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Abstract

Yield stress fluids display a rich rheological phenomenology. Beyond the defining existence of a yield stress in the steady state flow curve,
this includes, in many materials, rather flat viscoelastic spectra over many decades of frequency in small amplitude oscillatory shear; slow
stress relaxation following the sudden imposition of a small shear strain; stress overshoot in shear startup; logarithmic or sublinear power-law
creep following the imposition of a shear stress below the yield stress; creep followed by yielding after the imposition of a shear stress above
the yield stress; richly featured Lissajous–Bowditch curves in large-amplitude oscillatory shear; a Bauschinger effect, in which a material’s
effective yield strain is lowered under straining in one direction, following a preceding strain in the opposite direction; hysteresis in up-down
shear rate sweeps; and (in some materials) thixotropy and/or rheological aging. A key challenge is to develop a constitutive model that con-
tains enough underlying mesoscopic physics to have meaningful predictive power for the full gamut of rheological behavior just described,
with only a small number of model parameters, yet is simple enough for use in computational fluid dynamics to predict flows in complicated
geometries, or complicated flows that arise due to spontaneous symmetry breaking instabilities even in simple geometries. Here, we introduce
such a model, motivated by the widely used soft glassy rheology model, and show that it captures all the above rheological features. © 2020
The Society of Rheology. https://doi.org/10.1122/1.5140465

I. INTRODUCTION

Many soft materials behave as so-called “yield stress
fluids” [1–8]. Examples include dense colloids, emulsions,
foams, star polymers, microgels, and lamellar onion phases, as
well as low density attractive colloidal gels and clays. At
imposed stresses below a critical yield stress, σ , σy, they
show solidlike rheological behavior. In contrast, at larger
stresses, σ . σy, they yield and flow like liquids. Their steady
state flow curve of shear stress σ as a function of shear rate _γ,
typically measured in a slow shear rate sweep, is then often
fit to a Herschel–Bulkley form [9], σ( _γ) ¼ σy þ K _γn, with
0 , n , 1, or Bingham behavior [10] with n ¼ 1.

In terms of the physical origin of this behavior, yield
stress fluids can (broadly and loosely) be subdivided into two
main categories. In the first category, a material’s constituent
mesoscopic substructures, such as colloidal particles, attract
to form weakly flocculated aggregates [11]. Even though the
volume fraction of the constituent particles can be quite low
for the system overall, their aggregates can result in a gel-like
response at low loads but are then pulled apart and reflui-
dized in shear.

In the second category, a material’s constituent substruc-
tures are too densely packed to properly rearrange at low
loads but do rearrange in shear. Examples include colloids,
emulsions, foams, microgels, etc., which, respectively, com-
prise densely packed colloidal particles, emulsion droplets,
foam bubbles, or microgel beads. Materials in this second
category can further be divided into (at least) two idealized
limiting subcategories [12,13]: thermal hard-sphere colloids,

in which the yield stress has a typical magnitude kBT=R3,
where R is the particle radius, and athermal soft suspensions,
in which the yield stress has a typical magnitude set by the
modulus of the constituent particles. Materials in the second
subcategory have been termed “soft glassy materials”
[14–16]. The constitutive model that we shall present in what
follows is aimed, in particular, at dense athermal soft particle
suspensions and motivated by the original, widely used “soft
glassy rheology” (SGR) model [14–16]. It is worth noting,
however, that the model actually also captures many of the
observed rheological features of dense hard sphere colloids
and of low density attractive gels.

Beyond the defining presence of a yield stress in the
steady state flow curve, yield stress fluids also display a host
of interesting dynamic rheological behaviors. In linear
response, the viscoelastic spectra characterizing their stress
response to a small amplitude oscillatory shear strain typi-
cally show a rather flat, power-law dependence over many
decades of the oscillation frequency, ω [17–23]. The storage
modulus, G0(ω), typically exceeds the loss modulus, G00(ω),
by about an order of magnitude, consistent with a nearly
elastic response overall for these small deformations. The
presence of nontrivial dissipation (a nonzero G00) even at the
lowest frequencies accessible experimentally, however, also
reveals a broad underlying spectrum of sluggish stress relaxa-
tion modes. The stress decay following the sudden imposi-
tion of a small shear strain occurs over a similarly wide range
of sluggish relaxation time scales [24].

The behavior of yield stress fluids in time-dependent non-
linear flows is similarly rich, in both strain-imposed and
stress-imposed protocols. In shear startup from rest, for
example, they typically display an initially elastic solidlike
regime in which the stress increases linearly with strain up toa)Electronic mail: suzanne.fielding@durham.ac.uk

© 2020 by The Society of Rheology, Inc.
J. Rheol. 64(3), 723–738 May/June (2020) 0148-6055/2020/64(3)/723/16/$30.00 723

https://doi.org/10.1122/1.5140465
https://doi.org/10.1122/1.5140465
mailto:suzanne.fielding@durham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1122/1.5140465&domain=pdf&date_stamp=2020-04-09


a maximum “overshoot” value. Following this stress over-
shoot, the material yields and the stress declines to its value
in the ultimate fluidized flowing state, prescribed by the
steady state flow curve. Such behavior has been observed in
foams [19], emulsions [25,26], Carbopol [27,28], Laponite
[29,30], a fused silica suspension [31], attractive gels
[32,33], and waxy crude oil [34].

Following the imposition of a step shear stress below the
yield stress, a sustained solidlike slow creep response is typi-
cally seen, in which the strain increases logarithmically or as
a sublinear power of time, with the strain rate accordingly
decreasing as a power law. In this way, the material creeps
forward at an ever slowing rate but never attains a steady
flow of nonzero rate. Following the imposition of a shear
stress just above the yield stress, in contrast, an early time
creep regime is followed at later times by a dynamical yield-
ing process in which the shear rate increases up to its final
value prescribed by the steady state flow curve. Such behav-
ior has been observed in Carbopol gel [35,36], carbon black
[37–39], polycrystalline hexagonal columnar phases [40],
and colloidal glasses [41,42].

Back-and-forth strain, strain rate or stress ramps, or oscil-
lations have also been widely studied. In large-amplitude
oscillatory shear (LAOS) experiments on yield stress fluids
[43–57], parametric Lissajous–Bowditch (LB) plots of stress
versus strain typically show a rather complicated progression
in shape with increasing amplitude of the applied shear. For
example, characteristic diamond-shaped LB curves are often
seen for intermediate amplitudes. LB curves have recently
been modeled within the SGR model in [58–60]. Yield stress
materials often also display a Bauschinger effect [61,62], in
which the apparent yield strain is reduced for straining in one
direction, following a preceding plastic strain in the opposite
direction. The stress response of yield stress fluids to shear
rate sweeps often displays a pronounced hysteresis between
the downward and upward sweeps, with the size of the hys-
teresis loop increasing with increasing sweep rate [63,64].

Indeed, the rheological response of many yield stress
fluids also shows a pronounced dependence on the “waiting
time” since a sample was prepared, before a flow is applied.
This phenomenon is often termed rheological aging and/or
thixotropy. For a precise definition of rheological aging, see
[15]. The definition of thixotropy and its distinction from vis-
coelasticity and from aging is a topic of ongoing discussion
[11]. Typically, a sample that has waited longer in an undis-
turbed state before a flow is applied will show a higher
viscosity and/or a more solidlike response. The latter can be
evidenced, for example, by a slower relaxation of stress fol-
lowing the rapid imposition of a small shear strain or a larger
stress overshoot in shear startup in older samples. Typically,
a material is then rejuvenated to a state of lower viscosity
and/or lower solidity by an imposed flow.

During the dynamical process whereby a material yields
from an initially solidlike to finally fluidlike state, a state of
initially homogeneous shear will often become unstable to
the formation of heterogeneous shear bands. This has been
observed experimentally in yield stress fluids during shear
startup [27–31,34], step stress [35–38,41], flow curve sweeps
[64], and LAOS [53–55,57]. It has also been studied

theoretically and computationally in these same protocols of
shear startup [65–76], step stress [72,77,78], flow curve
sweeps [63], and LAOS [59,60]. In many materials, the shear
bands that form during yielding then gradually heal away to
leave a homogeneous steady flowing state. Some yield stress
fluids instead support shear bands in the ultimate steady
flowing state [79,80]. We do not consider such materials
here: the model that we discuss has a monotonically increas-
ing constitutive relation between stress and strain rate, pre-
cluding steady state shear banding.

From a theoretical viewpoint, a key challenge is to under-
stand how the macroscopic flow properties just described
emerge out of the underlying collective dynamics of a mate-
rial’s constituent mesoscopic substructures, for any given cat-
egory of yield stress fluids, and to build this understanding
into a rheological constitutive model. Ideally, such a model
should contain enough of the key mesoscopic physics to have
meaningful predictive power for the full gamut of observed
rheological phenomena, with just a small number of model
parameters. At the same time, it should also be simple enough
for use in computational fluid dynamics (CFD) to address
flows in complicated geometries, or complicated flows that
arise via spontaneous symmetry breaking instabilities even in
simple geometries. It should, therefore, preferably be of the
time-differential form, which is much easier to implement
numerically in a CFD solver than a model of time-integral
form. The primary contribution of this work is to introduce a
constitutive model that for the first time, to the author’s knowl-
edge, meets all these desirable criteria.

We start in Sec. II by briefly reviewing some of the most
widely used models of yield stress rheology in the existing
literature. In Sec. III, we discuss one such model in more
detail: the SGR model. This does capture all the rheological
phenomena described above but is in its present form far too
complicated for use in CFD. Indeed, even computations of
homogeneous simple shear flows can be very cumbersome
within the SGR model in its existing form. Accordingly, in
Sec. IV, we introduce a simplified SGR model, and in
Sec. V, we demonstrate it to indeed capture all the rheologi-
cal features discussed above. The potential contributions of
this new model are twofold. First, it will allow significantly
more straightforward computation of homogeneous shear
flows for anyone wishing to fit the SGR model’s predictions
to rheometric data. Second, it renders SGR feasible for use in
CFD, once suitably tensorialized. Therefore, we suggest a
possible generalization to tensorial stresses in Sec. VI, before
finally setting out our conclusions in Sec. VII.

II. OVERVIEW OF EXISTING CONSTITUTIVE
MODELS

Existing elastoviscoplastic constitutive models range from
those built from bottom up on the basis of microscopic or
mesoscopic physics to those posed from top-down on the
basis of macroscopic phenomenology. We now summarize
some of the most widely used models in the existing litera-
ture and the extent to which they meet the desirable criteria
set out in the penultimate paragraph of Sec. I.
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A. Microscopically derived models

For dense colloidal suspensions, a rheological constitutive
theory has been built on the mode coupling theory (MCT) of
the colloidal glass transition [81,82]. It starts by writing an
equation of motion for the microscopic probability distribu-
tion in configuration space of the position vectors of a dense
ensemble of Brownian particles (ignoring hydrodynamic
interactions). This microscopic equation is then projected via
a series of approximations onto a time-integral rheological
constitutive equation for macroscopic stresses. This takes as
its basic input the material’s static and dynamic structure
factors for the underlying microscopic density correlation
functions.

MCT successfully captures many of the observed rheologi-
cal features of dense colloidal suspensions, including the exis-
tence of a yield stress in the flow curve. Its formalism is heavy
to implement in computational practice, however, even in
simple homogeneous shear flows. Nonetheless, very recent
work has incorporated a simplified schematic—although still
time-integral—MCT constitutive equation into a lattice
Boltzmann solver for CFD in the channel shear flow, assum-
ing translational invariance in the flow direction [83].

B. Mesoscopic elastoplastic models

Mesoscopic elastoplastic models conceptually divide a
macroscopic sample of material into many local mesoscopic
regions, each of which is ascribed continuum variables of
local strain and stress relative to a locally undisturbed equi-
librium. Each such region is represented as an elastoplastic
element that loads elastically in the flow up to a local thresh-
old, after which it yields plastically, then assumes a new
elastic state relative to a new locally undeformed equilibrium.

In lattice-based elastoplastic models [84], the elements
just described reside on a lattice, and the stress relaxation
involved in any local plastic yielding event results in an
explicit redistribution of stress to surrounding elements via
an Eshelby propagator, ensuring that force balance is prop-
erly maintained [85]. Such models capture many observed
features of elastoplastic rheology (even though they often fail
properly to account for the advection of an element’s position
in the flow). In containing detailed spatial information about
stress propagation, however, they are too computationally
intensive in their present form for use in CFD to predict flows
in anything other than small and simply shaped geometries.

Mean-field elastoplastic models instead discard any
explicit spatial information about the location of elements
and the stress propagation that follows local yielding events.
Instead, they model stress propagation in a mean-field way.
For example, the Hebraud–Lequeux model does so by invok-
ing a diffusive term in the equation of motion for the proba-
bility distribution of local strains, with a diffusion constant
set by the sample-average yielding rate [86]. Mean-field
models with broader-tailed stress propagation statistics have
also been studied [87]. Most such models, and their lattice-
based counterparts described above, assume a flat distribution
of local yield energy thresholds.

The SGR model [14–16] instead assumes a distribution of
local yield energy thresholds with an exponential tail. It

furthermore models stress propagation by means of an effec-
tive temperature that can activate any element out of its local
energy minimum and thereby trigger a local yielding event.
This activation is taken to model, in a mean-field way, stress
propagation from other local yielding events elsewhere in the
sample. Starting from the initial purely mean-field model,
SGR was later extended to address flows that develop spatial
structuring in one spatial dimension, either via shear banding
[88] or extensional necking [89], by allowing stress propaga-
tion in the relevant dimension.

Although the mean-field elastoplastic models just described
are simpler than their lattice-based counterparts, they still, in
general, involve the time evolution of a full distribution of
local strain variables and remain as yet too complicated to
implement in CFD.

An alternative mesoscopic approach, originally intended
to model the deformation properties of metallic glasses, is
based on the collective statistics of many “shear transforma-
tion zones” (STZs), which resemble the yielding local
elements of the elastoplastic models just described [74,75].

C. Phenomenological macroscopic models

Besides the microscopic and mesoscopic models just
described, other constitutive models of yield stress rheology
have been built from the top to down, on the basis of macro-
scopic phenomenology. The earliest such models posited a
static relation between stress and strain rate [90–95]. When
used in CFD, however, these necessitate a cumbersome sepa-
rate calculation of the “yield surface” or regularization of sub-
yield behavior [96]. They also miss most of the key physics,
including all the dynamical rheological phenomena summa-
rized in Sec. I.

More recent phenomenological models, therefore, instead
posit an evolution equation for the stress, in order to account
for the stress in a material at any time as a functional of the
strain rate history it has experienced. This equation may
depend on one or more auxiliary variables, for which evolu-
tion equations are also posited. Examples include fractional
calculus [97,98], structural evolution, fluidity, and elastovis-
coplastic models [34,56,99–104]. Although vastly superior to
the static models, many involve 10–20+ fitting parameters,
limiting their predictive power. Indeed, models benchmarked
by fitting to straightforward strain-imposed protocols such as
shear startup often then perform poorly in more complicated
oscillatory/reversal protocols and/or in stress-imposed proto-
cols. Furthermore, such models often incorporate phenomeno-
logical notions such as those of a “back-stress” or “kinematic
hardening,” without always offering a clear understanding of
such concepts in terms of the underlying microscopic or meso-
scopic physics.

D. Summary of existing models

Among the constitutive models just described, those based
on underlying microscopic and mesoscopic physics tend to
perform best at predicting the broad gamut of dynamical rheo-
logical phenomena described above, but they are often prohib-
itively complicated for use in CFD to predict macroscopic
flows in complex geometries. In contrast, the macroscopic
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phenomenological models are generally better suited to CFD
but often contain many model parameters, and/or capture only
a subset of the desired rheological phenomenology, and/or are
limited in the underlying physics they contain.

Indeed, to the author’s knowledge, no currently existing
constitutive model of elastoviscoplastic yield stress rheology
currently exists that satisfies all the desirable criteria set out
above: of containing enough underlying micro/mesoscopic
physics to predict the rich dynamical rheology of yield
stress fluids with just a small number of model parameters,
while also being simple enough— and preferably of time-
differential form—for use in CFD to predict flows in compli-
cated geometries.

III. ORIGINAL SGR MODEL

The SGR model [14–16] considers an ensemble of elasto-
plastic elements, each representing a local mesoscopic region
of soft glassy material (e.g., a few tens of emulsion droplets).
Each element is assigned local continuum variables of shear
strain l and shear stress kl, describing the mesoscopic
region’s state of elastic deformation relative to a locally unde-
formed equilibrium. In between local yielding events, the
strain of each element affinely follows the macroscopic
shear, _l ¼ _γ, giving an elastic buildup of stress.

The stress is intermittently released by local plastic yield-
ing events. In any such event, a mesoscopic region suddenly
rearranges into a new configuration locally. This is modeled
by its representative element hopping between traps in an
energy landscape. An element in a trap of depth E and with
local shear strain l is assigned a probability per unit time of
hopping of τ�1(E, l), with

τ(E, l) ¼ τ0 exp (E � 1
2
kl2)=x

� �
: (3:1)

The stored elastic energy 1
2 kl

2 at any instant, therefore,
offsets the bare trap depth E, leading to a reduced local
barrier to rearrangement, E � 1

2 kl
2. This confers rheological

shear thinning on the sample as a whole. After hopping, an
element selects a new trap depth at random from a prior
distribution,

ρ(E) ¼ 1
xg

exp �E=xg
� �

, (3:2)

and resets its local strain l to zero, thereby relaxing the local
stress.

With the dynamics just described, the probability
P(E, l, t) for an element to be in a trap of depth E with local
shear strain l evolves according to

_P(E, l, t)þ _γ
@P

@l
¼ � 1

τ(E, l)
Pþ Y(t)ρ(E)δ(l): (3:3)

The advected derivative on the left hand side captures the
affine loading of each element by shear. The first (“death”)
term on the right hand side describes hops out of traps. The

second (“birth”) term describes hops into the bottom of traps,
l ¼ 0, with the new trap depth chosen at random from the
prior distribution, ρ(E), and with an ensemble average
hopping rate

Y(t) ¼
ð
dE

ð
dl

1
τ(E, l)

P(E, l, t): (3:4)

The macroscopic stress of the sample as a whole is
defined as the average over the local elemental ones,

σ(t) ¼ k

ð
dE

ð
dl lP(E, l, t): (3:5)

Combined with the exponential prior, ρ(E), the exponen-
tial activation factor τ(E, l) confers a glass transition at a
noise temperature x ¼ xg. In the absence of any applied flow,
the model displays rheological aging in the glass phase [15],
x , xg: following sample preparation at time t ¼ 0 by means
of a sudden quench from a high initial noise temperature to a
value x , xg, the system slowly evolves into ever deeper
traps as a function of time t. This results in a growing stress
relaxation time, hτi � t, and, therefore, in ever more solidlike
rheological response as the sample ages. An imposed shear
of constant rate _γ will, however, arrest aging and rejuvenate
the sample to a steady flowing state of effective age
hτi � 1= _γ. The steady state flow curve has a yield stress σy

that grows linearly with xg � x in the glass phase x , xg.
For many soft glassy materials, the typical energy barrier for

rearrangements greatly exceeds thermal energies. Accordingly,
parameter x is not the true thermodynamic temperature but is
taken as an effective noise temperature that models in a mean-
field way coupling with other yielding events elsewhere in the
sample.

As noted above, the SGR model captures a glass transition
and aging by invoking the exponential form for the probabil-
ity distribution of posthop yield-energies in Eq. (3.2). Recent
particle based simulations explicitly measured the distribu-
tion of yield thresholds and local stresses for a sheared
Lennard–Jones glass [105–107], see also [108]. It would
clearly be interesting to undertake such a study for an athe-
rmal suspension of purely repulsive soft particles.

The full SGR model just described captures many features
of the elastoplastic rheology of yield stress fluids. These include
a yield stress in the steady state flow curve; broad and rather flat
power-law viscoelastic spectra, aging in the power-law stress
decay following a small amplitude step shear strain, an over-
shoot in the shear stress following the switch-on of a shear of
constant rate _γ, slow creep during which the shear rate slowly
decreases after the imposition of a shear stress below the yield
stress, slow creep over several time decades followed by yield-
ing and a sudden increase of the shear rate to a steady flowing
state after the imposition of a shear stress just above the yield
stress, and characteristic diamond or rhomboidal shaped
Lissajous curves in a LAOS strain.

The ability of the SGR model to capture this rich rheolog-
ical phenomenology within such a minimal and powerfully
generic set of physical assumptions and with just one
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free parameter—the noise temperature, x—is a remarkable
achievement. Set against that achievement, this simplicity at
the same time also inevitably limits the model’s ability to fit
experimental data at a detailed quantitative level. As such, a
worthwhile avenue for future study could be to bring in addi-
tional microscopic physics characterized by a small number
of additional model parameters, potentially opening up the
possibility of quantitatively fitting experimental data, while
still keeping the number of model parameters and assump-
tions much smaller than in existing top-down phenomenolog-
ical models. One such approach could be to build
deformation and flow into a multilayer glassy trap model
along the lines of that in [109].

We have described here the SGR model in its original
form, which considers only scalarized shear stresses and
which contains no spatial information about the location of
any element. As such, it addresses only homogeneous simple
shear flows. Extensions of the model have since been put
forward to address tensorial stresses [110] and flows that
become heterogeneous in one spatial dimension due to shear
banding [88] or extensional necking [89].

IV. SIMPLIFIED SGR MODEL

A. Motivation for a simplified model

As noted above, the fact that the SGR model captures the
rich phenomenology just described within a relatively simple
and generic set of physical assumptions, and with a small
number of model parameters, is a remarkable achievement.
Indeed, once suitable units have been chosen, the model’s
only free parameter is the noise temperature, x.

Set against this appeal is the considerably cumbersome
task of computing these rheological behaviors in practice.
Even for homogeneous simple shear flows, this requires the
solution either of the full partial differential equation (PDE)
given above, @tP(E, l, t) ¼ � � �, or the solution of two
coupled nonlinear integral constitutive equations with power-
law memory kernels (derived from the original PDE) [16], or
the direct simulation of hopping SGR elements [60], typically
with 105 elements required for reliable predictions. (This
direct simulation is generally easier to implement computation-
ally than a numerical solution of the differential or integral
equations but is still costly in terms of computer time.)

To utilize the (tensorially extended) full SGR model in
CFD to address heterogeneous flows in complicated geome-
tries would require comparably involved computation at each
lattice site: a task that is likely to prove prohibitively formida-
ble in both practical implementation and computational cost.
Indeed, to the author’s knowledge, such a task has not been
attempted to date.

The present paper, therefore, aims to develop a simplified
SGR model that captures the same rich phenomenology as
the original model but with greatly reduced computational
demand. The contributions of this will be twofold. First, the
calculation of homogeneous flows will be made simpler for
anyone wishing to compare rheometric experimental data
with SGR. Second, the SGR model will be rendered simple
enough for practical use in CFD for predicting elastoplastic
flows in complicated geometries, or complicated flow patterns

that arise via spontaneous symmetry breaking instabilities even
in simple geometries.

We shall undertake this simplification first in the context
of a scalarized approach that considers only shear strains and
stresses, before returning in Sec. VI to suggest a tensorial
generalization, as needed for CFD.

B. Simplified model

We start by exactly rewriting the full SGR model equa-
tion, Eq. (3.3), as follows:

_P(E, l, t)þ _γ
@P

@l
¼ � 1

~τ(E)
f (l)Pþ Y(t)ρ(E)δ(l), (4:1)

in which we have written the “bare” hopping time

~τ(E) ¼ τ0 exp
E

x

� �
(4:2)

and the “boost factor” to the hopping rate

f (l) ¼ exp
kl2

2x

� �
: (4:3)

We now exactly rewrite the full joint probability distribution
P(E, l, t) of an element being in a trap of depth E with a
local strain l as the probability G(E, t) of an element being in
a trap of depth E multiplied by the conditional probability
P1(ljE, t) of an element having a local strain l, given that it is
in a trap of depth E

P(E, l, t) ¼ G(E, t)P1(ljE, t): (4:4)

We have suggestively used the notation G(E, t) rather than
P(E, t) in the first term on the right hand side because this
quantity will assume the behavior of a moduluslike quantity
(once redimensionalized by k).

We can then exactly rewrite Eq. (4.1) as

_G(E, t)P1 þ G _P1 þ _γG
@P1

@l

¼ � G
~τ(E)

f (l)P1 þ Y(t)ρ(E)δ(l): (4:5)

Averaging this equation over l at a fixed E then gives

d

dt
G(E, t) ¼ �G(E, t)

~τ(E)
f (l)(E, t)þ Y(t)ρ(E): (4:6)

Instead, premultiplying Eq. (4.5) by l before averaging over
l at a fixed E gives the additional equation,

d

dt
G(E, t)�l(E, t)½ � ¼ G(E, t) _γ � G(E, t)

~τ(E)
lf (l)(E, t): (4:7)

In these equations, we have used the notation

a(l)(E, t) ¼
ð
dl P1(ljE, t)a(l), (4:8)

for any function a(l).
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Equations (4.6) and (4.7) together constitute an exact
rewriting of the full SGR model. We now make an approxi-
mation by rewriting

a(l) ¼ a(�l): (4:9)

This amounts to assuming that the distribution P1(ljE, t) has
the form of a delta function located at l(E, t), i.e., that traps
of depth E have a single slaved local strain, l(E, t). For sim-
plicity, we now further drop the overbar notation from l.
Equations (4.6) and (4.7) can then be written as

_G(E, t) ¼ � G(E, t)
τ(E, l(E, t))

þ Y(t)ρ(E) (4:10)

and

_σ(E, t) ¼ kG(E, t) _γ � σ(E, t)
τ(E, l(E, t))

: (4:11)

Here, we premultiplied Eq. (4.7) by k and have defined the
stress in traps of depth E,

σ(E, t) ¼ kG(E, t)l(E, t): (4:12)

The average hopping rate,

Y(t) ¼
ð
dE

G(E, t)
τ(E, l(E, t))

, (4:13)

with an E-dependent relaxation time scale

τ(E, l(E, t)) ¼ τ0 exp (E � 1
2
kl(E, t)2)=x

� �
: (4:14)

Normalization of overall element numbers demands that

ð
dE G(E, t) ¼ 1: (4:15)

As above, the prior distribution is

ρ(E) ¼ 1
xg

exp(� E=xg): (4:16)

Throughout what follows, in both the original and simpli-
fied SGR models, we shall choose units of time in which
τ0 ¼ 1 and of energy in which xg ¼ 1. We further rescale
strains such that k ¼ 1, making the typical yield strain of
order unity.

C. Discussion of the simplified model

The simplified SGR model just described has a rather
appealing physical structure. Indeed, for any fixed value of
energy depth E, Eq. (4.11) takes the form of a Maxwell
model in which an elastic loading term with an effective
modulus G(E, l) (in our units) competes with a plastic stress
relaxation term. The relaxation time τ(E, l(E)) is, however, a
strongly nonlinear function of the energy depth E and local
strain l. The modulus, G(E, t), which is prescribed by the

fraction of elements in traps of depth E, furthermore has its
own dynamics given by Eq. (4.10).

In assuming a single value of the local strain l(E, t) for all
elements in traps of a given energy depth E, we have reduced
the PDE of the full SGR model, @tP(E, l, t) ¼ � � �, with two
dynamical variables, to two equations, @tG(E, t) ¼ � � � and
@tσ(E, t) ¼ � � �, each with just one dynamical variable.
Neither equation now contains any derivatives with respect
to E, further simplifying any numerics.

Nonetheless, one must still, in principle, evolve the two
full functions G(E, t) and l(E, t) over time t. A second, prag-
matic simplification, however, arises in recognizing that the
continuous spectrum of energy values can be discretized on a
grid of N values linearly distributed in a suitably chosen
range 0 � E � Emax. This leaves 2N differential equations,
which, apart from the integral couplings of Eqs. (4.13) and
(4.15), are “ordinary” in form.

Numerical results obtained within this simplified model then,
in principle, need converging to the limit Emax ! 1, N ! 1.
Once converged, the results show excellent agreement with
all the qualitative predictions of the full SGR model, in every
rheological protocol studied. Indeed, they show exact quanti-
tative agreement in the regime of linear rheology. As we
shall see below, however, the quantitative numbers can differ
from full SGR typically by a worst-case factor of about 2 in
the most nonlinear regime of protocols such as those in
Figs. 3 and 4.

Given this quantitative discrepancy from full SGR,
together with the fact that even full SGR, with its minimal—
and, therefore, powerfully generic—set of physical assump-
tions, is anyway not expected to model any particular experi-
mental sample in a fully quantitative way, we follow in our
numerical computations below the pragmatic philosophy of
taking the minimal value of N required to give convergence
to the N ! 1 limit of the simplified model to within 1%.
Typically, we find Emax ¼ 12:0 and N ¼ 32 sufficient for
most protocols. Indeed, even N ¼ 16 gives convergence to
5%, but we take N ¼ 32 minimally in what follows.

This brings the number of degrees of freedom required to
predict homogeneous simple shear flows into the numerically
trivial and represents a considerable simplification compared
with the full SGR model, which required the solution of the
full PDE @tP(E, l, t) ¼ � � �, or the solution of two coupled
nonlinear integral constitutive equations with power-law
memory kernels, or the direct simulation of typically 105

hopping SGR elements. In performing CFD with a fully ten-
sorial stress, a corresponding number 7N of degrees of
freedom would be needed at each lattice site, as discussed
further in Sec. VI. This should prove feasible for computing
2D flow fields on a small cluster. Even 3D flows should be
feasible with further parallelization.

Finally, we reiterate that the assumption of a single value
of l for any fixed E represents an approximation that, as dis-
cussed above, leads to typical factors of 2 between the quan-
titative predictions of the full and simplified SGR models, in
the most nonlinear regimes of many protocols. Importantly,
however, this assumption is in fact exactly correct in linear
rheology. The simplified SGR model derived above is, there-
fore, predicted to give results that exactly and quantitatively
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correspond to full SGR in any linear rheological protocol.
Our numerical results will indeed confirm this.

With the exception of the right panel of Fig. 2, all the
results presented will be in the model’s glass phase, x , 1.
Because the simplified model presented so far assumes a sca-
larized shear stress and contains no spatial information, all
our numerical predictions will pertain to a homogeneous
simple shear flow. In many of the protocols considered,
however, shear bands would be expected to arise in any
model that allowed heterogeneous flows, as described in
Sec. I. This would modify the rheological signals to some
extent compared with those computed below within the
assumption of a homogeneous flow.

V. RHEOLOGICAL PREDICTIONS OF THE
SIMPLIFIED SGR MODEL

We now present our numerical results for the predictions
of the simplified SGR model in homogeneous simple shear
flow. We start with linear rheology in Sec. V A, before
turning to address nonlinear flows. For any protocol in which
the sample age explicitly features, we model the sample prep-
aration at time t ¼ 0 via a sudden quench from an infinite
initial noise temperature to a final noise temperature, usually
(as just noted) in the glass phase, x , 1. This gives an initial
distribution of trap depths G(E, t ¼ 0) ¼ ρ(E). We further
assume all local strains and stresses to be zero in this initial
state, corresponding to an initially well relaxed sample. We
then age the sample undisturbed for a time tw, before impos-
ing a strain or stress according to the protocol in question.

The aim of this work is not to undertake direct fitting of
the model’s predictions against any particular set of experi-
mental data; nor yet exhaustively to review the available data
for each protocol that follows. Nonetheless, we pause before

presenting our results to collect a few experimental references
in which data qualitatively according with the key features of
several of the figures that follow can be found: Fig. 1 [24],
Fig. 2 [20,111], Fig. 3 [20], Fig. 4 [34], Fig. 6 [63], Fig. 7
[34], Fig. 9 [42]. Indeed, Purnomo et al. [111] carried out a
quantitative fitting of the SGR model to measured viscoelas-
tic spectra.

A. Linear rheology

1. Stress relaxation after linear step shear strain

A standard rheological test consists of suddenly straining
a previously undeformed material by an amount γ0 at a time
tw. The shear strain is accordingly γ(t) ¼ γ0Θ(t � tw), where
Θ is the Heaviside function. The shear stress response can be
written generally as

σ(t) ¼ γ0Gstep(t � tw, tw; γ0): (5:1)

In the limit of linear response, γ0 ! 0, the γ0 dependence
disappears from the stress relaxation function, Gstep.

The left panel of Fig. 1 shows results for Gstep(t � tw, tw)
in this linear regime, computed within the full SGR model,
for several sample ages tw at a fixed noise temperature in the
glass phase. As can be seen, the model predicts slow power
law stress relaxation. It furthermore captures rheological
aging, in which this stress relaxation takes place on a typical
time scale that grows as the age of the sample tw. This gives
the observed collapse of the data for different values of tw, as
a function of the rescaled time interval, (t � tw)=tw.

Corresponding results for the simplified SGR model are
shown in the right panel of Fig. 1, for matched parameter
values. Excellent agreement is obtained between the full
and simplified models, consistent with our above statement
that the assumption made in moving from the full to the

FIG. 1. Stress decay following a small amplitude step strain imposed at a waiting time tw. Left: Results obtained within the full SGR model, by solving the
integral constitutive equation of [16]. Right: Simplified SGR model. In both cases, the effective temperature x ¼ 0:7, imposed shear strain γ0 ¼ 0:001, initial
sample ages tw ¼ 102, 103, 104, 105, 106. In the simplified SGR model, Emax ¼ 24:0, N ¼ 32, numerical time step dt ¼ 0:1.
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simplified model is exactly correct in the linear rheological
regime.

2. Viscoelastic spectra

We now consider the viscoelastic spectra that characterize
a material’s stress response to a small amplitude oscillatory
shear strain. As discussed in [15], the definition of viscoelas-
tic spectra in an aging material needs some care because the
time-translational invariance (TTI) that is usually implicitly
assumed in defining these spectra breaks down as a conse-
quence of aging.

Consider an experiment in which a sample is freshly pre-
pared at time t ¼ 0 then allowed to age undisturbed to a time
ts. A small amplitude oscillatory shear strain of amplitude γ0
is started at this time ts and maintained up to a later time t.

For such a protocol, one can unambiguously define a time-
dependent viscoelastic spectrum,

G*(ω, t, ts) ¼ iω

ðt
ts

dt0e�iω(t�t0)Gstep(t � t0, t0)

þ e�iω(t�ts)Gstep(t � ts, ts), (5:2)

where Gstep(t � t0, t0) is the (non-TTI) stress relaxation
function defined in Eq. (5.1), in the limit γ0 ! 0. In 15, it
was shown that the dependence of G* on ts becomes negli-
gible in full SGR once many cycles have been performed,
ω(t � ts) � 1, giving G*(ω, t, ts) ! G*(ω, t). Although intui-
tively reasonable, this simplification is not in fact guaranteed
upfront in a glassy material with long term memory.
Nonetheless, we now adopt G*(ω, t) as a working definition

FIG. 2. Viscoelastic spectra of the full SGR model obtained by solving the integral constitutive equation of [16] (solid lines: G0, dashed lines: G00) and simpli-
fied SGR model (circles: G0, squares: G00). Left: for an effective temperature x ¼ 0:7, as a function of frequency scaled by system’s age, ωt. Right: for an effec-
tive temperature x ¼ 1:3, as a function of bare frequency ω. Sample age t ¼ 107. In the simplified SGR model, Emax ¼ 24:0, N ¼ 64, dt ¼ 0:01.

FIG. 3. Steady state flow curves. Left: full SGR model, obtained by solving the integral constitutive equation of 16. Right: simplified SGR model. In both
cases, effective temperature values x ¼ 0:2, 0:4, 0:6, . . . , 3:0 (curves downward), with curves for x ¼ 1:0 and x ¼ 2:0 shown in bold. In the simplified SGR
model, Emax ¼ 18:0 and N ¼ 32.
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of the time-dependent viscoelastic spectrum for an aging
material. Note, therefore, that the current time t plays the role
of the sample age in this protocol, not the time ts, now for-
gotten, at which the oscillatory shearing commenced.

Results for the real and imaginary parts of G*(ω, t),
G0(ω, t) and G00(ω, t), are shown for the full SGR model by
the solid and dashed lines, respectively, in Fig. 2. The left
panel shows results for a fixed sample age t at a noise tem-
perature in the glass phase. The right panel shows results
above the glass transition temperature. The spectra show a
broad power-law dependence on frequency, consistent with
the model’s underlying spectrum of relaxation time scales.
Corresponding results for the simplified SGR model are
shown by symbols in the same figure. Excellent agreement
with the full SGR model again substantiates our claim that
the simplified model exactly agrees with the full model in the
linear rheological regime.

B. Nonlinear steady state flow curves

Having discussed the linear rheological regime, in which
the full and simplified models exactly coincide, we now
address nonlinear flows. We start by considering the steady
state relationship between the shear stress and shear rate, as
encoded in the flow curve, σ( _γ). Results for this quantity
computed in the full SGR model are shown in the left panel
of Fig. 3. For high noise temperatures, x . 2, the model
displays Newtonian flow response in which σ � _γ. For
intermediate noise temperatures, 1 , x , 2, it shows power-
law fluid behavior in which σ � _γx�1. For noise temperature
in the glass phase, x , 1, the flow curve displays a
yield stress σy(x) such that σ( _γ)� σy(x) � _γ1�x. The yield
stress σy shows a linear onset with xg � x below the glass
point.

Corresponding results computed within the simplified
SGR model are shown in the right panel of the same figure.
All the same quantitative features as in the full SGR model
are preserved but with qualitative differences of about a

factor of 2 between the full and simplified models in the
most strongly linear flows, i.e., in the glass phase.

C. Dynamical nonlinear rheology: Imposed strain

1. Shear startup from rest

Consider now a startup experiment in which a shear of
rate _γ0 is suddenly switched on at time tw, with the shear rate
held constant thereafter. We thus have _γ(t) ¼ _γ0Θ(t � tw),
where Θ is the Heaviside function.

The left panel of Fig. 4 shows results for the stress response
as a function of accumulating strain, γ(t) ¼ _γ0(t � tw), com-
puted in the glass phase of the full SGR model. At early time
intervals, for which the accumulated strain is modest, the
model shows an elastic solidlike response in which the stress
increases linearly with strain, σ(t) ¼ γ(t), consistent with ele-
ments being in deep enough traps that their plastic relaxation
is initially negligible. By contrast, in the limit of long times
t ! 1 and large strains γ ! 1, the sample flows in a liquid-
like way, with the stress assuming a steady state value pre-
scribed by the flow curve σ( _γ0) described in Subsection V B.
These early time solidlike and late-time liquidlike responses
accordingly show no dependence on the age of the sample
before the shearing commenced. In contrast, at intermediate
strains, the stress overshoots its final steady state value, and
the size of this overshoot shows a strong dependence on the
sample age, tw.

The right panel of Fig. 4 shows corresponding results
computed within the simplified SGR model for matched
parameter values. All the qualitative features are preserved in
moving from the full to simplified SGR model and with only
modest quantitative differences.

So far, we have seen that the simplified SGR model
exactly reproduces the predictions of the full model in the
regime of linear rheology. We have further shown that it
reproduces the full model’s qualitative behavior in the non-
linear steady state flow curve and in nonlinear shear startup
with modest quantitative differences. Having thus developed

FIG. 4. Shear startup following the imposition of a step shear rate. Left: full SGR model obtained by solving the integral constitutive equation of [16]. Right: sim-
plified SGR model. In both cases, effective temperature x ¼ 0:3, imposed shear rate _γ0 ¼ 0:001, and initial sample ages tw ¼ 102, 103, 104, 105, 106, 107, 108

(peak values upward). In the simplified SGR model, Emax ¼ 12:0, N ¼ 32, dt ¼ 0:03.
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some confidence in the simplified SGR model, we now
proceed to present some new rheological predictions within
the simplified model that have not, to the author’s knowl-
edge, been previously computed within full SGR.

2. Shear rate jumps

Having discussed in Subsection V C 1, shear startup from
an initial rest state, _γ ¼ 0, to a shear rate _γ0, we turn now to
consider a protocol in which a sample is sheared at some
initial rate _γ1 until it attains a steady flowing state and is then
subject at some time t ¼ 0 to a shear rate jump to a final value
_γ2. To the author’s knowledge, such a protocol has not previ-
ously been studied in the full SGR model. All the results pre-
sented here are computed within the simplified model.

In the left panel of Fig. 5, we show results for the time-
dependent stress response σ(t) in several different upward
strain rate jumps, _γ2 . _γ1. In each case, the stress starts at
early times at its value as prescribed by the steady state flow
curve, σ( _γ1), and tends at late times to a different value that
is also prescribed by the steady state flow curve, σ( _γ2).
(Because the flow curve is a rather flat function of shear rate
for _γ � 1 in the glass phase, x , 1, these initial and final
values, σ( _γ1) and σ( _γ2), are rather similar.)

Between these short- and long-time asymptotes, the stress
displays an overshoot that depends on both _γ1 and _γ2. The
time at which the overshoot occurs appears to scale roughly
as t � _γ�1

2 , to within logarithmic corrections set by _γ1. The
stress overshoot accordingly happens when the accumulated
strain approaches a value O(1) (to within logarithmic correc-
tions), consistent with elements then being pulled out of their
traps by the imposed strain. The height of the overshoot is
set by _γ2= _γ1.

The right panel of Fig. 5 shows counterpart results for
downward strain rate jumps, _γ2 , _γ1. In this case, the stress
signal shows an undershoot in between its initial and final

steady state values. The time at which this undershoot occurs
increases with decreasing _γ2, and its height is set by _γ2= _γ1.

3. Flow curve sweeps

Consider now a protocol in which a sample is presheared
to a steady flowing state by executing γpreshear strain units at a
high shear rate _γmax. The strain rate is then stepped downward
in Nsweep logarithmic increments to a low strain rate _γmin,
waiting a time Δt at each strain rate value before further reduc-
ing the strain rate by a constant factor ( _γmax= _γmin)

1=Nsweep . Once
_γmin is attained the sweep is reversed, with the strain rate
stepped upward through the same Nsweep values of strain rate,
spending the same time Δt at each strain rate.

Figure 6 shows results for the stress obtained by the final
time for each strain rate value, plotted as a function of that
strain rate, for two different values of Δt. In each case, the
black symbols denote the initial down-sweep and the red
symbols the later up-sweep. These curves show all the same
features as in the full SGR model [63], which can be summa-
rized as follows.

Notable hysteresis is clearly evident between the down-
and up-sweeps. Consider first the down-sweep. For strain
rates higher than about 10�2, the stress lies on the steady
state flow curve, which has a slight upward curvature as a
function of _γ. At lower strain rates, the stress falls away from
the steady state flow curve. This occurs because the system
cannot age into deeper traps quickly enough to keep pace
with the ever decreasing strain rate. Accordingly, the sample
remains in a more fluidlike state than it would be at a true
steady state for any imposed strain rate. The viscosity and
shear stress, therefore, remain low compared with the values
they would assume on the true steady state flow curve.

Once the strain rate reaches _γmin ¼ 10�6, the up-sweep is
commenced. During this up-sweep, the stress initially (i.e., at
low strain rates) lies below that seen during the down-sweep.

FIG. 5. Stress evolution following a shear rate jump in the simplified SGR model. In each run, the system is first evolved to steady state at an initial shear rate
_γ1. Then, at a time defined to be t ¼ 0, the shear rate is jumped either up or down to _γ2 and the stress is plotted as a function of the time t since that jump.
Left: upward strain rate jumps. Solid lines: _γ1 ¼ 10�5 with _γ2 ¼ 10�4, 10�3, 10�2. Dotted lines: _γ1 ¼ 10�4 with _γ2 ¼ 10�3, 10�2. Dashed line: _γ1 ¼ 10�3

with _γ2 ¼ 10�2. At any fixed _γ1, times of stress peak move right with decreasing _γ2. Right: downward strain rate jumps. Solid lines: _γ1 ¼ 10�2 with
_γ2 ¼ 10�3, 10�4, 10�5 Dotted lines: _γ1 ¼ 10�3 with _γ2 ¼ 10�4, 10�5. Dashed line: _γ1 ¼ 10�4 with _γ2 ¼ 10�5. At any fixed _γ1, times of stress dip move right-
ward with decreasing _γ2. x ¼ 0:3. dt ¼ 0:01, Emax ¼ 12:0, N ¼ 32.
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Indeed, it even decreases with increasing _γ. This is because
the stress response of the SGR model is intrinsically visco-
elastic. Accordingly, the sample retains some memory of the
stress it had accumulated at the earlier high values of strain
rate during the down-sweep, which is still slowly relaxing
even as the shear rate increases again during the up-sweep.

This regime of declining stress ends with a steep upturn
in the stress as the strain rate increases yet further. The
up-sweep stress then rises above its down-sweep counterpart
and indeed overshoots its flow-curve value, before finally
declining to meet the steady state flow curve at the highest
strain rates. This overshoot is the counterpart to that seen in
shear startup in Fig. 4 and other upward shear rate jumps in
Fig. 5. The shear rate at which the overshoot occurs is seen
to scale as 1=Δt. Indeed, all the features just described shift a
decade to the left between the curves for Δt ¼ 25:0 and
Δt ¼ 250:0.

4. Large-amplitude oscillatory shear

Let us consider now a protocol in which a sample is
freshly prepared at an initial time t ¼ 0, then left to age
undisturbed to a time tw before an oscillatory shear strain is
commenced, γ(t) ¼ γ0sin(ωt). We present here results obtained
within the simplified SGR model. LAOS has been previously
studied in the full SGR model (extended to allow shear
banding) in [59] and [60].

For values of γ0 in the nonlinear regime, we find that the
system attains after many strain cycles a state in which the
stress response is invariant under cycle-to-cycle translations,
t ! t þ 2π=ω. For small γ0, the sample instead continues to
age slightly from cycle to cycle, as seen in the viscoelastic
spectra of Fig. 2, left. Figure 7 shows parametric so-called
LB plots of the stress σ(t) as a function of strain γ(t) for the

99th and 100th cycles, indeed with no discernible difference
in the stress response between these two cycles. Curves are
shown for several values of the imposed strain amplitude, γ0,
for a fixed frequency ω. The value of γ0 in each case can be
simply read off from the maximum value of γ(t) attained
during the cycle.

For low values of γ0, each LB curve takes the form of a
highly elongated, almost needlelike ellipse, oriented so as to
have a slope σ 0(γ) � 1 over much of the cycle (except, obvi-
ously, at the turning points of maximum and minimum
strain). This is consistent with the SGR model showing rather
elastic behavior at stresses below the yield stress, with
modulus k ¼ 1 in our units. For the intermediate strain ampli-
tudes explored, γ0 ¼ 3:0 and γ0 ¼ 3:5, the LB curves instead
adopt a characteristic diamond shape, again with a slope � 1
for stresses below the yield stress, but now with a reduced
slope for higher stresses. At the highest strain amplitudes γ0,
the LB curves likewise show a slope � 1 for stresses below
the yield stress but are much flatter above yield.

The same progression in the shapes of the LB curves with
increasing strain amplitude γ0 is also seen in the full SGR
model. Curves such as these have been discussed in detail in
the LAOS literature for yield stress fluids in terms of a
sequence of physical processes, with elastic caging at low
stresses and yielding at higher stresses [112].

In Ref. [56], experimental data for a Carbopol gel in a
LAOS (albeit in that work for LAOStress rather than
LAOStrain) was compared with the so-called elastic
Herschel–Bulkley (EHB) model. That model is constructed
to give a stress linear in strain below the yield stress, and a
Herschel–Bulkley relationship between stress and strain rate
above yield (as in the steady state flow curve of the SGR
model). The EHB model fails to capture the diamond-shaped
LB curves seen experimentally in Ref. [56] and reproduced
here for intermediate values of strain amplitudes in SGR.

FIG. 6. Rheological hysteresis in the flow curve sweeps in the simplified
SGR model. Two separate sweeps are shown. In each, the system is first
sheared to steady state by executing γpreshear ¼ 250 strain units at a high
shear rate _γmax ¼ 1:0. The strain rate is then stepped downward to a low
strain rate _γmin ¼ 10�6, waiting a time Δt at each strain rate value before
reducing the strain rate by a constant factor ( _γmax= _γmin)

1=Nsweep . The strain rate
is then stepped upward through the same Nsweep values of strain rate with the
same time Δt spent at each shear rate. Nsweep ¼ 90. Circles: Δt ¼ 25:0.
Squares: Δt ¼ 250:0. Black symbols: down-sweep. Red symbols: up-sweep.
Effective temperature x ¼ 0:3. dt ¼ 0:01, Emax ¼ 12:0, N ¼ 32.

FIG. 7. Lissajous–Bowditch figures showing a parametric plot of stress σ(t)
against strain γ(t) during LAOS in the simplified SGR model. Effective
temperature x ¼ 0:3 and initial sample age tw ¼ 10. The imposed strain
γ(t) ¼ γ0sin(ωt) with ω ¼ 0:01 and γ0 ¼ 1:0, 1:5, 2:0, . . . , 4:5 (curves
outward). For each value of γ0, data are shown for the 99th and 100th
cycles, with the data for these two cycles not being discernible from each
other by eye. dt ¼ 0:005, Emax ¼ 12:0, N ¼ 32.
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In particular, the part of these diamond-shaped LB curves
above yield shows a hardening compared with EHB. (Care is
warranted with nomenclature here, because this part of the
curve represents a softening relative to the elastic regime
below yield.)

Motivated by this observed hardening relative to EHB,
many recent attempts to build constitutive models of elasto-
plastic rheology have incorporated the concept of “kinematic
hardening.” This is typically discussed as modeling the
movement of the center of a material’s yield surface and is
captured by including in the constitutive model equations an
additional variable termed the “back-stress.” Attempts to
justify this back-stress in terms of underlying mesoscopic
physics, however, remain largely unsatisfactory to date.

A pleasing feature of SGR is that it naturally captures
these diamond-shaped LB curves (and many other features of
elastoplastic rheology besides) without recourse to the notion
of a back-stress. How any effective back-stress emerges from
the SGR model remains an interesting question. Feasibly, it
could represent one of the next higher moments of the local
strain distribution, besides the average strain encoded in the
first moment.

5. Strain cycling: Bauschinger effect

In 1886, Bauschinger reported an effective reduction in
the tensile yield stress of a polycrystalline metal following a
tensile prestrain in the opposite direction [113]. The effect
has since also been discussed in the context of shear defor-
mations. We shall now explore this Bauschinger effect within
the simplified SGR model. To do so, let us consider a proto-
col in which a sample is freshly prepared at time t ¼ 0, then
left to age undisturbed before a forward shear rate _γ is
applied up to a forward strain γ0. The strain is then reversed
at an equal and opposite applied shear rate, � _γ, up to a final
strain of �10 units.

Figure 8 shows the predictions of the simplified SGR
model in this protocol. The initial sample age tw increases by

a factor 10 between each successive panel from left to right
across the figure. In each panel, results are shown for several
values of the total forward strain γ0 applied before the strain
direction is reversed.

During the initial forward straining phase SGR predicts a
stress overshoot. Indeed, we have already discussed this in
the context of a simple forward shear startup experiment.
Recall Fig. 4. The associated yield stress and strain increase
with increasing sample age tw across the panels of Fig. 8
from left to right. The degree to which this stress overshoot
and subsequent stress decline are explored, for any tw,
increases with increasing γ0. For values of γ0 large enough
to give significant yielding in this forward direction, a
reduced yield stress is then observed during the subsequent
backward straining. This corresponds to a Bauschinger
effect (asymmetry between the initial forward and subse-
quent backward yield stress), the size of which increases
with increasing age of the sample tw before the first, forward
shear commenced.

D. Dynamical nonlinear rheology: Imposed stress

So far, we have discussed the predictions of the simplified
SGR model for rheological protocols in which the shear
strain is imposed as a function of time. We turn finally to a
common stress-imposed protocol. In particular, we consider a
sample that is freshly prepared at time t ¼ 0 and left to age
undisturbed up to a time tw, when a step shear stress of
amplitude σ0 is suddenly applied. The imposed stress is
accordingly σ(t) ¼ σ0Θ(t � tw), where Θ is the Heaviside
function.

The strain rate response as a function of time t � tw is
shown in Fig. 9 for a fixed value of the sample age tw and
several values of the imposed stress σ0 from below to above
the yield stress σy (defined as the stress attained in the limit
_γ ! 0 of the steady state flow curve).

For the smallest imposed stress values shown, the shear
rate decays as a function of time, and the corresponding

FIG. 8. Age-dependent Bauschinger effect in the simplified SGR model. Parametric plot of stress σ(t) against strain γ(t) in (first) a forward strain by γ0 strain
units at a rate _γ ¼ 0:01 followed (second) by a reverse strain at a rate _γ ¼ �0:01 to a final strain of �10 units. Effective temperature x ¼ 0:3. Initial sample age
before shearing commences: (left) tw ¼ 103, (middle) tw ¼ 104, and (right) tw ¼ 105. In each panel, the imposed forward strain γ0 ¼ 1:0, 2:0, 3:0, 4:0, 5:0
(curves rightward). dt ¼ 0:01, Emax ¼ 12:0, N ¼ 32.
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strain response increases sublinearly. In this way, the material
creeps ever forward, but at an ever declining shear rate, never
attaining a flowing state of constant nonzero _γ. For the
imposed stresses just above σy, the sample initially displays a
window of sublinear creep in which the shear rate progres-
sively decreases, much as it would for an imposed stress
below yield. In marked contrast, however, at later times the
sample yields and the shear rate suddenly increases to attain
its value as prescribed by the steady state flow curve σ( _γ).
The same behavior was reported (in the format of strain
versus time) in the full SGR model in [15].

This ability of the SGR model to capture power creep
followed by fluidization and yielding following the imposi-
tion of a step shear stress just above the yield stress should
be particularly noted. Reports of such behavior in other con-
stitutive models of elastoplastic fluids (at least in those that
have monotonic underlying constitutive curves σ( _γ), preclud-
ing steady state shear banding) are rare [114]: it appears diffi-
cult to capture this complicated behavior in a simple
constitutive model with just a small number of dynamical
variables.

VI. POSSIBLE TENSORIAL GENERALIZATION

So far, we have presented a simplified SGR model with
only a scalarized shear stress. In order to perform CFD, one
needs a constitutive model with a fully tensorial stress. We
offer finally one possible choice for such a model, following
here the simplest path to tensorializing the scalar model dis-
cussed above and leaving other more sophisticated generali-
zations for future work.

We define the stress carried in wells of depth E as

Σ(E, t) ¼ G(E, t)l(E, t), (6:1)

where we have defined a new tensorial strain variable l. We

then write the evolution equations

d

dt
þ v � ∇

� �
G(E, t) ¼ � G(E, t)

τ(E, l(E, t))
þ ρ(E)Y(t),

d

dt
þ v � ∇

� �
Σ(E, t) ¼ Σ(E, t) � K þ KT � Σ(E, t)

þ 2G(E, t)D� Σ(E, t)
τ(E, l(E, t))

: (6:2)

Here, K is the velocity gradient tensor and D its symmet-
ric part. We then have the usual definition of the hopping
rate,

Y(t) ¼
ð
dE

G(E, t)
τ(E, l(E, t))

, (6:3)

and the prior distribution,

ρ(E) ¼ exp(�E): (6:4)

The time constant is now defined as

τ(E, l) ¼ τ0 exp
E � I(l)

x

� �
, (6:5)

in which I is a suitable invariant of the local strain tensor l,
for which we suggest I ¼ 1

2 l : l. We note that the strain
tensor, l, is defined by the ratio of the stress tensor, Σ, and
the modulus, G, via Eq. (6.1).

To compute the response of this tensorial model in homo-
geneous flow would require the evolution of 7N time-
differential equations: one at each N for G and six for each
independent component of the symmetric tensor Σ, having
again discretized E on a grid of N values. To perform CFD
would require 7N such variables at each lattice site, with
three additional variables for the flow velocity vector.

VII. CONCLUSIONS

In this work, we have introduced a simplified constitutive
model for the elastoviscoplastic rheology of yield stress
fluids, motivated by the widely used SGR model. We have
demonstrated this simplified model to capture a wide array of
observed rheological behaviors in both strain-imposed and
stress-imposed flow protocols, in both the linear and nonlin-
ear rheological regimes. Once suitable units of modulus,
length, and time are chosen, the model has only one dimen-
sionless parameter: the effective noise temperature, x.

The original SGR model on which this simplified model
is based has been widely used in the literature. However, the
computation within it of even homogeneous simple shear
flows is considerably cumbersome, involving the solution of
a PDE, @tP(E, l, t) ¼ � � �, or the solution of two coupled non-
linear integral equations, or the direct simulation of typically
105 hopping SGR elements.

In contrast, the computation of homogeneous simple shear
flows within the simplified model requires the time evolution
of only 2N relatively simple differential equations, with
values of N as low as 16 giving good results. This renders
SGR much more readily accessible to anyone wishing to fit

FIG. 9. Creep and (for imposed stress values σ0 . σy) yielding following the
imposition of a step stress of amplitude σ0 at time tw in the simplified SGR
model. Effective temperature x ¼ 0:3, initial sample age tw ¼ 103. Imposed
stress values, scaled by the yield stress, are σ0=σy ¼ 0:990, 0:992, . . . , 1:010
(curves upward). dt ¼ 0:01, Emax ¼ 8:0, N ¼ 64.
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its predictions to rheometric data. Whereas the original model
was prohibitively costly for use in CFD to address flows in
complicated geometries, or complicated flows arising due to
spontaneous symmetry breaking instabilities even in simple
geometries, the simplified model is now sufficiently simple for
use in CFD, once suitably tensorialized. Indeed, work is cur-
rently in progress to benchmark its behavior in the canonical
CFD geometries of 2D flow past a cylinder and 3D flow past
a sphere.
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