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The complexity and approximability of the constraint satisfaction problem (CSP) has been actively studied
over the past 20 years. A new version of the CSP, the promise CSP (PCSP), has recently been proposed, moti-
vated by open questions about the approximability of variants of satisfiability and graph colouring. The PCSP
significantly extends the standard decision CSP. The complexity of CSPs with a fixed constraint language
on a finite domain has recently been fully classified, greatly guided by the algebraic approach, which uses
polymorphisms—high-dimensional symmetries of solution spaces—to analyse the complexity of problems.
The corresponding classification for PCSPs is wide open and includes some long-standing open questions,
such as the complexity of approximate graph colouring, as special cases.

The basic algebraic approach to PCSP was initiated by Brakensiek and Guruswami, and in this article, we
significantly extend it and lift it from concrete properties of polymorphisms to their abstract properties. We
introduce a new class of problems that can be viewed as algebraic versions of the (Gap) Label Cover problem
and show that every PCSP with a fixed constraint language is equivalent to a problem of this form. This
allows us to identify a “measure of symmetry” that is well suited for comparing and relating the complexity
of different PCSPs via the algebraic approach. We demonstrate how our theory can be applied by giving
both general and specific hardness/tractability results. Among other things, we improve the state-of-the-art
in approximate graph colouring by showing that, for any k ≥ 3, it is NP-hard to find a (2k − 1)-colouring of
a given k-colourable graph.
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1 INTRODUCTION

What kind of inherent mathematical structure makes a computational problem tractable, i.e., poly-
nomial time solvable (assuming P � NP)? Finding a general answer to this question is one of the
fundamental goals of theoretical computer science. The constraint satisfaction problem (CSP)

and its variants are extensively used towards this ambitious goal for two reasons: On the one hand,
the CSP framework is very general and includes a wide variety of computational problems; and
on the other hand, this framework has very rich mathematical structure providing an excellent
laboratory both for complexity classification methods and for algorithmic techniques.

The basic aim of a CSP is to find an assignment of values from some domain to a given set
of variables that satisfies given constraints, where each constraint is given as a predicate that
involves a given subset of variables. Usually, the CSP is formulated as a decision problem: The goal
is to decide whether there is such a satisfying assignment. Important variants of the CSP include
counting and optimisation (both exact and approximate) and extensions of the basic framework,
e.g., by using real-valued functions instead of relations/predicates (to specify valued constraints)
or allowing global constraints (see surveys in Reference [70]). Since the basic CSP is NP-complete
(and, for other variants, as hard as it can be) in full generality, a major line of research in the
CSP focuses on identifying tractable cases and understanding the mathematical structure enabling
tractability (see Reference [70]).

One particular family of CSPs that receives a great amount of attention consists of the CSPs
with a fixed constraint language [48, 70], i.e., with a restricted set of types of constraints. Since
constraints are usually given by relations, a constraint language is simply a set Γ of relations on
a domain A. The restricted CSP where only relations from Γ can specify constraints is denoted by
CSP(Γ). Many computational problems, including various versions of logical satisfiability, graph
colouring, and systems of equations can be represented in this form [48, 70]. It is well-known [48]
that the basic CSP can be cast as a homomorphism problem from one relational structure to another
(the latter is often called a template), and we will use this view. Problems CSP(Γ) correspond to
the case when the template structure is fixed. There is an active line of research into CSPs with
infinite A (see, e.g., References [20, 22, 82]), but throughout this article, we assume that A is finite
(unless specified otherwise).

In Feder and Vardi [48] conjectured that for each finite constraint language Γ, the (decision)
problem CSP(Γ) is either in P or NP-complete. This conjecture inspired a very active research
programme in the past 20 years, which recently culminated in two independent proofs of the con-
jecture, one by Bulatov [36] and the other by Zhuk [92, 93] (along with similar classification results
for other CSP variants, e.g., References [14, 35, 67, 90]). All of these proofs heavily use the so-called
algebraic approach to the CSP. On a very high level, this approach uses multivariate functions that
preserve relations in a constraint language (and hence solution sets of problem instances), called
polymorphisms. Thus, polymorphisms can be seen as high-dimensional “symmetries” of solution
sets. Roughly, lack of strong enough symmetries implies hardness of the corresponding problem,
while presence of such symmetries implies tractability. This approach was started in a series of
papers by Jeavons et al., e.g., [61, 62], where the key role of polymorphisms was established. It
was then taken to a more abstract level by Bulatov et al. [33, 34], where an abstract view on poly-
morphisms was used, through universal algebras and varieties formed by algebras—this allowed
a powerful machinery of structural universal algebra to be applied to the CSP. Another important
general methodological improvement was Reference [16], where it was shown that special equa-
tions of simple form satisfied by polymorphisms govern the complexity of CSPs. Even though Ref-
erence [16] did not impact specifically on the resolution of the Feder-Vardi conjecture, it strongly
influenced the present article.
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A new extended version of the CSP, the so-called promise constraint satisfaction prob-

lem (PCSP), has recently been introduced [7, 27, 29], motivated by open problems about
(in)approximability for variants of SAT and graph colouring. Roughly, this line of research in ap-
proximability concerns finding an approximately good solution to an instance of a (typically hard)
problem when a good solution is guaranteed to exist (see discussion and references in Reference
[28]). Approximation can be understood in terms of relaxing constraints or in terms of counting
satisfied/violated constraints—in this article, we use the former. Specifically, in the PCSP, each
constraint in an instance has two relations: a “strict” one, and a “relaxed” one, and one needs to
distinguish between the case when an instance has a solution subject to the strict constraints and
the case when it has no solution even subject to the relaxed constraints. One example of such
a problem (beyond CSPs) is the case when the only available strict relation is the disequality on
a k-element set and the corresponding relaxed relation is the disequality on a c-element set (with
c ≥ k)—the problem is then to distinguish k-colourable graphs from those that are not even c-
colourable. This problem (and hence the problem of colouring a given k-colourable graph with c
colours) has been conjectured NP-hard, but the question in full generality is still open after more
than 40 years of research. We give more examples later. Note that if the strict form and the relaxed
form for each constraint coincide, then one gets the standard CSP, so the PCSP framework greatly
generalises the CSP.

The problem of systematically investigating the complexity of PCSPs (with a fixed constraint
language) was suggested in References [7, 27, 29]. We remark that, beyond CSPs, the current
knowledge of the complexity landscape of PCSPs is quite limited, and we do not even have ana-
logues of full classification results for graph homomorphisms [57] and Boolean CSPs [86]—which
were the most important basic special cases of CSP complexity classifications that inspired the
Feder-Vardi conjecture. The quest of complexity classification of PCSPs is of great interest for
a number of reasons. It brings together two very advanced methodologies: analysing the com-
plexity of CSPs via algebra and the approximability of CSPs via PCP-based methodology, hence
the possibility of fruitful cross-fertilisation and influence beyond the broad CSP framework. It is
perfect for further exploring the thesis that (high-dimensional) symmetries of solution spaces are
relevant for complexity—which is certainly true for most CSP-related problems, but may be ap-
plicable in a wider context. Finally, this quest includes long-standing open problems as special
cases.

Related work. An accessible exposition of the algebraic approach to the CSP can be found in
Reference [15], where many ideas and results leading to (but not including) the resolution [36,
92, 93] of the Feder-Vardi conjecture are presented. Reference [70] contains surveys about many
aspects of the complexity and approximability of CSPs.

The first link between the algebraic approach and PCSPs was found by Austrin, Håstad, and
Guruswami [7], and it was further developed by Brakensiek and Guruswami [26, 27, 29, 30]. They
use a notion of polymorphism suitable for PCSPs to prove several hardness and tractability results.
Roughly, the polymorphisms of a PCSP (template) are multivariate functions from the domain of its
“strict” relations to that of its “relaxed” relations that map each strict relation into the correspond-
ing relaxed relation. For example, the n-ary polymorphisms of the PCSP template corresponding
to k vs. c graph colouring (we say polymorphisms from Kk to Kc ) are the homomorphisms from
the nth Cartesian power of Kk to Kc , i.e., the c-colourings of Kn

k
. It is shown in Reference [30] that

the complexity of a PCSP is fully determined by its polymorphisms—in the sense that two PCSPs
with the same set of polymorphisms have the same complexity up to log-space reductions.

Much of the previous work on the complexity of PCSPs was focused on specific problems, es-
pecially on approximate graph and hypergraph colouring and their variants. We describe this in
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more detail in Examples 2.7–2.13 in the next section. Let us note here that, despite much effort,
there is a huge gap between known algorithmic and NP-hardness results for colouring 3-colourable
graphs with c colours: The best-known NP-hardness result (without additional assumptions) prior
to this article went only as far as c = 4 [53, 64], while the best (in terms of c) known efficient al-
gorithm uses roughly O (n0.199) colours to colour an n-vertex 3-colourable graph [63]. There are
also hardness results concerning hypergraph colouring with a super-constant number of colours,
e.g., References [5, 52], but problems like this do not fall directly into the framework that we con-
sider in this article.

We remark that appropriate versions of polymorphisms have been used extensively in many
CSP complexity/approximability classifications: standard polymorphisms for decision and count-
ing CSPs, for approximating Min CSPs and testing solutions (in the sense of property testing) [14,
15, 35, 36, 40–42, 92, 93], fractional polymorphisms for exact optimisation problems [67, 90], α-
approximate polymorphisms for approximating Max CSPs [32]. In all cases, the presence of nice
enough polymorphisms (of appropriate kind) leads directly to efficient algorithms, while their ab-
sence leads to hardness. Interestingly, it was shown by Brown-Cohen and Raghavendra [32] that
the Unique Games Conjecture is equivalent to the NP-hardness of approximating Max CSPs be-
yond a specific numerical parameter of their (nice enough) approximate polymorphisms.

Our contribution. The main contribution of the present article is a new abstract algebraic theory
for the PCSP. A crucial property of polymorphisms for PCSPs is that, unlike in CSPs, they cannot be
composed (as functions). The ability to compose polymorphisms to produce new polymorphisms
was used extensively in the algebraic theory of CSPs. This could be viewed as a serious limitation
on the applicability of the algebraic approach to PCSPs. Alternatively, it might indicate that the
ability to compose is not that essential and that a composition-free abstract algebraic theory for
PCSPs (and hence for CSPs) can be developed. Our results suggest that the latter is in fact the case.

We show that certain abstract properties of polymorphisms, namely, systems of minor iden-
tities (i.e., function equations of a simple form) satisfied by polymorphisms, fully determine the
complexity of a PCSP. This shifts the focus from concrete properties of polymorphisms to their
abstract properties. Systems of minor identities satisfied by polymorphisms provide a useful mea-
sure of how much symmetry a problem has. This measure gives a new tool to compare/relate the
complexity of PCSPs far beyond what was available before. We envisage that our article will bring
a step change in the study of PCSPs, similar to what Bulatov et al. [33, 34] did for the CSP. Let us
explain this in some more detail.

To be slightly more technical, a minor identity is a formal expression of the form

f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ),

where f ,д are function symbols (of arity n and m, respectively), x1, . . . ,xn are variables, and
π : [m]→ [n] (we use notation [n] = {1, . . . ,n} throughout). A minor identity can be seen as an
equation where the function symbols are the unknowns, and if some specific functions f and д
satisfy such an identity, then f is called a minor of д. We use the symbol ≈ instead of = to stress
the difference between a formal identity (i.e., equation involving function symbols) and equality
of two specific functions. A minor condition is a finite system of minor identities (where the same
function symbol can appear in several identities). A bipartite minor condition is one where sets
of function symbols appearing on the left- and right-hand sides of the identities are disjoint. Such
a condition is said to be satisfied in a set F of functions if it is possible to assign a function from
F of the corresponding arity to each of the function symbols in such a way that all the identities
are simultaneously satisfied (as equalities of functions, i.e., for all possible values of the xi ’s).
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Informally, the main results of our new general theory state that

(A) If every bipartite minor condition satisfied in the polymorphisms of (the template of) one
PCSP Π1 is also satisfied in the polymorphisms of another PCSP Π2, then Π2 is log-space
reducible to Π1 (see Theorem 3.1 for a formal statement). Moreover, we characterise the
premise of the above claim in many equivalent ways (see Theorem 4.12 and Corollary 9.5).

(B) Every PCSP Π is log-space equivalent to the problem deciding whether a given bipartite
minor condition is satisfiable by projections/dictators or not satisfiable even by polymor-
phisms of Π (see Theorem 3.12).

The first of the above results establishes the key role of bipartite minor conditions satisfied in
polymorphisms—in particular, the hardness or tractability of a PCSP can always be explained on
this abstract level, since two PCSPs have the same complexity if their polymorphisms satisfy the
same bipartite minor conditions. Moreover, this abstract level allows one to compare two PCSPs,
even when it does not makes sense to compare their sets of polymorphisms inclusion-wise (say, be-
cause the functions involved are defined on different sets). The second result establishes that every
PCSP is equivalent to what can be viewed as an algebraic version of the Gap Label Cover problem,
which is the most common starting point of PCP-based hardness proofs in the inapproximability
context. Our result uses the fact the Label Cover can be naturally interpreted as the problem, which
we call MC, of checking triviality of a system of minor identities. The gap version of MC has an
algebraic component in place of the quantitative gap of Gap Label Cover. In particular, result (B)
can provide a general approach to proving NP-hardness of PCSPs—via analysis of bipartite minor
conditions satisfied by polymorphisms.

Our general algebraic reductions use constructions that resemble dictatorship tests, which are
also present in many inapproximability proofs. All known hardness results for PCSPs (possibly
except References [59, 65]) can be proved using our view. We show how our theory can be used
to obtain general algebraic sufficient conditions for NP-hardness of a PCSP—we give an example
of this (Theorem 5.9) that covers several cases considered in the literature before. Our theory can
also be used to translate specific hardness results into general hardness results (which of course
can then be applied in new specific cases). We demonstrate how this works and answer specific
questions from References [26, 27] by showing, among other things, the following:

(C) For any k ≥ 3, it is NP-hard to distinguish k-colourable graphs from those that are not
(2k − 1)-colourable (see Theorem 6.5).

In particular, it follows that it is NP-hard to 5-colour a 3-colourable graph. This might seem
a small step towards closing the big gap in our understanding of approximate graph colouring,
but we believe that it is important methodologically and that further development of our general
theory and further analysis of polymorphisms for graph colouring will eventually lead to a proof
of NP-hardness for any constant number of colours.

We prove that the approximate graph colouring problem in result (C) has less symmetry (in the
sense of bipartite minor conditions) than approximate hypergraph colouring, which is known to
be NP-hard. Then our theory implies the required reduction. Our theory also allows one to rule
out the existence of certain reductions—for example, we can explain exactly how k vs. c = 2k − 1
colouring differs from the cases c = 2k − 2 and c = 2k , and hence why we are able to improve the
result from c = 2k − 2 [26] to c = 2k − 1 and why moving to larger c requires further analysis of
polymorphisms and bipartite minor conditions.

On the tractability side, practically all conditions describing tractable cases of CSP (as well as
conditions describing the power of specific important algorithms) have the form of minor iden-
tities. It follows from our results that efficient algorithms for PCSPs should be based on such
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conditions, too. We provide such characterisation of the power of three algorithms for PCSPs. The
first two of these algorithms bring a tractability result from a CSP to PCSPs. The second and the
third algorithm are related to recent tractability results from Reference [30]. While the algorithmic
novelty of these results is limited, they demonstrate how the applicability of certain algorithms is
characterised by minor conditions satisfied by polymorphisms.

Interestingly, all known tractability results for finite-domain PCSPs (such as those above or
those from References [29, 30]) follow the same scheme: The PCSP is shown to be a subproblem
(inclusion-wise) of a tractable CSP, possibly with an infinite domain. We show that using infinite
domain CSPs in this scheme can be necessary—namely, a simple specific PCSP, that is known to
be a subproblem of several tractable infinite-domain CSPs [29, 30], is not a subproblem of any
tractable finite-domain CSP (see Theorem 8.1).

Subsequent work. Three new recent results are based on the general theory presented in this
article. A dichotomy for symmetric Boolean PCSPs (generalising a classification from Reference
[29]) was proved in Reference [49]. It was shown in Reference [68] that, for any fixed 3-colourable
non-bipartite graph H, it is NP-hard to find a 3-colouring for a given graph that admits a homo-
morphism to H. Wrochna and Živný [91] generalised this result of Reference [68] to NP-hardness
of finding a G-colouring an H-colourable graphs for several classes of G including “cyclic cliques”
and “square-free graphs,” these results can be seen as hardness of colouring such graphs with 4 − ε
colours (i.e., they fall just short of G = K4). They also greatly improved the result of Huang [59],

providing NP-hardness of colouring a k-colourable graph with
(

k
�k/2�

)
− 1 colours for any k ≥ 4,

this also improves our result for any k > 5. The papers [68, 91] and their merged and extended ver-
sion [69] also suggest further directions that the general theory of PCSPs can take: They uncover a
surprising connection to algebraic topology and describe a new abstract reduction that generalises
reductions given by the theory of the present article. A new conditional hardness of approximate
graph colouring was given in Reference [55]; they showed that c-colouring k-colourable graphs is
NP-hard assuming the (standard) d-to-1 conjecture is true for some d ≥ 2.

Further discussion. Let us now discuss how the complexity classification quest for PCSPs com-
pares with that for CSPs. As we said above, the gist of the algebraic approach is that lack or pres-
ence of high-dimensional symmetries determines the complexity. For (finite-domain) CSPs, there
is a sharp algebraic dichotomy: Having only trivial symmetries (i.e., satisfying only those systems
of minor identities that are satisfied in polymorphisms of every CSP) leads to NP-hardness, while
any non-trivial symmetry implies rather strong symmetry and thus leads to tractability. Moreover,
the algorithms for tractable cases are (rather involved) combinations of only two basic algorithms—
one is based on local propagation [13] and the other can be seen as a very general form of Gaussian
elimination [60]. It is already clear that the situation is more complicated for PCSPs: There are hard
PCSPs with non-trivial (but limited in some sense) symmetries, and tractable cases are more varied
[7, 29, 30, 47]. This calls for more advanced methods, and we hope that our article will provide the
basis for such methods. There is an obvious question whether PCSPs exhibit a dichotomy as CSPs
do, but there is not enough evidence yet to conjecture an answer. More specifically, it is not clear
whether there is any PCSP whose polymorphisms are not limited enough (in terms of satisfying
systems of minor identities) to give NP-hardness, but also not strong enough to ensure tractability.
Classifications for special cases such as Boolean PCSPs and graph homomorphisms would help to
obtain more intuition about the general complexity landscape of PCSPs, but these special cases are
currently open. A more detailed discussion of possible directions of further research can be found
in Section 11.

Organisation of this article. The following section contains formal definitions of the concepts
introduced in the introduction as well as several concrete examples of PCSPs.
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Fig. 1. Graph of dependencies of sections. Dotted edges express non-essential references between sections.

Sections 3 and 4 are the core of our general theory. Section 3 introduces reductions via algebraic
conditions and proves the main results of our general theory. In Section 4, we describe several
relational constructions behind the reduction from Section 3 and provide many equivalent ways
to characterise the applicability of our main reduction.

Sections 5 and 6 are focused on the hardness results. In particular, Section 5 contains algebraic
sufficient conditions leading to hardness by reduction from several versions of Label Cover and
also a sketch of a simplified proof of NP-hardness of approximate hypergraph colouring. Section 6
contains our result on NP-hardness of approximate (k vs. 2k − 1) graph colouring.

Section 7 characterises the power of three polynomial-time algorithms for PCSPs by means of
minor conditions.

In Section 8, we use a specific tractable PCSP to show that the only currently known approach
for proving tractability of a PCSP—by a natural reduction to a tractable CSP—must in general
involve CSPs with an infinite domain.

Section 9 describes algebraic counterparts of the constructions introduced in Section 4 and gives
additional information that can be useful for further developing our general algebraic theory.

Section 10 further discusses the approximate graph colouring problem and provides technical
results about distinguishing various special cases of this problem by means of minor conditions.

Finally, Section 11 summarises the results of the article and discusses possible directions of
further research. For the convenience of the reader, we include a graph of dependencies of sections
in Figure 1.

2 PRELIMINARIES

This section contains formal definitions of the notions introduced above. For comparison, the al-
gebraic theory behind fixed-template CSPs can be found in a recent survey [15].

2.1 CSPs and PCSPs

We use the notation [n] = {1, . . . ,n} throughout the article.

Definition 2.1. A constraint language Γ on a set A is finite set of relations on A, possibly of
different arity. Then A is called the domain of Γ.

To work with several constraint languages (possibly on different domains), it is often convenient
to fix an indexing of the relations in Γ. This is formalised as follows:

Definition 2.2. A (relational) structure is a tuple A = (A;RA
1 , . . . ,R

A
l

) where each RA
i ⊆ Aar(Ri ) is a

relation onA of a well-defined arity ar(Ri ) ≥ 1. We say that A is finite ifA is finite. We will assume
that all structures in this article are finite unless specified otherwise.

Two structures A = (A;RA
1 , . . . ,R

A
l

) and B = (B;RB
1 , . . . ,R

B
l

) are called similar if they have the

same number of relations and ar(RA
i ) = ar(RB

i ) for each i ∈ [l].

For example, a (directed) graph is relational structure with one binary relation. Any two graphs
are similar structures.

We often use a single letter instead of Ri to denote a relation of a structure, e.g., SA would denote
a relation of A, the corresponding relation in a similar structure B, would be denoted by SB. Also,
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throughout the article, we denote the domains of structures A, B, Kn and so on by A, B, Kn , and
so on, respectively.

Definition 2.3. For two similar relational structures A and B, a homomorphism from A to B is
a map h : A→ B such that, for each i ,

if (a1, . . . ,aar(Ri ) ) ∈ RA
i then (h(a1), . . . ,h(aar(Ri ) )) ∈ RB

i .

We write h : A→ B to denote this, and simply A→ B to denote that a homomorphism from A to
B exists. In the latter case, we also say that A maps homomorphically to B.

Definition 2.4. For a fixed structure B, CSP(B) is the problem of deciding whether a given input
structure I, similar to B, admits a homomorphism to B. In this case B is called the template for
CSP(B).

For example, when I and B are graphs and B = Kk is a k-clique, a homomorphism from I to B is
simply a k-colouring of I. Then CSP(B) is the standard k-colouring problem for graphs.

To see how the above definition corresponds to the definition of CSP with variables and con-
straints, view the domain of the structure I as consisting of variables, relations in I specifying
which tuples of variables the constraints should be applied to, and (the corresponding) relations
in B as sets of allowed tuples of values.

Definition 2.5. A PCSP template is a pair of similar structures A and B such that A→ B. The
problem PCSP(A,B) is, given an input structure I similar to A and B, output yes if I→ A, and no
if I � B.

Note that PCSP(A,A) is simply CSP(A). The promise in the PCSP is that it is never the case
that I � A and I→ B. Note also that the assumption A→ B is necessary for the problem to make
sense—otherwise, the yes- and no-cases would not be disjoint. We define PCSP(A,B) as a decision
problem, but it can also be defined as a search problem:

Definition 2.6. Given two relational structures A, B as above, the search version of PCSP(A,B)
is, given an input structure I that maps homomorphically to A, find a homomorphism h : I→ B.

There is an obvious reduction from the decision variant of every PCSP to its search variant.
Nevertheless, it is open whether these two problems are equivalent for all PCSP templates. Note
that, for problems CSP(A), these two versions are always equivalent [34]. We would also like to
note that all of our results are formulated and proved for the decision version. However, all of them
can be generalised to the corresponding search versions of the problems.

Let us give some examples of the problems of the form PCSP(A,B), which are proper promise
problems, i.e., not of the form CSP(A). More examples (of both tractable and intractable PCSPs)
can be found in References [26, 29, 30].

Example 2.7 ((2 + ε)-Sat). For a tuple t ∈ {0, 1}n , let Ham(t) be the Hamming weight of t. Fix an
integer k ≥ 1. Let �2 be the relation {(0, 1), (1, 0)}. Let

A = ({0, 1}; {t ∈ {0, 1}2k+1 | Ham(t) ≥ k },�2),

B = ({0, 1}; {t ∈ {0, 1}2k+1 | Ham(t) ≥ 1},�2).

The problem PCSP(A,B) is then (equivalent to) the following variant of (2k + 1)-Sat: Given an
instance of (2k + 1)-Sat such that some assignment satisfies at least k literals in each clause, find
a normal satisfying assignment. This problem, called (2 + ε )-Sat, was proved to be NP-hard in
Reference [7].
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Example 2.8 (1-in-3- vs. Not-All-Equal-Sat). Let

T = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}),
H2 = ({0, 1}; {0, 1}3\{(0, 0, 0), (1, 1, 1)}).

Even though CSP(T) and CSP(H2) are (well-known) NP-hard problems, the problem PCSP(T,H2)
was shown to be in P in References [29, 30], along with a range of similar problems. All these results
are obtained by using the same general scheme—a natural reduction to a tractable CSP, possibly
with an infinite domain. We give several general results related to this scheme in Section 7 and
then show in Section 8 that any proof of tractability of PCSP(T,H2) via this scheme must use a
CSP with an infinite domain.

Example 2.9 (Approximate Graph Colouring). For k ≥ 2, let �k denote the relation {(a,b) ∈
{0, . . . ,k − 1}2 | a � b}. For k ≤ c , let

Kk = ({0, . . . ,k − 1};�k ),

Kc = ({0, . . . , c − 1};�c ).

Then PCSP(Kk ,Kc ) is the well-known approximate graph colouring problem: Given a k-colourable
graph, find a c-colouring. The decision version of this asks to distinguish between k-colourable
graphs and those that are not even c-colourable. The complexity of this problem has been studied
since 1976 [50]—the problem has been conjectured to be NP-hard for any fixed 3 ≤ k ≤ c , but this is
still open in many cases (see References [26, 53, 59, 64, 65]) if we assume only P � NP. Fork = 3, the
case c = 4 was shown to be NP-hard [53, 64], but even the case c = 5 was still open, and we settle
it in this article (see Section 6 for more details). It was shown (using polymorphisms) in Reference
[26] that, for any k ≥ 3, it is NP-hard to distinguish k-colourable graphs from those that are not
(2k − 2)-colourable. This gives the best-known NP-hardness results for small enough k , but we
further improve this result in this article. For large enough k , the best-known NP-hardness result

is for k vs. 2Ω(k1/3 ) colouring [59]. By additionally assuming somewhat non-standard variants of
the Unique Games Conjecture (with perfect completeness), NP-hardness of all approximate graph
colouring problems (with k ≥ 3) was proved in Reference [46].

Example 2.10 (Approximate Graph Homomorphism). The standard graph k-colouring problem
has a natural generalisation to graph homomorphisms. For a fixed (undirected) graph H, the prob-
lem CSP(H) is, given a graph I (which can be assumed to be undirected), decide whether I→ H.
This problem is often called H-colouring. It has been extensively studied, see, e.g., References [57,
58, 73]. A well-known result by Hell and Nešetřil [57] states that H-colouring is solvable in polyno-
mial time if H is bipartite or has a loop, and it is NP-complete otherwise. A natural generalisation
to the promise setting, i.e., problems PCSP(G,H), was suggested in Reference [30]. It was con-
jectured there that the problem is NP-hard for any non-bipartite loopless undirected G,H with
G→ H. Even the case G = C5 (5-cycle), H = K3 was mentioned in Reference [30] as an intriguing
open problem, and we settle it in this article. See Section 6 for more details.

Example 2.11 (Approximate Hypergraph Colouring). This problem is similar to Example 2.9, but
uses the “not-all-equal” relation NAEk = {0, . . . ,k − 1}3\{(a,a,a) | a ∈ {0, . . . ,k − 1}} instead of
�k , and similarly for c , i.e., we are talking about PCSP(Hk ,Hc ) where

Hk = ({0, . . . ,k − 1}; NAEk ),

Hc = ({0, . . . , c − 1}; NAEc ).

A colouring of a hypergraph is an assignment of colours to its vertices that leaves no hyperedge
monochromatic. Thus, in (the search variant of) this problem one needs to find a c-colouring for
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a given k-colourable 3-uniform hypergraph. This problem has been proved to be NP-hard for any
fixed 2 ≤ k ≤ c [47].

Example 2.12 (Strong vs. Normal Hypergraph Colouring). Let k, c ≥ 2, and let

A = ({0, . . . ,k }; {(a1, . . . ,ak ) ∈ {0, . . . ,k }k | ai � aj for all i, j}),

B = ({0, . . . , c − 1}; {(a1, . . . ,ak ) ∈ {0, . . . , c − 1}k | ai � aj for some i, j}).
Then PCSP(A,B) is the problem of distinguishing k-uniform hypergraphs that admit a strong
(k + 1)-colouring (i.e., one without repetition of colours in any hyperedge) from those that do not
admit a normal c-colouring. It was conjectured in Reference [26] that this problem is NP-hard for
all (k, c ) � (2, 2), and some special cases (k = 3, 4 and c = 2) were settled in that paper, but this
conjecture remains wide open.

Example 2.13 (Rainbow vs. Normal Hypergraph Colouring). Let k,q, c be positive integers with
k ≥ q ≥ 2 and c ≥ 2, and let

Rk,q = ({0, . . . ,q − 1}; {(a1, . . . ,ak ) ∈ {0, . . . ,q − 1}k | {a1, . . . ,ak } = {0, . . . ,q − 1}}),

Hk,c = ({0, . . . , c − 1}; {(a1, . . . ,ak ) ∈ {0, . . . , c − 1}k | ai � aj for some i, j}).
In PCSP(Rk,q ,Hk,c ), one is given a k-uniform hypergraph that has a q-colouring such that all
colours appear in each hyperedge, and one needs to find a normal c-colouring. This problem is
known to be in P for k = q and c = 2; a randomised algorithm for it can be found in Reference
[76], and a deterministic algorithm due to Alon (unpublished) is mentioned in Reference [29].
PCSP(Rk,q ,Hk,c ) is NP-hard if 2 ≤ q ≤ �k/2� [54] or if 2 ≤ q ≤ k − 2�

√
k� and c = 2 [6]. Further

variations of such PCSPs were considered in References [6, 54].

2.2 Polymorphisms

We now proceed to define polymorphisms, which are the main algebraic technical tools used in
the analysis of CSPs.

Definition 2.14. The nth power of A is the structure An = (An ;RAn

1 , . . . ,R
An

l
) whose relations are

defined as follows: For every ar(Ri ) × n matrix M such that all columns of M are in RA
i , consider

the rows of M as elements of An and put this tuple of rows in RAn

i .

Definition 2.15. Given two similar relational structures A and B, an n-ary polymorphism1 from

A to B is a homomorphism from An to B. To spell this out, a polymorphism is a mapping f from
An to B such that, for each i ≤ l and all tuples (a11, . . . ,aar(Ri )1), . . . , (a1n , . . . ,aar(Ri )n ) ∈ RA

i , we
have

( f (a11, . . . ,a1n ), . . . , f (aar(Ri )1, . . . ,aar(Ri )n )) ∈ RB
i .

We denote the set of all polymorphisms from A to B by Pol(A,B), and we write simply Pol(A) for
Pol(A,A).

For the case A = B, this definition coincides with the standard definition of a polymorphism of
a relational structure A (see, e.g., Reference [15, Section 4]).

Definition 2.16. A projection (also known as dictator2) on a set A is an operation p (n)
i : An → A

of the form p (n)
i (x1, . . . ,xn ) = xi .

1Called weak polymorphism in References [7, 27].
2Projection is the standard name for these objects in universal algebra, while dictator is the standard name in approxima-
bility literature.
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It is well-known and easy to see that every projection onA is a polymorphism of every relational
structure on A. We will sometimes write simply pi when the arity n of a projection is clear from
the context.

Example 2.17. Consider the structures T and H2 from Example 2.8. It is well-known and not
hard to verify that

• Pol(T) consists of all projections on {0, 1}, and

• Pol(H2) consists of all operations of the form π (p (n)
i ) where π is a permutation on {0, 1} and

p (n)
i is a projection.

However, Pol(T,H2) contains many functions that are not like projections. For example, for any
k ≥ 1, define fk : {0, 1}3k−1 → {0, 1} so fk (t) = 1 if Ham(t) ≥ k and fk (t) = 0 otherwise. It is easy
to see that fk ∈ Pol(T,H2). Indeed, if M is a 3 × (3k − 1) matrix whose columns come from the set
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then some row of M contains strictly fewer than k 1’s and some other
row contains at least k 1’s. Therefore, by applying fk to the rows of M , one obtains a tuple in
{0, 1}3\{(0, 0, 0), (1, 1, 1)}, as required.

Example 2.18. Recall Example 2.9. It is easy to check that, for anyn ≥ 1, then-ary functions from
Pol(Kk ,Kc ) are simply the c-colourings of Kn

k
, the nth power of Kk (in the sense of Definition 2.14).

Unlike polymorphisms of a single relational structure A, the set Pol(A,B) is not closed under
composition—for example, if f (x ,y, z) and д(x ,y) are in Pol(A,B), then f (д(x ,w ),y, z) is not nec-
essarily there. In general, the composition is not always well-defined, and even when it is (e.g.,
when A and B have the same domain), f (д(x ,w ),y, z) may not be in Pol(A,B). However, it is
always closed under taking minors.

Definition 2.19. An n-ary function f : An → B is called a minor of anm-ary functionд : Am → B
given by a map π : [m]→ [n] if

f (x1, . . . ,xn ) = д(xπ (1), . . . ,xπ (m) )

for all x1, . . . ,xn ∈ A.

Alternatively, one can say that f is a minor of д if it is obtained from д by identifying variables,
permuting variables, and introducing dummy variables.

Definition 2.20. Let O (A,B) = { f : An → B | n ≥ 1}. A (function) minion3M on a pair of sets
(A,B) is a non-empty subset of O (A,B) that is closed under taking minors. For fixedn ≥ 1, let M (n)

denote the set of n-ary functions from M . Unless stated otherwise, we assume that all minions
are defined on finite sets.

We remark that clones have been used extensively in the algebraic theory of CSP—a clone is a
minion on (A,A) that is closed under composition and contains all projections. For any structure
A, Pol(A) is a clone. For more details, see Reference [15].

We now introduce one of the central notions of this article; it generalises the notion of h1 clone

homomorphisms [16, Definition 5.1].

Definition 2.21. Let M and N be two minions (not necessarily on the same pairs of sets). A map-
ping ξ : M → N is called a minion homomorphism if

3What we define as a function minion was called minor closed class in Reference [83], and clonoid in Reference [1]. Albeit
clonoids are usually also required to be closed under composition with a given clone from the outside.
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(1) it preserves arities, i.e., ar(д) = ar(ξ (д)) for all д ∈M , and
(2) it preserves taking minors, i.e., for each π : [m]→ [n] and each д ∈M (m) , we have

ξ (д) (xπ (1), . . . ,xπ (m) ) = ξ (д(xπ (1), . . . ,xπ (m) )).

Item (2) above can also be interpreted as “preserving satisfaction of minor identities,” i.e., if
f (x1, . . . ,xn ) = д(xπ (1), . . . ,xπ (m) ) for some f ∈M (n) , д ∈M (m) , and π : [m]→ [n], then

ξ ( f ) (x1, . . . ,xn ) = ξ (д) (xπ (1), . . . ,xπ (m) ).

Example 2.22. We will construct a minion homomorphism from Pol(K3,K4) to the minion P2

of all projections on a two-element set. We note that the minion of projections on any set with
at least two elements can be used instead P2; we use the two-element set so we can work with
a concrete function minion. This minion homomorphism is built on the following combinatorial
statement proved in Reference [26, Lemma 3.4]: For each f ∈ Pol(n) (K3,K4), there exist t ∈ K4 (we
will call any such t a trash colour), a coordinate i ∈ [n], and a map α : K3 → K4 such that

f (a1, . . . ,an ) ∈ {t ,α (ai )}

for alla1, . . . ,an ∈ K3. In other words, if we erase the value t from the table of f , then f (x1, . . . ,xn ),
which is now a partial function, depends only on xi . Moreover, it is shown in Reference [26, Lemma
3.9], that while the trash colour t is not necessarily unique, the coordinate i is.

We define ξ : Pol(K3,K4) →P2 by mapping each f to pi (preserving the arity) for the i that
satisfies the above. To prove that such ξ is a minion homomorphism, consider f ,д such that f is
a minor of д, i.e.,

f (x1, . . . ,xn ) = д(xπ (1), . . . ,xπ (m) )

for some π : [m]→ [n]. We claim that if t is a trash colour for д, then it is also a trash colour for
f . Indeed, if д(a1, . . . ,am ) ∈ {t ,α (ai )} for all a1, . . . ,an ∈ K3, then we get

f (a1, . . . ,an ) = д(aπ (1), . . . ,aπ (m) ) ∈ {t ,α (aπ (i ) )}.

This also shows that the coordinate j assigned to f is π (i ), therefore ξ ( f ) = pπ (i ) . We conclude
that ξ preserves taking minors. That is true, since

pπ (i ) (x1, . . . ,xn ) = xπ (i ) = pi (xπ (1), . . . ,xπ (m) ).

2.3 Primitive Positive Formulas

Jeavons’ proof [61] that polymorphisms capture the complexity of CSPs was built on a Galois cor-
respondence between relations and operations [24, 25, 51]. A Galois correspondence appropriate
for PCSP was found by Pippenger [83], and Brakensiek and Guruswami [27, Appendices D and E]
used it to generalise Jeavons’ result to PCSP. We build further on these results.

Primitive positive formulas (pp-formulas) have been used extensively in the theory of CSPs—
see Reference [15] for many examples. We remind that, for a relational structure A, with a relation
RA, we use R to denote the abstract relational symbol associated with this relation. These abstract
symbols are used in pp-formulas, which makes them interpretable in any structure that is similar
to A.

Definition 2.23. For a relational structure A = (A;RA
1 , . . . ,R

A
l

), a primitive positive formula (pp-
formula) over A is an existentially quantified conjunction of predicates of the form (vj1 , . . . ,vjki

) ∈
Ri or vj1 = vj2 where vi are variables and ki = ar(Ri ).

Note that any instance of CSP(A) can be interpreted as a conjunction of constraints, i.e., as a pp-
formula Ψ without quantifiers and the equality predicate. Similarly, since an instance of CSP(A)
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is also an instance of CSP(B) for any two similar structures A and B, and any pp-formula over A

is also a pp-formula over B, we can talk about pp-formulas over a PCSP template (A,B).
To ease readability, we will write ΨA when we interpret each relational symbolRi appearing in Ψ

as the relation RA
i . Therefore, while a pp-formula Ψ contains formal expressions such as (x1,x2) ∈

Ri , ΨA contains expressions of the form (x1,x2) ∈ RA
i , and therefore satisfying assignments of ΨA

form a subset of Ak where k is the number of free variables of Ψ.

Example 2.24. The following is an example of a pp-formula over any digraph. This formula
expresses “u and v are connected by a directed walk of length 2.”

Ψ(u,v ) = ∃w (u,w ) ∈ E ∧ (w,v ) ∈ E

It defines a binary relation ΨG on vertices of a digraph G. For example, the relation ΨK3 is the full
binary relation on K3, i.e., ΨK3 = K2

3 .

Definition 2.25. Let (A,B) be a PCSP template. A template (A′,B′) such that A′ = A and B′ = B
is said to be

(1) primitive positive definable (pp-definable) in (A,B) if for each relational symbolR of (A′,B′)
there is a pp-formula ΨR over (A,B) such that

RA′ = {(a1, . . . ,aar(R ) ) ∈ Aar(R ) | ΨA
R (a1, . . . ,aar(R ) )}, and

RB′ = {(b1, . . . ,bar(R ) ) ∈ Bar(R ) | ΨB
R (b1, . . . ,bar(R ) )};

(2) a simple relaxation of (A,B) if A,A′,B,B′ are all similar, and for each relational symbol R,
we have RA′ ⊆ RA and RB ⊆ RB′ .

We say that a template is ppp-definable in (A,B), if it is it is obtained from (A,B) by a sequence
of pp-definitions and simple relaxations.

We remark that ppp-definability is closely related to polymorphisms and the reduction between
PCSPs described in Reference [27].

Theorem 2.26 [27, 83]. The following are equivalent for a pair of PCSP templates (A,B) and

(A′,B′) over the same pair of finite domains:

(1) (A′,B′) is ppp-definable in (A,B).
(2) (A′,B′) is a simple relaxation of a template pp-definable in (A,B).
(3) Pol(A,B) ⊆ Pol(A′,B′).

Moreover, if these conditions hold, then PCSP(A′,B′) is polynomial-time reducible to PCSP(A,B).

3 ALGEBRAIC REDUCTIONS

In this section, we prove the two main results of our general theory. The first one can be formulated
right away.

Theorem 3.1. Let (A1,B1) and (A2,B2) be two finite PCSP templates, and let Mi = Pol(Ai ,Bi ) for

i = 1, 2. If there is a minion homomorphism ξ : M1 →M2, then PCSP(A2,B2) is log-space reducible

to PCSP(A1,B1).

The proof of this theorem is provided by the second of our results, but to formulate it, we need
to first address a few formalities about the problem of deciding minor conditions. We remark that
we characterise the existence of such a minion homomorphism in many equivalent ways (see
Theorem 4.12 and Corollary 9.5).
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3.1 Deciding Satisfiability of Bipartite Minor Conditions

The study of Maltsev conditions4 [77, 89] has a long history in universal algebra. We will use only
a special case of (strong) Maltsev conditions called minor conditions and their restricted “bipartite”
form.

Definition 3.2. A bipartite minor condition is a finite set Σ of minor identities where the sets of
function symbols used on the right- and left-hand sides are disjoint. More precisely, we say that
a minor condition Σ is bipartite over two disjoint sets of function symbolsU andV if it contains
only identities of the form

f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ),

where f ∈ U and д ∈ V are symbols of arity n and m, respectively, x1, . . . ,xn are variables, and
π : [m]→ [n].

Such a condition is said to be satisfied in a minion M on (A,B) if there is an assignment ζ :
U ∪V →M that assigns to each function symbol a function from M of the corresponding arity
so

ζ ( f ) (a1, . . . ,an ) = ζ (д) (aπ (1), . . . ,aπ (m) )

for each identity f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ) in Σ and all a1, . . . ,an ∈ A. We say that a mi-
nor condition is trivial if it is satisfied in every minion, in particular, in the minion PA consisting
of all projections (dictators) on a set A that contains at least two elements.

We note that as long as a bipartite minor condition is satisfied in some PA with |A| ≥ 2, it is
satisfied in every minion: Recall that by definition every minion M is non-empty, and therefore
it contains a unary function f (obtained by identifying all variables in a function from M ). Con-
sequently, M contains functions defined by (x1, . . . ,xn ) �→ f (xi ) for each i . These functions then
satisfy all identities satisfied by projections in PA. In fact, if f is not constant, then they satisfy
exactly the same identities as projections.

The symbols f , д, and so on, in a minor condition are abstract function symbols. Nevertheless,
we sometimes (in particular, when working with specific simple minor conditions) use the same
symbols to denote concrete functions that satisfy this condition. When we want to stress the as-
signment of concrete functions to symbols, we use ζ ( f ) for the concrete function assigned to the
abstract symbol f .

Example 3.3. Consider the following bipartite minor condition. We set U to contain a single
binary symbol f , andV a single quaternary symbol д. The set Σ then consists of identities:

f (x ,y) ≈ д(y,x ,x ,x ),

f (x ,y) ≈ д(x ,y,x ,x ),

f (x ,y) ≈ д(x ,x ,y,x ),

f (x ,y) ≈ д(x ,x ,x ,y).

This condition is not trivial, since if f = p1 and д = pi for some i, then the ith identity is not
satisfied, and if f = p2, then the first identity forces that д = p1, which contradicts any of the other
identities.

The above bipartite minor condition is satisfied in the minion Pol(H2,Hk ) (recall Example 2.11)
for each k ≥ 4. We define a function ζ (д) by the following:

ζ (д) (x ,y, z,u) =

{
a if at least 3 arguments are equal to a;
x + 2 otherwise.

4Not to be confused with Maltsev identities f (x, y, y ) ≈ f (y, y, x ) ≈ x , which are a specific case of a Maltsev condition.
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The function ζ ( f ) is defined by ζ ( f ) (x ,y) = x . Clearly, ζ ( f ) and ζ (д) satisfy the required identi-
ties, also ζ ( f ) is in Pol(H2,Hk ). We now show that also ζ (д) is. Consider a 3 × 4 matrix M = (ai j )
such that each column of M is a triple in NAE2. We need to show that applying ζ (д) to the rows of
M gives a triple in NAEk . For contradiction, assume that we get a triple of the form (a,a,a). If a is
0 or 1, then in each row of M at least three entries are equal to a. In this case, one of the columns
of M is (a,a,a) � NAE2, a contradiction. Otherwise, a is 2 or 3, which implies that the first column
of M is (a − 2,a − 2,a − 2), a contradiction again.

Example 3.4. The condition Σ from the previous example is also satisfied in the minion
Pol(K3,K5) (recall Example 2.9). To see this, define ζ ( f ) (x ,y) = x again and define ζ (д) as fol-
lows:

ζ (д) (x ,y, z,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a if at least three arguments are equal to a, else
0 if x = 0 and at least one of y, z,u is 0, else
1 if x = 0 and at least two of y, z,u are 1, else
2 if x = 0 and at least two of y, z,u are 2, else
x + 2 otherwise.

It is straightforward to check that ζ (д) is a polymorphism and that ζ ( f ) and ζ (д) satisfy Σ.

Example 3.5. We now present a simple minor condition that is not satisfied in Pol(H2,Hk ) for
any k ≥ 2:

f (x ,y) ≈ д(x ,x ,y,y,y,x ),

f (x ,y) ≈ д(x ,y,x ,y,x ,y),

f (x ,y) ≈ д(y,x ,x ,x ,y,y).

Note that the columns of x ’s and y’s on the right above correspond to the triples in NAE2. Now
assume that this condition is satisfied by some functions ζ ( f ), ζ (д) in Pol(H2,Hk ), so the identities
above become equalities. Then substitute 0 for x and 1 fory in these equalities. The triple (column)
on the right-hand side of the system is obtained by applying ζ (д) to the six triples in NAE2, so it
must be in NAEk . However, this triple is equal to (b,b,b) where b = ζ ( f ) (0, 1), which is not in
NAEk .

In Section 10, we prove that, for any k ≥ 3, this minor condition is not satisfied in Pol(Kk ,K2k−1)
either—this is the key part in our proof that PCSP(Kk ,K2k−1) is NP-hard.

Remark 3.6. An identity of height 1 is an expression of the form

f (xπ (1), . . . ,xπ (n) ) ≈ д(xσ (1), . . . ,xσ (m) ),

where f ,д are function symbols, π : [n]→ [k] and σ : [m]→ [k]. Systems of such identities were
considered in Reference [16] (see also Reference [15]). Clearly, any minor identity has height 1.
Moreover, any height 1 condition, i.e., a finite set of height 1 identities, can be turned into a (bipar-
tite) minor condition by replacing each height 1 identity by two minor identities, e.g., the identity
above would be replaced by

e (x1, . . . ,xk ) ≈ f (xπ (1), . . . ,xπ (n) ),

e (x1, . . . ,xk ) ≈ д(xσ (1), . . . ,xσ (m) ),

where e is a newly introduced symbol. It is obvious that any minion M satisfies the obtained
bipartite minor condition if and only if it satisfies the original height 1 condition.

Definition 3.7. We define the problem MC(N ) (triviality of a bipartite minor condition) as
the problem where the input is a triple (Σ,U ,V ), with Σ a bipartite minor condition over U
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and V that involves function symbols of maximal arity N , and the goal is to decide whether the
condition Σ is trivial.

Deciding triviality of bipartite minor conditions is essentially just a different interpretation of
the Label Cover problem that was introduced in Reference [2]. To compare these two problems,
we use a formulation of Label Cover that is closer to the one that appeared in, e.g., References [7]
and [26]. In addition, we bound the size of the label sets by a constant N . Some bounded version
often appears in the literature as it is well-known that if N ≥ 3, then it is a NP-complete problem
(see, e.g., Reference [26, Lemma 4.2]).

Definition 3.8 (Label cover). Fix a positive integer N . We define LC(N ) as the following decision
problem: The input is a tuple (U ,V ,E, l , r ,Π) where

• G = (U ,V ;E) is a bipartite graph,
• l , r ≤ N are positive integers, and
• Π is a family of maps πe : [r ]→ [l], one for each e ∈ E.

The goal is to decide whether there is a labelling of vertices fromU andV with labels from [r ] and
[l], respectively, such that if (u,v ) ∈ E, then the label of v is mapped by π(u,v ) to the label of u.

Remark 3.9. Note that LC(N ) is a CSP where vertices are variables and edges correspond to
constraints: a constraint corresponding to an edge e ∈ E is given by πe .

We interpret a label cover instance (U ,V ,E, l , r ,Π) with l , r ≤ N as a bipartite minor condition
Σ, an input to MC(N ), as follows:

• Each vertex u ∈ U is interpreted as an l-ary function symbol fu , and each vertex v ∈ V as
an r -ary function symbol дv .

• For each edge e = (u,v ), we add to Σ the identity

fu (x1, . . . ,xl ) ≈ дv (xπe (1), . . . ,xπe (r ) ). (�)

Observe that Σ is indeed a bipartite minor condition overU = { fu | u ∈ U } andV = {дv | v ∈ V }.
We claim that the minor condition obtained in this way is trivial if and only if the original Label
Cover instance has a solution. The main difference is that a solution to Label Cover is a labelling,
while a solution (a witness) to triviality of minor conditions is an assignment of projections to the
function symbols. Nevertheless, there is a clear bijection between the labels and the projections:
label i corresponds to projection pi . Clearly, a constraint ((u,v ),π ) of the Label Cover is satisfied
by a pair of labels (i, j ) if and only if assigning pi and pj to fu and дv , respectively, satisfies (�).

The long code is an error-correcting code that can be defined as the longest code over the Boolean
alphabet that does not repeat bits. Precisely, it encodes a value i ∈ [n] as the string of bits of length
2n corresponding to the table of the function pi ∈P2.

Therefore, it is possible to see the problem MC as just a conjunction of Label Cover with the
Long code. This conjunction has often been used before, e.g., References [18, 56]. Our insight is
that satisfaction of a constraint can be extended to functions that are not projections (words that
are not code words of the Long code), we can simply say that the constraint corresponding to
the edge (u,v ) is satisfied if fu and дv satisfy (�). This approach circumvents some combinatorial
difficulties of using Label Cover and the Long code, and is essential for our reduction to work.

The second (and main) advantage of using identities instead of Label Cover is that it allows
us to define the following promise version. We will use this promise problem as an intermediate
problem for our reduction, and it is interesting in its own right.

Definition 3.10. Fix a minion M and a positive integer N . We define PMCM (N ) (promise sat-

isfaction of a bipartite minor condition) as the promise problem in which, given a bipartite minor

Journal of the ACM, Vol. 68, No. 4, Article 28. Publication date: July 2021.



Algebraic Approach to Promise Constraint Satisfaction 28:17

condition Σ that involves symbols of arity at most N , one needs to output yes if Σ is trivial and no
if Σ is not satisfiable in M .

The promise in the above problem is that it is never the case that Σ is non-trivial, but satisfied
in M .

Remark 3.11. Let M1,M2 be two minions such that there is a minion homomorphism ξ : M1 →
M2. Then, for any N , PMCM2 (N ) is obtained from PMCM1 (N ) simply by strengthening the
promise. To see this, observe that if some Σ is not satisfied in M2 then it cannot be satisfied in
M1. Indeed, suppose the contrary, say that some fi ’s and дj ’s from M1 satisfy Σ. Since ξ is a min-
ion homomorphism from M1 to M2, it follows that ξ ( fi )’s and ξ (дj )’s satisfy Σ in M2.

We can finally formulate our second main result.

Theorem 3.12. Let (A,B) be a template and let M denote its polymorphism minion.

(1) If N is an upper bound on the size of any relation RA of A as well as on |A|, then PCSP(A,B)
can be reduced to PMCM (N ) in log-space.

(2) For each N > 0, PMCM (N ) can be reduced to PCSP(A,B) in log-space.

Before we get to the proof, let us comment on how Theorem 3.1 follows from this result.

Proof of Theorem 3.1 given Theorem 3.12. We recall that we have two PCSP templates
(A1,B1) and (A2,B2), and the corresponding polymorphism minions Mi = Pol(Ai ,Bi ), i = 1, 2.
Our goal is to find a log-space reduction from PCSP(A2,B2) to PCSP(A1,B1) given that there is
a minion homomorphism ξ : M1 →M2.

By Remark 3.11, we have that, for any N , PMCM2 (N ) is obtained from PMCM1 (N ) by
strengthening the promise. Clearly, this gives a (trivial) log-space reduction from PMCM2 (N ) to
PMCM1 (N ).

To conclude the proof, we connect this reduction with the two reductions from Theorem 3.12.
Starting with PCSP(A2,B2), we reduce it to PMCM2 (N ) where N is given by the first item of
Theorem 3.12. The above paragraph then gives us a reduction to PMCM1 (N ). Finally, the second
item of Theorem 3.12 provides a reduction to PCSP(A1,B1). �

The proof of Theorem 3.12 is given in the following two subsections.

3.2 From PCSP to Minor Conditions

We now prove Theorem 3.12(1). For that, we need to provide a reduction from PCSP to PMC for
a given PCSP template and its polymorphism minion. This reduction follows a standard way of
proving hardness of Label Cover [2]. It is built on a two-prover protocol introduced by Reference
[19]. Our presentation of this reduction is a generalisation of Reference [26, Lemma 4.2].

Even though we start with a PCSP with template (A,B), we only use the structure A for the
construction of a bipartite minor condition from a given instance I of PCSP(A,B). The structure B

will influence soundness of the reduction. Fix an enumerationA = {a1, . . . ,an } of the domain of A,
and consider an instance I, i.e., a structure similar to A. We construct a bipartite minor condition
Σ = Σ(A, I) overU andV in the following way:

(1) DefineU to be the set of symbols fv for v ∈ I , each of arity n = |A|.
(2) For each relation R do the following: Let k = ar(R), m = |RA |, and let {(aπ1 (1), . . . ,aπk (1) ),

. . . , (aπ1 (m), . . . ,aπk (m) )} be the list of all tuples from RA; for each constraint C =
((v1, . . . ,vk ),R), i.e., each tuple (v1, . . . ,vk ) ∈ RI, introduce into V a new symbol дC of
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aritym and add to Σ the following identities:

fv1 (x1, . . . ,xn ) ≈ дC (xπ1 (1), . . . ,xπ1 (m) )

...

fvk
(x1, . . . ,xn ) ≈ дC (xπk (1), . . . ,xπk (m) ).

This assigns, to each I and A, an instance (Σ,U ,V ) of PMC(N ). The bound N is the larger of
|A| and the maximum of |RA |, for all relations of A. Clearly, if A is fixed, then the condition Σ is
computable from I in log-space.

Example 3.13. We show a reduction from NAE-Sat to MC(6). NAE-Sat is the same as CSP(H2)
(see Example 2.8). Starting with an instance I of NAE-Sat, for each variablev ∈ I , we add a binary
function symbol fv , and for each constraint C involving (not necessarily different) v1,v2,v3, we
add a 6-ary symbol дC and the following identities:

fv1 (x ,y) ≈ дC (x ,x ,y,y,y,x ),

fv2 (x ,y) ≈ дC (x ,y,x ,y,x ,y),

fv3 (x ,y) ≈ дC (y,x ,x ,x ,y,y).

The arity of fv was chosen to be two so the assignment of a projection would correspond to an
assignment of a value tov . In particular, each variable in the above identities corresponds to one of
the elements from the domain. The function дC has arity 6, since each constraint in NAE-Sat has
exactly 6 satisfying assignments; the columns of variables on the right-hand side of these identities
correspond to these satisfying assignments (three x ’s or three y’s never align).

To conclude the proof of Theorem 3.12(1), it is enough to prove the following lemma:

Lemma 3.14. Let A, B, and I be similar relational structures, and let Σ = Σ(A, I) be constructed as

above. Then

(1) if there is a homomorphism h : I→ A, then Σ is trivial; and

(2) if Pol(A,B) satisfies Σ, then there is a homomorphism from I to B.

Proof. To prove item (1), assume that h : I→ A is a homomorphism, and define ζ : U →PA

by ζ ( fv ) = pi where i is chosen so h(v ) = ai . We extend this assignment to symbols fromV : Let
C = ((v1, . . . ,vk ),R) be a constraint of I. Since (h(v1), . . . ,h(vk )) ∈ RA, we can find a unique j such
that (aπ1 (j ), . . . ,aπk (j ) ) is equal to (h(v1), . . . ,h(vk )). We set ζ (дC ) = pj . Clearly, this assignment
satisfies all identities of Σ involving дC . Thus, we found an assignment fromU ∪V to projections
that satisfies Σ, proving that Σ is trivial.

For item (2), let us first suppose that Σ is satisfiable in projections and fix a satisfying assignment
(of projections to symbols in U ∪V). In that case, we can define a map from I , equivalently U ,
into A by assigning to v the ai corresponding to the projection assigned to fv . One easy way to
identify the projection is to interpret it as a projection on the set A, i.e., suppose that ζ : U →PA

is the assignment to projections, and define

h(v ) = ζ ( fv ) (a1, . . . ,an ). (♣)

This would give a homomorphism to A by reversing the above argument. We only need a homo-
morphism to B, but we also only have ζ : U ∪V → Pol(A,B). Still, we defineh : I → B by the rule
(♣). Clearly, this is a well-defined assignment; we only need to prove that h is a homomorphism,
i.e., that for each constraint C = ((v1, . . . ,vk ),R), we have (h(v1), . . . ,h(vk )) ∈ RB. Consider the
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symbol дC and its image under ζ . We know that ζ (дC ) is a polymorphism from A to B that sat-
isfies the corresponding identities in Σ. Let us therefore substitute ai for xi , for i ∈ [n], in those
identities. We obtain the following:

ζ ( fv1 ) (a1, . . . ,an ) = ζ (дC ) (aπ1 (1), . . . ,aπ1 (m) )

...

ζ ( fvk
) (a1, . . . ,an ) = ζ (дC ) (aπk (1), . . . ,aπk (m) ).

But, since all the tuples (aπ1 (j ), . . . ,aπk (j ) ), for j ∈ [m], are in RA and ζ (дC ) is a polymorphism from
A to B, we get that the resulting tuple (h(v1), . . . ,h(vk )) is in RB. �

Remark 3.15. Note that if we take A = B in the previous lemma, then we obtain that Σ(A, I) is
trivial if and only if Σ(A, I) is satisfied in Pol(A) if and only if I maps homomorphically to A.

3.3 From Minor Conditions to PCSP

Our proof of Theorem 3.12(2) follows another standard reduction in approximation: a conjunction
of Long code testing and Label Cover [18]. If both A and B are Boolean (A = B = {0, 1}), then the
construction can be viewed as a certain Long code test. Such analogy fails when A and B have
a different size. Nevertheless, projections on the set A (as opposed to {0, 1} for long codes) still
play a crucial role in the completeness of this reduction. It has also appeared many times in the
presented algebraic form and seems to be folklore (see, e.g., Reference [39, Lemma 3.8]).

The key idea of the construction is that the question “Is this bipartite minor condition satis-
fied by polymorphisms of A?” can be interpreted as an instance of CSP(A). The main ingredient
is that a polymorphism is a homomorphism from An ; this gives an instance whose solutions are
exactly n-ary polymorphisms. Such instances are called indicator problems in [62]. By consider-
ing the union of several such instances (one for each function symbol appearing in Σ) and then
introducing equality constraints that reflect the identities, we get that a solution to the obtained
instance corresponds to polymorphisms satisfying the identities. We call the resulting instance an
indicator instance (or an indicator structure) for Σ.

In detail, let us fix a template (A,B) and a bound on arity N . We start with a bipartite minor
condition (Σ,U ,V ) with arity bounded by N , and construct an instance I = IΣ(A) of PCSP(A,B)
in three steps:

(1) for eachn-ary symbol f inU ∪V , introduce into I a fresh copy of An where each element
(a1, . . . ,an ) ∈ An is renamed to vf (a1, ...,an ) . To spell this out, for each relation RA, say of
arity k , the relation RI contains a tuple (vf (a11, ...,a1n ), . . . ,vf (ak1, ...,akn ) ) if and only if, for
each 1 ≤ i ≤ n, the tuple (a1i , . . . ,aki ) is in RA;

(2) for each identity f (x1, . . . ,xl ) ≈ д(xπ (1), . . . ,xπ (r ) ) in Σ, and all a1, . . . ,al ∈ A, add
an equality constraint ensuring vf (a1, ...,al ) = vд (aπ (1), ...,aπ (r ) ) ;

(3) identify all pairs of variables connected by (a path of) equality constraints and then remove
the equality constraints.

Clearly, the first and the second step can be done in log-space (note that the arity n is bounded
by the constant N ). The third step can be done in log-space by Reference [85]. We can therefore
conclude that the indicator instance of a condition involving symbols of bounded arity can be
constructed in log-space.

Lemma 3.16. Let (A,B) be a template, N > 0, and let M = Pol(A,B). The above construction gives

a log-space reduction from PMCM (N ) to PCSP(A,B).
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Proof. To prove completeness, suppose that a bipartite minor condition (Σ,U ,V ) is trivial
and let ζ : U ∪V →PA be a witness to that. We define a homomorphism from I to A by setting

h(vf (a1, ...,an ) ) = ζ ( f ) (a1, . . . ,an ).

Note that h is well-defined due to step (2) in the above construction, i.e., because ζ -images of
function symbols satisfy identities in Σ. Further, since every projection is a polymorphism of A, h
is a homomorphism.

To prove soundness, assume that there is a homomorphism h : I→ B. We reverse the above
argument and define ζ by ζ ( f ) (a1, . . . ,an ) = h(vf (a1, ...,an ) ) for all a1, . . . ,an ∈ A. Now, ζ ( f ) ∈M
follows from the first step of the construction of I, and satisfaction of the identities from Σ follows
from the second and the third steps of the construction. �

This concludes the proof of Theorem 3.12.

Remark 3.17. In the above proof, we showed that if IΣ(A) → B, then Pol(A,B) satisfies Σ. The
converse is also true, which can be shown by generalising the completeness argument in the above
proof. The fact that IΣ(A) → B if and only if Pol(A,B) satisfies Σ gives a useful intuition about the
indicator structure.

4 RELATIONAL CONSTRUCTIONS

In the previous section, we have shown that the existence of a minion homomorphism between
polymorphism minions of two templates gives us a log-space reduction between the corresponding
PCSPs. The presented proof is both self-contained and succinct. In fact, we proved a generalisation
of Reference [29, Theorem D.1], without referencing this special case, or even the Galois correspon-
dence that underlines it [83]. This section describes several concepts that give understanding of
how our result relates to these two results and the theory developed for CSPs in its current form
[15, 16].

Our goal is to present a deeper understanding of when and how our reduction works. Namely,
Theorem 3.1 shows that PCSP(A2,B2) can be reduced to PCSP(A1,B1) under the assumption that
there is a minion homomorphism from Pol(A1,B1) to Pol(A2,B2). In this section, we show that this
assumption is satisfied if and only if (A2,B2) can be obtained from (A1,B1) using certain relational
constructions that we call pp-constructions, and that happens if and only if there is a homomor-
phism from a certain relational structure constructed using Pol(A1,B1) and A2, which we call the
free structure, to B2.

4.1 Free Structures

It follows from Theorem 3.1 that if we have an NP-hard PCSP(A2,B2), then, for any PCSP template
(A1,B1) such that there is a minion homomorphism ξ from Pol(A1,B1) to Pol(A2,B2), the problem
PCSP(A1,B1) is also NP-hard. The existence of such a minion homomorphism seems to be a global
property of a minion Pol(A1,B1). Nevertheless, given that the target template is finite, it turns out
that it is not the case, as we show in this section. This allows us to obtain a reduction from knowing
only the structure of polymorphisms of arity bounded by a fixed parameter that depends on the
target template—we will use this to obtain new hardness results in Section 6.

One way to get a bound on the arity of polymorphisms is to compose the two reductions used
to obtain Theorem 3.1 (with the trivial reduction between the corresponding PMC-problems) and
analyse the soundness of the composite reduction. Here, we will describe another way of getting
such bound, generalising Reference [16, Section 7]. Our proof is based on two facts: First, a minion
homomorphism from a minion M to a minion A ⊆ O (A,B) is fully determined by its image on
functions of arity |A|. Second, for a minion M and a relational structure A there is a most general
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structure F such that there is a minion homomorphism from M to Pol(A, F). The structure F is
the most general in the sense that it maps homomorphically to any other structure B similar to A

for which there is a minion homomorphism from M to Pol(A,B).5

To simplify the notation, we assume that A = [n]. The general case, as well as the case when A

is an infinite structure, can be dealt with as in References [16, 81].

Definition 4.1. Let A be a finite relational structure on the set A = [n], and M a minion (not
necessarily related to A). The free structure of M generated by A is a relational structure FM (A)
similar to A. Its universe consists ofn-ary functions of M , i.e., FM (A) =M (n) . Let RA be a relation
of A of arity k , and letm = |RA | and RA = {r1, . . . , rm }. The relation RFM (A) is defined as the set of
all k-tuples ( f1, . . . , fk ) ∈ FM (A) such that there exists anm-ary function д ∈M that satisfies

f1 (x1, . . . ,xn ) = д(xr1 (1), . . . ,xrm (1) )

...

fk (x1, . . . ,xn ) = д(xr1 (k ), . . . ,xrm (k ) ).

(Note that the indices of variables xi on the right-hand side of the equalities are distributed so the
columns correspond to the tuples in the relation RA.)

There is a natural minion homomorphism ϕ from M to Pol(A, FM (A)). The image of д ∈M (k )

under ϕ is defined by
ϕ (д) : (a1, . . . ,ak ) �→ f (x1, . . . ,xn ),

wherea1, . . . ,ak ∈ [n] and f (x1, . . . ,xn ) = д(xa1 , . . . ,xak
). The relationRFM (A) is then the smallest

relation S such that each function from ϕ (M ) is a polymorphism from (A;RA) to (FM (A);S ).

Example 4.2. As an example let us describe the free structures of the minion H of all Boolean
functions of the form xi1 ∧ · · · ∧ xik

. In fact, H is the set of polymorphisms of the CSP template
for Horn 3-Sat, i.e., the structure

H = ({0, 1};x ∧ y → z,x ∧ y → ¬z, {0}, {1})
(see Reference [15, Example 5]). Note that the n-ary functions f ∈ H can be identified with non-
empty subsets [n]: We identify ∅ � I ⊆ [n] with fI =

∧
i ∈I xi . Clearly, any function from H can

be expressed in this way. Also fI = f J if and only if I = J .
Now, fix a relational structure A and assume A = [n]. The free structure F = FH (A) of H gen-

erated by A is then defined as follows: The elements of F are the n-ary functions from H , i.e., the
non-empty subsets of A. For a relation RA = {r1, . . . , rm } of arity k , the relation RF consists of all
k-tuples ( fI1 , . . . , fIk

) for which there exists a function дJ ∈ H (m) such that

fIi
(x1, . . . ,xn ) = дJ (xr1 (i ), . . . ,xrm (i ) )

for all i . Note that this identity is satisfied if and only if Ii = {rj (i ) | j ∈ J }, since the left-hand side is∧
a∈Ii

xa and similarly, the right-hand side is
∧

j ∈J xrj (i ) . In other words, the elements of RF can be
viewed as those k-tuples (I1, . . . , Ik ) of non-empty subsets ofA for which there exists a subset {rj |
j ∈ J } ⊆ RA such that Ii = {rj (i ) | j ∈ J } for all i = 1, . . . ,k . The resulting structure is isomorphic
to the structure introduced in Reference [48, Section 6.1.1] (called U there) to characterise the
so-called CSPs of width 1—now it is often referred to as the “power structure” of A.

The following lemma provides a useful connection between the free structure and the condition
Σ(A, I) constructed in Section 3.2:

5In the case M is a clone, the structure F is obtained by considering the free algebra generated by A in the variety of
actions of M (see Reference [81, Section 3.2] for more detailed description of this case).
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Lemma 4.3. Let M be a minion and A a relational structure. Then M satisfies the condition

Σ(A, FM (A)).

Proof. Let A = [n] and F = FM (A). We claim that Σ(A, F) is satisfied in M . Note thatU con-
sists of symbols fv where v ∈ F =M (n) . Therefore, we can define ζ : U →M by ζ ( fv ) = v .
To extend this map to V , pick a constraint C corresponding to (v1, . . . ,vk ) ∈ RF and let RA =

{r1, . . . , rm }. We need to find ζ (дC ) ∈M (m) such that

ζ ( fvi
) (x1, . . . ,xn ) ≈ ζ (дC ) (xr1 (i ), . . . ,xrm (i ) )

for all i = 1, . . . ,k . Existence of such ζ (дC ) is guaranteed by the definition of RF and the fact that
the left-hand side is equal to vi (x1, . . . ,xn ). �

The following lemma relates free structures with minion homomorphisms between minions.
This gives a key correspondence between homomorphisms of certain relational structures and
minion homomorphisms.

Lemma 4.4. Let M be a minion, and (A,B) a PCSP-template. There is a 1-to-1 correspondence

between homomorphisms from FM (A) to B and minion homomorphisms from M to Pol(A,B).

Proof. Assume that A = [n]. A homomorphism c : FM (A) → B is then a mapping from M (n)

to B. We would like to connect it to the restriction of a minion homomorphism ξ from M to
Pol(A,B) on the n-ary functions. The only obstacle is that an image of an n-ary function under
ξ is a mapping An → B, not an element of B. Following the decoding used in Lemma 3.14, we
identify such a mapping with its image of the tuple (1, . . . ,n). Formally, to a minion homomor-
phism ξ : M → Pol(A,B), we assign the map cξ : f �→ ξ ( f ) (1, . . . ,n). The fact that this map is
a homomorphism from FM (A) to B follows by an argument similar to the proof of Lemma 3.14(2).

It remains to prove that any such restriction can be extended in a unique way. Let ϕ denote
the natural minion homomorphism from M to Pol(A, FM (A)), i.e., for f ∈M , say of arity m,
ϕ ( f ) is them-ary function from Pol(A, FM (A)) defined as follows: ϕ ( f ) (a1, . . . ,am ) is the element
д ∈M (n) such that

f (xa1 , . . . ,xam
) = д(x1, . . . ,xn ). (�)

Given c : FM (A) → B, we define ξc : M → Pol(A,B) by

ξc ( f ) : (a1, . . . ,am ) �→ c (ϕ ( f ) (a1, . . . ,am )).

It is easy to see that the mapping ξc preserves taking minors. We need to prove that ξc ( f ) ∈
Pol(A,B) for each f , but that follows from the fact that ϕ ( f ) ∈ Pol(A, FM (A)), i.e., it is a ho-
momorphism from Am to FM (A) and c is a homomorphism from FM (A) to B.

For the uniqueness, suppose that χ : M → Pol(A,B) is a minion homomorphism such that
cχ = c , i.e., χ (д) (1, . . . ,n) = c (д) for all д ∈M (n) . Since χ preserves minors, we get that for any
(a1, . . . ,am ) ∈ Am and f satisfying (�), we have χ ( f ) (a1, . . . ,am ) = χ (д) (1, . . . ,n) = c (д) conclud-
ing χ = ξc . �

We remark in passing that the correspondence in the above lemma is natural in the categorical
sense. More precisely, the mapping − �→ F− (A), assigning to a minion the free structure generated
by A is an adjoint to the functor Pol(A,−).

Remark 4.5. The previous lemma holds also for minions M over infinite sets A′ and B′ and for
infinite relational structures A and B. The proof applies to the case when A is finite. It can be
generalised to an infinite A using a more general definition of the free structure along the lines of
Reference [81, Definition 3.1].
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4.2 Pp-constructions

We introduce two relational constructions: pp-powers, which generalise the analogous notion for
CSP templates [16], and homomorphic relaxations, which generalise both simple relaxations (Defi-
nition 2.25) and homomorphic equivalence for CSP templates. Relaxation is in fact a very natural
notion for promise problems: The idea is that any problem that has a stronger promise has to be
at least as easy as the original problem.

Definition 4.6. Assume that (A,B) and (A′,B′) are similar PCSP templates. We say that (A′,B′)
is a homomorphic relaxation6 of (A,B) if there are homomorphisms hA : A′ → A and hB : B→ B′.

All the relaxations that appear in this article are homomorphic relaxations, therefore, we will
usually omit the word “homomorphic.” In particular, the simple relaxation defined in Defini-
tion 2.25 is a special case of homomorphic relaxation, namely, one where both hA and hB are
identity maps on the corresponding domains.

Clearly, if (A′,B′) is a relaxation of (A,B), then the trivial reduction (which does not change the
input) is a reduction from PCSP(A′,B′) to PCSP(A,B), since it is a strengthening of the promise
(and weakening of the objective).

The following is a generalisation of the definition of a pp-power for CSP templates (see Reference
[15, Definition 14]):

Definition 4.7. Let (A,B) and (A′,B′) be two PCSP templates. We say that (A′,B′) is an (nth) pp-

power of (A,B) ifA′ = An , B′ = Bn , and, if we view k-ary relations on A′ and B′ as kn-ary relations
on A and B, respectively, then (A′,B′) is pp-definable in (A,B) in the sense of Definition 2.25.

Lemma 4.8. Let (A1,B1) and (A2,B2) be two PCSP templates. If

(1) (A2,B2) is a relaxation of (A1,B1), or

(2) (A2,B2) is a pp-power of (A1,B1),

then there is a minion homomorphism ξ : Pol(A1,B1) → Pol(A2,B2).

Proof. For i = 1, 2, let Mi = Pol(Ai ,Bi ).

(1) Assume hA : A2 → A1 and hB : B1 → B2 are homomorphisms, and define ξ : M1 →M2

by ξ ( f ) : (a1, . . . ,an ) �→ hB ( f (hA (a1), . . . ,hA (an ))). It is easy to see that ξ ( f ) is a poly-
morphism of (A2,B2) (as it is a composition of homomorphisms), and also that ξ preserves
minors.

(2) Assume that (A2,B2) is nth pp-power of (A1,B1). We define ξ to map each f to its
component-wise action on A2 = An

1 , i.e.,

ξ ( f ) : (a1, . . . , am ) �→
(
f (a1 (1), . . . , am (1)), . . . , f (a1 (n), . . . , am (n))

)
.

Clearly, ξ is minor-preserving. Also ξ ( f ) is a polymorphism, since f is a polymorphism
from A1 to B1, and therefore it preserves all pp-definable relations. �

The above together with Theorem 3.1 prove that both the constructions yield a log-space re-
duction between the corresponding PCSPs. We remark that the same can also be proven directly.
Since both constructions yield a reduction, we can combine them and still retain log-space reduc-
tions. This motivates the next definition, which is similar to the corresponding notion for CSPs
(see Reference [15, Section 3.4]).

6Homomorphic relaxations of CSP templates (i.e., A = B, but A′ and B′ can be different) have been considered in Reference
[30] where they are called homomorphic sandwiches.
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Definition 4.9. We say that (A′,B′) is pp-constructible from (A,B) if there exists a sequence

(A,B) = (A1,B1), . . . , (Ak ,Bk ) = (A′,B′)

of templates where each (Ai+1,Bi+1) is a pp-power or a homomorphic relaxation of (Ai ,Bi ). We
say that (A′,B′) is pp-constructible from A if it is pp-constructible from (A,A).

Corollary 4.10. If (A′,B′) is pp-constructible from (A,B), then there is a minion homomorphism

from Pol(A,B) to Pol(A′,B′).

Proof. Assume that we have a sequence (A1,B1), . . . , (Ak ,Bk ) as in the definition of pp-
constructibility, and Mi = Pol(Ai ,Bi ) for i ∈ [k]. That means, that by Lemma 4.8, we have minion
homomorphisms ξi : Mi →Mi+1 for all i < k . The minion homomorphism from Pol(A,B) =M1

to Pol(A′,B′) =Mk is obtained by composing all ξi ’s. �

An example of a template that can be pp-constructed is a template obtained using the free
structure.

Lemma 4.11. Let (A1,B1) be a PCSP template, M = Pol(A1,B1), and A2 be a relational structure.

Then the template (A2, FM (A2)) is a relaxation of a pp-power of (A1,B1).

Proof. Let us first comment on some ideas underlying the proof. We will argue that the whole
reduction from PCSP(A2, F), where F = FM (A2), to PCSP(A1,B1) according to the proof of The-
orem 3.1 is basically a pp-construction of (A2, F) from (A1,B1), and in particular it is a relax-
ation of a pp-power. Note that Theorem 3.1 applies, since we have a minion homomorphism
ϕ : M → Pol(A2, F), as defined in the proof of Lemma 4.4.

For the formal proof, assume that A2 = [n], and let N = |A1 |n . We first describe an N th pp-
power of (A1,B1) and then argue that (A2, F) is a homomorphic relaxation of this power. Let
RA2 = {r1, . . . , rm } be a relation of A2 of arity k . Recall that the relation RF is defined as the set of all
k-tuples ( f1, . . . , fk ) of functions fromAn

1 toB1 for which there exists a polymorphismд : Am
1 → B1

such that
fi (x1, . . . ,xn ) = д(xr1 (i ), . . . ,xrm (i ) ) (♠)

for all i ∈ [k]. Note that we do not need to require that fi ’s are polymorphisms, since the mentioned
identities enforce that all fi ’s are minors of the polymorphism д. We argue that the set of all
such tuples is pp-definable in B1 as a kN -ary relation. In fact, since this is just a bipartite minor
condition, we can use the construction from Section 3.3 and adapt it to provide a pp-formula: The
free variables of the pp-formula are labelled by fi (a1, . . . ,an ) where i ∈ [k] anda1, . . . ,an ∈ A1, the
quantified variables are labelled by д(a1, . . . ,am ) where a1, . . . ,am ∈ A1. Further, let RA1 denote
the set of all relational symbols of A1. We use the following pp-formulas to define the pp-power
(see Definition 2.25):

ΨR (vfi (a1, ...,an ), . . . ) = ∃a1, ...,am ∈A1vд (a1, ...,am )∧
S ∈RA1

∧
s1, ...,sm ∈SA1

(vд (s1 (1), ...,sm (1)), . . . ,vд (s1 (ar(S )), ...,sm (ar(S ))) ) ∈ S ∧

∧
i ∈[k]

∧
a1, ...,an ∈A1

vfi (a1, ...,an ) = vд (ar1 (i ), ...,arm (i ) ) .

The first conjunction ensures that the values assigned to vд (a1, ...,am ) ’s give a valid polymorphism
д, the second conjunction then ensures that this polymorphism will satisfy (♠). Let us denote the
resulting pp-power by (A′1,B

′
1).

We still need to find homomorphisms from A2 to A′1 and from B′1 to F. The first one can be con-
structed following an argument from Lemma 3.16: We definehA : A2 → A′1 byhA (a) = pa wherepa
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denotes the projection on theath coordinate (note that A′1 is an |A1 | |A2 |-th pp-power of A1). Further,
if (a1, . . . ,ak ) ∈ RA2 , i.e., (a1, . . . ,ak ) = ri for some i , then choosing the value ai for vд (a1, ...,am )

will give a satisfying assignment of ΨA1
R

. The homomorphism from B′1 to F is easier: Since F ⊆ B′1,

and ΨB1
R

( f1, . . . , fk ) if and only if ( f1, . . . , fk ) ∈ RF (this was the motivation behind the definition
of ΨR ), we can define hB : B′1 → F as any extension of the identity mapping on F . �

Finally, we are ready to formulate and prove the main result of this section.

Theorem 4.12. Let (Ai ,Bi ) for i = 1, 2 be PCSP templates and Mi = Pol(Ai ,Bi ). The following

are equivalent:

(1) There exists a minion homomorphism ξ : M1 →M2.

(2) M2 satisfies all bipartite minor conditions satisfied in M1.

(3) M2 satisfies the condition Σ(A2, FM1 (A2)).
(4) There exists a homomorphism from FM1 (A2) to B2.

(5) (A2,B2) is a homomorphic relaxation of a pp-power of (A1,B1).
(6) (A2,B2) is pp-constructible from (A1,B1).

Proof. The implication (5)→ (6) is trivial, (6)→ (1) follows from Corollary 4.10, (1)→ (2) fol-
lows directly from the definition (see Definition 2.21 and the comment after it), (2)→ (3) follows
from Lemma 4.3 for M =M1 and A = A2, and (3)→ (4) follows directly from Lemma 3.14(2).

Finally, we prove (4)→ (5). Lemma 4.11 gives that (A2, FM1 (A2)) is a relaxation of a pp-power
of (A1,B1), the homomorphism from FM1 (A2) to B2 then proves that (A2,B2) is a relaxation of
(A2, FM1 (A2)). We obtain the desired claim by composing the two relaxations into one. �

5 HARDNESS FROM THE PCP THEOREM

The celebrated PCP theorem [3, 4] is a starting point for many proofs of inapproximability of
many problems. As an example, we refer to the work of Håstad [56] that derives inapproximability
of several CSPs from the PCP theorem. Also note that the PCP theorem itself can be formulated
as a result on inapproximability of the CSP (see Reference [44, Theorem 1.3]). Concrete results on
hardness of many PCSPs rely on the PCP theorem (e.g., References [7, 26, 47, 59, 65]). A common
approach for using the PCP theorem is to first derive hardness of some approximation version of
Label Cover, or some of its variants, and then using gadgets reduce from Label Cover to PCSP.

In the scope of this article, we described a reduction from MC, which is essentially Label Cover, to
PCSP (see Section 3.1). The present section then derives some algebraic conditions for applicability
of this reduction when applied to Label Cover itself. We note that there are many approximation
versions of Label Cover and many variants of PCPs. Most can be used as a starting point for
a reduction, and we do not provide an exhaustive description. We focus on a few versions of Label
Cover, including a plain approximation version thereof and one that was used in Reference [47]
to obtain NP-hardness of approximate hypergraph colouring.

As mentioned above, the general approach for a reduction from (some version of) Label Cover
to some PCSP(A,B) is to interpret an instance of Label Cover as a minor condition (as described in
the beginning of Section 3.1) and then reduce from PMCM , where M = Pol(A,B), to PCSP(A,B)
using Theorem 3.12. To ensure that this composite reduction works, it is enough to relate the yes-
and no-instances of the LC, or its variant, and the corresponding PMC. Proving completeness
(i.e., that yes-instances are preserved) is usually straightforward, while proving soundness (i.e.,
preserving no-instances) require some extra work.

Before we get to more general cases, let us briefly focus on a reduction from the plain (exact)
Label Cover.
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5.1 Reduction from Label Cover

As noted before, exact Label Cover is essentially the same as deciding non-triviality of bipartite
minor conditions. This also means that we can use Theorem 3.12(1) to give an immediate proof
that MC is NP-hard. A similar reduction from some NP-hard CSP is a commonly used argument
for NP-hardness of Label Cover.

Theorem 5.1. MC(N ) is NP-hard for each N ≥ 3.

Proof. We reduce from 1-in-3-Sat using Theorem 3.12(1): Let T denote the CSP template of 1-
in-3-Sat and RT its ternary relation (see Example 2.8). It is well-known that every polymorphism
of T is a projection, i.e., Pol(T) =P2. The mentioned theorem then gives a reduction from CSP(T)
to PMCP2 (N ) for each N that is larger than both the size of the domain of T, which is 2, and
the number of tuples in RT, which is 3. Therefore, PMCP2 (N ) is NP-hard for each N ≥ 3. Since
PMCP2 (N ) is the same as MC(N ), we obtain the desired hardness. �

To align no-instances of MC(N ) and PMCM (N ), we need that M does not satisfy any non-
trivial bipartite minor conditions involving symbols of arity at most N . Since the theorem above
gives NP-hardness of MC(N ) for any N = 3, this means that arity at most 3 is enough, as we state
in the following direct corollary of Theorem 3.12(2) and Theorem 5.1:

Corollary 5.2. If Pol(A,B) does not satisfy any non-trivial bipartite minor condition of arity at

most three, then PCSP(A,B) is NP-hard.

The assumption of the above corollary can be also satisfied by constructing a minor-preserving

map ξ : M (3) →P (3)
2 . The search for such a minion homomorphism can be easily automated,

which, with a suitable implementation, can be useful for small enough structures. We also remark
that, since it is enough to work with binary and ternary functions, this might simplify some com-
binatorial arguments.

We now show that a minion that does not satisfy any non-trivial bipartite minor condition of
small arities cannot satisfy such a condition of large arity. This has been also observed in Reference
[17, Section 5.3].

Proposition 5.3. The following are equivalent for every minion M :

(1) M does not satisfy any non-trivial bipartite minor condition of arity at most three.

(2) There exists a minion homomorphism from M to P2.

Proof. The implication (2)→ (1) is obvious; let us prove (1)→ (2). We use the notation from
the proof of Theorem 5.1 and follow the proof of Theorem 4.12(3)→ (1). The key observation is
that the condition Σ(T, FM (T)) is of arity at most three, and therefore it is trivial by the assumption
and Lemma 4.3. The bound on arity is clear from the construction: The condition is composed of
identities of the form

fv1 (x ,y) ≈ д(v1,v2,v3 ),R (x ,x ,y),

fv2 (x ,y) ≈ д(v1,v2,v3 ),R (x ,y,x ),

fv3 (x ,y) ≈ д(v1,v2,v3 ),R (y,x ,x ),

where (v1,v2,v3) ∈ RFM (T) . Thus, by Lemma 3.14(2), we get that FM (T) → T, which implies that
there is a minor homomorphism from M to Pol(T) =P2 by, e.g., Lemma 4.4. �

Remark 5.4. The above proposition can be easily generalised for minions on infinite sets: The
finiteness was used only to ensure that M (2) , and consequently also the free structure FM (T),
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is finite. This can be circumvented by a standard compactness argument. See, e.g., Reference [23,
Lemma III.5].

The significance of the above proposition and the considerations of this subsection is that it
implies that a reduction from LC(N ) using polymorphism gadgets (following Section 3.3) works
for some N if and only if the same reduction works for N = 3.

Example 5.5 (See also Example 2.22). In Reference [26], the authors prove that PCSP(K3,K4) is
NP-hard by a reduction from LC. This in fact means that there is a simple gadget reduction from,
e.g., 1-in-3-Sat, or equivalently, from CSP(T). This reduction then uses only properties of binary
and ternary polymorphisms from K3 to K4.

We use Section 3 for the reduction: Given an instance I of 1-in-3-Sat, we first obtain a bipartite
condition Σ = Σ(I,T). This condition (similarly as in the proof of Proposition 5.3 involves only
symbols of arity two and three. From Σ, we then obtain a graph G = IΣ(K3). The goal is to show
that if I→ T, then G is 3-colourable (which is the easier part, and we refer to Section 3 for the
proof), and that if G is 4-colourable, then I→ T. The latter can be observed by constructing a ho-
momorphism from the free structure FM (T) to T where M = Pol(K3,K4). Let us sketch one such
homomorphism h : FM (T) → T.

The elements of FM (T) are binary polymorphisms of (K3,K4). Therefore, to construct a homo-
morphism, we need to choose a Boolean value for each of the colourings of K2

3 with 4 colours.
Such colourings are easy to describe; in fact the “trash colour lemma” that we mentioned in Exam-
ple 2.22 is much easier to prove for binary functions. Therefore, we can map a colouring f to 0 if,
after removing the trash colour, f depends on the first variable, and 1 if it depends on the second.
This defines the mapping h. The only hard part is to prove that h is a homomorphism; for that
it is necessary to look at ternary polymorphisms of (K3,K4), since they determine the relational
structure FM (T).

5.2 Reduction from Gap Label Cover

Let us continue with a more general reduction from Gap Label Cover. The framework that we
present generalises the approach of, e.g., References [7, 26], where the authors proved NP-hardness
of various fixed-template PCSPs using polymorphisms by reducing from Gap Label Cover.

Definition 5.6. The Gap Label Cover problem with parameters δ (completeness), ε (soundness),
and N , denoted by GLCδ,ε (N ), is a promise problem that, given an instance of LC(N ),

• accepts if there is an assignment that satisfies at least δ -fraction of the given constraints, or
• rejects if no assignment satisfies more than ε-fraction of the given constraints.

The hardness of Gap Label Cover with perfect completeness (i.e., δ = 1) and some soundness
ε < 1 can be directly obtained from the PCP theorem of References [3, 4]. The soundness parameter
can then be brought down to arbitrarily small ε > 0 using the parallel repetition theorem of Raz
[84] at the cost of increasing N .

Theorem 5.7 ([3, 4, 84]). There exist constants C1,C2 > 0 such that for every ε > 0 and every

N ≥ C1ε
−C2 , GLC1,ε (N ) is NP-hard.

Fix some PCSP(A,B) and let M = Pol(A,B). As before, we can reduce Gap Label Cover to
PCSP(A,B) via Theorem 3.12(2) if we can ensure that the standard transformation from GLC1,ε (N )
to PMCM (N ) (i.e., interpreting a Label Cover instance as a bipartite minor condition) is a valid
reduction. The completeness is immediate. To prove that no-answers are preserved, one typically
uses some limitations of the structure (which may be non-trivial to obtain) of bipartite minor con-
ditions satisfied in M and shows the contrapositive. More specifically, one proves that if a bipartite
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minor condition Σ is satisfied in M , then some part of Σ containing more than ε-fraction of iden-
tities can be satisfied in projections, and hence the corresponding Label Cover instance has an
assignment satisfying more than ε-fraction of constraints. To formulate a theorem characterising
this approach, we use the following definition that captures no-instances of Gap Label Cover in
an algebraic language:

Definition 5.8. Let ε > 0. We say that a bipartite minor condition Σ is ε-robust if no ε-fraction of
identities from Σ is trivial.

Theorem 5.9. There exist constantsC1,C2 > 0 such that the following holds: If there exists an ε > 0
and N ≥ C1ε

−C2 such that Pol(A,B) does not satisfy any ε-robust bipartite minor condition involving

symbols of arity at most N , then PCSP(A,B) is NP-hard.

Proof. LetC1 andC2 be the same as in Theorem 5.7, so GLC1,ε (N ) is NP-hard for any ε and N
satisfying the assumptions, and let M = Pol(A,B). We transform an instance of GLC1,ε (N ) to an
instance of PMCM (N ) in the usual way. Since label cover constraints are in 1-to-1 correspondence
with identities in the bipartite minor condition, any no-instance of GLC1,ε (N ) is transformed into
a bipartite minor condition that is ε-robust and therefore fails in M , i.e., this condition is a no
instance of PMCM (N ). This shows soundness of the reduction, and completeness is obvious. The
statement now follows from Theorem 3.12(2). �

Since for every ε > 0 there exists a suitable N in the above theorem, we can formulate the
following useful weaker version of this theorem:

Corollary 5.10. Let ε > 0, if Pol(A,B) does not satisfy any ε-robust bipartite minor condition,

then PCSP(A,B) is NP-hard.

The only general approach (that we are currently aware of) to verify that a minion M satisfies
no ε-robust bipartite condition is a probabilistic method applied as follows: Suppose we can find
a probability distribution on the set of pairs of arity-preserving mappings M →P2 so, for each
minor identity

f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ),

the following happens: If the identity is satisfied by functions ζ ( f ) and ζ (д) in M , and we select
τ ,τ ′ : M →P2 according to the probability distribution, then the probability that the identity
is satisfied by the projections pi = τ (ζ ( f )) and pj = τ

′(ζ (д)) (i.e., that i = π (j )) is at least ε . In
this case, M satisfies no ε-robust bipartite minor condition. Indeed, if a bipartite minor condition
(Σ,U ,V ) is satisfied in M through a map ζ : U ∪V →M and we randomly assign a projection
to each function h in the image of ζ as above, then the probability that a single minor identity
in Σ is satisfied is at least ε and it follows that the expected fraction of satisfied identities in Σ is at
least ε . Consequently, some ε-fraction of identities in Σ is trivial.

The random procedure of assigning projections to function in M can be thought of as a gener-
alised minion homomorphisms from M to P2. We will not study this concept in full generality,
since, in applications, a very simple version has been sufficient so far. Namely, projections τ ( f ) as
well as τ ′( f ) are chosen independently for each f ∈M and uniformly from a subset of projections
(which corresponds to a subset of coordinates). In this case, the probabilistic argument gives us
the following lemma:

Lemma 5.11. Let M be a minion and letC : N → N . Assume that there exists a mapping I assign-

ing to each h ∈M (n) a subset of [n] of size at most C (n) such that for each π : [m]→ [n] and each

д ∈M (m) , we have

π (I (д(x1, . . . ,xm )) ∩ I (д(xπ (1), . . . ,xπ (m) )) � ∅.
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Then M satisfies no (1/C (N )2)-robust bipartite minor condition involving symbols of arity at most

N .

Proof. Let (Σ,U ,V ) be a bipartite minor condition that involves symbols of arity at most
N and is satisfied in M , which is witnessed by ζ : U ∪V →M . To ease readability, we write
f M = ζ ( f ) for each f . Let ε = 1/C (N )2. We want to show that Σ is not ε-robust, i.e., we want to
find an assignment ρ : U ∪V →P2 that satisfies at least ε-fraction of identities in Σ.

Let us choose such an assignment by choosing a coordinate i ∈ I ( f M ) uniformly at random,
and setting ρ ( f ) = pi . We claim that the probability that any single identity in Σ is satisfied is at
least ε . Indeed, if we consider an identity

f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ), (5.1)

in Σ, then we get that I ( f M ) ∩ π (I (дM )) � ∅, and consequently, there is a choice of i ∈ I ( f M )
and j ∈ I (дM ) such that i = π (j ), i.e., f = pi and д = pj satisfies Equation (5.1). This means that
the probability is at least

1/
(
|I ( f M ) | · |I (дM ) |

)
≥ 1/C (n)C (m) ≥ 1/C (N )2.

It follows that the expected fraction of identities that gets satisfied by ρ is at least ε , which means
that there is an assignment of projections that satisfies at least ε-fraction of identities in Σ. �

Directly from the above and Corollary 5.10, we get the following:

Corollary 5.12. Let M = Pol(A,B) and let C be a constant such that there exists a mapping I
assigning to each h ∈M (n) a subset of [n] of size at most C such that for each π : [m]→ [n] and

each д ∈M (m) , we have

π (I (д(x1, . . . ,xm )) ∩ I (д(xπ (1), . . . ,xπ (m) )) � ∅.
Then PCSP(A,B) is NP-hard.

We will now explain some known hardness results that can be obtained using the above corol-
lary. Possibly the simplest way to choose the set I ( f ) of coordinates for a function f is to choose
only coordinates that can influence the value of f . This is formalised in the following definition:

Definition 5.13. Let f : An → B, a coordinate i ∈ [n] is called essential if there exist a1, . . . ,an

and bi in A such that

f (a1, . . . ,ai−1,ai ,ai+1, . . . ,an ) � f (a1, . . . ,ai−1,bi ,ai+1, . . . ,an ).

A minion N on (A,B), where A and/or B can be infinite, is said to have essential arity at most k ,
if each function f ∈ N has at most k essential variables. We say that N has bounded essential
arity if it has essential arity at most k for some k .

The following is a generalisation of Reference [7, Theorem 4.7]:

Proposition 5.14. Let (A,B) be a PCSP template and let M = Pol(A,B). Assume that there ex-

ists a minion homomorphism ξ : M → N for some minion N , possibly on infinite sets, which has

bounded essential arity and does not contain a constant function (i.e., a function without essential

variables). Then PCSP(A,B) is NP-hard.

Proof. LetC be the bound on the essential arity of N . For f ∈M , we set I ( f ) to be the set of
all essential coordinates of ξ ( f ). Clearly, 1 ≤ |I ( f ) | ≤ C . To apply Corollary 5.12, we only need to
show that if

f (x1, . . . ,xn ) = д(xπ (1), . . . ,xπ (m) )
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for all x1, . . . ,xn ∈ A, then I ( f ) ∩ π (I (д)) � ∅. Indeed, if i ∈ [m] is an essential coordinate of ξ ( f ),
then there are two tuples a1, . . . ,an and b1, . . . ,bn such that ai � bi , ai′ = bi′ for all i ′ � i and
ξ ( f ) (a1, . . . ,an ) � ξ ( f ) (b1, . . . ,bn ). The last disequality together with the above identity (which
is preserved by ξ ) gives that

ξ (д) (aπ (1), . . . ,aπ (n) ) � ξ (д) (bπ (1), . . . ,bπ (n) ).

The two tuples of arguments differ only on coordinates j ′ with π (j ′) = i , therefore ξ (д) has to de-
pend essentially on at least one coordinate from π−1 (i ). This shows that i ∈ π (I (д)), and therefore
I ( f ) ⊆ π (I (д)). We get the claim, since I ( f ) � ∅ by assumption. �

The following technical notion is a slight strengthening of one that was used in Reference [29]
as a sufficient condition for NP-hardness of some Boolean PCSPs:

Definition 5.15. LetC > 0 be a constant. A minion M ⊆ O ({0, 1}) is said to be stronglyC-fixing

if for each f ∈M there exists a (fixing) set If ⊆ [ar( f )], |If | ≤ C such that f (x1, . . . ,xar(f ) ) = 0
whenever xi = 0 for all i ∈ I , and similarly, f (x1, . . . ,xar(f ) ) = 1 whenever xi = 1 for all i ∈ I .

We remark that a strongly C-fixing minion does not need to have bounded essential arity. The
following proposition is a generalisation of Reference [29, Theorem 5.1]:

Proposition 5.16. Let (A,B) be a PCSP template and let M = Pol(A,B). Assume that there exists

a minion homomorphism ξ : M → N for some minion N ⊆ O ({0, 1}) that is stronglyC-fixing for

some C > 0. Then PCSP(A,B) is NP-hard.

Proof. We set I ( f ) to be some fixing set of ξ ( f ) of size at most C . Observe that no function
f ∈ N can have two disjoint fixing sets: If I and J would be disjoint and fixing, then we would
get that for a tuple (x1, . . . ,xn ) such that xi = 0 for all i ∈ I and x j = 1 for all j ∈ J , we would get
that f (x1, . . . ,xn ) is both 0 and 1. However, a π -image of a fixing set I of д is a fixing set for the
minor д(xπ (1), . . . ,xπ (m) ). This shows that if f and д satisfy

f (x1, . . . ,xn ) ≈ д(xπ (1), . . . ,xπ (m) ),

and consequently their ξ -images satisfy the same identity, then I ( f ) ∩ π (I (д)) � ∅. Hence, Corol-
lary 5.12 applies. �

5.3 Reduction from Multilayered Label Cover

NP-hardness of Gap Label Cover is just one of the consequences of the PCP theorem, although
arguably the most prevalent one. Other variants of GLC can also be used in proving NP-hardness
of some PCSP. In this section, we describe in algebraic terms a reduction from the so-called Lay-

ered Label Cover (or Multilayered PCP) that has been used in Reference [47] to prove hardness of
approximate hypegraph colouring, i.e., PCSP(H2,Hk ). We also briefly comment on how Layered
Label Cover is applied in this case. Gap Layered Label Cover was introduced in Reference [45].

The Layered Label Cover (LLC) is a generalisation of LC from bipartite graphs to L-partite
graphs. The partite sets are referred to as layers.

Definition 5.17 (Layered Label Cover). Fix positive integers N and L ≥ 2. We define LLC(L,N ) as
the following decision problem. The input is a tuple

((Vi , ri )1≤i≤L, (Ei j ,Πi j )1≤i<j≤L )

Journal of the ACM, Vol. 68, No. 4, Article 28. Publication date: July 2021.



Algebraic Approach to Promise Constraint Satisfaction 28:31

where

• Each Gi j = (Vi ,Vj ;Ei j ) is a bipartite graph,
• ri ≤ N are positive integers, and
• each Πi j is a family of maps πi j,e : [r j ]→ [ri ], one for each e ∈ Ei j .

The goal is to decide whether there is a labelling of vertices from V1, . . . ,VL with labels from
[r1], . . . , [rL], respectively, such that if (u,v ) ∈ Ei j , then the label of v is mapped by πi j, (u,v ) to the
label of u.

Note that the LLC is a CSP, where edges (u,v ) ∈ Ei j correspond to constraints between the
layers i and j.

Just like LC(N ) = LLC(2,N ) is essentially the same problem as MC(N ) (recall Subsection 3.1),
the L-layered version LLC(L,N ) is essentially the same problem as LMC(L,N ), the problem of
deciding triviality of L-layered minor conditions. To be precise, for pairwise disjoint setsV1, . . . ,VL

of function symbols, an L-layered minor condition is a tuple (Σ,V1, . . . ,VL ) whereVi are disjoint
sets of function symbols, and Σ is a set of identities of the form f (x1, . . . ,xri

) = д(xπ (1), . . . ,xπ (r j ) )
where i < j, f ∈ Vi and д ∈ Vj .

For a minion M , one can naturally define PLMCM (L,N ), the promise version of LMC(L,N ), in
the same way as PMCM (N ) is obtained from MC(N ), i.e., the yes-instances of LMC(L,N ) are all
the trivial L-layered minor conditions Σ involving symbols of arity at most N , and no-instances
those L-layered minor conditions Σ involving symbols of arity at most N that are not satisfied in
M . Moreover, if M = Pol(A,B), then, for any fixed L and N , PLMCM (L,N ) can be reduced to
PCSP(A,B) in log-space in the same way as in the proof of Theorem 3.12(2) (see also Section 3.3).

We will exploit these observations in a similar way as in the previous subsection—by exploring
when a known NP-hard gap version of LLC can be naturally reduced to PLMCM (L,N ). An im-
portant gain of using more layers is a certain kind of density of LLC instances that can be required
while preserving hardness.

Definition 5.18. An instance of LLC(L,N ) is called weakly dense if for any 1 < m < L, any m
layers i1 < · · · < im , and any sets S j ⊆ Vi j

such that |S j | ≥ 2|Vi j
|/m for every 1 ≤ j ≤ m, there exist

1 ≤ j < j ′ ≤ m such that |Ei j i j′ ∩ (S j × S j′ ) | ≥ |Ei j i j′ |/m2.

We are ready to state a gap version of Layered Label Cover from Reference [45].

Definition 5.19. The Gap Layered Label Cover problem with parameters ε , L, and N denoted by
GLLCε (L,N ), is a promise problem in which, given a weakly dense instance of LLC(L,N ), one
needs to

• accept if there is an assignment that satisfies all the constraints, or
• reject if for every 1 ≤ i < j ≤ L no assignment satisfies more than ε-fraction of the con-

straints between the layers i and j.

Theorem 5.20 [45, Theorem 4.2]. There exist constants C1,C2 > 0 such that for every 1 ≥ ε > 0,

every L ≥ 2, and every N ≥ C1ε
−C2L the problem GLLCε (L,N ) is NP-hard.

An analogue of Theorem 5.9, which we state now, allows us to break a polymorphism minion
into finitely many sets that do not need to be minions and check the “no ε-robust minor condi-
tion” property for each of the pieces separately (note that Definition 3.2 of satisfaction of a minor
condition in M makes sense for an arbitrary subset of O (A,B)).

Theorem 5.21. Let (A,B) be a PCSP template and let ε : N → R be a function such that ε (N ) ∈
Ω(N −K ) for each K > 0. Assume that M = Pol(A,B) is a union of finitely many sets M1, . . . ,Mk ,
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none of which satisfies (for any N ) any ε (N )-robust bipartite minor condition involving symbols of

arity at most N . Then PCSP(A,B) is NP-hard.

Proof. We show that, with an appropriate choice of ε ′,L, and N , the usual transformation of
a GLLCε ′ (L,N ) to a PLMCM (L,N ) is a reduction. Since GLLCε ′ (L,N ) is NP-hard by Theorem 5.21
(for a large enough N ) and PLMCM (L,N ) reduces to PCSP(A,B), the claim will follow.

It is straightforward that the yes-instances are mapped to yes-instances with any choice of
parameters. The non-trivial part is to show that, with a suitable choice of the parameters, no-
instances are mapped to no-instances. We set L = 2k2 and choose N , ε ′ so

ε ′ = ε (N )/(4k2) and N ≥ C1 (ε ′)−C2L,

which is possible as ε (N ) = Ω(N −K ) for K < 1/C2L.
We verify the contrapositive. Consider a weakly dense instance I = ((Vi , ri )i≤L, (Ei j ,Πi j )i<j )

of GLLCε ′ (L,N ) that is not mapped to a no-instance Σ (over the sets of symbols (Vi )1≤i≤L) of
PLMCM (L,N ), i.e., there exists a mapping ζ from ∪L

i=1Vi to M that witnesses that M satisfies Σ.
We colour each symbol f in Vi by some index c such that ζ ( f ) ∈Mc . Next, we colour each

layerVi by the most popular colour among its members. Since the number of colours is at most k
and the number of layers is 2k2, at least m = 2k layers i1, . . . , im received the same colour, say c .
Finally, let S j (where j = 1, . . . ,m) denote the set of all elements ofVi j

with colour c .
We have |S j | ≥ |Vi j

|/k = 2|Vi j
|/m, therefore, as I is weakly dense, there exist j < j ′ such that at

least 1/m2-fraction of identities in Σ, which are between Vj and Vj′ , is between S j and S j′ . The
assignment ζ witnesses that the system of all identities between S j and S j′ is satisfied in Mc . Since
Mc does not satisfy any ε (N )-robust condition with symbols of arity at mostN , some ε (N )-fraction
of identities between S j and S j′ is trivial. Since ε ′ = ε (N )/(4k2) = ε (N )/m2, it follows that some
ε ′-fraction of identities betweenVi j

andVi j′ is trivial, which for the original instance I means that
at least ε ′-fraction of the constraints between Vi j

and Vi j′ is satisfied, so I is not a no-instance of
GLLCε ′ (L,N ). �

The assumption that Mi does not satisfy any ε (N )-robust bipartite minor condition may be
verified by a probabilistic argument as in the previous section. We remark that Lemma 5.11 applies
to sets M of functions that are not minions, e.g., sets Mi from the previous theorem.

Hardness of approximate hypergraph colouring. In the rest of this subsection, we will sketch
a proof of NP-hardness of approximate graph colouring (see Example 2.11). This was proved in
Reference [47], and in our sketch, we will reuse some of the combinatorial arguments from that
paper. The theorem can be stated as follows:

Theorem 5.22 ([47]). For any k ≥ 2, PCSP(H2,Hk ) is NP-hard.

Our proof loosely follows the one in Reference [47] with the main difference being the usage of
our general theory. In particular, we use the above universal reduction from LLC to PLMC instead
of an ad hoc reduction from LLC to hypergraph colouring used in Reference [47].

The combinatorial core of the proof is a strengthening Lovász’s theorem on the chromatic num-
ber of Kneser graphs. To state the theorem in the algebraic language, recall that Ham(t) denotes
the Hamming weight of a tuple t ∈ {0, 1}n . We call two tuples u, v ∈ {0, 1}n disjoint if ui = 0 or
vi = 0 (or both) for every i ∈ [n].

Theorem 5.23 ([75]). Let f : {0, 1}N → {0, . . . ,k − 1} and s = �(N + 1 − k )/2�. Then there exist

disjoint tuples uf , vf ∈ {0, 1}N such that Ham(uf ) = Ham(vf ) = s and f (uf ) = f (vf ).

This theorem has an immediate consequence for polymorphisms of (H2,Hk ). Namely, it implies
that, for every polymorphism f : HN

2 → Hk , there exists c ∈ {0, . . . ,k − 1} and a c-avoiding set A
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of coordinates of size at most k , by which we mean that f (w) � c for every tuple w ∈ {0, 1}N such
that wi = 1 for every i ∈ A. Indeed, take c = f (uf ) = f (vf ) and

A =
{
i ∈ [N ] | uf

i = v
f
i = 0

}
.

Since w is such thatwi = 1 for every i ∈ A, the matrix with rows uf , vf , w has all columns in NAE2,
and therefore f applied to the rows of this matrix gives a tuple in NAEk . As c = f (uf ) = f (vf ), we
get f (w) � c for every such a tuple. The size of A is indeed at most |N − 2�(N + 1 − k )/2� | ≤ k .

These c-avoiding sets have similar properties as fixing sets (see Definition 5.15): The π -image
of a c-avoiding set for a function is clearly c-avoiding for the corresponding minor. However,
a function can have two disjoint c-avoiding sets (indeed, every set can be c-avoiding if this colour
is never used by f ), so exactly the same argument does not work.

This issue can be resolved by strengthening Theorem 5.23 from Kneser graphs to Schrijver
graphs [87]. A counting argument then gives the following:

Lemma 5.24 [47, Lemma 2.2]. Let f : {0, 1}N → {0, . . . ,k − 1} and s = �(N + 1 − k )/2�. There ex-

ists c f ∈ {0, . . . ,k − 1} such that

• there exist disjoint tuples uf , vf ∈ {0, 1}N such that Ham(uf ) = Ham(vf ) = s and f (uf ) =
f (vf ) = c f and

• the fraction of elements of {u : Ham(u) = s} such that f (u) = c f is Ω(N −k−1) (where the con-

stant hidden in Ω depends only on k).

The first item gives us a small (of size at most k) c f -avoiding set for every function f . The second
item together with another counting argument (see Reference [47, Claim 4.5]) implies that there
is no collection of pairwise disjoint small c f -avoiding sets of size bigger than C3 logN , where the
constantC3 depends only on k . Now, we can finish the proof using Theorem 5.21 and Lemma 5.11.
For c = 1, . . . ,k , we define Mc = { f ∈M | c f = c} and, for f ∈Mc , we define I ( f ) as the union
of a maximal collection of pairwise disjoint small c f -avoiding sets. For any π : [m]→ [n] and
an m-ary polymorphism д such that both д(x1, . . . ,xm ) and f (x1, . . . ,xn ) = д(xπ (1), . . . ,xπ (m) )
are in Mc , we have that π (I (д)) ∩ I ( f ) � ∅, since the π -image of a c-avoiding set (and hence of
I (д)) is a c-avoiding set for f . Moreover, |I (h) | ≤ C3 logN if ar(h) ≤ N . By Lemma 5.11, no Mc

satisfies any (1/C2
3 log2 N )-robust bipartite minor condition, and then PCSP(H2,Hk ) is NP-hard by

Theorem 5.21.

6 HARDNESS FROM OTHER PCSPS

In this section, we derive hardness results by reductions from other PCSPs by directly applying
results from Sections 3 and 4. We give a concise algebraic characterisation of PCSPs that admit
a reduction from approximate hypergraph colouring, i.e., from PCSP(H2,Hk ) for some k (which
is NP-hard by Theorem 5.22), and we apply this characterisation to special cases of approximate
graph colouring and graph homomorphism. We give similar characterisation results for the exis-
tence of a reduction from approximate graph colouring or graph homomorphism problems (which
are currently not known to be NP-hard in full generality).

6.1 Hardness from Approximate Hypergraph Colouring

As a starting point for our reductions, we can use Theorem 5.22. Following our approach, the
first step in a reduction from PCSP(H2,Hk ) to PCSP(A,B) is a reduction from PCSP(H2,Hk ) to
PMCHk

(6) where Hk = Pol(H2,Hk ), given by Theorem 3.12(2). To analyse when we can continue
further, it is useful to understand which bipartite minor conditions are not satisfied in Hk .
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We explained in Example 3.5 that the following condition is not satisfied in Hk for any k ≥ 2:

t (x ,y) ≈ o(x ,x ,y,y,y,x ),

t (x ,y) ≈ o(x ,y,x ,y,x ,y), (�)

t (x ,y) ≈ o(y,x ,x ,x ,y,y).

We prove below that having polymorphisms satisfying this condition is the only obstacle for a re-
duction from approximate hypergraph colouring to a given PCSP template.

Definition 6.1. An Olšák function is a 6-ary function o that satisfies

o(x ,x ,y,y,y,x ) ≈ o(x ,y,x ,y,x ,y) ≈ o(y,x ,x ,x ,y,y).

The above identities appeared in Olšák’s paper [78]. The algebraic significance of these identities
is that they give the weakest non-trivial Maltsev condition for all idempotent algebras (also infinite
ones), though we will not use this fact in our article. As it is usual in the literature, we call a
polymorphism of some given template an Olšák polymorphism if it is an Olšák function.

Theorem 6.2. Let M be a minion. The following are equivalent:

(1) There exists K ≥ 2 and a minion homomorphism ξ : M →HK ;

(2) M does not contain an Olšák function.

Proof. Clearly, if M contains an Olšák function, then its image under a minion homomorphism
would also be an Olšák function. Since HK does not contain such a function, this proves the
implication (1)→ (2).

For the other implication assume that M does not contain an Olšák function. Consider the
3-uniform hypergraph F = FM (H2) obtained as the free structure of M generated by H2. Note
that the vertices of F are binary functions in M , and three such vertices f ,д,h are connected by
a hyperedge if there is a 6-ary function o′ such that

f (x ,y) ≈ o′(x ,x ,y,y,y,x ),

д(x ,y) ≈ o′(x ,y,x ,y,x ,y),

h(x ,y) ≈ o′(y,x ,x ,x ,y,y).

Since M does not contain an Olšák function, we get that F does not contain hyperedges ( f ,д,h)
with f = д = h, which is enough to guarantee that it is colourable with K = |F | = |M (2) | colours
(note that |M (2) | is finite). In other words, there is a homomorphism from F to HK , and we have
a minion homomorphism from M to Pol(H2,HK ) =HK by Lemma 4.4. �

Corollary 6.3. For every finite template (A,B) that does not have an Olšák polymorphism,

PCSP(A,B) is NP-hard.

Proof. Let M = Pol(A,B). From the previous theorem, we know that there is a minion ho-
momorphism from M to HK for some K . Therefore, the claim follows from Theorem 3.1 and
Theorem 5.22. �

We give two applications of the above corollary in the next subsection. Note that the absence
of Olšák polymorphism is a useful sufficient condition for hardness of PCSPs, but by no means
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Fig. 2. A 6-clique in the indicator graph I3 of an Olšák function on K3.

a universal tool for this, as witnessed by, e.g., the hardness results of Reference [68] (see also
Proposition 10.1).

6.2 Hardness of Approximate Graph Colouring and Homomorphism

In this section, we settle some of the open problems mentioned in Examples 2.9 and 2.10. We start
by considering approximate graph colouring PCSP(Kk ,Kc ). Recall that the strongest known NP-
hardness results (without additional assumptions) for this problem are the cases when k ≥ 3 is

arbitrary and c ≤ 2k − 2 [26] and when c ≤ 2Ω(k1/3 ) and k is large enough [59].
We prove that distinguishing between k-colourable graphs and those not even (2k − 1)-

colourable is NP-hard for all k ≥ 3. In particular, we prove that colouring a 3-colourable graph
with 5 colours is NP-hard. This improves the results of References [26, 64], which are the best-
known bounds for small k .

By Corollary 6.3, it is enough to show that no polymorphism from Kk to K2k−1 is an Olšák
function.

Lemma 6.4. Pol(Kk ,K2k−1) does not contain an Olšák function.

Proof. To show that (Kk ,K2k−1) does not have an Olšák polymorphism, we consider the indi-
cator structure for the Olšák minor condition; more precisely, the structure IΣ(Kk ) where Σ is the
bipartite condition (�). For brevity, we write Ik instead of IΣ(Kk ). The structure Ik is constructed by
taking a union of the 6th power of Kk (whose colourings correspond to the Olšák polymorphism
o) and the 2nd power of Kk (whose colourings correspond to the polymorphism t , which is defined
as a minor of o) while identifying vertices of K2

k
with vertices of K6

k
according to the identities (�).

This construction identitfies a vertex (x ,y) of K2
2 with the vertices (x ,x ,y,y,y,x ), (x ,y,x ,y,x ,y),

and (y,x ,x ,x ,y,y) of K6 (note that these are the tuples that get the same colour under an Olšák
polymorphism).

We claim that Ik contains a 2k-clique. Namely, for all i ∈ Kk , we consider:

ai = (i, i + 1, i + 2, i + 1, i + 2, i ) and bi = (i, i + 1),

where addition is modulo k . Note that the vertices bi are involved in the gluing that produced the
graph, therefore they can be also represented by tuples (i, i + 1, i, i + 1, i, i + 1), (i, i, i + 1, i + 1, i +
1, i ), and (i + 1, i, i, i, i + 1, i + 1). Figure 2 depicts this clique in I3. We claim that all pairs of these
vertices are connected by an edge. Clearly, for any i � j, there is an edge between ai and aj , as
well as between bi and bj .
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For edges between ai and bj , we consider the following cases:

• j � {i, i + 1}. Then also j + 1 � {i + 1, i + 2}, so there is an edge between bj and ai , since bj

is represented by the tuple (j, j, j + 1, j + 1, j + 1, j ).
• j = i . There is an edge between ai and bj , since bj is represented by the tuple (j + 1, j, j, j, j +

1, j + 1).
• j = i + 1. There is an edge between ai and bj , since bj is represented by the tuple (j, j +

1, j, j + 1, j, j + 1).

Altogether, we get that {ai ,bi | i ∈ Kk } is a clique of size 2k , and therefore Ik has no (2k − 1)-
colouring. Finally, we get that Ik � K2k−1 implies that Pol(Kk ,K2k−1) does not contain an Olšák
function, since an Olšák polymorphism K6

k
→ K2k−1 would give a well-defined colouring of Ik (see

also Remark 3.17). �

As a direct corollary of the above lemma and Corollary 6.3, we get the following:

Theorem 6.5. Deciding whether a given graph is k-colourable or not even (2k − 1)-colourable is

NP-hard for any k ≥ 3.

We remark that Reference [38] contains a more direct proof of Theorem 6.5, which mimics the
proofs from Section 3 without using the theory that we developed in Section 4.

We also remark that the presented method does not work for c ≥ 2k because Pol(Kk ,K2k ), and
therefore also Pol(Kk ,Kc ), contains an Olšák polymorphism. For a detailed discussion, see Propo-
sition 10.1.

We now consider the problem of distinguishing whether a given graph homomorphically maps
to C5 (a 5-cycle) or it is not even 3-colourable. This problem (mentioned above in Example 2.10)
was suggested as an intriguing open case in Reference [29]. This problem can be understood as
the “other” relaxation of 3-colourability of graphs. For example, in approximate graph colouring,
we may be interested whether a graph is 3-colourable or not 4-colourable, i.e., we relax (K3,K3)
to (K3,K4). If we want a different relaxation, then we change the first K3 into some graph G that
is 3-colourable. The odd cycles are then a natural choice, since any graph that is not 2-colourable
contains an odd cycle. Therefore, if we could prove that PCSP(C2k+1,K3) is NP-hard, then we would
have a complete picture for problems of the form PCSP(G,K3). We further discuss problems of the
form PCSP(G,H) for two graphs G and H in Section 6.3.

Lemma 6.6. Pol(C5,K3) does not contain an Olšák function.

Proof. Suppose that Pol(C5,K3) contains an Olšák function o, which can be viewed as a
3-colouring of C6

5. Assume that the vertices of C5 are 0,1,2,3,4, in this cyclic order. Consider the
6-tuples bi = (i + 1, i, i, i, i + 1, i + 1), 0 ≤ i ≤ 4,where the addition is modulo 5. These tuples form
a 5-cycle in C6

5. Since there is only one 3-colouring of C5 up to automorphisms of C5 and K3, we
can assume without loss of generality that o(b0) = 1,o(b1) = 0,o(b2) = 1,o(b3) = 2,o(b4) = 0.

It is easy to check that the graph in Figure 3 is a subgraph of C6
5, with each node assigned a set

of colours, i.e., elements of K3. Unique colours (in columns 1 and 4) correspond to the values of the
assumed operation o on these tuples; note that these colours are correct, because o is assumed to
be an Olšák function. The two-element lists of colours simply indicate the possible values for the
corresponding tuples on the basis that each such tuple has a neighbour whose colour is known.
Now, the two middle vertices in the middle row must be assigned different colours by o, but neither
option extends to a full proper colouring of this graph. �

Theorem 6.7. PCSP(C5,K3) is NP-hard.
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Fig. 3. No Olšák polymorphism for (C5,K3).

6.3 Implications of Hardness of Approximate Graph Colouring

We proved above that the hardness of approximate hypergraph colouring implies hardness of any
PCSPs satisfying an algebraic condition (namely, no Olšák polymorphism). In fact, this is one case
of a more general pattern for such implications. To illustrate this, we now describe similar implica-
tions for the (yet unproved) hardness of approximate graph colouring and graph homomorphism
problems. Recall Examples 2.9 and 2.10 and the conjectures mentioned there.

For the case of approximate graph colouring, the so-called Siggers functions play a role similar to
that played by Olšák functions in relation to hypergraphs. The original Siggers functions appeared
in Reference [88], but now there are several related versions of such functions (which are usually
all called Siggers functions). We will use the one using 3-variable identities that appeared, e.g.,
in Reference [11].

Definition 6.8. A Siggers function is a 6-ary function s that satisfies

s (x ,y,x , z,y, z) ≈ s (y,x , z,x , z,y).

Again, a polymorphism of some given template that is a Siggers function is called Siggers

polymorphism.

We remark that, for problems CSP(A) with finite A, the different versions of a Siggers function
are equivalent in the sense that if Pol(A) has one of them, then it has all of them. Moreover,
for CSPs, this is also equivalent to having an Olšák polymorphism [78] and this property exactly
characterises tractable CSPs [36, 92, 93] (under P � NP). However, Olšák and Siggers can be shown
not to be equivalent for PCSPs.

Just like the definition of an Olšák function relates to the six tuples in H2, the definition of
a Siggers polymorphism relates to the six edges of K3 (viewed as a directed graph). This motivates
the following theorem:

Theorem 6.9. The following are equivalent:

(1) For every finite template (A,B) without a Siggers polymorphism, PCSP(A,B) is NP-hard.

(2) PCSP(Kk ,Kc ) is NP-hard for all c ≥ k ≥ 3.

(3) PCSP(K3,Kc ) is NP-hard for each c ≥ 3.
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Proof. To prove (1)→ (2), it is enough to show that (Kk ,Kc ) has no Siggers polymorphisms
for any k ≥ 3. That is true, since any such polymorphism would force a loop in Kc on the vertex
s (0, 1, 0, 2, 1, 2) = s (1, 0, 2, 0, 2, 1).

The implication (2)→ (3) is trivial.
For (3)→ (1), the proof is similar to that of Theorem 6.2. Assume that a template (A,B) has no

Siggers polymorphism, and let M = Pol(A,B). Consider the free structure F = FM (K3). Then F is
a graph whose vertices are the ternary polymorphisms of (A,B), and ( f ,д) is an edge if there is
a 6-ary e ∈M such that

f (x ,y, z) = e (x ,y,x , z,y, z),

д(x ,y, z) = e (y,x , z,x , z,y)

for all x ,y, z ∈ A. Clearly, this graph is loopless, since a loop would correspond to a Siggers poly-
morphism. It is then c-colourable where c = |F |. So, we have a homomorphism from F to Kc , which
by Lemma 4.4 implies that there is a minion homomorphism from M to Pol(K3,Kc ). The result
now follows from Theorem 3.1. �

We now generalise the above to the case of approximate graph homomorphism.

Definition 6.10 [80]. Fix a loopless graph G, with vertices v1, . . . ,vn and edges
(a1,b1), . . . , (am ,bm ) where each edge (u,v ) is listed as both (u,v ) and (v,u). The G-loop

condition is the bipartite minor condition:

f (xv1 , . . . ,xvn
) ≈ e (xa1 , . . . ,xam

),

f (xv1 , . . . ,xvn
) ≈ e (xb1 , . . . ,xbm

).

We remark that the G-loop condition can be also constructed as Σ(G, L) (recall Section 3.2)
where the graph L is “the loop,” i.e., the graph with a single vertex with a loop.

Example 6.11. Consider the K3-loop condition with edges of K3 listed as (0, 1), (1, 0), (0, 2), (2, 0),
(1, 2), (2, 1). Then the functions e satisfying this condition (with some f ) are exactly the Siggers
functions.

Theorem 6.12. The following are equivalent:

(1) PCSP(C2k+1,Kc ) is NP-hard for all c ≥ 3, k ≥ 1.

(2) PCSP(G,H) is NP-hard for any two non-bipartite loopless graphs G, H with G→ H.

(3) For any finite template (A,B) that does not satisfy the G-loop condition for some non-bipartite

loopless graph G, PCSP(A,B) is NP-hard.

Proof. (2)→ (3) is proven similarly to Theorem 6.9, and (3)→ (1) is given by the fact that
(C2k+1,Kc ) does not satisfy the C2k+1-loop condition.

(1)→ (2). Assume that PCSP(C2k+1,Kc ) is NP-hard, and let G, H be loopless non-bipartite
graphs. Since G is not bipartite, it contains an odd cycle, i.e., C2k+1 → G for some k , and, since
H is loopless, it is colourable by some finite number of colours, i.e., H→ Kc for some c . Therefore,
(C2k+1,Kc ) is a relaxation of (G,H), and the claim follows, e.g., by Lemma 4.8 and Theorem 3.1. �

7 TRACTABILITY FROM SOME CSPS

In the previous section, we described some limitations on bipartite minor conditions satisfied in
the polymorphism minion (such as the absence of an Olšák function) that imply hardness of the
corresponding PCSP. The goal of this section is to describe some minor conditions that imply
tractability of the corresponding PCSPs. Observe first that, after excluding the trivial cases that
imply a constant operation (the condition f (x ) ≈ f (y)), no other finite set of identities can imply
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tractability, since it would involve functions of bounded arity and hence is satisfied in the minion
of functions of some bounded essential arity whose corresponding PCSP is NP-hard (see Proposi-
tion 5.14). Therefore, the conditions implying tractability always involve an infinite set of (minor)
identities.

We do not provide any new concrete tractability results here; our contribution is an algebraic
characterisation of the power of several known algorithms. Each of the conditions that we present
describes applicability of a certain algorithm. Some of these algorithms are based on known algo-
rithms for CSPs, e.g., References [43, 71], and some on recent tractability results for PCSPs [30]. In
general, these algorithms are obtained from algorithms for a fixed tractable CSP with template D

(possibly with infinite domain), and we apply them to all PCSP templates that are pp-constructible
from D (recall Definition 4.9). This can be viewed as a (slight) generalisation of the “homomorphic
sandwiching” method described by Brakensiek and Guruswami [30]. We show in the next section
that there exist a tractable finite fixed-template PCSP whose tractability cannot be explained by
pp-constructibility from (or sandwiching) a finite CSP template.

We consider three algorithms. The first one is based on a special case of local consistency, the
second on the basic LP relaxation, and the last one on an affine integer relaxation. The last two
types are closely related to the algorithms considered in Reference [30], and we refer to that paper
for the latest algorithmic results for PCSPs that are based on relaxations over various numerical
domains. We remark that the complexity of (infinite-domain) CSP with numerical domains is re-
ceiving a good amount of attention (see Reference [22]), but the connection with PCSPs has not
been well-studied yet.

7.1 Local Consistency

A large family of algorithms for solving CSPs is based on some type of local propagation. Such
an algorithm runs a propagation procedure that either refutes a given instance or transforms it
to a locally consistent instance, without changing the set of solutions. This algorithm is said to
solve CSP(A) if every locally consistent instance has a solution. Such algorithms naturally gener-
alise to PCSP(A,B): The algorithm interprets the input I as an instance of CSP(A) and runs the
appropriate consistency checking. A negative answer means that there is no homomorphism from
I to A, and, for correctness, we only require that every instance that is consistent as an instance
of CSP(A) admits a homomorphism to B. The most common type of such algorithms, the bounded

width algorithm [13], works by inferring as much information about a solution as possible from
considering fixed-size subsets of the instance, one at a time.

Definition 7.1. For a structure I and a subset X ⊆ I , let I[X ] denote the structure induced by X in
I—its domain is X , and each relation RI

i is replaced by RI
i ∩ X ar(Ri ) . A partial homomorphism from

I to A with domain X is any homomorphism I[X ]→ A.

Given an instance I of CSP(A) and k ≤ l , the (k, l )-consistency algorithm constructs the largest
family F of partial homomorphisms from I to A with at most l-element domains satisfying the
following two conditions:

• for any f ∈ F , all restrictions of f to smaller domains are also in F , and
• for any f ∈ F with at most k-element domain, there is an extension д ∈ F of f to any

l-element domain containing the domain of f .

On input I, the algorithm starts with the set of all mappings from at most l-element subsets of I
to A and repeatedly removes, until stable, mappings from F that are not partial homomorphisms
or violate (at least) one of the two conditions above. We say that an instance I is a (k, l )-consistent
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instance of CSP(A) if the output of the (k, l )-consistency algorithm is a non-empty family of partial
homomorphisms.

Definition 7.2. A PCSP template (A,B) has width (k, l ) if every instance I that is (k, l )-consistent
as an instance of CSP(A) maps homomorphically to B. A template has bounded width if it has width
(k, l ) for some k ≤ l , and width 1 if it has width (1, l ) for some l .

Note that the (k, l )-consistency can be tested efficiently, which provides a polynomial time algo-
rithm for PCSPs of bounded width. CSP templates of bounded width have been fully characterised
by Barto and Kozik [13]. For PCSPs, we can characterise width 1, which corresponds to solvability
by (generalised) arc consistency, one of the most prevalent algorithms used in constraint program-
ming.

Definition 7.3. A function f is totally symmetric if its output depends only on the set of input
elements (not accounting for multiplicity), i.e.,

f (xπ (1), . . . ,xπ (n) ) ≈ f (xσ (1), . . . ,xσ (n) )

for all pairs of surjective maps π ,σ : [n]→ [m].

Note that if we replace “surjective maps” with “bijections” in the definition we get the definition
of a symmetric function (see Definition 7.8 below).

The following theorem generalises the characterisation of width 1 for CSP templates from Refer-
ences [43, 48]. We add descriptions using minion homomorphisms and pp-constructibility. Recall
the template H (of Horn 3-Sat) as defined in Example 4.2 and let H = Pol(H).

Theorem 7.4. Let (A,B) be a PCSP template. The following are equivalent:

(1) (A,B) has width 1.

(2) Pol(A,B) contains totally symmetric functions of all arities.

(3) There exists a minion homomorphism from H to Pol(A,B).
(4) (A,B) is pp-constructible from H.

Proof sketch Let F = FH (A) be the free structure of H generated by A—see Example 4.2
for detailed information about this structure. By Theorem 4.12, items (3) and (4) are equivalent
between themselves, and also equivalent to the condition F→ B. This last condition can be shown
to be equivalent to both (1) and (2) essentially in the same way as the corresponding result for CSP
[43] (where notation C (A) is used for the free structure). �

Let us move towards the general bounded width algorithm. The following lemma shows that
the class of PCSP templates of bounded width is closed under minion homomorphisms. The proof
builds on an analogous result for CSPs obtained by Larose and Zádori [74]. To establish the hard-
ness part of their then-conjectured characterisation of CSP templates of bounded width, they
proved that bounded width is preserved under so-called “pp-interpretations” (pp-power is a spe-
cial case of pp-interpretation) of CSP templates. The generalisation to PCSPs suggests that it may
be possible to characterise bounded width for PCSPs by minor conditions as well, although we are
not able to formulate such a conjecture yet.

Lemma 7.5. Let (A,B) and (A′,B′) be templates such that there exists a minion homomorphism

from Pol(A,B) to Pol(A′,B′). If (A,B) has bounded width, then so does (A′,B′).

Proof sketch Using Theorem 4.12, it is enough to show that bounded width is preserved under
homomorphic relaxations and pp-powers. We present a complete proof for relaxations and sketch
a proof for pp-powers, since the latter proof follows Reference [74].
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Suppose that (A′,B′) is a homomorphic relaxation of a template (A,B), i.e., there exist homo-
morphisms hA : A′ → A and hB : B→ B′, and that (A,B) has width (k, l ). We will prove that in
this case, (A′,B′) has width (k, l ) as well. Let I′ be an instance of CSP(A′) that is (k, l )-consistent
and let this fact be witnessed by a nonempty family of partial homomorphisms F ′. It is easy to
see that the set {hA f

′ | f ′ ∈ F ′} witnesses that I′ is (k, l )-consistent as an instance of CSP(A), and
thus there exists a homomorphism s : I′ → B. Consequently, hBs : I′ → B′.

We only sketch a proof for pp-powers: Assume that (A′,B′) is a pp-power of (A,B), and the
latter has width (k, l ). We claim that (A′,B′) has width (kM, lM ) where M is the maximal arity of
a relation of (A′,B′). The key point is to observe that if we start with an instance I′ of PCSP(A′,B′)
that is (kM, lM )-consistent, and replace every constraint of I′ by its pp-definition in (A,B), then
we obtain an instance I of PCSP(A,B) that is (k, l )-consistent. Note that this construction follows
the standard reduction from CSP(A′) to CSP(A), therefore the arguments of Reference [74, Lemma
3.3] apply. Since I is (k, l )-consistent and (A,B) has width (k, l ), we get I→ B. This homomorphism
witnesses that I′ → B′, since B′ is defined from B in the same way as A′ from A. �

7.2 Linear Programming Relaxations

Every CSP instance can be expressed as a 0-1 integer program in a canonical way. When we allow
the variables in this program to attain any values from [0, 1], we obtain the so-called basic linear
programming relaxation [71].

Definition 7.6. Given an instance I of CSP(A), let C = {(v,R) | v ∈ RI}. The basic linear program-

ming relaxation of I is the following linear program: The variables are μv (a) for every v ∈ I and
a ∈ A, and μv,R (a) for every (v,R) ∈ C, and every a ∈ Aar(R ) . Each of the variables is allowed to
have values in the interval [0, 1]. The objective is to maximise

1

|C|
∑

(v,R )∈C

∑
a∈RA

μv,R (a)

subject to: ∑
a∈A

μv (a) = 1 v ∈ I , (7.1)∑
a∈Aar(R ),a(i )=a

μv,R (a) = μv(i ) (a) a ∈ A, (v,R) ∈ C, i ∈ [ar(R)]. (7.2)

We denote the maximum possible value of the objective function by BLPA (I).

It is clear that the optimum value, BLPA (I), of this LP is smaller than or equal to 1, since Equa-
tions (7.1) and (7.2) together imply that

∑
a∈Aar(R ) μv,R (a) = 1, and therefore

∑
a∈R μv,R (a) ≤ 1 for

each of the constraints (v,R). Given that the instance I has a solution as an instance of A, say
a homomorphism s : I→ A, there is an integral solution to the above linear program that achieves
this optimum value: μv (s (v )) = 1, μv (a) = 0 for all a � s (v ), μ (v1, ...,vk ),R (s (v1), . . . , s (vk )) = 1, and
μv,R (a) = 0 for all other a’s.

Definition 7.7. Let (A,B) be a PCSP template. We say that BLPsolves PCSP (A,B) if every instance
I with BLPA (I) = 1 maps homomorphically to B.

It is easy to see that BLPA (I) = 1 if and only if μv,R (a) = 0 for each constraint (v,R) in I and
a � RA. Therefore, if we add all such constraints to BLPA (I), then testing the feasibility of the
obtained LP is equivalent to testing whether BLPA (I) = 1. Therefore, if BLP solves PCSP(A,B),
then PCSP(A,B) reduces to an LP feasibility problem, where each LP constraint (except the non-
negativity inequalities) is a linear equation with ±1 coefficients and a bounded number of vari-
ables. Such a problem is expressible as CSP(D) for an appropriate structure D with domain Q and
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finitely many relations. Note that the definition of a CSP extends in a straightforward way to such
structures. The template D is obtained from the structure Qconv., whose domain is Q and whose
(infinitely many) relations are all possible linear inequalities with rational coefficients (see Ref-
erence [22, Definition 4]) by dropping all but finitely many relations. If a structure D is obtained
in this way, then we say that it is a finite reduct of Qconv.. Note that the relations pp-definable in
Qconv. are the convex polytopes in Qk , k ≥ 1. It is easy to see that the polymorphisms of Qconv. are
exactly convex linear functions, i.e., functions f : Qn → Q defined by f (x1, . . . ,xn ) =

∑
i ∈[n] αixi

for some αi ’s, i ∈ [n], such that αi ∈ [0, 1],
∑

i ∈[n] αi = 1. We denote the set of all such operations
by Qconv..

Definition 7.8. We say that a function f is symmetric if the output is independent of the order
of the input elements, i.e.,

f (x1, . . . ,xn ) ≈ f (xπ (1), . . . ,xπ (n) )

for all bijections π : [n]→ [n].

While total symmetry means that the output is dependent only on the set of the input ele-
ments, symmetry can be formulated as “the output is dependent only on the multiset of the input
elements.”

Note that Qconv. contains symmetric operations of all arities: For arity n, take f (x1, . . . ,xn ) =∑
i ∈[n] xi/n.
We provide a characterisation of the direct applicability of the basic linear programming re-

laxation that generalises Reference [71, Theorem 2(5–6)]. Note that Reference [71, Theorem 2] is
partially false: There is a finite CSP template A such that CSP(A) is solvable by BLP and A does
not have width 1 [72, Example 99], contrary to what Reference [71] claims.

Theorem 7.9. Let (A,B) be a PCSP template. The following are equivalent:

(1) BLP solves PCSP(A,B),
(2) Pol(A,B) contains symmetric functions of all arities,

(3) Pol(A,B) admits a minion homomorphism from Qconv.,

(4) (A,B) is pp-constructible from (a finite reduct of) Qconv..

The theorem above is stated for the decision variant of the PCSP, and it needs a slight modifi-
cation to be valid for the search variant. Namely, to produce a solution of the PCSP from a BLP
solution, we need an efficient algorithm that computes values of the symmetric polymorphisms of
the template.

The structure of the proof is the same as for Theorem 7.4. Although, there are several important
issues: mostly that Theorem 4.12 holds for finite structures, but in general it does not hold for
infinite structures. Nevertheless, we will show that it holds for the structure Qconv.. The proof uses
an appropriate modification of the notion of a free structure for Qconv., which we define next. This
modification is similar to the instanceM (Γ) defined in Reference [71, Definitions 10 and 11]. To
keep some consistency in our notation, we will denote this structure by LP(A).

Definition 7.10. The structures LP(A) and A are similar. The universe LP(A) consists of ra-
tional probability distributions on A, i.e., functions ϕ : A→ Q ∩ [0, 1] such that

∑
a∈A ϕ (a) = 1.

For a k-ary relation RA, the corresponding relation RLP(A) is defined as the set of all k-tuples
(ϕ1, . . . ,ϕk ) of elements of LP(A) for which there exists a rational probability distribution γ on RA

such that ∑
a∈RA,a(i )=a

γ (a) = ϕi (a) (7.3)

for all i ∈ [k] and a ∈ A.
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Note that the above structure relates closely to the BLP relaxation: It is easy to observe that I is
an instance such that BLPA (I) = 1 if and only if I maps homomorphically to LP(A). This has also
been observed in Reference [71].

Remark 7.11. The structure LP(A) is isomorphic to the free structure FQ (A) of Qconv. generated
by A. For a proof, assume that A = [n]. Recall that the elements of the free structure FQ (A) are
n-ary convex linear functions. An isomorphism h : LP(A) → FQ (A) is given by h(ϕ) = fϕ where
fϕ is defined by fϕ (x1, . . . ,xn ) =

∑
i ∈[n] ϕ (i )xi . Note that fϕ is always a convex linear function,

therefore an element of FQ (A), and also that h is bijective, since every such function is uniquely
determined by its coefficients. To prove that h preserves a relation R, assume (ϕ1, . . . ,ϕk ) ∈ RLP(A) ,
and let γ be the probability distribution on RA witnessing this fact. Further, let RA = {r1, . . . , rm },
and define д : Qm → Q by

д(x1, . . . ,xm ) =
∑

i ∈[m]

γ (ri )xi .

We claim that for each j ∈ [k], we have

д(xr1 (j ), . . . ,xrm (j ) ) = h(ϕ j ) (x1, . . . ,xn ),

which is easily observed by comparing coefficients of the left- and right-hand side. The fact thath−1

is also a homomorphism is obtained by reversing this argument, equating a convex linear function
д : Qm → Q with the probability distribution γ , which maps a tuple ri to the ith coefficient of д.

In the light of the previous remark, the following can be understood as an infinite case of
Lemma 4.11:

Lemma 7.12. Let A be a finite relational structure, and let LP(A) be the free structure of Qconv.

generated by A. Then (A, LP(A)) is a relaxation of a pp-power of Qconv..

Proof. In this proof, we assume A = [n] and equate a probability distribution ϕ on A with
the tuple (ϕ (1), . . . ,ϕ (n)). Let us define an nth pp-power P of Qconv. and its relaxation that will be
isomorphic to (A, LP(A)): A relation RP is defined to contain all tuples (ϕ1, . . . ,ϕk ) ofn-tuples such
that ϕ j ≥ 0 and

∑
i ∈[n] ϕ j (i ) = 1 for all j, and so there exists γ : RA → Q such that Equation (7.3) is

satisfied. This is indeed a pp-definition, since each of the inequalities and identities define a relation
of Qconv.. Finally, we argue as in Lemma 4.11: A maps homomorphically into P by a �→ χa where
χa (b) = 1 for b = a and χa (b) = 0 for b � a, and P maps homomorphically to LP(A) by ϕ �→ fϕ
whenever

∑
a∈A ϕ (a) = 1 and ϕ (a) ≥ 0, and extending arbitrarily. �

Remark 7.13. In the proof below, we will need to find a homomorphism from a relational struc-
ture with an infinite universe, let us for now call it I, to a similar finite relational structure B. It is
well-known that in that case it is enough to find a homomorphism from all finite substructures of I.
This fact is usually proven by a standard compactness argument, e.g., using Tychonoff’s theorem.
For completeness, we present one such argument that uses König’s lemma. This approach works
only for countable structures I, which is enough in our case.

Assuming that I = {1, 2, . . . } and that every finite substructure of I maps to B, we construct an
infinite, finitely branching tree: The nodes of the tree are partial homomorphisms defined on sets
[n] (starting with the empty set, so the empty mapping is the root of the tree). We set that a partial
homomorphism rn+1 : [n + 1]→ B is a child of rn : [n]→ B if the map rn is the restriction of rn+1

to [n]. Clearly, this tree is finitely branching and infinite. König’s lemma states that such a tree has
an infinite branch, which in our case gives us a sequence r1, r2, . . . such that rn+1 extends rn . We
define r : I→ B as the union of these maps. It is a homomorphism, since all constraints are local,
and therefore included in the domain of some rn , which is a partial homomorphism.
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Proof of Theorem 7.9 First, we show that item (1) is equivalent to the existence of a homo-
morphism from LP(A) to B. The direct implication follows by the same argument as Reference [71,
Proposition 12]. If BLP solves CSP(A) and I is a finite subinstance of LP(A), then it is easy to see
that BLPA (I) = 1, and therefore I→ B. Using a standard compactness argument (see the previous
remark), this implies that LP(A) homomorphically maps to B. The converse is straightforward: In-
deed, any instance I with BLPA (I) = 1 maps homomorphically to LP(A), and therefore also I→ B

because LP(A) → B.
Given a homomorphism from LP(A) to B, we get item (4), i.e., that (A,B) is pp-constructible from

Qconv., from Lemma 7.12. Further, (4)→ (3) follows from Lemma 4.8 (note that the proof does not
require the structures to be finite). We have (3)→ (2), since Qconv. contains symmetric operations
of all arities and any minion homomorphism preserves this property. (Note that (1)→ (2) can be
also obtained by argument similar to Reference [71, Proposition 12].)

Let us prove that (2) implies that LP(A) → B, and hence item (1). To do that, we define homomor-
phisms from certain finite substructures of the structure LP(A): We define LP� (A) to be a structure
similar to A whose universe consists of rational probability distributions on A with denominators
dividing �, i.e., functions ϕ : A→ Q where, for each a ∈ A, ϕ (a) = q/� for some q ∈ {0, 1, . . . , �}
and
∑

a∈A ϕ (a) = 1. The relations are defined the same way as in LP(A) where we restrict to prob-
ability distributions γ with denominators dividing �. (Note that, unlike instancesM� (Γ) defined
in Reference [71, Definition 10], the structure LP� (A) is not an induced substructure of LP(A).)

We define a homomorphism h� : LP� (A) → B by fixing a symmetric function s� ∈ Pol(A,B) of
arity �, and setting

h� (ϕ) = s� (a1, . . . ,a� )

where a1, . . . ,a� ∈ A are chosen so each a appears exactly ϕ (a)� times. Note that the order of
ai ’s does not matter, since s� is symmetric. To show that h� is a homomorphism, consider a tuple
(ϕ1, . . . ,ϕk ) ∈ RLP�A and let γ : RA → Q be the witnessing probability distribution. We pick tuples
r1, . . . , r� ∈ RA such that each r ∈ RA appears exactly γ (r)� times. Now,

(h� (ϕ1), . . . ,h� (ϕk )) = s� (r1, . . . , r� ) ∈ RB,

where the equality follows, since, for each i ∈ [k], each a ∈ A appears exactly ϕi (a)� =∑
r ∈RA,r(i )=a γ (r)� times among r1 (i ), . . . , r� (i ) (again, we use symmetry of s�). This establishes

that every LP� (A) maps homomorphically to B. Note that every finite substructure of LP(A) is
a substructure of LP� (A) for a big enough �, and hence every finite substructure of LP(A) maps
homomorphically to B. Thus, we have a homomorphism from LP(A) to B by a standard compact-
ness argument. �

7.3 Affine Diophantine Relaxations

Another way to relax the natural 0-1 integer program expressing a CSP instance is to allow the
variables to attain any integer values, and relax constraints to linear equations. We get a relaxation
with very similar properties to the basic LP relaxation described in the previous section.

Definition 7.14. Given an instance I of CSP(A), let C = {(v,R) | v ∈ RI}. The basic affine integer

relaxation of I, denoted AIPA (I), is the following affine program: The variables are μv (a) for every
v ∈ I and a ∈ A, and μv,R (a) for every (v,R) ∈ C and a ∈ RA. The objective is to solve the following
system over Z: ∑

a∈A
μv (a) = 1 v ∈ I , (7.4)

∑
a∈RA,a(i )=a

μv,R (a) = μv(i ) (a) a ∈ A, (v,R) ∈ C, i ∈ [ar(R)]. (7.5)
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Note that this system is an instance of the infinite CSP with template Zaff. with domain Z whose
relations are all affine equations over Z. Let Zaff. = Pol(Zaff.). We claim that Zaff. consists of all
affine functions over Z, i.e., all functions д : Zn → Z described as д(x1, . . . ,xn ) =

∑
i ∈[n] γ (i )xi

whereγ : [n]→ Z is such that
∑

i ∈[n] γ (i ) = 1. Clearly, any such functionд is a polymorphism. For
the other inclusion assume that f : Zn → Z is a polymorphism. Then, in particular, it preserves the
relation {(x ,y, z) | x + y = z}, which implies that it is linear. Also, it preserves the unary singleton
relation {1} (the solution to the equation x = 1), which implies that the sum of its coefficients is 1.

This situation is similar to the one with convex linear functions in the previous subsection. And
in fact, using similar methods, we obtain similar results. Let us first show an example of the use
of this relaxation.

Example 7.15. Let us describe the AIP relaxation of 1-in-3- vs. Not-All-Equal-Sat and compare
it with an algorithm for this PCSP described in Reference [29]. Recall that the PCSP template of
this problem is (T,H2) as defined in Example 2.8, we denote the single ternary relation of these
structures by R.

The basic affine integer relaxation of an instance I of PCSP(T,H2) is a system of equations using
variables μv (0), μv (1) for v ∈ I bound by μv (0) + μv (1) = 1, and μ (v1,v2,v3 ) (a) for (v1,v2,v3) ∈ RI

and a ∈ RT:

μv1,v2,v3 (0, 0, 1) + μv1,v2,v3 (0, 1, 0) = μv1 (0),

μv1,v2,v3 (1, 0, 0) = μv1 (1),

μv1,v2,v3 (0, 0, 1) + μv1,v2,v3 (1, 0, 0) = μv2 (0),

μv1,v2,v3 (0, 1, 0) = μv2 (1),

μv1,v2,v3 (0, 1, 0) + μv1,v2,v3 (1, 0, 0) = μv3 (0),

μv1,v2,v3 (0, 0, 1) = μv3 (1),

for each (v1,v2,v3) ∈ RI. Since the value of μv (0) is determined by the value of μv (1), and moreover∑
a∈RT μv1,v2,v3 (a) = μv1 (0) + μv1 (1) = 1, we can simplify this system by dropping variables μv (0)

and μv1,v2,v3 (i ) and replacing the six equations above with

μv1 (1) + μv2 (1) + μv3 (1) = 1.

Note that each satisfying tuple of RT satisfies this constraint. The resulting system is the same as
suggested by Reference [29, Remark 3.3].

Definition 7.16. A function a of arity 2n + 1 is called alternating, if

a(x1, . . . ,x2n+1) ≈ a(xπ (1), . . . ,xπ (2n+1) )

for all permutations π that preserve parity, i.e., π (i ) mod 2 = i mod 2, and

a(x1, . . . ,x2n−1,y,y) ≈ a(x1, . . . ,x2n−1, z, z)

assuming n ≥ 1. (A function of arity 1 is alternating.)

Even though the definition makes sense for functions of even arities, we refrain from calling such
functions alternating. The main reason is that such an “even arity alternating function” always has
a minor that is a constant function and is therefore as useful for classifying PCSPs as a constant
function is.

The property of being alternating can be also expressed as a variant of symmetry: The value is
independent of the order of its inputs on odd positions, and also of the order of its inputs on even
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positions. Putting this together with the second identity, which expresses some form of cancella-
tion, we get that the output is dependent only on the multiset (where we allow negative coeffi-
cients) of inputs where the odd inputs are counted positively and even inputs negatively.

Example 7.17. An example of an alternating function is the function a : Z2n+1 → Z defined as
the alternating sum, i.e.,

a(x1, . . . ,xn ) = x1 − x2 + x3 − · · · + x2n+1.

Clearly, permuting xi ’s with odd indices as well as permuting those with even indices does not
change the value. Also

a(x1, . . . ,x2n−1,y,y) = x1 − · · · + x2n−1 − y + y = x1 − · · · + x2n−1,

which concludes that this value does not depend on y. Also note that the function defined by

a′(x1, . . . ,x2n−1) = a(x1, . . . ,x2n−1,x1,x1)

is an alternating function of arity 2n − 1. This is always the case, as can be easily derived from the
two defining identities.

Note that such alternating sum can be generalised from Z to any abelian group. One such ex-
ample, though degenerate, would be the Boolean parity function (see Reference [27, p. 9]) of odd
arity; it is defined as p (x1, . . . ,x2n+1) =

∑
i ∈[2n+1] xi mod 2.

Example 7.18. Another important example is the alternating threshold defined in Reference [27,
p. 9] as the Boolean function t of arity 2n + 1 satisfying:

t (x1, . . . ,xn ) =

{
1 if x1 − x2 + x3 − · · · + x2n+1 > 0, and
0 otherwise.

This function is obtained from the alternating sum by composing with the natural inclusion e :
{0, 1} → Z and the function r : Z→ {0, 1}, which maps positive integers to 1 and non-positive to
0 in the following way:

t (x1, . . . ,x2n−1) = r (a(e (x1), . . . , e (x2n−1))).

This composition is a reflection that we define later in Definition 9.1.

Let us now formulate the main result of this section.

Theorem 7.19. Let (A,B) be a PCSP template. The following are equivalent:

(1) AIP solves PCSP(A,B),
(2) Pol(A,B) contains alternating functions of all odd arities,

(3) Pol(A,B) admits a minion homomorphism from Zaff.,

(4) (A,B) is pp-constructible from (a finite reduct of) Zaff..

This theorem is stated for the decision variant of the PCSP, and similarly to Theorem 7.9, it needs
a modification for the search variant: To produce a solution of the PCSP from an AIP solution, we
need an efficient algorithm that computes values of the alternating polymorphisms of the template.

The proof of this theorem follows closely the proof of Theorem 7.9. As in the mentioned proof,
we rely on an appropriate modification of the free structure of Zaff.. In this case, there is no straight-
forward interpretation as probability distributions, but the core idea remains the same.

Definition 7.20. For a structure A, we define an infinite structure IP(A) similar to A in the follow-
ing way: The universe IP(A) is the set of all mappings (tuples) ϕ : A→ Z such that

∑
a∈A ϕ (a) = 1.
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For a k-ary relation RA, we define the corresponding relation RIP(A) as the set of all k-tuples
(ϕ1, . . . ,ϕk ) for which there exists a mapping γ : RA → Z such that

∑
a∈RA γ (a) = 1 and∑

a∈RA,a(i )=a

γ (a) = ϕi (a)

for all a ∈ A and i ∈ [k].

Remark 7.21. It can be proven in very similar way as in Remark 7.11 that the structure IP(A) is
isomorphic to the free structure of Zaff. generated by A.

Similarly to Lemma 7.12, the following can be viewed as an infinite case of Lemma 4.11:

Lemma 7.22. Let A be a finite relational structure, and let IP(A) denote the free structure of Zaff.

generated by A. Then (A, IP(A)) is a relaxation of a pp-power of Zaff..

Proof. The lemma is proven the same way as Lemma 7.12. �

Proof of Theorem 7.19 We claim that (1) is equivalent to the existence of a homomorphism
from IP(A) to B. The key is that an instance I of PCSP(A,B) maps to IP(A) if and only if the AIP
relaxation of I is a solvable system of equations—a solution μ defines such a homomorphism by
v �→ fμv

where fμv
(x1, . . . ,xn ) =

∑
a∈A μv (a)xa (here, we assume A = [n]) and vice versa. This

immediately implies that if IP(A) maps homomorphically to B, then AIP solves PCSP(A,B). In the
other direction, we know that every finite substructure of IP(A) maps to B, a global homomorphism
then follows by the standard compactness argument.

As in the proof of Theorem 7.9, the combination of the previous lemma with the proof of The-
orem 4.12 gives us that the existence of a homomorphism from IP(A) to B implies item (4), and
(4)→ (3). Further, (3)→ (2), since Zaff. has alternating functions of all odd arities (the alternating
sums).

We finish the proof by showing that item (2) implies the existence of a homomorphism from
IP(A) to B. This again follows the proof of Theorem 7.9. We first define some substructures of
IP(A): IP� (A) is a structure similar to A whose universe is the set of all functions ϕ : A→ Z such
that
∑

a∈A |ϕ (a) | ≤ 2� + 1 and
∑

a∈A ϕ (a) = 1. The relations of IP� (A) are defined in the same way
as those of IP(A) with the only difference that we require that the witnessing function γ : RA → Z
also satisfies

∑
r∈RA |γ (r) | ≤ 2� + 1. Now, we define a homomorphism h� : IP� (A) → B by fixing

a (2� + 1)-ary alternating function a2�+1 ∈ Pol(A,B) and setting

h� (ϕ) = a2�+1 (b1, . . . ,b2�+1),

where b1, . . . ,b2�+1 ∈ A are chosen in such a way that for all a ∈ A the difference of the number
of times a appears among bi with odd and even indices is exactly ϕ (a). This is possible, thanks
to
∑ |ϕ (a) | ≤ 2� + 1. For h to be well-defined, we rely on the fact that a2�+1 is alternating. To

prove that h is a homomorphism, suppose that (ϕ1, . . . ,ϕk ) ∈ RIP� (A) and this fact is witnessed by
γ : RA → Z. Again, we pick tuples r1, . . . , r2�+1 in such a way that for all r ∈ RA the difference of
the number of times r appears among ri with odd and even indices is exactly ϕ (r). Now,

(h� (ϕ1), . . . ,h� (ϕk )) = a2�+1 (r1, . . . , r2�+1) ∈ RB,

where the equality follows from the fact that, for each i ∈ [k], the difference between the number
of times some a ∈ A appears among rj (i ) with odd and even j is ϕi (a) =

∑
r∈RA,r(i )=a γ (r) (again,

we use the fact that a2�+1 is alternating). We get that each IP� (A) maps homomorphically to B, and,
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since every finite substructure of IP(A) is included in IP� (A) for some �, we get that it also maps
to B. The homomorphism from IP(A) to B is then given by a standard compactness argument. �

8 MORE ON TRACTABILITY OF 1-in-3- vs. NAE-SAT

All known tractability results for PCSPs, such as those in the previous section and those in Ref-
erences [29, 30], are obtained by following the same scheme—namely, by showing how a PCSP
template is pp-constructed from a tractable CSP template (recall Definition 4.9), possibly with an
infinite domain. In this section, we show that using infinite domains in this scheme can be nec-
essary. Namely, we show that this is the case for the 1-in-3- vs. Not-All-Equal-Sat problem (see
Example 2.8). This problem is in P [29], since its template (T,H2) can be pp-constructed from Zaff.

(see Example 7.15 and Theorem 7.19). Specifically, it is easy to check (or see Reference [29]) that
this template is a relaxation of the CSP template (Z;x + y + z = 1), which is a finite reduct of Zaff..
The template (T,H2) is also a relaxation of other tractable CSP templates with an infinite domain
(see References [10, 29, 30]).

Theorem 8.1. Let D be a finite relational structure such that (T,H2) is pp-constructible from D.

Then CSP(D) is NP-complete.

The rest of this section is devoted to the proof of this theorem.

8.1 Proof Outline

Striving for a contradiction, assume that CSP(D) is not NP-complete and (T,H2) is pp-constructible
from D. We start by simplifying the latter assumption.

From (6) → (5) in Theorem 4.12, we know that (T,H2) is a homomorphic relaxation of a pp-
power of D. Since a pp-power of a finite tractable CSP template is a finite tractable CSP template,
we may assume that (T,H2) is a homomorphic relaxation of D. Let D = (D;R), where R ⊆ D3, and
let f : T→ D and д : D→ H2 be homomorphisms from the definition of homomorphic relaxation,
Definition 4.6.

We simplify the situation a bit further. Since дf is a homomorphism, this mapping applied
component-wise to the 1-in-3 tuple (0, 0, 1) is a not-all-equal tuple. In particular, f (0) � f (1). We
rename the elements of D so {0, 1} ⊆ D and f (0) = 0, f (1) = 1. As f and д are homomorphisms,
we get

{0, 1} ⊆ D, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ R

and
|{д(a),д(b),д(c )}| > 1 whenever (a,b, c ) ∈ R.

Now, we employ the assumption that CSP(D) is not NP-complete. We use a sufficient condition
for NP-completeness from Reference [12].

Definition 8.2. An operation s : Dn → D is called cyclic if, for all (a1, . . . ,an ) ∈ Dn , we have

s (a1,a2, . . . ,an ) = s (a2, . . . ,an ,a1).

Theorem 8.3. Let D be a finite CSP template. If CSP(D) is not NP-complete, then D has a cyclic

polymorphism of arity p for every prime number p > |D |.
Remark 8.4. Cyclic polymorphisms in fact characterise the borderline between NP-complete

and tractable CSPs conjectured in Reference [34] and proved in References [36, 92, 93]: CSP(D) is
tractable if and only if (assuming P � NP) D has a cyclic polymorphism of arity at least 2 (if and
only if D has a cyclic polymorphism of arity p for every prime number p > |D |).

By Theorem 8.3, D has a cyclic polymorphism of any prime arity p > |D |. We fix a cyclic poly-
morphism s of prime arity p > 60|D |.
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Recall that the polymorphisms of CSP template can be composed (to produce new polymor-
phisms). Next, we define an operation t on D of arity p2 by

t (x11,x12, . . . ,x1p ,x21,x22, . . . x2p , . . . ,xp1, . . . ,xpp )

= s (s (x11,x21, . . . ,xp1), s (x12,x22, . . . ,xp2), . . . , s (x1p ,x2p , . . . ,xpp )).

It will be convenient to organise the arguments of t into a p × p matrix X whose entry in the ith
row and jth column is xi j , so the value

t

�					



x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

������



is obtained by applying s to the column vectors and then s to the resulting row vector.
We introduce several concepts for zero-one matrices, since only 0-1 values for the variables in

t will play a role in the proof.

Definition 8.5. Let X = (xi j ),Y be p × p zero-one matrices. The area of X is the fraction of ones
and is denoted

λ(X ) = �	


∑
i, j

xi j
��

 /p

2.

The matrices X ,Y are called д-equivalent, denoted X ∼ Y , if д(t (X )) = д(t (Y )). The matrix X is
called tame if

either X ∼ 0p×p and λ(X ) < 1/3,

or X ∼ 1p×p and λ(X ) > 1/3,

where 0p×p stands for the zero matrix and 1p×p for the all-ones matrix.

Observe that the equivalence ∼ has two blocks, so, e.g., X � Y � Z implies X ∼ Z . Also recall
that p > 3 is a prime number, so the area of X is never equal to 1/3.

The proof now proceeds as follows: We show that certain matrices, called “almost rectangles,”
are tame. The proof is by induction (although the proof logic, as presented, is a bit different).
Section 8.2 provides the base case, and Section 8.3 handles the induction step. In Section 8.4, we
construct two tame matrices X1, X2 such that λ(X1) < 1/3 and λ(X2) > 1/3, but t (X1) = t (X2) (be-
cause the corresponding columns of X1 and X2 will be evaluated by s to the same elements). This
gives us a contradiction, since 0p×p � 1p×p , as we shall see.

Before launching into the technicalities, we introduce an additional concept and state a conse-
quence of the fact that s is a polymorphism.

Definition 8.6. A tripleX ,Y ,Z ofp × p zero-one matrices is called a cover if, for every 1 ≤ i, j ≤ p,
exactly one of xi j ,yi j , zi j is equal to one.

Lemma 8.7. If X ,Y ,Z is a cover, then X ,Y ,Z are not all д-equivalent.

Proof. By the definition of a cover, the triple (xi j ,yi j , zi j ) is in {(0, 0, 1), (0, 1, 0), (1, 0, 0)} ⊆ R
for each i, j. Since t preserves R (because s does), the triple (t (X ), t (Y ), t (Z )) is in R as well. Finally,
д is a homomorphism from D to H2, therefore д(t (X )), д(t (Y )), д(t (Z )) are not all equal. In other
words, X , Y , Z are not all д-equivalent, as claimed. �
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8.2 Line Segments are Tame

In this subsection it will be more convenient to regard the arguments of t as a tuple x =

(x11,x12, . . .) of length p2 rather than a matrix. The concepts of the area, д-equivalence, tame-
ness, and cover are extended to tuples in the obvious way. Since p > 3 is a prime number, p2 is 1
modulo 3. Let q be such that

p2 = 3q + 1.

Moreover, let 〈i〉 denote the following tuple of length p2:

〈i〉 = (1, . . . , 1︸��︷︷��︸
i times

, 0, . . . 0).

We prove in this subsection that all such tuples are tame. We first recall a well-known fact.

Lemma 8.8. The operation t is cyclic.

Proof. By cyclically shifting the arguments, we get the same result:

t (x12, . . . ,xpp ,x11) = t

�					



x12 x13 · · · x1p x21

x22 x23 · · · x2p x31
...

...
. . .

...
...

xp2 xp3 · · · xpp x11

������


= t

�					



x21 x12 x13 · · · x1p

x31 x22 x23 · · · x2p

...
...

. . .
...

...
x11 xp2 xp3 · · · xpp

������



= t

�					



x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

������


= t (x11,x12, . . . ,xpp ),

where the second equality uses the cyclicity of the outer “s” in the definition of t , while the third
one the cyclicity of the first inner “s .” �

Lemma 8.9. 〈0〉 ∼ 〈1〉 ∼ · · · ∼ 〈q〉 � 〈q + 1〉 ∼ · · · ∼ 〈2q〉 ∼ 〈2q + 1〉.
Proof. By induction on i = 0, 1, . . . ,q, we prove

〈q − i〉 ∼ 〈q − i + 1〉 ∼ · · · ∼ 〈q〉 � 〈q + 1〉 ∼ · · · ∼ 〈q + i〉 ∼ 〈q + i + 1〉.
For the induction base, i = 0, let x = 〈q〉, let y be 〈q〉 (cyclically) shifted q times to the right (so
the first 1 is at the (q + 1)-st position), and let z be 〈q + 1〉 shifted 2q times to the right. The tuples
x, y, z form a cover, therefore they are not all д-equivalent by Lemma 8.7. But t is cyclic, thus
t (x) = t (y) = t (〈q〉) and t (z) = t (〈q + 1〉). It follows that 〈q〉, 〈q〉, 〈q + 1〉 are not all д-equivalent
and we get 〈q〉 � 〈q + 1〉.

Now, we prove the claim for i > 0 assuming it holds for i − 1. To verify 〈q − i〉 ∼ 〈q − i + 1〉
consider 〈q − i〉, 〈q + 1〉, 〈q + i〉. Since (q − i ) + (q + 1) + (q + i ) = 3q + 1 = p2, these tuples can be
cyclically shifted to form a cover and then the same argument as above gives us that 〈q − i〉, 〈q +
1〉, 〈q + i〉 are not all д-equivalent. But 〈q + 1〉 ∼ 〈q + i〉 by the induction hypothesis, therefore
〈q − i〉 � 〈q + 1〉. Since 〈q + 1〉 � 〈q − i + 1〉 (again, by the induction hypothesis), we get 〈q − i〉 ∼
〈q − i + 1〉, as required. It remains to check 〈q + i〉 ∼ 〈q + i + 1〉. This is done in a similar way, using
the tuples 〈q − i〉, 〈q〉, 〈q + i + 1〉. �

We have proved that 〈0〉 ∼ · · · ∼ 〈q〉 � 〈q + 1〉 ∼ · · · ∼ 〈2q + 1〉. Using the same argument as
in the previous lemma once more for 〈0〉, 〈p2 − i〉, 〈i〉 with p2 ≥ i > 2q + 1, we get 〈i〉 � 〈0〉. In
summary, 〈i〉 ∼ 〈0〉 whenever i ≤ q and 〈i〉 ∼ 〈p2〉 � 〈0〉 when i ≥ q + 1. Observing that λ(〈i〉) <
1/3 if and only if i ≤ q, we obtain the following lemma:

Lemma 8.10. Each 〈i〉, i ∈ {0, 1, . . . ,p2}, is tame and 〈0〉 � 〈p2〉.
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8.3 Almost Rectangles Are Tame

We start by introducing a special type of zero-one matrices.

Definition 8.11. Let 1 ≤ k1, . . . ,kp ≤ p. By [k1,k2, . . . ,kp], we denote the matrix whose ith col-
umn begins with ki ones followed by (p − ki ) zeros, for each i ∈ {1, . . . ,p}.

An almost rectangle is a matrix of the form [k,k, . . . ,k, l , l , . . . , l] (the number of k’s can be
arbitrary, including 0 or p) where 0 ≤ k − l ≤ 5|D |. The quantity k − l is referred to as the size of

the step.

In the remainder of this subsection, we prove the following proposition:

Proposition 8.12. Each almost rectangle is tame.

Let
X = [k, . . . ,k︸���︷︷���︸

m times

, l , . . . , l]

be a minimal counterexample in the following sense:

• X has the minimum size of the step and,
• among such counterexamples, |λ(X ) − 1/3| is maximal.

Lemma 8.13. The size of the step of X is at least 2.

Proof. This lemma is just a different formulation of Lemma 8.10, since an almost rectangle with
step of size 0 or 1 represents the same choice of arguments as 〈i〉 for some i . �

We handle two cases λ(X ) ≥ 5/12 and λ(X ) ≤ 5/12 separately, but the basic idea for both of
them is the same as in the proof of Lemma 8.10. To avoid puzzling the reader, let us remark that
any number strictly between 1/3 and 1/2 (instead of 5/12) would work with a sufficiently large p.

The following lemma deals with the first case:

Lemma 8.14. The area of X is less than 5/12.

Proof. Assume that λ(X ) ≥ 5/12. Let k1, k2, l1, and l2 be the non-negative integers such that

l1 + l2 + k = p = k1 + k2 + l , (8.1)

1 ≥ k1 − k2 ≥ 0, and 1 ≥ l1 − l2 ≥ 0. (8.2)

We have k1 ≥ l1 and k2 ≥ l2. Moreover, since k − l ≥ 2 by the previous lemma, it follows that both
k1 − l1 and k2 − l2 are strictly smaller than k − l .

Consider the matrices
Yi = [li , . . . , li︸���︷︷���︸

m times

,ki , . . . ,ki ], i = 1, 2.

By shifting all the rows of Yi , i ∈ {1, 2}, m times to the left, we obtain an almost rectangle with a
smaller step size thanX , which is thus tame by the minimality assumption onX . Since such a shift
changes neither the value of t (as the outer “s” in the definition of t is cyclic) nor the area, both Y1

and Y2 are tame matrices.
LetY ′1 (Y ′2 , respectively) be the matrices obtained fromY1 (Y2, respectively) by shifting the firstm

columns k times (k + l1 times, respectively) down and the remaining columns l times (l + k1 times,
respectively) down. Since X ,Y ′1 ,Y

′
2 is a cover (by Equation (8.1)) and cyclically shifting columns

does not change the value of t (as the inner occurrences of “s” in the definition of t are cyclic),
Lemma 8.7 implies that X , Y1, Y2 are not all д-equivalent.
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From X ,Y ′1 ,Y
′
2 being a cover, it also follows that

λ(X ) + λ(Y ′1 ) + λ(Y ′2 ) = λ(X ) + λ(Y1) + λ(Y2) = 1.

Moreover, by Equation (8.2), we have λ(Y2) ≤ λ(Y1) and these areas differ by at most p/p2 = 1/p.
Therefore

λ(Y1) = 1 − λ(X ) − λ(Y2) ≤ 1 − 5/12 − λ(Y1) + 1/p

and, since p > 12 by the choice of p, we obtain

λ(Y2) ≤ λ(Y1) < 1/3.

The tameness ofYi now gives usY1 ∼ Y2 ∼ 0p×p and then, sinceY1,Y2,X are not all д-equivalent
and 0p×p � 1p×p (by the second part of Lemma 8.10), we get X ∼ 1p×p . But λ(X ) ≥ 5/12 > 1/3,
hence X is tame, a contradiction with the choice of X . �

It remains to handle the case λ(X ) < 5/12.
We first claim that 2k (and thus k + l and 2l ) is less than p. Indeed, since the step size of X is at

most 5|D | (by the definition of an almost rectangle) and p > 60|D |, we get

5/12 > λ(X ) ≥ p (k − 5|D |)/p2, and hence

k ≤ 5p/12 + 5|D | < 5p/12 + p/12 = p/2.

We now again need to distinguish two cases. Assume first thatm < p/2.
Let

Y = [l , . . . , l︸�︷︷�︸
m times

,k, . . . ,k︸���︷︷���︸
m times

, l , . . . , l],

Z = [p − k − l , . . . ,p − k − l︸�����������������������︷︷�����������������������︸
2m times

,p − 2l , . . . ,p − 2l].

The definition of Z makes sense, since p − k − l ,p − 2l ≥ 0 by the inequality 2k < p derived above.
The triple X ,Y ,Z (similarly to X ,Y1,Y2 in the proof of Lemma 8.14) is such that we can obtain a

cover by shifting the columns down. Therefore,X , Y , Z are not all д-equivalent and λ(X ) + λ(Y ) +
λ(Z ) = 1.

However, by shifting all the rows of Y m times to the left, we obtain X . We get λ(X ) = λ(Y ) and
t (X ) = t (Y ), therefore Z � X by the previous paragraph.

Moreover, by shifting all the rows of Z 2m times to the left, we obtain an almost rectangle Z ′

with t (Z ) = t (Z ′) and λ(Z ) = λ(Z ′). The step size of Z ′ is (p − 2l ) − (p − k − l ) = k − l , which is
the same as the step size of X . However, the distance of its area from 1/3 is strictly greater as
shown by the following calculation:

|λ(Z ) − 1/3|
|λ(X ) − 1/3| =

|(1 − 2λ(X )) − 1/3|
|λ(X ) − 1/3| =

|2(1/3 − λ(X )) |
|λ(X ) − 1/3| = 2 > 1.

By the minimality of X , the almost rectangle Z ′ is tame and so is Z . It is also apparent from the
calculation that the signs of λ(X ) − 1/3 and λ(Z ) − 1/3 are opposite. Combining these two facts
with Z � X derived above, we obtain that X is tame, a contradiction.

In the other case, whenm > p/2, the proof is similar using the tuples

Y = (l , . . . , l ,k, . . . ,k︸���︷︷���︸
m times

),

Z = (p − k − l , . . . ,p − k − l︸�����������������������︷︷�����������������������︸
(p−m) times

,p − 2k, . . . ,p − 2k,p − k − l , . . . ,p − k − l︸�����������������������︷︷�����������������������︸
(p−m) times

).

The proof of Proposition 8.12 is concluded.
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8.4 Contradiction

Letm = (p − 1)/2 and choose natural numbers l1 and l2 so

p/3 − 2|D | < l1 < l2 < p/3

and
s (1, . . . , 1︸��︷︷��︸

l1 times

, 0, . . . , 0) = s (1, . . . , 1︸��︷︷��︸
l2 times

, 0, . . . , 0).

This is possible by the pigeonhole principle, since there are 2|D | > |D | integers in the interval and
p/3 − 2|D | > 0 by the choice of p.

The required contradiction will be obtained by considering the two matrices

Xi = [k, . . . ,k︸���︷︷���︸
m times

, li , . . . , li ], i ∈ {1, 2},

where k will be specified soon.
Before choosing k , we observe that t (X1) = t (X2). Indeed, the firstm columns of these matrices

are the same (and thus so are their images under s) and the remaining columns have the same
image under s by the choice of l1 and l2. The claim thus follows from the definition of t .

Next, note that for k ≤ p/3 the area of both matrices is less than 1/3, since li < p/3. However,
for k ≥ p/3 + 3|D | the area is greater:

λ(Xi ) =
mk + (p −m)li

p2
≥

p−1
2 (p/3 + 3|D |) + p+1

2 (p/3 − 2|D |)
p2

=
p2/3 + |D |(p − 5)/2

p2
> 1/3.

Choose the maximum k so λ(X1) < 1/3. The derived inequalities and the choice of li implies

l1 < l2 ≤ k < p/3 + 3|D | ≤ l1 + 5|D | < l2 + 5|D |,

therefore both X1 and X2 are almost rectangles. By Proposition 8.12, X1 and X2 are tame.
Since the area of X1 is less than 1/3, we get X1 ∼ 0p×p . We chose k so increasing k by 1 makes

the area of X1 greater than 1/3. From m < p/2 it follows that increasing l1 by 1 makes the area
even greater, hence λ(X2) > 1/3 (recall that l2 > l1) and we obtain X2 ∼ 1p×p .

Recall that 0p×p � 1p×p by the second part of Lemma 8.10. Therefore X1 � X2, contradicting
t (X1) = t (X2) and concluding the proof of Theorem 8.1.

Remark 8.15. The proof of Theorem 8.1 could be simplified if we had stronger or more suit-
able polymorphisms than cyclic operations. Alternative versions of Theorem 8.3 could also help
in simplifying the proof of the CSP dichotomy conjecture. In particular, the following question
seems open: Does every finite D with a cyclic polymorphism of arity at least 2 necessarily have
a polymorphism s of arity n > 1 such that, for any a,b ∈ D and (x1, . . . ,xn ) ∈ {a,b}n , the value
s (x1, . . . ,xn ) depends only on the number of occurrences of a in (x1, . . . ,xn )? Note that a more
optimistic version involving evaluations with |{x1, . . . ,xn }| = 3 is false; a counterexample is the
disjoint union of a directed 2-cycle and a directed 3-cycle.

9 ALGEBRAIC CONSTRUCTIONS

The main goal of this section is to provide a more detailed picture of the algebraic theory of minions
and to align the algebraic approach to PCSP more closely with the standard theory as presented
in Reference [15]. The theory that we present is a natural generalisation of Reference [16] from
clones to minions. We note that, as in Reference [16], many of these results can be generalised to
minions over infinite sets. Nevertheless, we keep our focus on the case of finite domains.

Let us start with describing algebraic counterparts of pp-constructions.
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Definition 9.1. Let M1 and M2 be two minions on (A1,B1) and (A2,B2), respectively. We use
the following terminology:

• M2 is a reflection of M1 if there are maps hA : A2 → A1 and hB : B1 → B2 such that

M2 = {(x1, . . . ,xar f ) �→ hB ( f (hA (x1), . . . ,hA (xar f ))) | f ∈M1},

• M2 is an expansion of M1 if A1 = A2, B1 = B2, and M1 ⊆M2, and
• Let N be a set, we say that M2 is the N th power of M1, if A2 = AN

1 , B2 = BN
1 , and M2 is the

set of coordinate-wise actions of all functions in M1. The [n]th power (usually referred to
as nth power and denoted M2 =M n

1 ) is described as the set of all functions of the form

((x11, . . . ,x1n ), . . . , (xt1, . . . ,xtn )) �→ ( f (x11, . . . ,xt1), . . . , f (x1n , . . . ,xtn )),

where t ≥ 1 and f is a t-ary function from M1. In this case, we say that M2 is a finite power

of M1.

Following the standard notation, we denote the class of all reflections of M by RM , the class of
all expansions by EM , the class of all powers by PM , and the class of all finite powers by PfinM .

We remark that a reflection of a minion is always a minion. This is in contrast with a reflection of
a clone (as defined in Reference [16, Definition 4.3]), which is not necessarily a clone (see Reference
[16, p. 379]).

The following lemma relates the above to the relational constructions from Sections 2.3 and 4.2:

Lemma 9.2. Let (A,B) and (A′,B′) be two templates. Denote their polymorphism minions by M
and M ′, respectively.

(1) (A′,B′) is ppp-definable from (A,B) if and only if M ′ ∈ EM .

(2) (A′,B′) is a simple relaxation of a pp-power of (A,B) if and only if M ′ ∈ EPfinM .

(3) (A′,B′) is a relaxation of a structure that is pp-definable from (A,B) if and only if M ′ ∈
ERM .

Proof. Item (1) is proved in References [27, 83] (see also Theorem 2.26).
The proof of item (2) is similar to Reference [9, Proposition 3.1]. Let us first define templates

(An ,Bn ) that will have the property that all nth pp-powers of (A,B) are pp-definable in (An ,Bn ).
We set An = An , Bn = Bn , and for each relation R of (A,B) of arity k and each tuple (i1, . . . , ik ) ∈
[n]k , we define a new k-ary relation Ri1 ...ik

of (An ,Bn ) by

((a11, . . . ,a1n ), . . . , (ak1, . . . ,akn )) ∈ RAn

i1 ...ik
if (a1i1 , . . . ,akik

) ∈ RA,

and similarly for RBn

i1 ...ik
. Further, for all i, j ∈ [n], we add a new relation symbol Ei j interpreted as

((a1, . . . ,an ), (b1, . . . ,bn )) ∈ EAn

i j if ai = bj , and similarly for EBn

i j . It follows directly from defini-
tions that any structure that is pp-definable in (An ,Bn ) is annth pp-power of (A,B) and vice versa.
Further, we claim that M n = Pol(An ,Bn ). It is straightforward to verify that M n ⊆ Pol(An ,Bn ).
For the reverse inclusion, first observe that every polymorphism of (An ,Bn ) acts independently
on each of the coordinates, as follows from the compatibility with the relations Eii , and the ac-
tions on different coordinates are identical, as follows from the compatibility with the relations
Ei j for i � j. From the compatibility with the relations Ri1 ...ik

, we obtain that the action on each
coordinate is a polymorphism of (A,B). Now, assume that (A′,B′) is a simple relaxation of the nth
pp-power of (A,B), in particular it is ppp-definable in (An ,Bn ). Thus, M ′ ∈ EM n ⊆ EPfinM . The
converse is also proved using the template (An ,Bn ). Given that M ′ ∈ EPfinM , there is n such that
M ′ ∈ EM n . The rest again follows from the first item.
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To prove item (3), assume that (A′,B′) is a relaxation of a template (A0,B0) that is pp-definable
from (A,B), and lethA : A′ → A0 andhB : B0 → B′ be the relaxing homomorphisms. We claim that
all mappings of the form (x1, . . . ,xn ) → hB ( f (hA (x1), . . . ,hA (xn ))), where f ∈M , are polymor-
phisms from A′ to B′. Since (A0,B0) is pp-definable in (A,B), each f ∈M is also a polymorphism
from A0 to B0. Consequently, we can prove that the above composition is a polymorphism from A′

to B′ in the same way as proving that a composition of homomorphisms of relational structures
is a homomorphism. This concludes that M ′ ∈ ERM .

For the other implication, suppose that M ′ ∈ ERM , and let the reflection be defined by map-
pings hA and hB . We define an intermediate template (A0,B0) by putting A0 = A, B0 = B, RA0 =

hA (RA′ ), andRB0 = h−1
B (RB′ ) for allR. This definition ensures that (A′,B′) is a relaxation of (A0,B0).

To prove that (A0,B0) is ppp-definable in (A,B), it is enough to show that M ⊆ Pol(A0,B0); the
rest follows from item (1).

Let f ∈M be of arity n and c1, . . . , cn ∈ RA0 . From the definition of RA0 , we get b1, . . . , bn ∈ RA′

such that ci = hA (bi ) for each i = 1, . . . ,n. Now,

hB ( f (hA (b1), . . . ,hA (bn ))) ∈ RB′,

since the composition hB ( f (hA, . . . ,hA)) ∈M ′, and consequently

f (c1, . . . , cn ) = f (hA (b1), . . . ,hA (bn )) ∈ h−1
B (RB′ ) = RB0 .

This shows that (A′,B′) is a relaxation of a structure that is ppp-definable from (A,B), therefore
it is pp-constructible from (A,B), which is the same as being a relaxation of a structure that is
pp-definable from (A,B) by Theorem 4.12. �

The following theorem is an algebraic version of Theorem 4.12. Its proof is therefore very similar,
and a connection to constructions from Section 4 should be immediate.

Theorem 9.3. Let M and M ′ be two minions, respectively. Then M ′ ∈ ERPfinM if and only if

there exists a minion homomorphism from M to M ′.

Proof. Assume that M ⊆ O (A,B) and M ′ ⊆ O (A′,B′). If M ′ ∈ ERPfinM , then there is a nat-
ural mapping ξ : M →M ′ that is clearly a minion homomorphism.

For the converse, suppose that ξ : M →M ′ is a minion homomorphism. We will use this map-
ping to find a reflection of a suitable power of M that gives a subset of M ′. A suitable exponent
of the power is N = AA′ . For the reflection, we need to define two mappings, hA : A′ → AN and
hB : BN → B′. We will choose them in such a way that the following holds:

hB

(
f M N

(hA (x1), . . . ,hA (xn ))
)
= ξ ( f ) (x1, . . . ,xn ) (♦)

for all f ∈M and x1, . . . ,xn ∈ A′. First, we define hA : A′ → AN as the long code encoding of an
element of A′ over the alphabet A. More formally, we put hA (a′) = pa′ where pa′ : AA′ → A is the
a′th projection (i.e., pa′ ( f ) = f (a′)).

To define the mapping hB : BN → B′, we view an element of BN of the form

f M N

(hA (a′1), . . . ,hA (a′n )) as a function from N = AA′ to B that is obtained as the composi-
tion of the projection functions pa′i

: AA′ → A, for i ∈ [n], with f : An → B. Note that this function

has at most n essential variables, because every pa′i
depends only on the coordinate a′i . If b ∈ BN

can be expressed as b = f (pa′1
, . . . ,pa′n ), then we define hB (b) = ξ ( f ) (a′1, . . . ,a

′
n ), and for b for

which such f and a′1, . . . ,a
′
n do not exist, we define hB arbitrarily.

We need to show that hB is well-defined, i.e., if f (a′1, . . . ,a
′
n ) = д(b ′1, . . . ,b

′
m ), then

ξ ( f ) (a′1, . . . ,a
′
n ) = ξ (д) (b ′1, . . . ,b

′
m ). But this is true, since the premise gives a minor identity be-

tween f and д and ξ preserves such identities. It is also easy to see that hA and hB satisfy (♦). Thus,
we obtain that M ′ ∈ ERM N , which gives M ′ ∈ ERPfinM . �
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Remark 9.4. The finiteness of sets B and B′ is not used in the proof above, and therefore the
theorem is true as stated as long as both A and A′ are finite. Dropping even that assumption,
following the same proof, one can show that the statement is true for minions over infinite sets if
Pfin is replaced by P.

Finally, returning to polymorphism minions of PCSP templates, we can relate the above to The-
orem 4.12.

Corollary 9.5. Let (A,B) and (A′,B′) be two templates and let M and M ′, respectively, be their

polymorphism minions. The following are equivalent:

(1) (A′,B′) is pp-constructible from (A,B) (consequently, PCSP(A′,B′) reduces in log-space to

PCSP(A,B)).
(2) M ′ ∈ ERPfinM .

(3) There exists a minion homomorphism ξ : M →M ′.

Proof. The equivalence of (2) and (3) is given by the previous theorem. The equivalence of
(1) and (3) follows from Theorem 4.12. Alternatively, we can argue that (1) is equivalent with
the rest of the items in the following way: (1)→ (3) is the easier direction, it follows easily from
Lemma 4.8 (this mirrors the proof of Theorem 4.12). We prove the other implication by proving
that (2) implies (1): Since M ′ ∈ ERPfinM there is a minion M ′′ ∈ PfinM , say that M ′′ =M n ,
such that M ′ ∈ ERM ′′. Furthermore, this minion is the polymorphism minion of the template
(An ,Bn ) introduced in the proof of Lemma 9.2(2). Finally, Lemma 9.2(3) concludes that (A′,B′) is
a relaxation of a structure pp-definable from (An ,Bn ), and therefore it is pp-constructible from
(A,B). (In fact, this directly shows that (A′,B′) is a relaxation of a pp-power of (A,B).) �

10 BIPARTITE MINOR CONDITIONS SATISFIED IN Pol(Kk, Kc )

The key in our approach to the complexity of PCSPs is the analysis of bipartite minor conditions
satisfied in their polymorphism minions. While we cannot yet fully resolve the complexity of
approximate graph colouring, in this section, we provide some analysis and comparison of bipartite
minor conditions satisfied in Pol(Kk ,Kc ) for various k and c . We remark that all hard CSPs satisfy
the same (i.e., only trivial) bipartite minor conditions, but this is not the case for PCSPs, as seen
from our results in this section.

The hardness of PCSP(Kk ,Kc ) with c ≤ 2k − 2 was proved in Reference [26], essentially by
showing that, for such c , Pol(Kk ,Kc ) has a minion homomorphism to the minion P2 of projections
(though they did not use this terminology). In other words, all bipartite minor conditions satisfied
in Pol(Kk ,Kc ) for such k and c are trivial. It was noted in Reference [26] that their approach
cannot be extended to c ≥ 2k − 1, because then the polymorphisms satisfy some non-trivial minor
conditions (we gave a specific example above; see Example 3.4). We settled the case c = 2k − 1 by
proving that the bipartite minor conditions satisfied in Pol(Kk ,Kc ), though possibly non-trivial,
are limited. Specifically, all such conditions are also satisfied in Pol(H2,HK ) for some K , because
Pol(Kk ,K2k−1) does not contain an Olšák function. We now show that this does not hold for c ≥ 2k .

Proposition 10.1. Pol(Kk ,K2k ) contains an Olšák function.

Proof. Define a 6-ary operation o from Kk to K2k in the following way:

o(x1, . . . ,x6) =

{
a if at least two of x1,x2,x3 are equal to a,
x1 + k otherwise.

Note that o depends essentially only on its first three variables. It is straightforward to check that
o is an Olšák function. To see that it is a polymorphism suppose that x1 � y1, . . . , x6 � y6 while
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o(x1, . . . ,x6) = o(y1, . . . ,y6) = a. If a is obtained using the last case of the definition of o, then
a = x1 + k = y1 + k , and consequently x1 = y1, a contradiction. If a ∈ Kk , then only the first row
of the definition had to be used to compute the value for both o(x1, . . . ,x6) and o(y1, . . . ,y6) but,
since any two of two-element subsets of {1, 2, 3} intersect, we get that a = xi = yi for any i in the
intersection, a contradiction again. �

We now show that Theorem 5.9 cannot be directly applied to to prove hardness of
PCSP(Kk ,K2k ).

Proposition 10.2. For any ε > 0, Pol(Kk ,K2k ) satisfies some ε-robust bipartite minor condition.

Proof. Let m be the ternary Boolean majority function, i.e., m(x ,y, z) outputs the repeated
value among x ,y, z. Further, letm1 =m and, for n ≥ 1, define

mn (x1, . . . ,x3n ) =mn−1 (m(x1,x2,x3), . . . ,m(x3n−2,x3n−1,x3n )).

For example, m2 (x1, . . . ,x9) =m(m(x1,x2,x3),m(x4,x5,x6),m(x7,x8,x9)).
For a subset I ⊆ {1, . . . , 3n }, let xI be the tuple in {0, 1}3n such that xi = 1 if and only if i ∈ I . Let

Sn = {I ⊆ {1, . . . , 3n } | mn (xI ) = 1}, and let MSn be the set of all minimal (under inclusion) sets in
Sn . Let Σn be the bipartite minor condition that contains, for each I ∈ MSn , the identity

fn (x0,y1, . . . ,y� ) ≈ дn (xπI (1), . . . ,xπI (3n ) )

where

• y1, . . . ,y� is the list of all variables of the form x ( J ,i ) with J ∈ MSn and 1 ≤ i ≤ 3n such that
i � J , and

• πI (i ) = 0 if i ∈ I and πI (i ) = (I , i ) otherwise.

Note that the function symbols fn and дn are the same in all identities in Σn .
Fix any ε > 0 and choose n so ε > (2/3)n . We will show that Σn is ε-robust. Note that each

variable of the form x (I,i ) appears on the right-hand side of only one identity in Σn (namely, the
one corresponding to I ). Assume first that fn is assigned a projection not on the first variable (i.e.,
not on x0). Then this projection corresponds to some variable of the form x (I,i ) on the left-hand
side, and any assignment of a projection to дn would satisfy at most one identity in Σn (again,
the one corresponding to I ), which is certainly less than an ε-fraction of all identities in Σn . So
assume that fn is assigned a projection on the first variable x0. It is not hard to check that, for a
fixed 1 ≤ i ≤ 3n , the probability that πI (i ) = 0 (i.e., that i ∈ I ) for a randomly chosen set I ∈ MSn

is (2/3)n . Thus, any assignment of a projection to дn satisfies less than an ε-fraction of identities
in Σn and we conclude that Σn is ε-robust.

It remains to show that Σn is satisfied in Pol(Kk ,K2k ). Define the following functions on Kk :

дn (x1, . . . ,x3n ) =

{
a if {i | xi = a} ∈ Sn for some a,
x1 + k otherwise.

Note that, by the choice of Sn , the condition in the first case of the definition of дn cannot
hold for more than one value a, so this function is well-defined. Let fn (x0,y1, . . . ,y� ) = x0. It is
straightforward to check that fn ,дn ∈ Pol(Kk ,K2k ) and that these functions satisfy all identities in
Σn . �

We now show that, for any k ≥ 3, there is a bipartite minor condition that is satisfied in
Pol(Kk ,Kc ) for some c , but not in Pol(Kk ′,Kc ′ ) for any k < k ′ ≤ c ′. This means that even if one
proves NP-hardness of PCSP(Kk ′,Kc ′ ) for some fixed k ′ > 3 and all c ′ ≥ k ′, Theorem 3.1 would
not immediately imply the same for any fixed k with 3 ≤ k < k ′.
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Proposition 10.3. For each k ≥ 3, there exists c ≥ k such that Pol(Kk ,Kc ) has no minion homo-

morphism to Pol(Kk ′,Kc ′ ) for any k < k ′ ≤ c ′.

Proof. A simple bipartite minor condition that is not satisfied in Pol(Kk ′,Kc ′ ) is the Kk+1-loop
condition—this follows from the fact that Kk ′ contains Kk+1, but Kc ′ has no loop. The Kk+1-loop
condition is described by the following two identities:

t (x1, . . . ,xk+1) ≈ s (x1,x2, . . . ,xk ,xk+1),

t (x1, . . . ,xk+1) ≈ s (x2,x1, . . . ,xk+1,xk ).

The variables on the right-hand side correspond to the edges of Kk+1 (viewed as a digraph); we
will index them accordingly: The first one is x1,2, the second x2,1, and so on, so the arity of s is
k (k + 1). We claim that this condition is satisfied in Pol(Kk ,Kc ) for some c ≥ k . To show that, we
define functions t and s without regard to the size of their range by picking a new colour whenever
we are not forced by any of the identities to do otherwise. More precisely, we set

t (a1, . . . ,ak+1) = (a1, . . . ,ak+1).

In other words, if we view t as a colouring of Kk+1
k

, then each vertex gets its own colour. Further,
let

s (a1,2, . . . ,ak+1,k ) =
⎧⎪⎪⎨⎪⎪⎩
t (a1, . . . ,ak+1) if ai, j = ai for all i � j,
t (a1, . . . ,ak+1) if ai, j = aj for all i � j, and
(a1,2, . . . ,ak+1,k ) otherwise.

If we view s as a colouring of K
k (k+1)
k

, then the last case in the definition of s assigns each vertex
(satisfying the condition of the case) its own colour, and that colour is not used in t . Note that s
is well-defined, because if both ai, j = ai and ai, j = a′j for all i � j, then ai, j = ai′, j′ for all i � j and
i ′ � j ′, and in that case both rows give the same value. It is straightforward to check that these
functions satisfy the Kk+1-loop condition, since the tuples that require checking are exactly those
in the first two rows of the definition of s . We also claim that both t and s are proper colourings.
This is obvious for t . For s , we have to show that if s (a1,2, . . . ,ak+1,k ) = s (b1,2, . . . ,bk+1,k ), then
ai, j = bi, j for some i � j. Clearly, if the two values of s agree, then the resulting colours must have
been obtained using one or both of the first two rows of definition of s . If the same row was used
for both, then there is nothing to prove, as the resulting colour is uniquely determined by the
tuples (a1, . . . ,ak+1) and (b1, . . . ,bk+1), respectively. The remaining case is when both rows were
used. Since the situation is symmetric, we may assume that ai, j = ai and bi, j = bj for all i � j.
Further, since the result is t (a1, . . . ,ak+1) = t (b1, . . . ,bk+1), we have that ai = bi for all i . Finally,
since there are only k possible values for ai , we have that ai = aj for some i � j, which implies that
ai, j = ai = aj = bj = bi, j . The total number c of colours used in the range of t and s is bounded by
kk+1 + kk (k+1) . �

The above proposition does not give the best possible value of c . In fact, it was shown by Olšák
[79] that for k = 3, a possible value is c = 6. We include a proof for completeness.

Proposition 10.4. Pol(K3,K6) does not map by a minion homomorphism to Pol(Kk ′,Kc ′ ) for any

3 < k ′ ≤ c ′.

Proof. As in the case of the previous proposition, the distinguishing bipartite minor condition
is the K4-loop condition. Again, it is clear to see that it is not satisfied in Pol(Kk ′,Kc ′ ), so it is
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enough to define two polymorphisms from K3 to K6 that satisfy this condition. We consider:

t (x1,x2,x3,x4) =

{
x1 if x1 = x2 = x3, and
x4 + 3 otherwise;

s (x1,2,x2,1,x1,3, . . . ,x4,3) =
⎧⎪⎪⎨⎪⎪⎩
t (x ′1, . . . ,x

′
4) if xi, j = x ′i for all i � j,

t (x ′1, . . . ,x
′
4) if xi, j = x ′j for all i � j, and

x1,2 otherwise.

Note that s is well-defined, because if both xi, j = xi and xi, j = a′j for all i � j, then xi, j = xi′, j′ for
all i � j and i ′ � j ′, and in that case both rows give the same value. Clearly, s and t satisfy the
required identities. It is straightforward to check that t is a polymorphism; let us then prove that
s is. As before, it is enough to show that if

s (x1,2, . . . ,x3,4) = s (y1,2, . . . ,y3,4)

for some xi, j ’s and yi, j ’s, then there are i � j such that xi, j = yi, j . Let us assume that the above
common value of s is a and consider two cases: First, a ∈ K3. Such value can be obtained for x ’s if
x1,2 = a, or xi, j = a for all i � j and i ∈ {1, 2, 3}, or xi, j = a for all i � j and j ∈ {1, 2, 3}. Either way,
x1,2 = a. By the same argument, we get y1,2 = x1,2 = a. Second, a ∈ K6\K3. This implies that one
of the two rows of the definition of s have been used for both values. If the first rows have been
used for both, we have x4,i = y4,i = a − 3 for all i � 4; similarly, if the second row has been used
for both, then xi,4 = yi,4 = a − 3 for all i � 4. Hence, the first row was used for one value and the
second for the other. Using the symmetry, we may assume that the first row was used for the x ’s
and the second row for the y’s, that is

a = x4 + 3 = t (x1,x2,x3,x4) = s (x1,x2,x1,x3,x1,x4,x2,x3,x2,x4,x3,x4),

a = y4 + 3 = t (y1,y2,y3,y4) = s (y2,y1,y3,y1,y4,y1,y3,y2,y4,y2,y4,y3).

Since the second row of the definition of t was used, we know that y1,y2,y3 are not all equal, so
assume by symmetry that y2 � y3. Note that we now need to show that xi = yj for some i � j. If it
is not the case, then y4 = x4 � y2 and also y4 = x4 � y3, which means that y2, y3, and y4 take three
different values from K3, and consequently x1 must be equal to one of them, a contradiction. �

Note that, for any fixed k ≥ 3, the case c = 2k is the smallest one for which NP-hardness of
PCSP(Kk ,Kc ) is still open, unless k is large enough for Huang’s result [59] to apply. The smallest
(in terms of k, c) open case is PCSP(K3,K6), and the above result shows that even if one proves
NP-hardness of PCSP(Kk ′,Kc ′ ) for all 4 ≤ k ′ ≤ c ′, Theorem 3.1 would not immediately imply NP-
hardness of PCSP(K3,K6).

Finally, we prove that if we fix k and increase c, then the family of bipartite minor conditions
satisfied in Pol(Kk ,Kc ) also grows.

Proposition 10.5. For any c ≥ k > 2, there exists C > c such that Pol(Kk ,KC ) has no minion

homomorphism to Pol(Kk ,Kc ).

Proof. To simplify the notation, let Kn = Pol(Kk ,Kn ). We need to find a bipartite minor condi-
tion that is not satisfied in Kc , but is satisfied in KC for someC > c . A simple condition that is not
satisfied in Kc is the Kk -loop condition. However, this condition is also not satisfied in KC for any
C either. Nevertheless, Theorem 4.12(3)↔(1) implies that there is a condition of the form Σ(Kk , F)
where F is some graph that witnesses that there is no minion homomorphism. We consider the
condition Σ(Kk ,Kc+1). Recall that Σ(Kk ,Kc+1) is constructed as follows: Introduce a k-ary symbol
fu for each u ∈ [c + 1], and for each {u,v} ⊆ [c + 1], u < v a k (k − 1)-ary symbol д{u,v } and all
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identities of the following form:

fu (x1, . . . ,xk ) ≈ д{u,v } (x1,x2, . . . ,xk−1,xk ),

fv (x1, . . . ,xk ) ≈ д{u,v } (x2,x1, . . . ,xk ,xk−1),

where the variables on the right-hand side are distributed in such a way that xi and x j appear
together in some column for all i � j. First, we claim that this condition is not satisfied in Kc . This
follows directly from Lemma 3.14(2): If it was, then there would be a homomorphism from Kc+1

to Kc .
We now show that this bipartite minor condition is satisfied in KC for some C . As in the proof

of Proposition 10.3, we define functions first and determineC later. Define functions fu and д{u,v }
without regard to the size of the range by setting fu (a, . . . ,a) = a, д{u,v } (a, . . . ,a) = a, and then
picking a fresh colour whenever we are not forced by any of the identities to do otherwise. More
precisely, we set

fu (a1, . . . ,ak ) =

{
a if a1 = · · · = ak = a, and
(u;a1, . . . ,ak ) otherwise,

and similarly,

дu,v (a1,2, . . . ,ak,k−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if a1,2 = · · · = ak,k−1 = a, else
(u;a1, . . . ,ak ) if ai, j = ai for all i � j,
(v ;a1, . . . ,ak ) if ai, j = aj for all i � j, and
(u,v ;a1,2, . . . ,ak,k−1) otherwise.

Note thatдu,v is well defined, because if both ai, j = ai and ai, j = a′j for all i � j, then ai, j = ai′, j′ for
all i � j and i ′ � j ′, and in that case the first row is used. It is straightforward to check that these
functions satisfy the minor condition. We also claim that both fu and дu,v are proper colourings,
but that is easy to see, since for a fixed u ({u,v}, respectively) no colour is used twice for a value
of fu (д{u,v } , respectively). The total number C of colours used is bounded by k + (c + 1)kk +

(c + 1)2kk (k−1) . �

We remark that Σ(K3,K4) is not satisfied in Pol(K3,K4), since it is a non-trivial condition (follows
from Lemma 3.14(2)) and Pol(K3,K4) maps to P2 by a minion homomorphism (see Example 2.22).
So in the previous proof, the obvious lower bound on C cannot be always met.

11 CONCLUSION

This article deals with the Promise CSP framework, which is a significant generalisation of the
(finite-domain) CSP. The PCSP provides a nice interplay between the study of approximability
and universal-algebraic methods in computational complexity. We presented a general abstract al-
gebraic theory that captures the complexity of PCSPs with a fixed template (A,B). The key element
in our approach is the bipartite minor conditions satisfied in the polymorphism minion Pol(A,B)
of a template. We have shown that such conditions determine the complexity PCSP(A,B). We gave
some applications of our general theory, in particular, in approximate graph colouring.

The complexity landscape of PCSP (beyond CSP) is largely unknown, even in the Boolean case
(despite some progress in References [30, 49]) and includes many specific problems of interest.
We hope that our theory will provide the basis for a fruitful research programme of charting this
landscape. Below, we discuss some of the possible directions within this programme.

Let us first discuss how the complexity classification quest for PCSPs compares with that for
CSPs. As we said above, the gist of the algebraic approach is that lack or presence of (high-
dimensional) symmetries determines the complexity. For CSPs, there is a sharp algebraic di-
chotomy: having only trivial symmetries (i.e., satisfying only those systems of minor identities
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that are satisfied in polymorphisms of every CSP) leads to NP-hardness, while any non-trivial
symmetry implies rather strong symmetry and thus leads to tractability. Moreover, the algorithms
for tractable cases are (rather involved) combinations of only two basic algorithms—one is based
on local propagation [13] and the other can be seen as a very general form of Gaussian elimina-
tion [60]. It is already clear that the situation is more complicated for PCSPs: There are hard PCSPs
with non-trivial (but limited in some sense) symmetries, and tractable cases are more varied [7,
29, 30, 47]. This calls for more advanced methods, and we hope that our article will provide the
basis for such methods. There is an obvious question whether PCSPs exhibit a dichotomy as CSPs
do, but there is not enough evidence yet to conjecture an answer. More specifically, it is not clear
whether there is any PCSP whose polymorphisms are not limited enough (in terms of satisfying
systems of minor identities) to give NP-hardness, but also not strong enough to ensure tractability.
Classifications for special cases such as Boolean PCSPs and graph homomorphisms would help to
obtain more intuition about the general complexity landscape of PCSPs, but these special cases are
currently open.

The sources of hardness in PCSP appear to be much more varied than in CSP (that has a unique
such source), and much remains to be understood there. What limitations on the bipartite minor
conditions satisfied in polymorphisms lead to NP-hardness? We gave some general and some spe-
cific results in this direction, but it is clear that our general theory needs to be further developed.
Currently, variants of the Gap Label Cover provide the source of hardness, but it is possible that
new versions of GLC may need to be used. It is not clear in advance what these versions would be—
their form would be dictated by the analysis of polymorphisms and minor conditions. However, it
would be interesting to eventually go even further and avoid dependency on deep approximation
results such as the PCP theorem and parallel repetition, which are more appropriate for quanti-
tative approximation concerning the number of (un)satisfied constraints. Instead, one would aim
to provide a self-contained theory that includes a new type of reduction between PCSPs so one
could bypass the PCP Theorem and parallel repetition altogether. In particular, can one come up
with purely algebraic reductions (e.g., by extending pp-constructions) that create and amplify the
algebraic gap in problems PMCM (N ), which is what the PCP theorem and parallel repetition do
for the quantitative gap in Gap Label Cover?

The analysis of polymorphisms of approximate graph colouring problems (and their relatives)
may provide further intuition as to what limitations on minor conditions can be used for hardness
proofs. To give another specific problem, it may be interesting to understand for what structures B

the problem PCSP(T,B) is hard. Here T is the Boolean “1-in-3” structure from Example 2.8 and B

is a (not necessarily Boolean) structure with a single ternary relation. We know that the problem
is NP-hard for B = T and tractable for B = H2.

What algorithmic techniques are needed to solve tractable PCSPs? One general approach to
proving tractability of PCSP(A,B) is presented in Reference [30]. The main idea is to find a struc-
ture D such that A→ D→ B and CSP(D) is tractable. Such structures are called “homomorphic
sandwiches” in Reference [30]. It is clear that an algorithm for CSP(D) solves PCSP(A,B). In gen-
eral, D may have infinite domain (but instances of CSP(D) are still finite). Indeed, for PCSP(T,H2)
from Example 2.8 no such finite D exists (Theorem 8.1), but there are several infinite ones [10, 29,
30], such as D = (Z;x + y + z = 1). It would be interesting to find out what other tractable PCSPs
(e.g., those considered in References [29, 49]) require infinite-domain CSPs. Another natural ques-
tion is “how infinite” such a template D needs to be—while the class of all infinite-domain CSPs
essentially covers all decision problems [21], some parts of the theory can be generalised from
finite structures to the rich class of so called ω-categorical structures [20, 82]. Can a structure D

such that A→ D→ B beω-categorical, say, for (A,B) = (T,H2)? It would be also very interesting
to develop a general theory of how such a structure D can be constructed from bipartite minor
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conditions satisfied in Pol(A,B) and what properties of such conditions guarantee tractability of
CSP(D). Overall, it is another interesting feature of the (finite-domain) PCSP framework that it
seems to require research into infinite-domain CSP.

The polynomial-time algorithms of Bulatov and Zhuk [36, 92, 93] that solve all tractable finite-
domain CSPs are quite involved and both use deep structural analysis of finite algebras. Can al-
gorithms for tractable PCSPs that involve infinite-domain CSPs (e.g., such as those in References
[30, 31]) lead to a new simpler algorithm that solves all tractable CSPs?

Every tractable finite-domain CSP can be solved [36, 92, 93] by a (rather involved) combination
of local consistency checking [13] and the “few subpowers” algorithm that handles compact repre-
sentation of constraints [60]. The study of local consistency checking algorithms generally played
a very important role in the algebraic theory of CSP. Apart from being one of the two main algo-
rithmic approaches, it connected, via homomorphism dualities [37], the algebraic theory of CSP
with the combinatorial [58] and logical [66] approaches. As discussed in Section 7, it makes sense
to use local consistency checking for PCSP(A,B). Although it is obviously an interesting problem
to characterise PCSPs solvable by local consistency, it is not clear yet whether this method still
plays a key role for PCSP or must be superseded by more powerful algorithms in this context. The
study of duality for CSP is intimately connected with investigating CSPs inside P, e.g., those in NL,
L, or AC0—it is natural to extend this line of research to PCSP. There are many other (both open
and resolved) questions about local consistency for CSP that can be investigated for PCSP.

Unlike with the local consistency method, it is not even clear how to transfer the “few subpow-
ers” algorithm to the realm of PCSP. It may be that a different algorithmic approach is required
that will handle all that “few subpowers” could and that can be used for PCSP.

There are many results in CSP exactly characterising the power of a given algorithm. We gen-
eralised some of such results to PCSP in Section 7, but this line of research will need to continue,
especially as new algorithmic techniques are being developed for PCSP.

Finally, the PCSP framework itself can be extended by incorporating approximation based on
counting (un)satisfied constraints—see Reference [8] for an example—this would give another
range of interesting open questions, but now we will not discuss this direction further.
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