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ABSTRACT
To understand the nature of the accelerated expansion of the Universe, we need to combine constraints on the expansion rate
and growth of structure. The growth rate is usually extracted from 3D galaxy maps by exploiting the effects of peculiar motions
on galaxy clustering. However, theoretical models of the probability distribution function (PDF) of galaxy pairwise peculiar
velocities are not accurate enough on small scales to reduce the error on theoretical predictions to the level required to match the
precision expected for measurements from future surveys. Here, we improve the modelling of the pairwise velocity distribution by
using the Skew-T PDF, which has non-zero skewness and kurtosis. Our model accurately reproduces the redshift space multipoles
(monopole, quadrupole, and hexadecapole) predicted by N-body simulations, above scales of about 10 h−1Mpc. We illustrate
how a Taylor expansion of the streaming model can reveal the contributions of the different moments to the clustering multipoles,
which are independent of the shape of the velocity PDF. The Taylor expansion explains why the Gaussian streaming model works
well in predicting the first two redshift space multipoles, although the velocity PDF is non-Gaussian even on large scales. Indeed,
any PDF with the correct first two moments would produce precise results for the monopole down to scales of about 10 h−1Mpc,
and for the quadrupole down to about 30 h−1Mpc. An accurate model for the hexadecapole needs to include higher order moments.
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1 IN T RO D U C T I O N

By combining different experiments, such as the supernova standard
candles (Perlmutter et al. 1997; Riess et al. 1998, 2007), and the
cosmic microwave background (CMB) temperature anisotropies
(Planck Collaboration VI 2018), astronomers have inferred that the
expansion of the Universe is accelerating. If general relativity is
the correct theory of gravity, concordance with the aforementioned
experiments requires that about 95 per cent of the energy content of
the universe is invisible to us, since it does not exhibit electromagnetic
interactions. Most of this energy is postulated to be in the form of
a cosmological constant, �, which drives the observed accelerated
expansion of the Universe. Its nature is, however, unknown.

A compelling theoretical explanation attributes the cosmological
constant to the energy of empty space. None the less, its estimated
value (Carroll 2001) has produced the largest discrepancy between
theoretical predictions and observations ever encountered in physics.
Therefore, despite the success of the standard model of cosmology
[known as Lambda cold dark matter (�CDM)] in explaining observa-
tions, we still do not understand the nature of some of its constituents,
which has led cosmologists to look for evidence beyond �CDM.

Most of the extensions to the standard model add new degrees of
freedom to either the energy content of the Universe or to the way

� E-mail: carolina.cuesta-lazaro@durham.ac.uk

space–time geometry reacts to it, by modifying general relativity
(Clifton et al. 2012; Joyce, Lombriser & Schmidt 2016). The most
popular example of extra degrees of freedom in the energy content
is dynamical dark energy that allows for temporal variation of the
dark energy equation of state, driven by a scalar field. The second
class of models involves modifications to the Einstein–Hilbert action,
and is commonly denoted as modified gravity. The modified action
adds new terms to the Poisson equation, which are identified with
the appearance of an additional fifth force. However, the boundary
between the two categories is not always well defined.

To distinguish between these different scenarios observationally,
tests of the background expansion history are not sufficient. Viable
gravity theories can be tuned to reproduce the observed evolution
of the scale factor with time, and therefore are indistinguishable on
the background level. However, by including information about the
rate at which cosmic structures grow, we can detect modifications to
gravity. The growth of cosmic structure is the outcome of a competi-
tion between the expansion of the Universe and the gravitational pull,
generated by inhomogeneities. If there is an additional fifth force,
but the expansion is compatible with that observed, the rate at which
structures in the Universe grow will be modified.

To estimate the large-scale growth of structure in the Universe,
we look at the statistics of 3D galaxy maps. These maps contain the
angular position of galaxies on the sky, together with their redshifts.
Assuming that galaxies are at rest, as the photons they emit travel
towards us through an expanding Universe, their wavelengths stretch
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accordingly. Therefore, we observe the redshifted light of distant
galaxies. We can translate this redshift into a comoving distance by
introducing the Hubble factor, H(z),

r(z) =
∫ z

0

dz′

H (z′)
, (1)

where r(z) is the comoving distance to the galaxy, and we have used
the natural unit where the speed of light c = 1.

However, galaxies also move due to the gravitational pull gener-
ated by the inhomogeneous distribution of matter around them. If a
source that emits light moves, the wavelength of the light gets further
redshifted due to the Doppler effect. If we ignore this effect, then we
would infer the wrong distance, s, given by

s = r + v(r)ẑ

H ẑ, (2)

instead of the real position of the galaxy, r , where v(r) is the peculiar
velocity of the galaxy, H = aH (a) the comoving Hubble factor, and
the inferred distance, s, is the redshift space distance. Note that we
have assumed the observer is far away from the sources, and therefore
the line-of-sight direction can be fixed to a particular direction, which
we arbitrarily set as the ẑ-axis. This approximation, known as the
plane-parallel approximation, has so far given results that lie within
the statistical error bars of current surveys (Samushia, Percival &
Raccanelli 2012). However, this approximation will need to be used
more carefully in the analysis of upcoming surveys.

The translation between redshift and distance is in reality then
more complex than equation (1), since we need to disentangle the
combination of the galaxy’s position and its peculiar velocity along
the line of sight. However, this complication ends up being beneficial
because peculiar velocities are generated by the gravitational pull of
the inhomogeneous matter distribution, and therefore allow us to
extract information on the latter. In particular, as mentioned above,
it is possible to detect the existence or constrain the strength of fifth
forces by studying the growth of structure inferred from the statistics
of the peculiar velocity field (see e.g. Guzzo et al. 2008; Bose &
Koyama 2017; Hernández-Aguayo et al. 2019).

To extract the growth rate, we measure the effect of peculiar
velocities on clustering known as redshift space distortions (RSDs).
The amount of clustering is quantified as the probability of finding
a pair of galaxies at a given separation, compared to the probability
for a random distribution of galaxies. This statistic is known as the
two-point correlation function, defined as

ξR(r) = 〈δ(x)δ(x + r)〉, (3)

which, due to statistical isotropy and homogeneity, only depends
on pair separation, r. The two-point correlation function is a useful
statistic because it summarizes all the statistical information con-
tained in a Gaussian random field. Even though the evolved density
field is non-Gaussian, it can still be used to constrain the cosmological
parameters. However, the higher order correlation functions of the
evolved density field are non-zero, and hence contain additional
independent information over and above that encoded within the
variance (see e.g. Song, Taruya & Oka 2015; Gagrani & Samushia
2017, in the context of redshift space clustering).

Due to the peculiar motions of galaxies, we observe redshift space
positions, s, instead of the real space positions, r , and thus we can
only measure

ξS(s⊥, s‖) = 〈δ(x)δ(x + s)〉, (4)

which depends on both the pair separation, s, and its inclination
with respect to the line-of-sight direction. Throughout we denote

separations perpendicular and parallel to the line of sight as s⊥ and
s�, respectively.

The so-called redshift space correlation function, ξ S(s⊥, s�), is a
combination of both real space clustering, ξR(r), and the probability
of finding a pair of galaxies with a given relative velocity along the
line of sight, also denoted as pairwise velocity distribution, as we
will show in Section 2 using the streaming model of RSD (see e.g.
Fisher 1995; Scoccimarro 2004). Since clustering in redshift space is
affected by relative peculiar motions, it contains information about
the growth of structure.

In this paper, we focus on improving the accuracy of models
of the redshift space correlation function, to improve our estimates
of the growth rate. The main hurdle that has to be overcome is
the non-linear evolution of the density and velocity fields produced
by non-linearities in the continuity and Euler equations that drive
gravitational collapse. As we will see, this is particularly relevant to
describe the mapping of pairs from real to redshift space, which is
necessary to model the two-point correlation function in equation (4).
The development of this mapping is our focus here.

State-of-the-art constraints on the growth factor are found mea-
suring the two-point correlation function in redshift space (e.g.
Satpathy et al. 2017 for galaxies from BOSS; Zarrouk et al. 2018 for
eBOSS quasars), which have reported growth factors consistent with
general relativity. Satpathy et al. (2017) used measurements of the
two-point correlation function down to separations of 25 h−1Mpc,
beyond which theoretical predictions introduce larger systematic
errors than the statistical errors of the measurement itself, thus
biasing the estimate of the growth factor. For future surveys, the
expected statistical errors will be significantly smaller (e.g. Huterer
et al. 2015) and so we will need more accurate theoretical predictions
down to small scales than those used in the analysis of current
surveys, to improve constraints on the growth rate and to avoid
making catastrophic errors of interpretation (Jennings, Baugh &
Pascoli 2011).

The goal of this paper is threefold. First, we introduce an extension
to the simplest streaming model that assumes Gaussian relative
motions, which improves the accuracy of theoretical predictions for
the clustering multipoles. Secondly, we show a comparison of state-
of-the-art models for the streaming model ingredients with high-
resolution N-body simulations. Finally, we analyse the effect of the
different velocity moments on the clustering multipoles, and assess
how accurate their theoretical predictions need to be for an RSD
model that is at least as accurate as the measurements from future
surveys.

This paper is structured as follows. In Section 2, we summarize the
theoretical framework used to model the RSD effect on the two-point
correlation function, the streaming model, and we present the Skew-
T (hereafter ST) distribution as a model for the pairwise velocity
distribution that includes non-Gaussian features. In Section 3, we
compare the accuracy of the ST model with a simple Gaussian
distribution, using N-body simulations. In Section 4, we study a
Taylor expansion of the streaming model integrand, which allows us
to examine how the different higher order moments affect the multi-
poles. In Section 5, we analyse the sensitivity of the multipoles to the
different real space ingredients of the streaming model. Finally, in
Section 6 we summarize our main results and draw our conclusions.

2 TH E S T R E A M I N G MO D E L O F R E D S H I F T
SPAC E D ISTO RTIONS

The streaming model provides the mapping from the real-space
two-point correlation function to the observed anisotropic two-point
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Non-Gaussian RSD model 1177

correlation function in redshift space. Since objects viewed in redshift
space are the same as those in real space, but have been moved to
different positions, we can relate their density contrasts by imposing
mass conservation(

1 + δS(s)
)

d3s = (
1 + δR(r)

)
d3r, (5)

where superscript S denotes redshift space, and R real space. This
expression can be further manipulated (Scoccimarro 2004) to obtain
a relation between real and redshift space clustering

1 + ξS(s⊥, s‖) =
∫ ∞

−∞
dr‖

(
1 + ξR(r)

)
P(v‖ = s‖ − r‖|r), (6)

where r2 = r2
‖ + r2

⊥, s⊥ = r⊥, P(v‖|r) is the pairwise velocity
distribution, and v� = v�, 1 − v�, 2, is the line-of-sight relative velocity
of the pair of tracers. In our convention, v� is defined as negative
(positive) if the pairs are approaching (receding from) each other.
Equation (6) is known as the streaming model (Fisher 1995), which
simply states that the probability of finding a pair of objects at a
distance s in redshift space is given by the sum over all possible
real space distances, r , that would make us infer the redshift space
position. While the streaming model is one way to move forward,
fully Eulerian perturbation theory treatments based on the same
expression can also accurately describe redshift space clustering
(Taruya, Nishimichi & Saito 2010).

The plus one terms in equation (6) ensure that given a universe
with randomly placed galaxies, if the pairwise velocity distribution
is dependent on the pair separation, then we would still observe
clustering in redshift space induced by the coherent velocity field. If,
however, the pairwise velocity distribution does not depend on pair
separation, the plus one terms on both sides in equation (6) cancel
out.

Note that equation (6) is exact, and the only approximation we
have made so far is the plane-parallel approximation to select a
particular line of sight. None the less, the apparent simplicity of
the streaming model may be deceptive, as the complexity of the
gravitational dynamics is hidden in the shape of P(v‖|r) and its
dependence on pair separation. Broadly speaking, on small scales
within dark matter haloes, virial motions produce a large velocity
dispersion that reduces the amount of clustering along the line of
sight; the size of this effect increases with halo mass. On larger scales,
galaxies in-falling into larger structures shift the mean velocity to
negative values, producing a change in the opposite sense to those
on small scales, that increases the inferred clustering along the line
of sight (Kaiser 1987).

It has been known for a long time (Scoccimarro 2004) that this
scenario is further complicated by the non-Gaussian nature of the
pairwise velocity distribution, which is evident from its non-zero
skewness and kurtosis. There is no Gaussian limit for pairwise
velocities on large scales, since velocity differences cancel out long-
range contributions and leave only the local, non-linear component
of the velocity at the two different locations. Here, we focus
on extending the streaming model to include these non-Gaussian
features, as predicted by N-body simulations.

Throughout, we will use the relation between the full three-
dimensional pairwise velocity and its line-of-sight projection. The
line-of-sight pairwise velocity distribution can be obtained by inte-
grating the full distribution P(vr , vt |r), where the radial velocity, vr,
and the transverse velocity, vt, are defined as the velocity components
parallel and transverse to the pair separation vector, respectively. Due
to statistical isotropy, we only need to select one component from
the two-dimensional transverse velocity. For ease of computation, we
chose the one which will contribute to the line-of-sight projection,

Figure 1. Decomposition of the 3D distance vector into a radial component
along the pair distance, r̂ , a normal component, n̂, which is perpendicular to
both the line-of-sight direction and the pair separation vector, and a transverse
component, t̂, which completes the basis formed by the radial and normal
vectors. After projecting the distance vector on to the line of sight, only the
radial and transverse components will give a non-zero contribution.

i.e. the one in the plane spanned by the galaxy pair and the observer
(see Fig. 1). Thus,

v‖ = vr cos θ + vt sin θ, (7)

where θ is the angle between the pair separation vector and the line
of sight, θ = tan −1(r⊥/r�). Therefore,

P(v‖|r⊥, r‖) =
∫

dvr

sin θ
P
(

vr , vt = v‖ − vr cos θ

sin θ

∣∣∣∣r
)

. (8)

The relations between the moments of the two distributions are given
by

cn(r⊥, r‖) =
n∑

k=0

(
n

k

)
μk(1 − μ2)

n−k
2 ck,n−k(r), (9)

where cn denotes the n-th central moment of the line-of-sight pro-
jected distribution, P(v‖|r⊥, r‖), and ck, n − k the k-th radial moment,
(n − k)-th transverse moment of P(vr , vt |r), and μ = cos θ . The n-th
moment about the origin is denoted as mn.

2.1 The Gaussian streaming model

The commonly used model for the redshift space correlation function
is known as the Gaussian streaming model (GSM; Fisher 1995;
Reid & White 2011). The radial and transverse components of the
pairwise velocity are taken to be independently Gaussian distributed.
The line-of-sight projection can therefore be written as

PG(v‖|r) = 1√
2πσ 2

12(r)
exp

[
−
(
v‖ − v12(r)

)2

2σ 2
12(r)

]
, (10)

where v12(r), denoted as m1(r) in our notation, and σ12(r), equivalent
to

√
c2(r), are the projections of the radial and transverse moments

on to the line of sight, and are both dependent on the pair separation.
As explained in the previous section, a Gaussian distribution does

not accurately describe the pairwise velocity distribution for an
evolved matter distribution even for large pair separations. However,
this simplified assumption gives an accurate description of the
clustering of dark matter haloes on scales larger than 30 h−1Mpc
(Reid & White 2011; Wang, Reid & White 2014). Later on, we shall
illustrate how the accuracy of this model stems from the integral in
equation (6) over the pairwise velocity distribution, which on large
scales only receives contributions from the lowest order pairwise
velocity moments.

None the less, an accurate model on smaller scales requires non-
vanishing higher order moments, mainly the skewness and kurtosis.
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1178 C. Cuesta-Lazaro et al.

Different approaches have been taken towards such a model in
the literature. On one hand Uhlemann, Kopp & Haugg (2015)
performed an Edgeworth expansion around a Gaussian distribution
to add skewness, and found improvements with respect to the GSM
on scales smaller than 30 h−1Mpc. We provide a more in-depth
discussion of this model on the following section. On the other
hand, a number of authors (e.g. Sheth 1996; Tinker 2007; Bianchi,
Chiesa & Guzzo 2015; Bianchi, Percival & Bel 2016; Kuruvilla &
Porciani 2018) have all used mixtures of normal or quasi-normal
distributions to model a skewed and heavy-tailed distribution. The
first approach by Sheth (1996) modelled the motion of the halo centre
of mass using a Maxwellian distribution which is then weighted
by the Press–Schechter mass function. Tinker (2007) developed a
similar approach using the halo model (Cooray & Sheth 2002), but
assuming that, at fixed environmental density around the halo pair,
the pairwise velocity distribution of haloes is Gaussian. The skewness
is then developed by weighting these Gaussian distributions with the
probability of finding a given density. The parameters of the model
are calibrated using N-body simulations.

Further developments were introduced by Bianchi et al. (2015),
who replaced the mixing distribution described above by another
Gaussian, which assumes that the mean and standard deviations of
the ‘local’ Gaussian distributions are themselves jointly distributed
according to a bivariate Gaussian. This model, however, cannot
generate distributions that are sufficiently skewed to explain the halo
pairwise velocity distribution. This limitation was later overcome by
performing an Edgeworth expansion on the local distributions, which
added skewness to the Gaussian distribution (Bianchi et al. 2016).

A more recent study by Kuruvilla & Porciani (2018) used a
generalized hyperbolic distribution (GHD) to model the pairwise
velocity distribution of N-body simulations. In this case, the relation
between the parameters of the distribution and velocity moments as
a function of pair separation is not given, and the model requires
five free parameters with a two-dimensional dependency on the pair
separation vector.

2.2 The Edgeworth streaming model

The Edgeworth Streaming Model introduced by Uhlemann et al.
(2015) is one of the simplest extensions to the GSM. The authors used
an Edgeworth expansion of the velocity PDF to extend the validity
of the GSM towards smaller scales. The Edgeworth expansion is an
asymptotic series expansion to a probability density function, which
implies that there is no guarantee of convergence when more terms
are added to the expansion. See Sellentin, Jaffe & Heavens (2017)
for an interesting discussion on the Edgeworth expansion and its
applications to cosmology.

Expanding the line of sight velocity PDF around a Gaussian
distribution one obtains, to first order,

PE(v‖|r) = 1√
2πσ 2

12(r)
exp

[
−
(
v‖ − v12(r)

)2

2σ 2
12(r)

]

×
(

1 + �12

6σ 3
12

H3

(
v‖ − v12

σ12

))
, (11)

where �12 is the third-order cumulant of the velocity PDF projected
on to the line-of-sight direction, and H3 the third-order probabilists’
Hermite polynomial, H3(x) = x3 − 3x.

In the next section, we present a flexible model that we believe is
simpler than the ones mentioned above and achieves similar or better
levels of accuracy.

2.3 The Skewed Student-t (ST) streaming model

A study of the cluster-galaxy cross-correlation by Zu & Weinberg
(2013) found that the skewed Student-t distribution (ST; Azzalini &
Capitanio 2003) gives an accurate description of the cluster-galaxy
pairwise velocity statistics predicted by simulations. The main ad-
vantage of using this distribution to model RSD is that its parameters
can be written as functions of the four lowest order moments. Here,
we use the ST distribution to model the redshift space clustering of
galaxy or halo pairs on all scales.

In recent years, there has been increasing interest in such flexible
probability density functions that can accommodate different degrees
of skewness and kurtosis. More specifically, a successful approach
proposed by Azzalini & Capitanio (2003), found that a skewed,
multivariate, distribution can be generated by combining a symmetric
density function with a cumulative distribution function as follows:

f (x) = 2 f0(x) G (w(x)) , x ∈ Rd , (12)

where f0(x) is a symmetric PDF defined in Rd , G is a one-dimensional
cumulative distribution function, whose derivative satisfies G

′
(x) =

G
′
(−x), and w is a real-valued odd function in R.
Since we are interested in a distribution that displays both skewness

and extended tails, the symmetric function f0 can be chosen to be a
ST distribution, hereafter referred to as the t-distribution, which in
one dimension is given by

f0(x) = t1(x − xc|w, ν) := 

(

ν+1
2

)
√

νπw
( ν
2 )

(
1 + 1

ν

(
x − xc

w

)2
)− ν+1

2

. (13)

The t-distribution is characterised by three parameters: the location
xc, the shape parameter, w, and the number of degrees of freedom,
ν. The latter controls the decay of probability in the tails, and
therefore allows us to describe distributions with varying degrees of
kurtosis.

The skewed multivariate distribution which originates from the
t-distribution by using equation (12) is known as the ST distribution,
hereafter ST. Its density function for a one-dimensional random
variable, x, is,

fST(x|xc, w, α, ν)

:= 2

w
t1(x − xc|1, ν)T1

⎡
⎣α

(x − xc)

w

(
ν + 1

ν + (
x−xc

w

)2

)1/2

; ν + 1

⎤
⎦ ,

(14)

where t1 is the one-dimensional t-distribution defined by equa-
tion (13), and T1 is the one-dimensional cumulative t-distribution
with ν + 1 degrees of freedom. The ST distribution has an extra
skewness parameter, α, compared to the t-distribution.

Note that the dependence of the distribution parameters on the
pair separation vector, r, has been omitted for clarity. The relation
between these parameters and the four lowest order moments of the
ST distribution can be found in Appendix A.

3 C OMPA RI SON W I TH N-BODY SI MULATIO NS

In this section, we assess the performance of the different RSD
models by comparing them to a set of dark matter only �CDM
simulations.

3.1 Simulations

We use the Dark Quest (Nishimichi et al. 2019) set of simula-
tions, which consists of 15 independent realizations of the density
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Non-Gaussian RSD model 1179

fluctuations in a cosmological volume, adopting the best-fitting
cosmological parameters given by the Planck CMB data (Planck
Collaboration XIII 2016)

{ωb, ωc, 
DE, ln(1010As), ns, wDE}
= {0.02225, 0.1198, 0.6844, 3.094, 0.9645, −1}, (15)

where ωb ≡ 
bh2, and ωc ≡ 
ch2 are the physical density parameters
of baryons and cold dark matter, respectively, 
DE = 1 − (ωb +
ωc + ων)/h2 is the dark energy density parameter (assuming a flat
Universe and the neutrino density parameter, ων corresponding to
the total mass of 0.06 eV for the three neutrino species), As and
ns are the amplitude and tilt of the primordial curvature power
spectrum normalized at 0.05 Mpc−1, and ωDE is the equation-of-
state parameter of dark the energy.

The simulations follow the evolution of 20483 particles in a comov-
ing box of size L = 2h−1 Gpc, which translates into a particle mass
of mp = 8.158 × 1010 h−1 M�, using the Tree-Particle Mesh code
GADGET2 (Springel 2005). Halo catalogues were constructed using
the publicly available ROCKSTAR halo finder (Behroozi, Wechsler &
Wu 2013). Here, we focus on accurate predictions for massive central
haloes, with masses above 1013 h−1 M�, and leave the predictions
for galaxies to future work. In all figures below, we show the mean
simulation measurements over the 15 independent realizations of
the cosmological volume, with errorbars representing one standard
deviation of the mean measurements. All results are shown for the
z = 0 snapshots.

3.2 The ingredients of the streaming model

The streaming model, equation (6), takes as input both the pair-
wise velocity distribution and the real space two-point correlation
function. In this subsection, we will show the measurements of
both ingredients from the simulations, together with their theoretical
predictions for the given cosmological parameters.

Using the halo catalogues from the simulations, we measure
the pairwise velocity distribution in bins of 0.5 h−1Mpc size (note
that the velocities are rescaled by H so that they have the unit
of length). As mentioned above, in our convention the pairwise
velocity is defined as negative (positive) when the members of
the pair are approaching (receding from) each other. We show
the measured pairwise distribution from the simulations, for a few
selected cases of (r⊥, r�), in Fig. 2. The figure shows increas-
ing r� values from left to right, and increasing r⊥ from top to
bottom.

The black dots in Fig. 2 show the measured pairwise velocity of
dark matter haloes, while the lines give the ST (red) and Gaussian
(blue) distributions obtained by applying two different methods
to find the best-fitting parameters, which will be described in
Section 3.3. It is evident that in all cases the Gaussian distribu-
tions are a poorer fit to the simulation measurements than the ST
distributions. In particular, by comparing the symbols with the blue
curves, we note that for all pair separations there is a significant
kurtosis in the simulation data which a Gaussian distribution fails to
capture.

In the cases of r‖ = 5.25 h−1Mpc and r⊥ = 0.75 or 5.25 h−1Mpc,
the pairwise velocity distributions are also very strongly skewed
towards negative v�, which is because such close halo pairs are more
likely to be found in high-density regions where haloes approach each
other (v� < 0), than in void regions where haloes tend to move apart
(v� > 0) . The skewness, however, decreases for much larger r⊥ (e.g.
49.75 h−1Mpc, the bottom panel of the central column of Fig. 2) or

r� (the right column of Fig. 2), because the probabilities of infalling
and receding halo pairs tend to be even out for large separations. On
the other hand, the left column of Fig. 2 shows that for very small
r� (e.g. 0.75 h−1Mpc), the skewness is small again, which is because
in this case the pair separation vector is nearly perpendicular to the
line of sight, and v� ≈ vt, meaning that v� has equal probability to be
in any direction within the plane perpendicular to the pair separation
vector due to statistical isotropy, that is, equal probability of v� > 0
and v� < 0.

In Fig. 3, we show the radial and transverse pairwise velocity
distribution for the haloes at different pair separations. Note that the
two components are not independent. This figure shows the same
physical picture as Fig. 2. At small pair separations, but larger than
halo size, the radial component has a non-zero (negative) mean,
produced by tracers infalling towards larger objects. Given that
the infall velocity is different in different environments and more
pairs are likely to be found in high-density environments where
members of a pair tend to approach each other, the radial distribution
is skewed towards negative values. At larger pair separations, the
radial skewness becomes smaller, but it still has heavy tails. Due
to statistical isotropy, the transverse component is symmetric and
has zero mean, although it also shows broader tails than a Gaussian
distribution.

The moments of the different distributions are shown in Fig. 4,
where the definition of the moments is mass-weighted, since the
velocity field is only measured where there are tracers, by the number
density of tracers at a given separation r = |r| = |x2 − x1|,

mi j = 〈(1 + δ(x1))(1 + δ(x2))vi
rv

j
t 〉

〈(1 + δ(x1))(1 + δ(x2))〉 , (16)

where i and j denote the order of the moments in the radial and
transverse components, respectively. For instance, the radial mean is
denoted as m10, the second-order transverse moment as m02, and the
third-order cross-correlation between the radial and the squared of the
transverse component as m12. The central moments are analogously
defined by

ci j = 〈(1 + δ(x1))(1 + δ(x2))(vr − m10)i(vt − m01)j 〉
〈(1 + δ(x1))(1 + δ(x2))〉 . (17)

Statistical isotropy in the transverse plane implies that only moments
with even powers of the transverse component are non-zero. That is
c12 for the third-order moment, and c22 for the fourth.

Although it is not the objective of this paper to develop the
relations between the cosmological parameters and the ingredients
of the streaming model (the real-space two-point correlation and
the pairwise velocity moments), for completeness we show the
predictions from different methods as a summary of the recent
progresses in perturbation theory. This exercise will show what stage
we have reached in our efforts to predict these quantities and what still
needs to be done. So far, only predictions for the first two moments of
the velocity field have been successfully obtained from perturbation
theory:

(i) Linear perturbation theory – Fisher (1995) shows that the mean
pairwise velocity in linear theory is determined by the correlation be-
tween the density and velocity fields, 〈δv〉, due to the mass-weighting
factors in equation (16). The variance, however, is determined by the
velocity–velocity coupling (Gorski 1988). In the simplest flavour of
Eulerian perturbation theory, there are two free parameters: the linear
bias and the growth factor. Higher order corrections to the mean and
the variance were computed in Reid & White (2011) by expanding
the continuity and Euler equations in powers of the linear density field
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1180 C. Cuesta-Lazaro et al.

Figure 2. The pairwise line-of-sight velocity distribution for massive dark matter haloes in the simulation at z = 0, evaluated at different pair separations.
Columns show increasing r� separation, whilst rows show increasing r⊥. The black dots show the mean measurements from the N-body simulation and their
standard deviation, whilst the solid (dashed) curves show the different models found using the method of moments (maximum likelihood) estimate. The Gaussian
model is shown in blue, the Edgeworth expansion model is shown in green, and the ST model, that includes skewness and kurtosis, is shown in red.

up to fourth order. They also used a local Lagrangian prescription
for the bias (Matsubara 2008), which turned out to be very important
to reproduce the real space correlation function, since a local bias
in Lagrangian space introduces a non-local bias in Eulerian space
(Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012).

(ii) Convolutional Lagrangian perturbation theory (CLPT) –
Wang et al. (2014) extended the formalism of Carlson, Reid & White
(2013), to include predictions for the lowest order pairwise velocity
moments. The Lagrangian approach formulates the problem in terms
of initial positions and displacement field, where the latter fully
specifies the motion of the cosmological fluid. Instead of expanding
the fluid equations in terms of the linear density field, the expansion is
performed on the displacement field that gives the mapping between
initial Lagrangian positions and final Eulerian positions. To describe
the Lagrangian bias functional, δh = F[δ], the authors include three
free parameters, b1, b2, and bs, which we fit to the real-space two-
point correlation function. The first two of these bias parameters,
b1 and b2, are the first and second derivatives of the Lagrangian
bias function with respect to a long-wavelength density contrast, δL,
whereas bs encodes the dependence of the bias on a long-wavelength

tidal tensor. The variance of the pairwise velocities is, however, not
accurately reproduced by CLPT: a constant shift needs to be added
to describe the variance on linear scales. Interestingly, this constant
offset is the same for both the radial and transverse components, as
one would expect from the effect of virial motions. Including the
growth factor, CLPT requires five parameters to describe clustering
in redshift space.

(iii) Convolutional Lagrangian effective field theory (CLEFT) –
Carrasco, Hertzberg & Senatore (2012) developed an analytical
effective field theory to capture the effects of very small scales
on large-scale observables. Vlah, Castorina & White (2016) used
this idea, together with CLPT, to predict the lowest order velocity
moments that enter the GSM. They found that predictions for the
mean pairwise velocity were greatly improved compared to CLPT,
especially the derivative, which ultimately controls the accuracy
of the redshift space quadrupole. Moreover, it was shown that in
the context of effective field theory, the constant shift in Wang
et al. (2014) was identified as one of the effective parameters
to describe the effect of small scales. Increased accuracy comes
at the expense of requiring more free parameters, the effective
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Non-Gaussian RSD model 1181

Figure 3. The mean joint probability distribution of the radial and transverse pairwise velocities of dark matter haloes measured in N-body simulations. The
marginal distributions are shown on the sides. At small pair separations, infall towards larger structures produces a large skewness in the radial component, and
the mean turns more negative. At large pair separations, the distributions of the two components are symmetric but still show heavy tails.

field theory counter-terms. There are two extra parameters, one
for the real space correlation function and the other for the
mean pairwise velocity. Therefore, the simplest CLEFT has seven
parameters.

The top two panels of Fig. 4 compare the predictions for the two
lowest order moments of the three different methods.1 The symbols
show measurements from simulations. In the upper panel, we show
the mean of the radial pairwise velocity. The two extra EFT counter-
terms extend the agreement of CLPT with N-body simulations from
scales of ∼ 60 h−1Mpc down to ∼ 20 h−1Mpc. For the radial and
transverse components of the variance, shown in the second panel, the
CLPT and CLEFT predictions are qualitatively similar. The reason
for this is that the EFT counter-term is very close to a constant
shift in the variance, which is already included in CLPT to match
N-body simulation results. The moment predicted with the lowest
accuracy is the radial component of the variance, where per cent-
level predictions are limited to scales above 40 h−1Mpc. Note
that the radial component of the variance, c20 = m20 − m2

10, has a

1Perturbation theory predictions have been obtained using the publicly
available code github/CLEFT GSM.

contribution from the mean pairwise velocity and will also be affected
by errors in modelling non-linear infall.

The bottom two panels of Fig. 4 show the simulation measurements
of the third- and fourth-order moments (symbols). Perturbation
theory predictions for moments higher than the second have only
been obtained for the third-order moment using CLPT in Uhlemann
et al. (2015). However, the authors found that it fails to capture
the non-Gaussian effects encoded in the skewness for scales below
100 h−1Mpc. Since third- and fourth-order moments only play a role
on the accuracy of the redshift space correlation function on small
scales, it is extremely difficult to produce accurate enough predictions
to unlock access to the cosmological information contained on those
scales. To improve these predictions, we plan to explore both effective
field theory extensions to CLPT, and the use of emulators for the
moments on small scales.

In Fig. 5, we also show simulation measurements (symbols) of
the real-space two-point correlation function of dark matter haloes,
together with the predictions using both CLPT (dashed line) and
CLEFT (dash–dotted line). The CLEFT prediction is accurate over
a broad range of scales – it gives per cent-accuracy results on scales
between 10 and 70 h−1Mpc – at the expense of only one extra
free parameter. For more details on the accuracy of the different
perturbation theory models, we refer the reader to Appendix C.
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1182 C. Cuesta-Lazaro et al.

Figure 4. The four lowest order moments of the radial and transverse
pairwise velocity distributions of dark matter haloes. In each panel, we
show the mean measurements from the simulations, together with errorbars
showing one standard deviation (note these are too small to be seen). We
also show the different perturbation theory predictions for the two lowest
order moments. Linear theory is shown in dot–dashed–dashed lines, CLPT
in dashed lines, and CLEFT in dashed dotted lines. Finally, we show the
best-fitting curves as dotted lines, which are used to show the accuracy of the
Taylor expansion in Section 4.2. Note the best-fitting curves have been fitted
to the moments on scales smaller than 60 h−1Mpc.

3.3 Fitting the pairwise velocity distribution

To infer the parameters of the Gaussian and ST distributions that best
fit the simulation measurements, we use two different methods,

(i) Maximum likelihood estimation, found by maximizing the
probability that the model reproduces the simulation measurements.
This is equivalent to a least-χ2 fit to the simulation measurements
using the given Gaussian or ST distribution function when the errors
are approximately Gaussian distributed. We refer to this method as
‘ML’ occasionally in this paper. The χ2 we minimize is

χ2(r) =
∑
v‖

(
Pmeasured(v‖|r) − Pmodel(v‖|r)

)2

Pmodel(v‖|r)
, (18)

where Pmodel is either a Gaussian or an ST distribution.

Figure 5. The real space correlation function measured from the simulations
for dark matter haloes, compared with predictions from CLPT and CLEFT.
Both these perturbation theory predictions use a Lagrangian prescription for
the bias, and have been computed by simultaneously fitting the correlation
function and the two lowest order pairwise velocity moments. For more details
on the fitting see Appendix C.

(ii) Method of moments that uses the analytical relation between
the parameters of the distribution and its lowest order moments to
convert the moments estimated from the simulation measurements
into distribution parameters.

If the distribution measured from the simulation and the fitted
distribution are the same, both methods are equivalent. However,
this is not the case when the fitted distribution is an approximation
to the simulation results or when noise is present.

In Fig. 2, we show the best-fitting distributions for both the
Gaussian and the ST models using these two approaches. For the
Gaussian case the conversion between moments and parameters is
trivial, while for the ST model we have used the relations given in
Appendix A to obtain the model parameters given the four lowest
order moments. In this figure, we can see that even for large pair
separations the Gaussian approximation is inaccurate, where the
method of moments and the maximum likelihood estimation produce
slightly different results, both being poor approximations.

The ST model, however, is flexible enough to represent the
varying degrees of skewness and kurtosis over a broad range of pair
separations when using the method of moments. At large separations,
the maximum likelihood estimate and the method of moments
produce similar distributions. None the less, on small scales the tails
of the distribution are mis-estimated by the maximum likelihood
method.

For a more detailed comparison of the different models around the
peak of the distribution see Fig. B1.

3.4 The redshift space correlation function

In this subsection, we use the Gaussian and ST models of the pairwise
velocity distribution with the streaming model (equation 6) to predict
redshift space clustering. We will focus on the mapping between
real and redshift spaces, and show that using the more flexible ST
distribution for pairwise velocity leads to more accurate predictions
of the higher order redshift space multipoles than are obtained with
the simpler GSM model. For this reason, we measure all the real-
space quantities from the simulation, including the real-space halo
two-point correlation function and the pairwise velocity distribution
moments, as inputs to reproduce the redshift space clustering by
using equation (6). The impact of the accuracy of the modelling of

MNRAS 498, 1175–1193 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/1175/5881955 by U
niversity of D

urham
 user on 22 O

ctober 2020



Non-Gaussian RSD model 1183

the individual ingredients of the streaming model will be studied in
a later section.

The pairwise velocity distribution has been measured in the
range 0 < r‖/[ h−1Mpc] < 70 and 0 < r⊥/[ h−1Mpc] < 50 in bins
spaced by 0.5 h−1Mpc. To perform the streaming model integration
in equation (6) we have used the Simpsons rule, with a linear
interpolation of the real space correlation function and the pairwise
velocity distribution.

Due to the difficulty of analysing 2D plots, together with the
complex covariance matrix between the different measurements for
ξ S(s⊥, s�), it is common to decompose the redshift space correlation
function into multipole moments using its Legendre expansion
(Hamilton 1998)

ξ (s, μ) =
∑

�

ξ�(μ)L�(μ), (19)

where � is the order of the multipole and L�(μ) is the Legendre
polynomial at the �-th order, which depends on the angular coordinate
μ = cos θ . The redshift space correlation function is symmetric in
μ, so only even values of � give a non-zero contribution. Inverting
equation (19), we find that the multipole moments are given by

ξ�(s) = 2� + 1

2

∫ 1

−1
ξ (s, μ)L�(μ)dμ. (20)

The three lowest multipoles are denoted as monopole (� = 0),
quadrupole (� = 2), and hexadecapole (� = 4). Recent cosmolog-
ical analyses are based mainly on the monopole and quadrupole
moments; however, the cosmological information carried by the
hexadecapole has also been shown to be important (Taruya, Saito &
Nishimichi 2011).

We show these three multipole moments predicted by the different
models, as well as the measurements from the simulations, in Fig. 6.
In the lower subpanels of each panel we show the relative differences
between the model predictions and the simulation results in units of
the standard deviation (σ ) (middle subpanel) calculated using the 15
simulation realizations each of which has a volume of 8 (h−1Gpc)3,
and the relative per cent error in the lowest subpanel. The yellow
horizontal shaded bands represent the ±1σ ranges on the multipoles.

Surprisingly, the two Gaussian distributions that we found by using
the method of moments and the maximum likelihood estimate yield
multipoles that can be more than five standard deviations away from
each other. Furthermore, the Gaussian distribution obtained using
the method of moments reproduces the three multipoles within one
standard deviation for scales larger than approximately 30 h−1Mpc,
although it gives a very poor fit to the pairwise velocity distribution
on these scales; cf. Fig. 2.

Regarding the ST model, although the maximum likelihood ST
lies closer than the Gaussian method of moments to the pairwise
velocity measured in the simulation (see Fig. 2), it gives a biased
result for the multipoles. On the other hand, the ST model found by
the method of moments is able to reproduce the correct clustering
down to scales of around 10 h−1Mpc.

The Edgeworth model does improve the predictions of the multi-
poles compared to the GSM, however to extend its validity to even
smaller scales we need to also add fourth-order moments.

Note that, as a result of the large simulated volume, the error bars
on the monopole and quadrupole on scales below 20 h−1Mpc are
extremely small, meaning that the 1σ deviations for the monopole
and quadrupole (the yellow horizontal bands in the lower subpanels
of Fig. 6) are within one per cent of the mean measurement up to
20 h−1Mpc.

Figure 6. Comparison of the accuracy of the different models for reproduc-
ing the multipoles of the redshift space correlation function. In the upper
sub-panels the multipole directly measured from the simulation is shown
together with the model predictions. In the lower sub-panels the deviation
between the model and the simulation in units of the variance calculated
across the different independent simulations are shown. The yellow bands
show the 1σ deviation.

Finally, although the measurement of the hexadecapole is itself
very noisy, the ST model is within one standard deviation for scales
larger than around 10 h−1Mpc, whilst the Gaussian model on those
scales is already more than 5σ away from the measurement from
the simulations.

To sum up, we have found that the use of the method of moments
is critical to accurately reproduce the clustering on quasi-linear
scales. The accuracy of the GSM we obtain is consistent with
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1184 C. Cuesta-Lazaro et al.

previous findings (Reid & White 2011; Wang et al. 2014; Bianchi
et al. 2016): the prediction is within the measurement errors from
the simulations for scales larger than 30 h−1Mpc. However, the
model prediction rapidly diverges from the simulation results on
smaller scales. On the contrary, the ST model is able to reproduce
the redshift space clustering very accurately on scales down to
10 h−1Mpc, by introducing a pairwise velocity distribution that
incorporates the skewness and kurtosis of the pairwise velocity
PDF.

On the other hand, we need to understand why the Gaussian
model reproduces the clustering on scales above 30 h−1Mpc more
accurately than the ST distribution obtained through the ML method,
even though the latter is a better description of the pairwise velocity
distribution on those scales, as shown in Fig. 2. To this end, we will
study the behaviour of the integrand of equation (6) in more detail
in the next section.

4 TH E I M P O RTA N C E O F T H E MO M E N T S F O R
AC C U R AT E C L U S T E R I N G PR E D I C T I O N S

In this section, we show how the accuracy of the streaming model
on quasi-linear scales is directly related to the lowest order mo-
ments of the pairwise velocity distribution. We start by studying
how well the different models reproduce the streaming model
integrand.

4.1 Lessons from the streaming model integrand

We show the integrand of equation (6), for a few pair separation
vectors, in Fig. 7. In broad terms the integrand is the outcome of a
competition between the probability of finding a pair of haloes at a
given separation, i.e. the two-point correlation function, and the prob-
ability that the pair has the necessary relative velocity to move from
real space position r to redshift space position s. Whilst the first quan-

tity is evaluated as ξ
(√

s2
⊥ + r2

‖
)

for fixed s⊥, and therefore peaks at

r� ∼ 0, the latter is evaluated asP(v‖ = s‖ − r‖), and peaks around its
mean, close to v� ≈ 0 (r� ≈ s�) for large pair separations. The effect of
this competition can be seen in Fig. 7. For large pair separations, e.g.
as shown by the middle and bottom panels, the real-space correlation

function is small, ξ
(√

s2
⊥ + r2

‖
)

� 1, so that the integrand is domi-

nated byP(v‖ = s‖ − r‖) and has a peak at r� ≈ s�. On the other hand,
for small pair separations (the top panel), ξ is no longer negligible
and the integrand acquires a second, albeit smaller peak around
r� ≈ 0.

As for the different streaming models, the Gaussian one obtained
through the method of moments systematically shifts the main
peak of the integrand from its true position, and makes it wider.
Although this seems to be a poorer estimate of the integrand than the
Gaussian model obtained through maximizing the likelihood, which
is consistent with what Fig. 2 suggests, it predicts the clustering
multipoles with a precision that is one order of magnitude higher after
integrating, as can be seen on the resulting redshift space correlation
function annotated on Fig. 7. This same effect is present on all scales
larger than s ≈ 30 h−1Mpc.

More interestingly, both the ST moments and the ST ML methods
give visually much better predictions for the integrand than the
Gaussian moments method, which is a consequence of the pairwise
velocity distribution being non-Gaussian for all pair separations.
However, as shown in the previous section, after integration we
find that the Gaussian model yields a comparable accuracy to the
non-Gaussian ST model on scales larger than 30 h−1Mpc for the

Figure 7. Integrand of equation (6) shown for different redshift space pair
separations. At small pair separations and for small μ (top panel) we find
two peaks situated at r� = 0 and r� = s�, marked by the grey vertical dashed
lines. For larger μ (middle and bottom panels), the second peak dominates
since the correlation function decays rapidly at large separations. The result
of the integral for the different models minus the integral obtained using
the pairwise velocity distribution measured from the simulations, �ξ (s), is
plotted with different models shown by the different colours and line styles
as shown by the legend in the top panel.

monopole and quadrupole. This coincidental behaviour has been
noted previously by Kuruvilla & Porciani (2018). Taking the middle
panel of Fig. 7 as an example, the ‘errors’ of the integration in
equation (6), �ξ S, defined as the difference between the integration
of the model curve and the integration using the simulation results
(black dots), for the four streaming models considered here, are
shown in the figure labels. We note that the Gaussian moments
method gives a slightly smaller error than the ST moments at the
particular pair separation shown. As the former underestimates the
integrand for 14 � r‖/( h−1Mpc) � 20 and r‖ � 26 h−1Mpc, and
overestimates it in other regimes, this seems to suggest that a
precise cancellation of the errors from different r� intervals takes
place, which makes the final integration result accurate. However,
this cancellation of errors happens for all larger pair separations
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Non-Gaussian RSD model 1185

Figure 8. The dependence of the pairwise velocity distribution on r�,
for fixed r⊥ = 25.25 h−1Mpc and for three values of r� over a range of
15 h−1Mpc (20.25, 25.25, and 35.25 h−1Mpc). The distribution has only a
weak dependence on r�, which is why the Taylor expansion described in the
text works.

s > 30 h−1Mpc. In the next subsection, we will show that this
is a consequence of the integration being sensitive only to the
moments of the pairwise velocity distribution. In particular, for
large pair separations it is the two lowest order moments which
dominate the outcome of the integral equation (6), while higher order
moments only become important on scales smaller than 30 h−1Mpc
(Fig. 6).

4.2 The importance of the moments on quasi-linear scales

The integration in the streaming model, equation (6), is different from
taking the expectation value of 1 + ξR(r) since the pairwise velocity
distribution P(v‖|r) is different for different r� values, rather than a
fixed probability distribution function P(v‖). However, P(v‖|r) is a
slowly varying function of pair separation r�, for r‖ � 15 h−1Mpc, as
can be seen in Fig. 8. The outcome of the streaming model integral
for the values (s⊥ = r⊥ = 25.5, s� = 25.5), shown in the bottom panel
of Fig. 7, is dominated by contributions from the pairwise velocity
distribution in the range 20 h−1Mpc < r‖ < 35 h−1Mpc, which is
the range of values shown in Fig. 8. The same feature is found at
other separations larger than about 10 h−1Mpc.

Therefore, we can Taylor expand the integrand around its peak at
r� = s� as follows:(

1 + ξR(r)
)
P(v‖|r) ≈ (

1 + ξR(s)
)
P(v‖|s)

+
∑

n

1

n!
(r‖ − s‖)n

dn

dsn
‖

(
(1 + ξR(s))P(v‖|s)

)
. (21)

This expansion was already used by Fisher (1995), Scoccimarro
(2004), and Bianchi et al. (2015) to obtain the Kaiser limit of the
streaming model. Here, we will show that this is still accurate on
quasi-linear scales.

Inserting equation (21) into equation (6), we find that the deriva-
tives with respect to s� can be taken out of the integral over r�,
together with the real space correlation function, and therefore after
integration we are left with the derivatives of the moments through
the dependency of v� on r�. For the lowest order term on the right-
hand side of equation (21), we find after a change of variables v� =
s� − r�,∫ ∞

−∞
dv‖

(
1 + ξR(s)

)
P(v‖|s) = (

1 + ξR(s)
)
, (22)

whilst for the higher order terms∫ ∞

−∞
dv‖(−1)n

∑
n

1

n!
vn

‖
dn

dsn
‖

(
(1 + ξR(s))P(v‖|s)

)

=
∑

n

(−1)n

n!

dn

dsn
‖

(
(1 + ξR(s))

∫ ∞

−∞
dv‖vn

‖P(v‖|s)

)

=
∑

n

(−1)n

n!

dn

dsn
‖

(
(1 + ξR(s))mn(s)

)
, (23)

where mn denotes the nth order moment about the origin of the
pairwise velocity distribution, which is related to the central moments
through

mn =
n∑

k=0

(
n

k

)
ckm

n−k
1 . (24)

As a result, an approximation to the streaming model is given by

ξS(s⊥, s‖) ≈ ξR(s) +
∑

n

(−1)n

n!

dn

dsn
‖

(
(1 + ξR(s))mn(s)

)
, (25)

where the integral of equation (6) has now been replaced by
derivatives of the pairwise velocity moments evaluated at the redshift
space position, s. Consequently, for large pair separations, where the
above approximation works well, the exact shape of the pairwise
velocity distribution does not affect the clustering, and it is only
the moments of the distribution that influence the redshift space
correlation function. This explains why the Gaussian moments model
works so well in Fig. 6 while the Gaussian ML model, which
describes the integrand better, fails to reproduce the multipoles.

We can use equation (25) to obtain analytical predictions for the
redshift space clustering based on the moments. Up to first-order
terms the resulting expression is simply

ξ (1)(s, μ) ≈ ξ R(s) − dξR(s)

ds
m10(s)μ2

− (
1 + ξR(s)

)(m10(s)

s
(1 − μ2) + dm10(s)

ds
μ2

)
,

(26)

where m10 = m10(s), defined by equation (16), denotes the radial
mean infall. For the multipoles we have

ξ
(1)
0 (s) ≈ ξR − 1

3

dξR

ds
m10 − 1

3

(
1 + ξR

)(
2
m10

s
+ dm10

ds

)
, (27)

ξ
(1)
2 (s) ≈ −2

3

dξR

ds
m10 + 2

3

(
1 + ξR

)(m10

s
− dm10

ds

)
, (28)

ξ
(1)
4 (s) ≈ 0. (29)

For second-order terms, we find

ξ (2)(s, μ) ≈ 1

2

(
d2ξ (s)

ds2
‖

m2(s‖, s⊥) + (1 + ξ (s))
d2m2(s‖, s⊥)

ds2
‖

)

+ dξ (s)

ds‖

dm2(s‖, s⊥)

ds‖
. (30)

Note that the analytical result for the second-order multipoles
includes many more terms than its first-order equivalent. Therefore,
instead of calculating the resulting multipoles analytically, we take
numerical derivatives of moments higher than one in the remainder
of this work.

In what follows we address the question of how accurate the
expansion equation (25) is on small scales, and how the different
moments affect the clustering multipoles. The expansion turns out
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1186 C. Cuesta-Lazaro et al.

to give accurate predictions for the multipoles even on scales of
about 10 h−1Mpc, with the advantage of replacing the integral in
equation (6), which sums up the contributions of the pairwise velocity
distributions on different scales, with a derivative at the scale s under
consideration. Therefore, it converts the non-local relationships
between the redshift and real space correlation functions with the
pairwise velocity PDF, into a local relation between the redshift space
correlation and the derivatives of the pairwise velocity moments and
real space correlation function.

In the next subsection, we will test the accuracy of the expansion
by comparing it to a full streaming model in which we assume the
pairwise velocity distribution is either Gaussian or ST.

4.3 The range of validity of the streaming model expansion

Assessing the exactitude of the Taylor expansion on different scales
is not straightforward, since including higher order terms involves
higher order derivatives of the velocity moments and the real space
correlation function.

As one can see from Fig. 4, on small scales the velocity moments
as functions of pair separation measured from the simulation are
not smooth and their high-order derivatives can be noisy, which will
affect the accuracy of the analytical predictions. Given that our main
objective in this subsection is to test the validity of the expansion
method, to eliminate the impact of such noise, we fit the ingredients of
the Taylor expansion of the streaming model. The fits to the moments
are shown as dotted lines in Fig. 4. For the real space correlation
function, we fit with a simple power law. We then take the fitted curves
as the ‘truth’, and compare the predictions of the Taylor expansion
with two different streaming models in which we can convert the
fitted moments into pairwise velocity distributions. These include a
GSM, to demonstrate why the GSM gives accurate predictions on
quasi-linear scales where the pairwise velocity distribution is highly
non-Gaussian, and an ST model, to show the effect of skewness and
kurtosis in improving the accuracy of the expansion. The Gaussian
distribution has the correct two lowest central moments, whilst the
ST matches the four lowest moments.

We shall not compare the expansion to the simulation measure-
ments directly, since the analytical fitting formulae to the measured
moments already induce at least per cent-level modifications to the
multipoles on small scales. However, this exercise is realistic enough
(both the real space correlation function and the moments have been
fitted to the N-body simulation results) to demonstrate up to which
scale the Taylor expansion method can be used.

Compared with the full streaming model, the Taylor expansion
makes minimal assumptions regarding the pairwise velocity distri-
bution, since it only uses the moments, and removes the integration
over all pair separations in equation (6). For the Gaussian case, the
results of expanding equation (25) up to n = 4 are shown as coloured
lines in Fig. 9. Note that although for a Gaussian distribution the
odd central moments vanish, the odd moments about the origin get
contributions from lower order even central moments, as expressed in
equation (24). Therefore, even orders of the expansion do contribute.
Similarly, while odd central moments higher than the second order
vanish for a Gaussian distribution, mn is non-zero for n > 2. The full
streaming model predictions using the integral in equation (6) and
a Gaussian pairwise velocity distribution are shown as black sold
lines.

In Fig. 9, we see how including only terms up to n = 2 we can
reproduce the monopole to within 1 per cent down to 10 h−1Mpc.
To achieve a comparable accuracy for the quadrupole, however, we
need to add higher order moments up to n = 4. For the hexadecapole,

Figure 9. Accuracy of the Taylor expansion up to fourth order, assuming the
pairwise velocity distribution is Gaussian, compared to the full streaming
model under the same assumptions. Note all the real space ingredients
to the streaming model, the real space correlation function and the two
lowest order pairwise velocity moments, are analytical functions fitted to
the simulation measurements. The yellow shaded region shows one per cent
level agreement between the Taylor expansion and the full streaming model.
The monopole achieves an accuracy better than the one per cent on scales
above 10 h−1Mpc when the expansion is truncated at second order. For the
quadrupole to achieve a similar accuracy, we need to retain up to fourth-order
terms.

we expect the Taylor expansion to be less accurate, because it is
more strongly affected by the finger-of-God effect, which originates
from the very small and non-linear scales on which the Taylor
expansion breaks down. This is confirmed by the fact that in the
lower panel of Fig. 9 there are larger differences between the coloured
and black lines. Nevertheless, we find that for the Gaussian model,
the hexadecapole predicted by the expansion up to fourth order is
accurate to within 3 per cent down to 15 h−1Mpc.
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Figure 10. Same as in Fig. 9, but assuming the pairwise velocity distribution
follows an ST distribution. Compared with a Gaussian distribution, which
has the correct first- and second-order moments, the ST also matches the
skewness and kurtosis. For comparison, we show the Taylor expansion found
assuming the distribution is Gaussian and the fully non-Gaussian result, in
which we include skewness and kurtosis. The effect of the skewness can
therefore be seen as the difference between the orange dashed and orange
solid lines, whilst the effect of the kurtosis is given by the difference between
the green dashed and green solid lines. We find that the effects of the skewness
and kurtosis are particularly important for the quadrupole on small scales.

Finally, since the ST distribution reproduces the measured line-
of-sight velocity distribution with a higher accuracy than a Gaussian
distribution (Fig. 2), we also demonstrate the effect of higher order
moments on the Taylor expansion using an ST model for P . In
Fig. 10, we show both the third- and fourth-order moment expansion
assuming a Gaussian distribution, with zero skewness and fixed
kurtosis shown as dash–dotted lines, and the fully non-Gaussian
moments. Although for the monopole, non-Gaussianity does not
play an important role, adding the skewness extends the 1 per cent

agreement in the quadrupole from scales of around 30 h−1Mpc down
to 20 h−1Mpc. The effect of the fourth-order moment, kurtosis, is im-
portant to extend close agreement even further to about 10 h−1Mpc.
These results are consistent with the findings in Fig. 6, where we find
that the ST model improves the agreement of the quadrupole in the
range 10–30 h−1Mpc.

Note that for the hexadecapole (shown in the bottom panel
of Fig. 10) the Taylor expansion method introduces a substantial
fractional error of > 5 per cent on all scales, even if the fourth-order
corrections are included. This is not surprising because now the
assumed true model – in which the pairwise velocity satisfies an ST
distribution – is more complicated, and because the absolute value
of the hexadecapole is much closer to zero which tends to magnify
the relative error. Nevertheless, we still observe that including higher
order terms brings the expansion prediction closer to the correct
answer. In Fig. 6, the multipoles have been numerically calculated
using the full streaming model of equation (6), rather than the Taylor
expansion, under the assumption of the pairwise velocity PDF being
either Gaussian or ST.

5 SENSI TI VI TY TO THE R EAL SPACE
STREAMI NG MODEL I NGREDI ENTS

In this section, we study the effects of varying the various ingredients
– the real space quantities – needed to predict the redshift space
clustering through the ST streaming model. This will indicate to us
what precision is required for each ingredient in order to make the
final prediction of the multipoles accurate.

In Fig. 11, we show the effects on the multipoles of varying the real
space correlation function (the first row), the mean pairwise velocity
(the second row) and its variance (both in the radial and transverse
components; the last two rows). We have studied the impact of two
types of variations: a constant change by ±5 per cent, or a fractional
change that increases towards smaller pair distances as 1/r, to emulate
the fact that perturbation theory predictions worsen towards small
scales. The latter gradual change is tuned to vary the given function
by ±5 per cent on scales of 5 h−1Mpc and by ±1 per cent on the
scale of 30 h−1Mpc. In this way, we can compare the effect of a
varying slope due to uncertainties in our predictions, which we know
is important since derivatives of the moments appear in the Taylor
expansion equation (25). The fractional changes to the predicted
redshift space monopole, quadrupole and hexadecapole (from left to
right) are respectively shown as orange and blue shaded regions for
the constant and scale-dependent changes.

Varying the real space correlation function by 5 per cent produces
approximately the same fractional change in the monopole. Since
the zeroth order contribution to the quadrupole and hexadecapole
is zero, both the constant and the scale-dependent variations in the
real space correlation function produce a sub-per cent effect on the
quadrupole and hexadecapole on scales larger than 20 h−1Mpc.

The mean pairwise velocity has a stronger effect on both the
quadrupole and hexadecapole. The importance of getting the slope
of the mean right, found in the Taylor expansion, can also be seen in
the blue contours. A change of 1 per cent above 30 h−1Mpc produces
a slightly larger effect on the quadrupole. The monopole, in contrast,
is much less sensitive to variations of the mean pairwise velocity,
and the effect is at the sub-per cent level at s � 10 h−1Mpc for both
variation scenarios.

On the other hand, the hexadecapole is most sensitive to the
radial and transverse standard deviations. Changes of 5 per cent can
produce a change that is twice as large in the hexadecapole.
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Figure 11. The fractional variation in the monopole, quadrupole, and hexadecapole after modifying the real space ingredients of the streaming model. In each
row, we show the effect of varying: the real space correlation function, the mean pairwise velocity, the radial variance of the pairwise velocity and the transverse
variance of the pairwise velocity. Orange contours show the effect of varying each of these quantities by ±5 per cent, while the blue contours vary them by a
percentage that depends on scale and increases with 1/r. On small scales, where perturbation theory predictions degrade, we vary each of the ingredients by a
larger percentage. The variation is tuned to produce a 5 per cent change on scales of 5 h−1Mpc and a 1 per cent one on scales of 30 h−1Mpc. Gray dashed lines
determine 5 and 1 per cent deviations from the true model.

Regarding the third-order moments, we found in the last section
(Fig. 10) that the skewness has at most a per cent-level effect on
the monopole and quadrupole on scales below 30 h−1Mpc. Since its
effect is very small, we do not show the equivalent in Fig. 11. We
find that varying the third-order radial and transverse moments by
50 per cent introduces modifications smaller than 5 per cent on the
quadrupole on small scales.

Finally, the effect of fourth order terms is important on scales
below 20 h−1Mpc. However, we have already shown in the previous
section that setting the fourth-order moments to zero, by assuming
Gaussianity, also gives only a few percentage level corrections to the
quadrupole on small scales (see difference between orange dashed
line and solid green line in Fig. 10).

Therefore, even on small scales, we need to predict most accurately
the lower order moments: the mean and the standard deviation,
particularly the latter, if we want to utilize information contained
in the hexadecapole. We can afford to have a larger margin of error
on the predictions of the higher order moments, and still extend the
validity up to scales of around 10 h−1Mpc.

6 C O N C L U S I O N S A N D D I S C U S S I O N

The new generation of surveys (Amendola et al. 2013; Takada et al.
2014; de Jong et al. 2018; Levi et al. 2019) is going to measure
redshift space clustering of galaxies with unprecedented precision.

To translate the high accuracy of these measurements into tighter
constraints on the cosmological parameters or on possible deviations
from general relativity, we need to improve our theoretical models of
RSD. Within the streaming model of RSD, we need to: (i) improve
the mapping from real to redshift space, i.e. by developing the
modelling of the pairwise velocity distribution including its higher
order moments, (ii) increase the accuracy of the predictions of the
ingredients of the streaming model – the real space correlation
function and the pairwise velocity moments – for given cosmological
parameters. Here, we have focused on the first of these aspects, but
we have also briefly analysed the effects of the second.

In N-body simulations, where the fully non-linear evolution of
collisionless particles is solved, we observe that the distribution of the
pairwise velocities of dark matter haloes is skewed towards negative
velocities, and has broader tails than a Gaussian. Therefore, models
that use Gaussian distributions do not give an accurate description of
the pairwise velocities. We have introduced an extension to the GSM
by using the ST probability distribution for the pairwise velocity.
The parameters of this distribution can be tuned to match the four
lowest order velocity moments measured from simulations. The ST
model describes the simulation measurement of the pairwise velocity
distribution significantly better than a simple Gaussian.

We compare two different methods to find the best-fitting pa-
rameters of the pairwise velocity distribution: maximum likelihood
estimation and the method of moments. Although the results of

MNRAS 498, 1175–1193 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/1175/5881955 by U
niversity of D

urham
 user on 22 O

ctober 2020



Non-Gaussian RSD model 1189

both approaches seem to describe the measured velocity distribution
equally well on large scales, they give very different results for
the redshift space clustering once inserted into the streaming model.
Using the method of moments is crucial for describing all multipoles,
including the small scales. Even though the Gaussian distribution
gives a very poor fit to the measured pairwise velocities distribution,
it can reproduce the true multipoles on quasi-linear scales within the
small statistical errors of our simulations when we tune it to have
the two lowest order moments extracted from the simulations. On
the other hand, the best-fitting Gaussian found by maximizing the
likelihood gives results that are more than five standard deviations
away from the simulation measurement.

The ST model, also using the method of moments, gives predic-
tions for the redshift space multipoles (monopole, quadrupole, and
hexadecapole) that are within the small statistical sampling variance
errors (driven by the simulation volume) down to about 10 h−1Mpc.
On such small scales, the GSM gives predictions that are more than
five standard deviations away from the mean measurement from
simulations. Therefore, the ST model extends the validity of the
streaming model from 30 to 10 h−1Mpc, and gives a more accurate
description of the hexadecapole, which has so far not been used in
analyses that rely on the GSM (e.g. Satpathy et al. 2017; Zarrouk
et al. 2018), due to its poor accuracy.

We have used a Taylor expansion of the integrand to show why
the GSM can reproduce the clustering on quasi-linear scales within
the error bars of the simulation measurement, despite giving a poor
description of the pairwise velocity distribution. At s � 30 h−1Mpc,
only the first- and second-order moments, the mean and the standard
deviation, of the pairwise velocity distribution, are crucial for deter-
mining the monopole and quadrupole of the two-point correlation
function in redshift space.

We have also shown that the Taylor expansion can describe the
non-Gaussian ST streaming model down to smaller scales, of about
10 h−1Mpc, when expanded up to fourth order. The main advantage
of the Taylor expansion is that it replaces the integral of the pairwise
velocities over all scales by a derivative of the moments at the scale
under consideration. It therefore makes no assumptions about the
details of the underlying velocity distribution, and can give analytical
predictions/ for the monopole and quadrupole. However, it cannot
reproduce the hexadecapole as accurately as the full ST streaming
model integral, equation (6), or is it as accurate on smaller scales,
s � 15 h−1Mpc.

The Taylor expansion could be particularly useful to measure
the velocity moments from the observed redshift space multipoles,
as was already proposed by Bianchi et al. (2015), along the line
of previous measurements of the pairwise velocity dispersion (Li
et al. 2006; Loveday et al. 2018). The main difficulty to measure
the pairwise distribution from observations lies in the pair distance
dependence of the moments, imprinted by gravity. We would need
to develop analytical formulae to summarize the pair distance
dependence in a small set of parameters that are valid independently
of the underlying model of gravity. These parameters could then be
inferred from observations of redshift space clustering, by running a
Markov chain Monte Carlo. The direct measurement of the moments
could be a complementary test of gravity to the growth rate, and
it would utilize more information of the full scale dependence of
different gravity models.

Finally, we qualitatively analysed the effects of inaccurate knowl-
edge of the real space correlation function or of the velocity moments
on the predictions of the redshift multipoles. As expected, the
monopole is mainly determined by the real space correlation func-
tion. We have shown that perturbation theory based CLEFT method

(Vlah et al. 2016) produces per cent-level-accuracy predictions of
the real space correlation function. However, to obtain per cent-
level accurate predictions for both the monopole and quadrupole,
we also need similar accuracy for the mean pairwise velocity and
its slope. Fitting the CLEFT predictions, with five free parameters,
we were only able to obtain predictions accurate at the per cent level
for the mean on scales above 35 h−1Mpc. On the other hand, the
hexadecapole is very sensitive to the variance of pairwise velocities,
for which CLEFT is only accurate to one per cent above scales of
about 45 h−1Mpc. Therefore, future efforts to utilize the information
content in the hexadecapole will have to obtain more accurate
theoretical prescriptions for the variance. Per cent level errors on
the prediction of the variance become even larger errors on the
hexadecapole. On scales smaller than 30 h−1Mpc, we also need
predictions for the skewness and kurtosis of pairwise velocities.
However, these do not need to be as accurate: per cent errors on
the skewness and kurtosis have negligible impact on the multipoles.

To summarize, we have developed a streaming model based on
the ST distribution of pairwise velocities, that accurately describes
redshift space clustering on scales larger than 10–15 h−1Mpc, given
the first four moments of the pairwise velocity distribution are known.
In order to improve constraints on the growth rate by using the
ST model, we need to improve the theoretical predictions of the
pairwise velocity moments and its dependency on the cosmological
parameters. In this work, we have focused our analysis on massive
dark matter haloes at redshift zero, and we leave the study of galaxies
at a range of different redshifts to future work.
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A P P E N D I X A : ME T H O D O F M O M E N T S FO R
THE ST D I STRI BUTI ON

The four parameters of the ST distribution (vc, w, α, ν) are
determined by the first four order moments. To simplify the relation
between moments and parameters, we introduce,
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The parameters α and ν are obtained from the last two equations that
determine the skewness and kurtosis of the distribution, these form a
system of non-linearly coupled equations that we solve numerically.
The remaining two parameters, vc and w, can then directly be
obtained from the equation for the mean and the variance.
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APPEN D IX B: ZOOM IN DISTRIBU TIONS

Figure B1. Linear scale representation of the pairwise velocity distribution to highlight the behaviour of the PDF close to its peak. The models shown are the
same one as in Fig. 2. Note that the Edgeworth expansion predicts negavite probabilities for certain pair separations such as (r⊥ = 0.75, r‖ = 5.25) h−1Mpc and
(r⊥ = 5.25, r‖ = 5.25) h−1Mpc, where the skewness is more pronounced. Moreover, an Edgeworth expansion behaves very differently from a Taylor expansion
since it produces an asymptotic expansion, and therefore adding more terms does not guarantee convergence. See Sellentin et al. (2017) for an interesting
discussion on the Edgeworth expansion and its applications to cosmology. In the application of the Edgeworth expansion to the pairwise velocity distribution,
we see that it does not reproduce the N-body measurements as well as the ST distribution does with only one extra parameter.
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A P P E N D I X C : PE RT U R BAT I O N TH E O RY
RE SULTS IN D ETAIL

In this Appendix, we show a detailed summary of the state-of-the-
art CLPT and CLEFT perturbation theory predictions for the GSM
ingredients. Note that we show the predictions for real space statis-
tics, since we want to separately analyse the accuracy of perturbation
theory predicting the ingredients of the streaming model, and the
assumption of a Gaussian pairwise velocity distribution.

The free parameters are found by maximizing the combined
Gaussian likelihood that the simulation measurements are most
probable under the given theory

log(L) = log(Lξ ) + log(Lm10 ) + log(Lc20 ) + log(Lc02 ), (C1)

where the individual likelihoods are given by

log(Ly) = −1

2

∑
i

(yi,measured − yi,model)2

σ 2
i

, (C2)

where y is the mean simulation measurement across the 15 inde-
pendent simulations, and σ its standard deviation. Note that the
covariance matrix is assumed to be diagonal, which means that the
parameter uncertainties obtained from the fit will be underpredicted.
While this assumption will also affect the values of the best-fitting
parameters in detail, we do not expect this to have a qualitative
impact on the relative agreement between the model predictions and
data, which is our main objective here. We maximize the likelihood
in the pair separation range 15 h−1Mpc < r < 150 h−1Mpc and
the resulting mean parameter values are shown in Table C1. We
find a value for the second-order Lagrangian bias b2 that is in
good agreement with previous measurements (Lazeyras et al. 2016),
whereas the tidal bias is rather different from its local Lagrangian
value (bs = 0), which is in contrast with other analyses in the literature
(Abidi & Baldauf 2018; Lazeyras & Schmidt 2018). We also note that
the EFT parameters are the least constrained by our measurements,
which is to be expected as they only have an impact on the small-scale
regime.

In Fig. C1, we show a detailed comparison of the best-fitting
model predictions for the two methods. The second counter-term
introduced in CLEFT improves notably the prediction for the mean
pairwise velocities on scales between 20 and 60 h−1Mpc. Regarding
the second-order moments, the predictions for m20 are similar for

Figure C1. Detatiled comparison of the different predictions for the GSM
ingredients made by CLPT and CLEFT. The top panel shows the ratio of the
predicted two-point correlation function to the measurement in the simulation,
for both CLPT (dotted) and CLEFT (dot–dashed line). The solid yellow bands
mark the one per cent agreement. The middle and bottom panels show the
same comparison for the mean radial velocity, and the second-order radial
and transverse moments.

CLPT and CLEFT, however, since c20 = m20 − m2
10, the variance of

the radial component is influenced by the predictions of the mean.
Coincidentally, the error made by CLPT in the mean improves the
agreement with the variance of the radial component (dotted blue
line in the lowest panel).

Finally, we show the redshift space monopole and quadrupole in
Fig. C2, obtained by combining these predictions with the GSM.
The CLEFT predictions of the monopole and quadrupole are more
accurate than those from CLPT, mainly due to the increased accuracy
in estimating the mean pairwise velocity, which is consistent with
our findings in Section 5. As shown in Section 3.4, on scales smaller
than 30 h−1Mpc it is necessary to include higher order moments to
further improve the accuracy of the predictions. A more detailed
comparison of these different models applied to mock catalogues
that mimic actual data at different redshifts and different halo mass
ranges will be the subject of future work.

Table C1. Perturbation theory parameters for both CLEFT and CLPT. Note that b1, b2, and bs are obtained by expanding the bias
function in Lagrangian space. We show the maximum likelihood estimate and errors representing 1σ deviations in the posterior
distribution of the given parameter.

b1 b2 bs αξ αv σ FoG

CLPT 0.29 ± 0.01 −1.63 ± 0.31 1.80 ± 0.38 - - −17.35 ± 0.15
CLEFT 0.30 ± 0.02 −1.69 ± 0.26 2.16 ± 0.37 −39.58 ± 16.32 90.30 ± 73.68 −17.45 ± 0.28
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Figure C2. Comparison of the GSM predictions for the redshift space monopole and quadrupole, using the real space ingredients predicted by CLPT and
CLEFT. The residuals are plotted as the difference between the model and the simulation in units of the variance calculated across the different independent
simulations. The yellow bands show the 1σ deviation.
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