrupole + hexadecapole fit. The χ2/d.o.f., a measurement of
the goodness of a fit, reduces from 2.1 to 1.35 for the �max = 2 case
(However, there is no reduction when we reduce the range for both
monopole and quadrupole where χ2/d.o.f. stays at 2.09), and from
1.81 to 1.16 if we eliminate large scales for all � = 0, 2, 4 (It stays
the same if we only limit hexadecapole, 1.14 if we restrict the range
of the large scales for both � = 2, 4 but not for the monopole). By
using the complete range we increase the discrepancy between the
fits using different order multipoles (i.e. �max = 2 versus �max = 4).
The difference in the best-fitting parameters for the growth factor f is
0.211 for the complete ranges (row one minus two), and it becomes
0.139 when reducing the quadrupole and hexadecapole ranges to
[28,92] h−1 Mpc (row three minus six). Similar trends occur with
ε, where the differences in the best-fitting values range from 0.064
to 0.042. These trends indicate that the large correlation observed
in the quadrupole is not properly modelled by our CLPT-GSRSD
template. When we exclude the large scales of the monopole, there
is a significant shift in both f and ε, with f shifting from 0.905 to
0.589 and ε from −0.026 to 0.088. These shifts are expected when
eliminating the large scales on the monopole. Finally, excluding
the large scales on the hexadecapole affects the f fits, and mildly
affects the ε fits, as the quadrupole and hexadecapole capacity to
break the degeneracy between f and ε is derived from the BAO
scales. The goodness of the fit, χ2/d.o.f., improves when removing
the large scales, due to the incapability of modelling the anomalous
correlation; this approach loses all the information encoded in the
BAO in the quadrupole and hexadecapole. Consequentially, the
results for the AP parameters are degraded and potentially biased.
We will perform the MCMC exploration for the same four cases
for completeness, but we will quote the full range as our final
result.

As stated, we used an MCMC methodology for exploring the
likelihood surface, which was done using the Monte Python public
code (Audren et al. 2013). We use flat priors for our parameters; the
range of these priors is presented in Table 8. We run two different
chains in the combined data set (NGC + SGC). The first is with
the monopole and quadrupole only (ξ 0 + ξ 2) and using the fiducial
distance range. The second chain also runs with the monopole and
quadrupole (ξ 0 + ξ 2), but restricting the range in the quadrupole to
[28,92] h−1 Mpc (the monopole stays in the same range of [28,124]
h−1 Mpc). Table 9 displays the results from the MCMC analysis.
Our final measurement was performed on the combined sample,
which includes the NGC and the SGC, and was done using the
fiducial methodology (i.e. 8 h−1 Mpc bins on the fiducial range).
The first block reports the final result of this work, the monopole and
quadrupole-only fits. The second block is for the ξ 0 + ξ 2 fits when
excluding the large scales of the quadrupole. The third block lists
the results for the Galactic hemispheres separately, this is shown for
identification of any residual systematics in the data; we will discuss

these results at the end of this subsection. The fourth block is quoted
as a reference and it shows the fits of the BAO-only analysis done
with this same sample in Bautista et al. (2018). MCMC chains using
the hexadecapole are included in the final block for completeness
and discussed in the Appendix B as a robusteness test, but it is not
part of our main results.

Fig. 17 shows the likelihood surfaces for the two runs over the ξ 0

+ ξ 2, one chain is in the fiducial range and the other is eliminating
the large scales for the quadrupole, i.e. [28,92] h−1 Mpc. The latter
is added for completeness, but as stated before, our final result
will be quoted using the full range. The figure contains the 1−2σ

confidence contours for the growth factor fσ 8, the linear bias bσ 8,
the dilatation parameter α, and the warping parameter ε, together
with their marginalized 1D distributions. The 1-σ regions are fully
contained inside our priors for both cases. However, the 2-σ regions
are cut by our prior to large values of ε and small values of α,
our reasons for not using larger priors on the Alcock-Paczynski
parameters will be discussed in the Appendix A.

The results of fσ 8 and α are consistent within 1σ , for both ranges.
However, given the anticorrelation between the ε and f parameters
and the fact that the quadrupole is dominated by ε at the larger
scales, when including the larger bins of the quadrupole the ε is
driven from its expected value and as a consequence f shifts as well.
When the last three bins of the quadrupole are avoided we achieve a
significant improvement in the goodness of the fit towards ∼ 1; the
price paid for this approach is to eliminate the BAO information.
This increases the degeneration of the parameters and biases the
results, thus we lose information that constrains ε, which in turn
causes the contour areas to become larger, providing more freedom
to the fitter to move f to lower values (Fig. 17).

Finally when comparing the results for the ξ 0 + ξ 2 with the fit
using ξ 0 + ξ 2 + ξ 4 we find agreement within 1 − σ for fσ 8 and α,
but the ε values have a 1.3 − σ difference. We should notice that
tighter priors were used for hexadecapole because a bi-modality
appears using the priors defined in Table A, more discussion about
the results and the prior selection for the hexadecapole is provided
in the Appendix B.

Fig. 18 displays the best-fitting anisotropic models compared
to the data for our fiducial choice of analysis. As expected, the
monopole and quadrupole are visually good fits for the data, except
for the large scales of the quadrupole where the correlation becomes
strongly positive (scales larger than 90 h−1 Mpc).

To finalize this section, we analyse separately the NGC and the
SGC. Fig. 19 displays the 1σ and 2σ confidence contours obtained
from running an MCMC analysis separately on both hemispheres.
They are computed using our standard priors quoted in Table 8. The
contours in both galactic caps are poorly defined and the 1σ interval
in ε and α are sharply cut by our imposed priors.

As discussed in appendix A our methodology has difficulty on
fixing the AP parameters to a unique value given the size of our
errors compared to the strength of the BAO signal, this leads to
unphysical values of ε and α (and therefore f due to their correlation
with ε) being accepted by the MCMC chain and affects all of the
constraints of our parameters.

Given that the errors are larger for the North and the South
separately that in the combined sample, the degeneration is stronger.
This leads to several regions being accepted to within 1-σ that would
otherwise be rejected due to their inability to reproduce the BAO
peak. More data will tend to reduce this behaviour and that is in fact
what we see in the combined sample, where the errors are smaller.

Fig. 20 presents the data multipoles for the NGC (blue points) and
SGC (red x’s); the error bars correspond to their 1-σ variance from
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Table 6. Testing for Redshift Failures. Fitting results from 100 QPM mocks using two different techniques for mitigating
the redshift failures. We compared the results of the mocks where redshift failures are applied and corrected by one of
the two mitigation techniques to the case where no redshift failures are considered. We report the difference of the mean
of the best fits as an indicator of the bias related to the spectroscopic completeness denoted by �f, �α, �ε and we also
report the dispersion by �Sx, where x = f, α, ε.

Mitigation methodology �f Sf �α Sα �ε Sε �F
′

�F
′′

�σFOG

Testing impact of mitigation techniques for redshift failures
No fiber collisions – 0.232 – 0.113 – 0.050 – – –
Forward modelling +0.003 0.252 <−0.001 0.116 +0.005 0.061 0.005 0.394 −0.271
Fiber weights −0.016 0.250 −0.001 0.112 +0.003 0.054 <0.001 −0.141 −0.234

Table 7. Best fits from maximum likelihood fits for different scenarios: using the fiducial ranges for the multipoles up to � = 2 (first
line), using multipoles up to � = 4 (second line), and systematically excluding the large scales for the different multipoles considered
in the fits (lines three to seven).

Model Range ( h−1 Mpc) F
′

F
′′

f α ε σ FOG χ2

Best fits from maximum likelihood for LRG sample DR14
Varying maximum range and �

ξ0 + ξ2 [28,124][28,124] 1.005 0.74 0.905 0.947 − 0.026 0.009 42.4/20 = 2.1
ξ0 + ξ2 + ξ4 [28,124][28,124][28,124] 1.05 − 2.7 0.694 0.965 0.038 − 1.51 59.81/33 = 1.81

ξ0 + ξ2 [28,124][28, 92] 0.91 − 3.28 0.710 0.935 0.050 2.48 24.3/18 = 1.35
ξ0 + ξ2 [28,92][28, 92] 0.753 − 3.73 0.589 0.874 0.088 4.21 25.13/12 = 2.09

ξ0 + ξ2 + ξ4 [28,124][28,124][28,92] 1.07 − 2.58 0.690 0.969 0.038 0.96 52.0/29 = 1.79
ξ0 + ξ2 + ξ4 [28,124][28, 92][28,92] 0.937 − 2.96 0.571 0.92 0.092 5.07 28.6/23 = 1.14
ξ0 + ξ2 + ξ4 [28,92][28, 92][28,92] 0.73 − 3.79 0.508 0.858 0.120 6.49 24.34/21 = 1.16

Figure 16. The maximum likelihood model for four cases: (1) using
multipoles up to � = 2 in the fiducial range, (2) using multipoles up to
� = 4 for the fiducial range, (3) using multipoles up to � = 2 but restricting
the quadrupole range to [28,92] h−1 Mpc, and (4) using multipoles up to
� = 4 but restricting the range of the quadrupole and hexadecapole to [28,92]
h−1 Mpc.

Table 8. Flat priors ranges on the parame-
ters of the model.

Measurements with LRG sample DR14.

f [0.0,2.0]
F

′
[0.0,3.0]

F
′′

[−15,15]
σ FOG [0,40]
α [0.8,1.2]
ε [−0.2,0.2]

the sample covariance matrix computed using the QPM mocks. The
blue solid line represents the fits made by our MCMC analysis in
the NGC, the red dashed line is the analogue for the SGC. These fits
are done using the mean values obtained by our MCMC chains,
which we use as our estimates of the best fits. The NGC and
SGC have a significant difference in the clustering amplitude at
small scales, and the peak is shifted in one hemisphere compared
with the other (it is not well defined in either of the hemispheres).
Both models reasonably reproduce the multipoles; this is especially
true in the smaller scales which are the ones with more weight in
the fit (due to their smaller variance). There is a difference in the
multipole amplitude between both galactic caps, as a consequence
the contours in Fig. 19 are displaced among each other, the results
for the combined sample surrounds the regions where both contours
intercept (see Table 9).

8 C O S M O L O G I C A L I M P L I C AT I O N S

Table 10 presents our final constraints on the growth factor fσ 8,
the angular diameter distance DA(z), and the Hubble parameter
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4208 M. Icaza-Lizaola et al.

Table 9. Results for the DR14 LRG sample. The first block is for our fiducial methodology, using the fiducial range for the ξ0 + ξ2 fit. The second block is
for the ξ0 + ξ2 fits when excluding the large scales of the quadrupole. The third block shows the fits separating the hemispheres NGC and SGC and using ξ0

+ ξ2 in the fiducial range. The fiducial value for the σ 8(zeff = 0.72) = 0.55. The Eulerian bias is defined as b = 1 + F
′
.

Case fσ 8 bσ 8 <F
′′

> σ FOG α ε

Measurements with LRG sample DR14 official version
ξ0 + ξ2 [28,124][28,124] 0.454+0.119

−0.140 1.110+0.116
−0.100 2.245+3.849

−4.35 3.713+2.987
−2.31 0.955+0.055

−0.05 −4e − 04+0.090
−0.050

ξ0 + ξ2[28, 124][28, 92] 0.337+0.121
−0.110 1.088+0.101

−0.100 −1.19+4.002
−2.900 5.027+2.721

−2.870 0.930+0.050
−0.050 0.083+0.059

−0.06

ξ0 + ξ2 NGC 0.598+0.150
−0.190 1.262+0.121

−0.150 4.372+3.657
−5.810 3.008+2.740

−1.940 1.103+0.066
−0.100 −0.05+0.085

−0.040

ξ0 + ξ2 SGC 0.359+0.168
−0.16 1.119+0.169

−0.12 0.328+1.725
−1.96 4.783+3.732

−3.00 0.929+0.087
−0.07 0.077+0.081

−0.07

Case Range α⊥ α|| corr α ε

Measurements BAO-only with LRG sample DR14 from Bautista et al. (2018). Range of fits [32,182] and 8 Mpc/h bin size
Anisotropic 26-178 1.01+0.08

−0.05 0.82+0.09
−0.08 −0.39 0.942+0.048

−0.024 −0.067+0.033
−0.022

Case fσ 8 bσ 8 <F
′′

> σFOG α ε

Measurements with LRG sample DR14 including hexadecapole
ξ0 + ξ2 + ξ4 [28,124] [28,124] [28,124] 0.31+0.09

−0.09 1.19+0.10
−0.10 −1.1+3.2

−3.3 5.8+3.3
−3.2 0.986+0.047

−0.046 0.091+0.046
−0.048

Figure 17. The shaded regions show the 1–2σ confidence surfaces found
by our MCMC chains for the RSD-AP parameters for the ξ0 + ξ2 space
in the fiducial range (blue solid) and when excluding the large scales in
quadrupole (red dashed). The confidence contours for the growth factor fσ 8,
the linear bias bσ 8, the dilatation parameter α, and the warping parameter
ε are indicated, along with their 1D distributions. The dashed lines of each
histogram are the mean values found by the MCMC chain.

H(z) including the statistical and the systematic error.6 Our fiducial
cosmology was used to convert the best-fitting dilation parameters
α|| and α⊥ into distance measurements. The table includes the same
variants of the methodology quoted in Table 9 for the combined
sample, and the values are in agreement with each other within 1σ .

Our final constraint, the logarithmic growth of structure mul-
tiplied by the amplitude of dark matter density fluctuations, is
f(zeff)σ 8(zeff) = 0.454 ± 0.134. Using the AP dilation scales

6The systematic error is based on the results from N-Series.

Figure 18. This plot shows how our data (black dots) compares to our
model (red solid line). The model is built using the values from the first
line of Table 9, that were computed using multipoles up to � = 2 and
our combined sample (NGC + SGC) in the fiducial range. The model
is visually a good fit for the data, except for the large scales of the
hexadecapole.

allowing us to constrain the angular diameter distance and the
Hubble distance we arrive to: DA(zeff ) = 1466.5 ± 133.2(rs/r

fid
s )

and H (zeff ) = 105.8 ± 15.7(rfid
s /rs) km s−1 Mpc−1 where rs is the

sound horizon at the end of the baryon drag epoch and rfid
s is its

value in the fiducial cosmology at an effective redshift zeff = 0.72.
These measurements correspond to relative errors of 29.4 per cent,
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Growth rate measurement from LRG clustering 4209

Figure 19. Equivalent to Fig. 17 but presenting the MCMC chains for the
RSD-AP parameters in the NGC (blue solid) and in the SGC (red dashed);
both of them are in the fiducial range.

Figure 20. The blue dots and red x’s represent the NGC and the SGC
measured data points for the Monopole (top) and the Quadrupole (bottom).
The errors bars are the standard deviation computed using the QPM mocks.
The solid lines indicate the best model found by the MCMC for the
NGC/SGC.

9.1 per cent, and 14.9 per cent, respectively, considering the system-
atic error.

Bautista et al. (2018)’s analysis with the DR14 LRG sample
reported a low statistical power of the current sample, and generated
anisotropic BAO results yielded slightly worse results than isotropic
fits. Further data releases from eBOSS should increase the statistical
significance of our measurements.

Fig. 21 presents our measurements compared with previous
results from SDSS-III-BOSS DR12 from both galaxies (Alam et al.
2017a) and Lyman-alpha quasars (du Mas des Bourboux et al. 2017;
Bautista et al. 2018), the eBOSS quasar measurements from Gil-
Marı́n et al. (2018), Zarrouk et al. (2018), Hou et al. (2018),7

and the Main Galaxy Sample (MGS) from SDSS-II-DR7 (Ross,
Percival & Manera 2015). Our measurements are consistent with
previous analyses and the �CDM model.

Our measurements with the CMASS–eBOSS sample are corre-
lated with the CMASS measurements. The correlation coefficient
between the two measurements was roughly estimated to be 0.16
(Bautista et al. 2018); a proper measurement of this correlation will
be achieved for the DR16 analysis.

Finally, in order to validate our results, we compute a forecast
for the joint BAO and RSD parameters using LRG DR14 samples.
The observed galaxy power spectrum is modelled as in Ballinger,
Peacock & Heavens (1996), Simpson & Peacock (2010) using the
following equation:

P obs
gg (k, μ) = 1

α‖α2
⊥

[
bσ8(z) + f σ8(z)μ2

A2 + (1 − A2)μ2

]2

×
Pmm,z=0

[
k

α⊥

√
1 + ( 1

A2 − 1)μ2
]

σ 2
8,z=0

+ 1

n
, (24)

where A = α�/α⊥ denotes the relative distortion in the radial
and transverse directions due to the AP effect. Pmm and Pgg are,
respectively, the matter and galaxy power spectrum; n is the number
density of the galaxies. The uncertainties on the BAO and RSD
parameters are estimated by computing the Fisher matrix from the
observed galaxy power spectrum, Fij, following Tegmark (1997)
with the parameter set p ≡ {

ln(α‖), ln(α⊥), ln(bσ8), ln(f σ8)
}

. In
order to account for the error induced by redshift uncertainties, we
multiply the integrand of Fij by a damping factor of exp[− (kμσ r)2],
where σ r = ∂r/∂zσ z and r is the comoving distance.

The second block of Table 10 lists the forecast when including the
AP test. The measurements of H(z), DA, and fσ 8 are, respectively,
3.9, 3.1, and 2.6 times larger than the predictions. While this result
might be caused by the non-uniform footprint of the sample at its
current state, the BAO measurements also reported errors larger
than the predictions.

9 C O N C L U S I O N S

The RSD effect generates an artificial anisotropy on the clustering
of galaxies which can be used to constrain the growth factor,
f(z)σ 8, and the radial and angular distances to the sample (i.e.
the H(z) and DA(z) parameters). We used the LRG sample from
the first two years of the eBOSS, denoted as DR14, to measure
these parameters at the mean redshift of the survey (z = 0.72). We
presented the first full-shape analysis of this sample (i.e. modelling
RSD simultaneously with an AP parametrization), and that should

7Fig. 21 quotes the (Gil-Marı́n et al. 2018) result; however, the three
measurements from the different analyses were shown to be fully consistent.
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4210 M. Icaza-Lizaola et al.

Table 10. Cosmological constraints on DR14 LRG sample, using DA(z = 0.72)fid = 1535, H(z = 0.72)fid = 101. Systematic
error included.

Model range ( h−1 Mpc) α|| α⊥ fσ 8 DA(z)(rfid
s /rs ) H (z)(rs/rfid

s )
Measurements with LRG sample DR14

ξ0 + ξ2 [28,124][28,124] 0.954 ± 0.149 0.955 ± 0.083 0.454 ± 0.134 1466.5 ± 133.2 105.8 ± 15.7

Forecast

– – 0.707 0.0382 0.0271 0.0538 –

BAO-only

ξ0 + ξ2 [32,182] 0.72 0.82 ± 0.085 1.1 ± 0.065 – –

Figure 21. Measurements from DR14 eBOSS–CMASS sample using
multipoles up to � = 2 (red start) fitting in the range [24,128] h−1 Mpc.

be followed up on and improved on once the full observational
time of the eBOSS survey is completed for the final DR16 sample.
The measured correlation function was decomposed into the first
three non-zero multipoles of its Lagrange expansion, and compared
with theoretical predictions made with a CLPT model combined
with a Gaussian Streaming model (GS). We considered six free
parameters, four RSD-parameters [f, F

′
, F

′′
, σ FoG] and two AP

parameters [α, ε].
We tested our methodology using a set of 84 high-precision N-

Series CutSky mocks built with BOSS–CMASS properties. We
fitted all individual mocks using two different methodologies: using
only multipoles up to � = 2, and using all multipoles up to � = 4.The
fits using all the multipoles were computed in two different distance
ranges, first using the complete [28,124] h−1 Mpc range for all of
them, then removing the smaller scales of the hexadecapole. This
extends on previous works that performed this exploration using
only the monopole and the quadrupole. From the individual fits the
most accurate results (smaller parameter biases in all parameters
normalized by the dispersion) are obtained using the multipoles
up to � = 4 in the full range. Besides the fact we do not find
significant biases in the distributions, when fitting the mean we

noticed that the model hexadecapole does not accurately match the
mean of the mocks, this generates small biases in the fits of the
mean ε parameter. The reason why this mismatch does not bias our
measurements in the individual realizations is because of the larger
errors bars we have on the hexadecapole. This behaviour is related
to the fact that the fits are driven by ε when we include the lower
bins of the hexadecapole. The error bars for those lower scales are
smaller, and therefore their constraining power is larger. This makes
the accuracy of the model at small scales critical.

In order to characterize the statistical properties of the sample,
especially its variance, we run our fitting methodology on two
different sets of low-precision mocks with eBOSS properties: the
QPM and EZ mocks. All of the mocks in both sets are fitted twice,
the first considering only the multipoles up to � = 2, and the second
with multipoles up to � = 4. The dispersion obtained from the
two sets of low-precision mocks was fairly consistent in all cases
and for all of the parameters of interest. However, the biases and
distributions were not consistent with those obtained using high-
precision mocks. The discrepancy arises because the GSRSD model
cannot match the multipoles of QPM/EZ mocks, thus no conclusion
about the bias could be extracted from these fits. They were only
used as a reference for the variance of the best fits for eBOSS-like
mocks.

The tests performed with mocks (high and low precision),
demonstrated that the constraining power of the lower bins of
the hexadecapole is large due to the smaller error bars of those
points. We concluded that including the hexadecapole is desirable;
however, it becomes critical to have accurate models, particularly
of the small scales of the quadrupole and the hexadecapole. In
this work, we adopted the conservative approach of reporting the
ξ 0 + ξ 2 as our final result and used the hexadecapole results only
as a consistency test.

We considered that even if the results with high-precision mocks
validated fitting the hexadecapole with our model, the biases
observed when fitting the mean and the mismatch in the model
hexadecapole for the mean needs further exploration. Additionally,
we did not have high-precision mocks with the properties of the
eBOSS sample available (higher redshift and lower mean density)
and we could not properly study the statistical properties of the
fitting methodology with low-precision mocks.

Our final measurement was performed on the ‘combined’ sample,
using the fiducial methodology considering only the monopole and
quadrupole. We constrained the logarithmic growth of structure
fσ 8 = 0.454 ± 0.134, α|| = 0.954 ± 0.149, and α⊥ = 0.955 ± 0.083.

The eBOSS DR14 LRG sample presents a large correlation in the
large-scale quadrupole that lies outside the 1σ variation observed in
the mocks. This feature could be related to an unknown systematic
effect or just a large statistical fluctuation. Given that we could
not find any systematic that affects the quadrupole, and that a large
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Growth rate measurement from LRG clustering 4211

fluctuation cannot be excluded, we analysed the behaviour of the fits
when we eliminated those large scales in multipoles with � > =2 as
a robustness test for our main result. Avoiding the latest three bins of
the quadrupole achieves a significant improvement in the goodness
of the fit to ∼1; however the price paid is to eliminate the BAO
information, which increases the degeneration of the parameters
and biases the results, thus we lose information that constrains ε,
and the contour regions become larger, giving more freedom to the
fitter to move f to lower values.

We quote as our final cosmological constraint the logarithmic
growth of structure multiplied by the amplitude of dark matter
density fluctuations, f(zeff)σ 8(zeff) = 0.454 ± 0.134, and the
AP dilation scales which allow constraints to be placed on the
angular diameter distance DA(zeff ) = 1466.5 ± 133.2(rs/r

fid
s ) and

the Hubble distance H (zeff ) = 105.8 ± 15.7(rfid
s /rs)kms−1Mpc−1,

where rs is the sound horizon at the end of the baryon drag epoch
and rfid

s is its value in the fiducial cosmology at an effective
redshift zeff = 0.72. These measurements correspond to relative
errors of 29.4 per cent, 9.1 per cent, and 14.9 per cent, respectively,
considering the systematic error.

Our results are consistent with previous measurements and with a
�CDM model using Planck 2018 cosmology. Comparing our result
with the forecasted ones, the measurements of H(z), DA, and fσ 8 are
respectively, about 3.9, 3.1, and 2.6 larger than the predictions. This
result might be caused by the non-uniform footprint in the current
state of the survey, although the BAO DR14 LRG measurements
also reported errors larger than the predictions (Bautista et al. 2018).
We expect a reduction on the statistical error of a factor two by the
end of the experiment for DR16 final analysis.
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The authors thank Alejandro Áviles for the useful discussions
over the model generation using CLPT-GSRSD.

MI is supported by a PhD Studentship from the Durham Centre
for Doctoral Training in Data Intensive Science, funded by the UK
Science and Technology Facilities Council (STFC, ST/P006744/1)
and Durham University. MDL also acknowledges support from the
STFC through ST/P000541/1.

MV is partially supported by Programa de Apoyo a Proyectos de
Investigación e Innovación Tecnológica (PAPIIT) No IA102516, No
IA101518, Proyecto Conacyt Fronteras No 281 and from Proyecto
LANCAD-UNAM-DGTIC-319.

SF is supported by Programa de Apoyo a Proyectos de Investi-
gación e Innovación Tecnológica (PAPIIT) No IA101619.

GR acknowledges support from the National Research Founda-
tion of Korea (NRF) through Grant No. 2017077508 funded by the
Korean Ministry of Education, Science and Technology (MoEST),
and from the faculty research fund of Sejong University in 2018.

This work used the DiRAC@Durham facility managed by the In-
stitute for Computational Cosmology on behalf of the STFC DiRAC
HPC Facility (www.dirac.ac.uk). The equipment was funded by
BEIS capital funding via STFC capital grants ST/K00042X/1,
ST/P002293/1 and ST/R002371/1, Durham University and STFC
operations grant ST/R000832/1. DiRAC is part of the National e-
Infrastructure.

This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility

supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

This research was supported through computational and human
resources provided by the LAMOD UNAM initiative through the
clusters Atocatl and Tochtli. LAMOD is a collaborative effort
between the IA, ICN and IQ institutes at UNAM.

Funding for the Sloan Digital Sky Survey IV has been provided
by the Alfred P. Sloan Foundation, the U.S. Department of Energy
Office of Science, and the Participating Institutions. SDSS acknowl-
edges support and resources from the Center for High-Performance
Computing at the University of Utah. The SDSS web site is ww
w.sdss.org. SDSS is managed by the Astrophysical Research Con-
sortium for the Participating Institutions of the SDSS Collaboration
including the Brazilian Participation Group, the Carnegie Institution
for Science, Carnegie Mellon University, the Chilean Participation
Group, the French Participation Group, Harvard-Smithsonian Cen-
ter for Astrophysics, Instituto de Astrofı́sica de Canarias, The Johns
Hopkins University, Kavli Institute for the Physics and Mathematics
of the Universe (IPMU) / University of Tokyo, the Korean Partic-
ipation Group, Lawrence Berkeley National Laboratory, Leibniz
Institut for Astrophysik Potsdam (AIP), Max-Planck-Institut for
Astronomie (MPIA Heidelberg), Max-Planck-Institut for Astro-
physik (MPA Garching), Max-Planck-Institut for Extraterrestrische
Physik (MPE), National Astronomical Observatories of China, New
Mexico State University, New York University, University of Notre
Dame, Observatorio Nacional / MCTI, The Ohio State University,
Pennsylvania State University, Shanghai Astronomical Observa-
tory, United Kingdom Participation Group, Universidad Nacional
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APP ENDIX A : SELECTING PRIORS

As discussed in chapter 7, Fig. 17 shows that the 1-σ regions are
fully contained inside our priors. However, the 2-σ regions are
clearly cut by our prior to large values of ε. In this section we will
discuss our reasons for not using larger ε priors in our analysis, as
we will see prior selection was challenging giving the size of our
errors.

Fig. 18 shows a comparison between our final model and the
multipoles of the data set, it is clear that the detection of the BAO
signal is week: the error-bars of the monopole have a similar size
to the power of the BAO peak. This is problematic as the BAO
peak locks the AP parameters around a specific value. Given the
limited capability of our methodology to fix the cosmology our
model is vulnerable to being degenerated. As a consequence, we
have to be very careful when choosing our priors as a large prior in
the AP parameters will result in degenerated regions contributing
significantly to our statistics.

This is shown in Fig. A1 where we have run a second MCMC
chain of our fiducial methodology but extending the priors of ε to

Figure A1. This plot is equivalent to Fig. 17, here we are presenting the
MCMC chains of two fits to the RSD-AP parameters in the ξ0 + ξ2 space
done with different priors in ε. The blue solid-line contours use the priors
quoted in Table 8 for all parameters but F2 that is set to zero. The red
dashed-line contours have larger priors on ε which are expanded to [−3, 3]
and also set F2 to zero.

[−0.3, 0.3]. These chains were done with a fixed value of F2 = 0.0
to save computational time as the goal is not to obtain precise
statistics but to show the effect of larger ε priors (F2 contributions to
our model corresponds to second-order corrections on small scales,
primarily broadening the parameter contours). The priors for the
other parameters (i.e. neither ε nor F2) stay at the value quoted in
Table 8.

In Fig. A1, the solid-line blue contours show our default results,
while the dashed-line red ones show those with the enlarged priors
on ε.

A second locus is present for large values of ε and small values
of fσ 8. This second locus is centred somewhere around f ≈ 0.3
assuming a nominal σ 8 value consistent with Planck (σ 8(zeff) =
0.55), which would result in the AP parameters switching the
cosmology to �M(z = 0) ≈ 0.03 (for σ 8(z = 0) = 0.8 and a flat
Universe, assuming that f(z) ≈ �M(z)0.6). This strongly disagrees
with previous constraints made by Planck, that predicts a value of
�M(z = 0) = 0.315 ± 0.007 (Planck Collaboration VI 2018). Hence,
the DR14 data does not allow us to broaden the priors too much,
as the accuracy is not yet there in the data to rule out cosmological
parameters already strongly rejected by Planck measurements.

Fig. A2 shows why this secondary locus is chosen by our MCMC
analysis to be an acceptable fit. The blue line is the median of the
models of 100 points chosen randomly from the subset of MCMC
points within the locus centred around α ≈ 1 and ε ≈ 0 (locus 1
in Fig. A1). The blue shaded regions indicate the 18th and 84th
percentile confidence range. The red line and line-shaded region
correspond to models randomly selected from points of our MCMC
chain inside locus 2 (top panel of A1).

From Fig. A2 we observe that the best-fitting model within locus
2 do not show a well-defined BAO peak. However, statistically, both
sets of models are equally good and indistinguishable in terms of
their likelihood. DR16 should have smaller errors around the BAO
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Figure A2. This figure shows the median and 1-sigma percentiles for two
sets of 100 models built with 100 points chosen randomly from the subset
of those explored by our MCMC. The blue shaded regions correspond to
points inside the peak centred around the expected cosmology (α ≈ 1 and ε

≈ 0). The red line and line-shaded region contours are computed with points
inside the second peak that appears for large values of ε.

Figure A3. This plot is equivalent to Fig. 17, here we are presenting the
MCMC chains of two fits to the RSD-AP parameters in the ξ0 + ξ2 space
done with different priors in α. The solid-line contours use the priors quoted
in Table 8 for all parameters but F2 that is set to zero. The red dashed-line
contours have smaller priors on α which are reduced to [0.9, 1.1] and also
set F2 to zero.

signal which could in principle discard this second solution (locus
2). As we have stated, this second locus is discarded using Planck
CMB constraints, therefore we consider reasonable to choose priors
on the AP parameters that keep it out of our statistics. Considering
mild Planck CMB constraints, it is reasonable to assume priors on α

and epsilon of ±0.2 around their nominal value, as Planck strongly
rejects cosmologies that are beyond that alpha and epsilon range to
several sigmas.

Fig. A3 is included as a robustness test of our methodology, here
our fiducial result is compared with a new MCMC chain computed
reducing the priors of α to [0.9, 1.1]. As in A1 F2 is set to zero for
both chains to save computational time. The plot shows that the α

contours are cut by the new priors, nevertheless, the 1-σ contours of
both chains are centred around the same values and have a similar
shape, the main difference being marginally reduced size of the
contours, which is expected when reducing the priors.

APPENDI X B: LI KELI HOODS FOR EBOS S
SAMPLE USI NG H EXADECAPOLE

In Section 6.1 we applied our methodology to find the maximum
likelihood fits of 84 Nseries high-resolution simulations. We have
shown that our methodology provides consistent results with and
without hexadecapole information.

As stated in Section 7, we adopted the conservative approach of
reporting the ξ 0 + ξ 2 as our final result and using the hexadecapole
results just as a consistency test. In this appendix, we show results
including the hexadecapole.

Figure B1. The shaded regions show the 1−2σ confidence surfaces found
by our MCMC chains for the RSD-AP parameters using ξ0 + ξ2 + ξ4 in
the [28,124] h−1 Mpc range. The red dashed-line contours represent a chain
with the priors of Table 8, in the blue solid-line contours the priors in α have
been reduced to the interval [0.88, 1.12]. The confidence contours for the
growth factor fσ 8, the linear bias bσ 8, the dilatation parameter α, and the
warping parameter ε are indicated, along with their 1D distributions. The
dashed lines of each histogram are the mean values found by the MCMC
chain.
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Table B1. Results for the DR14 LRG sample. The first block is for our fiducial methodology, using the fiducial range for the ξ0 + ξ2 fit. The second
block is for the ξ0 + ξ2 + ξ4 fits in the ranges [28,124], [28,124], and [44,124] h−1 Mpc for their multipoles � = 0, 2, 4. The third block is for the
ξ0 + ξ2 and ξ0 + ξ2 + ξ4 fits when excluding the large scales for quadrupole and quadrupole/hexadecapole, respectively. The fiducial value for the
σ 8(zeff = 0.72) = 0.55 (0.5495932). The Eulerian bias is defined by b = 1 + F

′
.

Measurements with LRG sample DR14 official version
Case fσ 8 bσ 8 <F

′′
> σ FOG α ε

ξ0 + ξ2 [28,124][28,124] 0.454+0.119
−0.140 1.110+0.116

−0.100 2.2+3.8
−4.4 3.7+3.0

−2.3 0.955+0.055
−0.05 0.000+0.090

−0.050

ξ0 + ξ2 + ξ4 [28,124] [28,124] [28,124] 0.31+0.09
−0.09 1.19+0.10

−0.10 −1.1+3.2
−3.3 5.8+3.3

−3.2 0.986+0.047
−0.046 0.091+0.046

−0.048

ξ0 + ξ2 + ξ4[28, 124][28, 92][28, 92] 0.285+0.093
−0.094 1.079+0.108

−0.110 −1.5+3.3
−3.0 5.5+2.6

−2.8 0.917+0.054
−0.056 0.107+0.041

−0.039

Figure B2. The shaded regions show the 1−2σ confidence surfaces found
by our MCMC chains for the RSD-AP parameters for two cases: ξ0 + ξ2

(red dashed-line contours) and ξ0 + ξ2 + ξ4 (blue solid-line contours), all
multipoles in both models are in the [24,128] h−1 Mpc range.

We run two different chains that include ξ 4 using the combined
data set (NGC + SGC). One using the priors shown in Table 8, and
a second chain with more constraining priors. The main reason for
this choice is that when considering the priors quoted in Table 8 we
find a double peak when fitting the full range, which is shown in
Fig. B1. The figure shows the 1 − 2σ confidence contours for the
growth factor fσ 8, the linear bias bσ 8, the dilatation parameter α,
and the warping parameter ε, together with their 1D distributions.
The only difference between both plots are the priors. The red
dashed-line represent a chain with the priors of Table 8, in the blue
solid-line contours the priors in α have been reduced to the interval
[0.88, 1.12].

As discussed in appendix A, this double peaked distribution is a
consequence of degenerated solutions not being rejected due to the
size of our errors. Following the same procedure done in appendix
A we will only analyse the solution that is not in disagreement
with mild Planck CMB constraints. In order to try to avoid this
second degenerate solution we will reduce the size of our priors
in the α parameter to the interval [0.88, 1.12], while the rest of
the parameters are fixed to the values of Table 8, these priors were
chosen arbitrarily so that they contain the 1-σ region of the main

Figure B3. Similar to Fig. B2, here the red dashed-line contours represent
a fit where the quadrupole and hexadecapole are reduced to the [28,92]
h−1 Mpc range while the monopole stays in the full range ([24,128]
h−1 Mpc), the blue solid-line contours show the fit where monopole
quadrupole and hexadecapole are in the full range.

peak and completely exclude the second. We acknowledge that it is
possible for the statistics obtained from this chain to still be slightly
distorted by the presence of this second peak or by the position of
the more constrained prior, the reduced error bars of DR16 should
make the second peak less significant which could allow us to use
larger priors.

The statistical results of our parameters are quoted in Table B1:
the first line repeats for comparison purposes the results for
monopole and quadrupole only (ξ 0 + ξ 2). The rest of the table
includes the results using monopole, quadrupole, and hexadecapole
(ξ 0 + ξ 2 + ξ 4). The second line uses the full [28,124] h−1 Mpc
range in all multipoles. In the last line, the monopole is in the
[28,124] h−1 Mpc range, and the quadrupole and hexadecapole
are in the [28,92] h−1 Mpc range, we cut out the large scales for
the quadrupole and hexadecapole where potential systematic errors
could be present. The results of fσ 8 and α are consistent in the
fiducial ranges within 1−σ , for the two cases, ξ 0 + ξ 2 and ξ 0

+ ξ 2 + ξ 4, but the ε values have a 1.3−σ difference. Fig. B2
shows the likelihood surfaces of the ξ 0 + ξ 2 + ξ 4 compared with
our fiducial methodology (ξ 0 + ξ 2), they are both in the fiducial
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[28,124] h−1 Mpc range for all multipoles and both chains and they
use the priors from Table 8.

Fig. 11 shows that our hexadecapole data have a stronger
amplitude on small scales that both sets of mocks. This mismatch in
amplitude could be a problem of the mocks or could be due to a real
signal in the data, or could be due to either an undetected systematic
error in our data or a statistical fluctuation. If it is the latter then the
increase in data with DR16 should reduce this shift. If it is a real
cosmological signature it should become more significant in DR16.
Regardless of the origin of this larger amplitude, the MCMC fitter
prefers a large value of ε and a small value of fσ 8 to fit the amplitude
of the data hexadecapole (see Fig. B2).

Fig. B2 shows the results of cutting the large scales for
the quadrupole and hexadecapole (� = 2, 4), the red dashed-
line contours come from a chain where the monopole is in the
[28,124] h−1 Mpc range, and the quadrupole and hexadecapole in
the constrained range of [28,92] h−1 Mpc. When the last three bins
of the quadrupole and hexadecapole are avoided we achieve a
significant improvement in the goodness of the fit (we saw this
same behaviour in Section 7 when removing the large scales of
the quadrupole), we also lose the secondary locus that was present
in the full approach without having to reduce our priors; however,
the price paid is to eliminate the BAO information. This increases
the degeneration of the parameters and biases the results, we lose
information that constrains ε and α, which in turn causes the contour
areas to become larger, providing more freedom to the fitter to move
f and α to lower values (Fig. B3).

The main impact of removing the large scales in the hexadecapole
fits is in parameters that require the BAO peak to be constrained, as
expected. When excluding the large scales, the BAO information is
lost, and α is shifted in consequence.
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3Institute for Computational Cosmology, Department of Physics, University
of Durham, South Road, Durham DH1 3LE, UK
4Instituto de Ciencias Fı́sicas, Universidad Nacional Autónoma de México,
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