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ABSTRACT: A novel rearrangement sequence of 3-hydroxyazetidines via a Ritter initiated cascade provides highly 
substituted 2-oxazolines in high yields. The reaction conditions and substrate scope of the transformation have been 
studied demonstrating the generality of the process. The derived products can also be functionalized in order to undergo 
further intramolecular cyclisation leading to a new class of macrocycle. The final cyclisation step was shown to be a 
transformation amenable to continuous flow processing allowing for a dramatic reduction in the reaction time and simple 
scale-up.

INTRODUCTION 

In a recent report, we described the preparation of a range 
of 3-hydroxyazetidines accessed via an efficient 
photochemical Yang reaction processed under flow 
conditions (Scheme 1, 1→2).1 Having successfully 
demonstrated the scope, versatility and scalability of the 
reaction, we were particularly interested in expanding the 
medicinal chemistry value of the compound collection by 
applying simple secondary transformations to conduct 
functional group interconversions. As the starting 
materials 2 all possess a prominent tertiary benzylic 
alcohol, we contrived to replace this group with an amide 
through a Ritter reaction.

Scheme 1. Formation of the 3-hydroxyazetidine via the Yang 
reaction and proposed Ritter reaction. 
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In a simple procedure, the substrate was refluxed in DCM 
(30 min) in the presence of 1 equivalent of sulfuric acid 
and an excess of acetonitrile. Although the reaction 
proceeded smoothly with full consumption of the starting 
material, to our initial surprise, the compound formed was 
a new cyclic, rearranged structure (90% isolated yield) 
which we determined to be a 2-oxazoline derivative 
(Scheme 1, Figure 1).

O

N

4-1

N
H

S
O O

Figure 1. Compound 4-1 isolated from the attempted Ritter 
reaction of 2 (R = Me, for X-ray structure see SI).

To account for its formation, we propose a direct cascade 
sequence which initiates through a standard Ritter 
reaction. The intermediate Ritter amide (hydrolysis re-
incorporates the displaced water from the 3-
hydroxyazetidine) then rapidly undergoes further 
rearrangement; in which the amide carbonyl attacks and 
ring opens the azetidine, driven by the relaxation of the 
ring strain (Scheme 2).

Scheme 2. Proposed mechanism for the rearrangement of 3-
hydroxyazetidines under Ritter type conditions.
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Although this was not our intended transformation, this 
reaction represents a previously unreported and 
interesting rearrangement sequence leading in high yield 
to a set of novel oxazoline scaffolds. Oxazolines are an 
important class of heterocycle being prominent functional 
units in several biologically active molecules 
(antimicrobial,2 anti-inflammatory,3 anti-malarial,4 
antibacterial,5 antitumor,6 anti-viral,7 antipyretic,8 
antituberculotic,9 CNS stimulant activity,10 antioxidant11) 
and several natural products.12 In addition, they have 
found other uses as protective coatings (corrosion 
inhibitors), as additives in gasoline and lube oil, and as 
antifoaming agents.13 However, one of the most common 
uses of oxazolines is in asymmetric catalysis, where chiral 
oxazolines are widely used as ligands.14 Based upon our 
interest in the product structure and the simplicity of the 
reaction sequence, we elected to investigate the generality 
of the transformation which we report in full here.

RESULTS AND DISCUSSION

Optimization: Acid Screening

In an attempt to further optimize the reaction, we 
evaluated a range of acid sources to determine the impact 
on the transformation. Reactions were run with 1 
equivalent of H2SO4, HBF4, CH3SO3H and p-TSA giving 
respectively 90%, 85%, 40% and 35% isolated yield 
(standard 30 min reaction time). It should also be noted 
that substoichiometric quantities of acid gave comparable 
results but required the use of much extended reaction 
times; this was ultimately found to also be detrimental to 
the quality of the crude product which showed more 
decomposition over prolonged reaction times, equating to 
lower isolated yields. Other acids tested, such as acetic 
acid, CF3CO2H, polyphosphoric acid, Eaton’s reagent 
(phosphorus pentoxide - methanesulfonic acid 10:1 wt) 
and camphorsulfonic acid were all completely ineffective, 
with no product being detected (>4 h reaction time), and 
the starting material being fully recovered (Note: we never 
observed the corresponding Ritter intermediate in any of 
these experiments). Attempting to employ a solution of 
HCl·Et2O resulted in the slow formation of the 
corresponding chloro-substituted product 5 (Figure 2). In 
independent experiments, this was shown to exist in 
equilibrium with the parent alcohol. Thus, increasing the 
proportion of HCl over water in the mixture resulted in 
higher quantities of the resultant chloro product 5 being 
detected but never full conversion.

N
Cl

S
O

O
5

Figure 2. Reaction product obtained through treatment 
with hydrochloric acid (see SI for X-ray structure).

Catalysis of the transformation was also attempted 
employing several Lewis acids (1 equiv.), among these 

FeCl3, ZnCl2, AlCl3 and Cu(OTf)2 all failed to promote any 
reaction, whereas BF3·OEt2 initially looked promising 
giving fast early reaction turnover but only giving ~50% 
conversion (38% isolated) as the reaction quickly stalled. 
We suspect that the boron trifluoride becomes rapidly 
deactivated by acting as a dehydrating agent preventing 
the desired reaction. Adding additional amounts of 
BF3·OEt2 (> 2 equiv.) continues to progress the reaction, 
although the reaction mixture become increasingly 
complex with decomposition products.

While the results obtained with H2SO4, CH3SO3H and p-TSA 
can be accounted for by their relative pKa and dehydrating 
effect, the surprising outcome was with HBF4 (48 wt% 
aqueous solution) which gave 85% based upon full 
consumption of the starting material. By contrast, dilution 
of the other acids i.e. H2SO4 with water led to a significant 
drop in reactivity and incomplete (stalled) reaction. This 
seems to confirm the interesting property of the HBF4 
aqueous solution as previously noted by Stutz et al.15 who 
found mixtures of HBF4 (aq.) in acetonitrile was able to 
rapidly cleave acetals, BOC groups and tert-
butyldimethylsilyl ethers within minutes at room 
temperature, and was more effective than many other 
acids/solutions of acids.

In summary, H2SO4 gave the best conversion and yield, 
thus, considering factors like safety, price and availability, 
it remains the best choice of catalyst for the 
transformation. 
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Figure 3. Investigation of substrate scope (Isolated yields).

Optimization: Solvent choice

Our solvent selection for the process was rather restricted 
due to reactivity and the solubility of the substrate and 
product. Chloroform was found to work equally well as 
DCM; ethyl acetate and THF could also be used, but the 
yields were reduced (~5-15%) and accompanied by 
unidentified minor impurities. Other potential solvents, 
such as toluene, xylenes, chlorobenzene and 
trifluorobenzene, were insufficiently solubilizing. 
Interestingly, the effect of reflux temperature between 
DCM and chloroform seemed to offer little advantage with 
both reactions being complete in ~10-12 minutes and 
yielding essentially identical product outcomes.

Substrate scope

Having determined the general reaction conditions, we 
next embarked upon an evaluation of the reaction scope in 
terms of both the azetidine and nitrile components. We 
were pleased to find the reaction proved general allowing 
a range of products to be assembled in good to high yield 
(Figure 3). The rapid rate of reaction (~10 min) and 
relatively mild conditions enabled several different 

functional groups to be tolerated. In each case, the 
progression of the reaction was easily followed by LC-MS.

In general, simple alkyl and aryl nitriles worked well (4-1 – 
4-6). Even basic and acidic containing functionalities 
proved amenable, although isolation involving 
neutralisation of the product mixture was more difficult 
and thus, resulted in lower recoveries (4-10 – 4-12, 4-15 – 
4-18). We also experienced issues with the isolation of 
compound 4-12, which was produced as a mixed salt; 
additional optimisation beyond the proof of concept on 
this substrate was not performed. Finally, compound 4-18 
could be isolated but required the use of excess acid as the 
hydration of the alkene competes with the protonation of 
the azetidine alcohol required for the carbocation 
formation (Scheme 3). As such, when only 1 equivalent of 
acid was used, a complex mixture of the alkene 6, alcohol 
starting material 2 and the corresponding mixed hydrated 
products (4-18, 4-19) was obtained. Whereas with an 
excess of acid (2.3 equiv.) selective conversion of the 
starting material to compound 4-18 in a respectable 81% 
isolated yield was achieved.

Scheme 3. Cascade sequence forming hydrated compound 4-
18 (Product conversions were determined using an internal 
standard on the crude reaction mixtures).
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Considering the positive results obtained, we considered 
the possibility of preparing dyad molecules through double 
addition to bis-nitrile precursors. These compounds were 
of general interest as potential ligands; as indicated in the 
introduction oxazoline are excellent metal binders and 
chelating systems possessing chirality would be of 
additional significance. Starting with 1,3-dicyanobenzene 
and using 2 equivalents of the azetidine (2, R= Me), we 
were initially surprised that no product from the double 
addition was detected. Instead, only a low yield (35%) of 
the mono oxazolidine 4-8 was produced. However, when 
observing a repeat reaction more closely, we attributed 
this to the poor solubility of the starting nitrile and its 
resulting single addition adduct 4-8, which seemed to 
immediately precipitate upon formation. Overall, the 
limited dissolution resulted in poor mixing and ineffective 
reaction. Unfortunately, the use of DMF added to help 
solubilize the starting materials completely shut down the 
reaction, presumably by attenuating the pH. Other solvents 
or additives also failed to improve the situation.
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We therefore selected a more soluble bis-nitrile starting 
material, glutaronitrile, which was subjected to the same 
reaction conditions. In this case, we successfully isolated 
from the reaction, 3 compounds; the meso 4-20 and 
racemic 4-21 diastereoisomers, confirmed by X-ray 
analysis along with the corresponding mono substituted 
oxazolidine 4-22 (Figure 4). These were formed in a ratio 
of 1:1:1.1, respectively, as determined by 1H NMR analysis 
of the crude reaction mixture. 
Ph

HN
O

N

O

N Ph

NH
O

N Ph

NHNTs Ts

Ph

HN
O

N

O

N Ph

NHTs Ts Ts
4-20 (20%) 4-21 (20%) 4-22 (22%)

Figure 4 Reaction products of 1,3-dicyanopropane (glutaronitrile) 
with 3-hydroxazetidine 2 (R = Me) forming dyad molecules. X-
ray images of 4-20 (left) and 4-21 (right)(Atomic 
displacement ellipsoids are drawn at the 50% probability 
level, for further X-ray data see SI). 

The two dyads possess very different and interesting solid 
state and solution interactions, which due to their 
interesting structures and potential uses in 
supramolecular and materials chemistry we decided to 
explore them further. As can be seen from the single 
crystal X-ray representations (Figure 4), the racemic 
structure 4-21, forms a set of complementary hydrogen 
bonds creating a tight dimeric pairing (oxazole to 
sulfonamide NH linkage). This interaction seems to also be 
observed in solution as evidenced by the 1H NMR, where 
the NH signals appear at a high chemical shift of 9.17 ppm 
(2H, CDCl3). This same synergistic interaction is absent in 
the meso compound 4-20, instead only a single 
intramolecular hydrogen bond occurs, a bridging H-
bonding methanol molecule helps form a secondary 
interaction in the solid-state structure (Figure 5, For full X-
ray data see SI). 

Figure 5. X-ray image of meso compound 4-20 showing the 
additional solvent (MeOH) H-bonding interaction, atomic 
displacement ellipsoids are drawn at the 50% probability 
level. 

The corresponding 1H NMR solution state NH signals of 4-
20 gives rise to a much lower resonance at 7.06 ppm (2H, 
CDCl3). This data is consistent with compound 4-20 

adopting a weaker set of hydrogen bond interactions. 
Indeed, this trend is completed when it is compared to the 
monomer 4-22 which shows a NH signal at 5.21 ppm 
(indicative of no H-bonding), this is also fully consistent 
with the other mono-oxaxole structures (Figure 3), NH 
signal range 5-6.5 ppm). We therefore hypothesis that 
structure 4-20 is unable to hydrogen bond as tightly as 4-
21 due to its mismatching stereochemistry (easily seen by 
comparing the X-ray forms, Figure 4) and as such adopts in 
solution a more dynamic structure allowing rapid 
exchange between the two sets of H-bonding sulfonamide 
and oxazole (equating to an average NH signal). This 
exchange process is potentially assisted by the presence of 
small H-bonding solvent molecules. This is exemplified 
when using extensively dried NMR solvent (CDCl3). The 
recorded spectra of 4-20 gives broad and poorly resolved 
signals, yet with the addition of a H-donor/acceptor 
molecule i.e. H2O or MeOH the signals immediately 
sharpen giving well defined patterns and coupling. We take 
this as an indication of a faster exchange process in the 
presence of the H-bonding capable molecule. In 
comparison, no effect is seen in the 1H NMR for structures 
4-21 or 4-22.

Investigating Alternative Nucleophiles 

Having established that the azetidine ring can be readily 
opened in an intramolecular process, we considered the 
possibility of creating other related cascades involving for 
example, an aromatic ring acting as the nucleophile 
(Scheme 4, compound 7 – 10). We note that after this work 
had been performed, we became aware of an 
intramolecular by-product reported by Denis et al. which 
gives precedent to this type of ring opening in a similar 
context.16 

Scheme 4. Products 7 – 10 obtained from using the use of 
aromatic nucleophiles.
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Initial success was immediately achieved using 3- and 4-
methoxyphenol, which each gave the rearrangement 
product as determined by NMR and later confirmed by 
single crystal X-ray analysis for compound 7. However, 
when the alternative 3- and 4-methoxythiophenol was 
used, the azetidine was converted to the intermediate 
substitution product, but the secondary cyclisation was not 
observed, even after prolonged reaction times. We 
eventually managed to obtain an X-ray crystal structure of 
compound 9 (see SI for X-ray data) which clearly shows 
the long C-S bonds (C2/S2 1.825 & S2/C18 1.779 Å), this 
makes it impossible to adopt the correct alignment with 
sufficient orbital overlap between C23 – C1/C3 for the ring 
opening to occur. Considering the different aspects of the 
reaction we also speculatively attempted the reaction with 
the equivalent 3-/4-methoxy anilines but unfortunately no 
reaction was observed using either 0.5, 1 or 2 equivalents 
of acid catalyst. 

Further Intramolecular Reactions
In our initial substrate scope experiments, we had shown it 
was feasible to carry a bromide appendage on the nitrile 
component, compound 4-9. In addition, we explored the 
tosylamide nucleophilicity, which we expected to be good 
due to the high degree of sp3 character suggested both by 
looking at the x-ray structure (Figure 1) and at the 1H-NMR 
NH shift and J values (NH coupling with the vicinal CH2). To 
experimentally confirm the nucleophilic reactivity, we 
performed a displacement reaction on 2-bromo-1-(4-
bromophenyl) ethanone (Scheme 5).

Scheme 5. Identification of N-nucleophilicity in the formation 
of compound 11. The reaction yield was not optimised.
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These observations and preliminary results led us to 
explore the use of nitrile precursors which would result in 
products containing residual alkyl halide chains generated 
from the Ritter cascade (Figure 6). Our proposal was that 
these could then enable an intramolecular substitution 
reaction furnishing very interesting bicyclic products.
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Figure 6. Products of the azetidine rearrangement prepared 
with pendant alkyl bromide side chains.

We successfully prepared a series of suitable starting 
materials (4-23 – 4-27, Figure 6) using the previously 
described methodology with good isolated yields. These 
were then treated with K2CO3 under reflux in acetonitrile 
(36 h) to generate new cyclised compounds 14-1 – 14-5 
(Figure 7). The structure of 14-2, 14-3, 14-5 was 
confirmed by X-ray analysis (see SI for X-ray data). To our 
knowledge, this type of oxazoline bridge head system has 
never been reported to date. 
The isolated yields of these macrocyclic compounds can be 
rationalised by considering both the change in ring size 
(ring strain) and the increasing length of the linking tether 
in terms of the statistical likelihood of the cyclisation. 
Hence, due to the smaller ring size, 14-1, a 10 membered 
ring, is a more strained structure (leads to a lower yield); 
whereas formation of the 15 membered ring, 14-5, is 
kinetically less favoured, again resulting in a lower yield. 
Overall, this series of products represents a further 
intriguing structural diversification of the parent 
oxazolines 4 via very simple chemical manipulations.
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Figure 7. Intramolecular cyclization products 14-1 – 14-5.

Development of a Continuous Process 
As these macrocyclic compounds were of particular 
interest as novel molecular entities, we wished to scale up 
their synthesis in order to access greater quantities of 
material for biological investigation. Therefore, the same 
intramolecular cyclizations were also attempted in flow 
where the enclosed reactor would allow higher reaction 
temperatures to be achieved to promote potentially faster 
reactions.17

The reactions were performed using a Vapourtec-E series 
flow reactor system18 fitted with a packed column reactor 
containing K2CO3 (Figure 8). The use of a back-pressure 
regulator (100 psi) allowed the reaction temperature to be 
increased to 130 °C without changing the solvent 
(acetonitrile). The reaction was carried out by directing a 
flow stream of the starting alkyl halide (4-23 – 4-27) stock 
solution at a concentration of 0.1 M through the packed 
column at rate of 400 L min-1. Notably under these 
conditions, equitable yields were obtained whilst reducing 
the reaction time from 36 h to 1.5 h. This enables easy 
access to gram quantities of the products with a 
productivity of 772 mg h-1 (14-3, 72% yield), and the 
ability to produce 5 g in a standard 8 h working day even 
taking into account reactor set-up, priming, washing and 
shutdown. 
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Figure 8. Flow reactor set up used for scale up of products 
14-1– 14-5. 

 CONCLUSION
We have shown a novel and general Ritter based cascade 
involving the condensation of a nitrile and a 3-
hydroxyazetidine leading to the formation of new 2-
oxazoline scaffolds. The cascade can also be exploited 
using other nucleophilic components such as phenols, 
which indicates additional bifunctional nucleophiles may 
also be viable. In addition, we have shown that specific 
alkyl bromide substituted 2-oxazolines prepared using this 
methodology can be further cyclised in an intramolecular 
process to create unique bicyclic heterocycles. 

 EXPERIMENTAL SECTION
General procedure for the rearrangement: To a solution 
of 3-hydroxyazetidine (3.15 mmol) in DCM (10 mL), was 
added 1 equiv. of H2SO4 dropwise, followed by 1 equiv. of 
nitrile (6 equiv. when the nitrile was acetonitrile) 
dissolved in DCM (3 mL). The reaction was refluxed and 
monitored by GC/LC-mass spectra. Upon complete 
disappearance of the starting material, the mixture was 
neutralised with an excess of sat. aq. Na2CO3, and the 
mixture was extracted with EtOAc, washed with brine, 
dried over Na2SO4, filtered and the solvent evaporated 
under reduced pressure. The resulting material was 
purified by chromatography column (typically with a 
mixture of hexane: EtOAc).

General flow procedure: A stock solution was prepared 
from the appropriate alkyl halide (2 mmol, 4-23 – 4-27) 
are dissolved in acetonitrile (0.1 M). The solution was 
pumped at a flow rate of 400 μL min-1 through a 100 x 6.6 
mm packed column reactor (4.10 mL) filled with K2CO3 
and equipped with adjustable end pieces. A 100 psi back 
pressure regulator was added to the outlet line and the 
column reactor heated in the Vapourtec E2 column heater 
at 130 °C. The acetonitrile was removed by evaporation, the 
residue was dissolved in EtOAc, washed with water, brine 
and dried over Na2SO4. After evaporation the resulting 
material was purified by chromatography column (hexane 
EtOAc).

X-Ray crystals: The sample for X-ray analysis have been 
obtained by crystallization in EtOAc/Hexane 

Starting materials for compounds 4-15, 4-17 and 4-18 
were available to this project having previously been 
synthetized in our group.19-21

3-chloro-1-[(4-methylphenyl)sulfonyl]-3-4phenyl-
azetidine

Methanesulfonyl chloride (1.5 mL). was added, dropwise, 
to a solution of 3 3-(4-methyl)-1-tosylazetidin-3-ol (4.0 g) 
and N,N-diisopropylethylamine (3.5 mL) in DCM (100 mL) 
at 0 °C The mixture was stirred at 0 °C for 7 hrs and then to 
room temperature overnight. The resulting mixture was 
washed with water and brine, dried over Na2SO4 and 
concentrated in vacuo. 

IR ν= 1493 (m), 1330 (s), 1312 (s), 1185 (m), 1150 (s), 
1049 (s), 1147 (s), 1090 (s), 813 (s), 829 (s), 675 (s); 
Melting point: 100-102 °C (crystallised from EtOAc: 
hexane); HR-MS: calculated for C17H19ClNO2S 336.0825, 
found 338.0831 (Δ = 0.6 mDa).

4-methyl-N-((2-methyl-4-phenyl-4,5-dihydrooxazol-4-
yl)methyl)benzenesulfonamide (4-1).

Product obtained as Yellow oil (0.976 g, 90%). 1H NMR 
(CDCl3, 400 MHz,): δ 7.65 (d, J = 8.3 Hz, 2H), 7.32 – 7.18 (m, 
9H), 5.53 (dd, J = 9.1, 4.6 Hz, 1H), 4.78 (d, 1H, J = 8.5 Hz), 
4.31 (d, 1H, J = 8.5 Hz), 3.27 (dd, 1H, J = 12.8, 9.1 Hz,), 3.02 
(dd, 1H, J = 12.8, 4.6 Hz,), 2.38 (s, 3H), 2.10 (s, 3H). 13C{1H} 
NMR (CDCl3, 101 MHz): δ 167.3 (C), 143.8 (C), 143.5 (C), 
137.0 (C), 129.8 (CH), 128.8 (CH), 127.7 (CH), 127.02 (CH), 
125.5 (CH), 75.9 (C), 75.8 (CH2), 51.7 (CH2), 21.5 (CH3), 
14.1 (CH3). IR: (neat) ν = 3282 (w), 1737 (m), 1696 (m), 
1648 (m), 1359 (m), 1219 (m), 1211 (s), 1024 (m), 914 
(m), 721 (m), 701 (m), 651 (m), 590 (s), 542 (s). HRMS 
(ESI) m/z: [M + H]+ calcd for C18H21N2O3S, 345.1273; found, 
345.1281.

4-methyl-N-((2-methyl-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)benzenesulfonamide (4-2).

Product obtained as White solid (1.016 g, 90%). m.p. = 
120-122 °C. 1H NMR (CDCl3, 400 MHz): δ 7.66 (d, 2H, J = 8.0 
Hz), 7.19 (d, 2H, J = 8.0 Hz), 7.10 – 7.01 (m, 4H), 6.57 (dd, 
1H, J = 9.0, 4.8 Hz), 4.84 (d, 1H, J = 8.5 Hz), 4.28 (d, 1H, J = 
8.5 Hz), 3.28 (dd, 1H, J = 13.2, 9.0 Hz), 2.98 (dd, 1H, J = 
13.2, 4.8 Hz), 2.38 (s, 3H), 2.30 (s, 3H), 2.11 (s, 3H). 13C{1H} 
NMR (CDCl3, 101 MHz): δ 167.3 (C), 143.1 (C), 140.8 (C), 
137.3 (C), 137.2 (C), 129.7 (CH), 129.3 (CH), 126.8 (CH), 
125.3 (CH), 75.7 (CH2), 75.8 (C), 51.1 (CH2), 21.5 (CH3), 
20.7 (CH3), 13.8 (CH3). IR: (neat) ν = 3468 (w), 2961 (w), 
1330 (s), 1180 (m), 1147 (s), 1088 (m), 814 (s), 677 (s), 
516 (s). HRMS (ESI) m/z: [M + H]+ calcd for C19H23N2O3S, 
359.1429; found, 359.1424. 

4-methyl-N-((2-methyl-4-(thiophen-2-yl)-4,5-
dihydrooxazol-4-yl)methyl)benzenesulfonamide (4-3).

Product isolated via column chromatography 
(Hexane:EtOAc = 8:2 v/v) as Yellow oil (0.827 g , 75%). 1H 
NMR (CDCl3, 400 MHz): δ 7.67 (d, 2H, J = 8.4 Hz), 7.23 (d, 
2H, J = 8.4 Hz), 7.17 (dd, 1H, J = 5.1, 1.2 Hz), 6.93 (dd, 1H, J 
= 5.1, 3.6 Hz), 6.83 (dd, 1H, J = 3.6, 1.2 Hz), 5.86 (dd, 1H, J = 
9.0, 4.9 Hz), 4.79 (d, 1H, J = 8.6 Hz), 4.37 (d, 1H, J = 8.6 Hz), 
3.30 (dd, 1H, J = 13.0, 9.0 Hz), 3.15 (dd, 1H, J = 13.0, 4.9 
Hz), 2.39 (s, 3H), 2.09 (s, 3H).13C{1H} NMR (CDCl3, 101 
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MHz): δ 168.2 (C), 147.6 (C), 143.5 (C), 137.0 (C), 129.8 
(CH), 127.2 (CH), 127.0 (CH), 124.7 (CH), 122.8 (CH), 76.2 
(CH2), 74.0 (C), 51.1 (CH2), 21.5 (CH3), 13.9 (CH3). IR: 
(neat) ν = 2923 (w), 1656 (m), 1327 (s), 1156 (s), 1089 (s), 
813 (m), 752 (m), 659 (s), 549 (s). HRMS (ESI) m/z: [M + 
H]+ calcd for C16H19N2O3S2, 351.0837; found, 351.0825.

N-((4-([1,1'-biphenyl]-4-yl)-2-methyl-4,5-dihydrooxazol-
4-yl)methyl)-4-methylbenzenesulfonamide (4-4).

Product isolated via column chromatography 
(Hexane:EtOAc = 7:3 v/v) as Pale Yellow oil (1.099 g, 
83%). 1H NMR (CDCl3, 400 MHz): δ 7.68 (d, J = 8.3 Hz, 2H), 
7.57 – 7.52 (m, 4H), 7.44 (t, 2H, J = 7.5 Hz), 7.38 – 7.34 (m, 
3H), 7.24 (d, 2H, J = 8.2 Hz), 5.41 (s, 1H), 4.96 (d, 2H, J = 8.7 
Hz), 4.49 (d, 2H, J = 8.7 Hz), 3.31 (dd, 1H, J = 13.1, 9.0 Hz), 
3.17 (dd, 1H, J = 13.1, 4.9 Hz) 2.37 (s, 3H), 2.23 (s, 3H). 
13C{1H} NMR (CDCl3, 101 MHz): δ 143.7 (C), 141.1 (C), 
140.3 (C), 136.8 (C), 129.9 (CH), 129.8 (C), 128.9 (CH), 
128.4 (C), 127.7 (CH), 127.1 (CH), 127.0 (CH), 127.0 (CH), 
125.9 (CH), 77.0 (CH2), 75.1 (C), 51.5 (CH2), 21.6 (CH3), 
14.2 (CH3). IR: (neat) ν = 2981 (w), 1744 (m), 1233 m), 
1158 (s), 1050 (m), 908 (m), 730 (s), 697 (m), 549 (m). 
HRMS (ESI) m/z: [M + H]+ calcd for C24H25N2O3S, 421.1586; 
found, 421.1581.

N-((4-(4-chlorophenyl)-2-propyl-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-5).

Product isolated via column chromatography 
(Hexane:EtOAc = 7:3 v/v) as Colourless oil (1.025 g, 80%). 
1H NMR (CDCl3, 400 MHz): δ 7.62 (d, J = 8.4 Hz, 2H), 7.23 – 
7.12 (m, 6H), 5.58 (dd, 1H, J = 8.5, 5.1 Hz), 4.69 (d, 1H, J = 
8.6 Hz), 4.19 (d, 1H, J = 8.6 Hz), 3.22 (dd, 1H, J = 12.8, 8.5 
Hz), 3.02 (dd, 1H, J = 12.8, 5.1 Hz), 2.37 (s, 3H), 2.40 – 2.22 
(m, 2H), 1.66 (h, 2H, J = 7.0 Hz), 0.95 (t, 3H, J = 7.0 Hz). 
13C{1H} NMR (CDCl3, 101 MHz): δ 170.3 (C), 143.4 (C), 
142.3 (C), 136.9 (C), 133.3 (C), 129.7 (CH), 128.7 (CH), 
126.9 (CH), 126.8 (CH), 75.5 (CH2), 75.3 (C), 51.5 (CH2), 
29.9 (CH2), 21.5 (CH3), 19.6 (CH2), 13.7 (CH3). IR: (neat) ν = 
2930 (w), 1630 (m), 1337 (m), 1170 (s), 1097 (s), 811 (s), 
648 (s), 553 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C20H24ClN2O3S, 407.1184; found, 407.1196. 

N-((2,4-di-p-tolyl-4,5-dihydrooxazol-4-yl)methyl)-4-
methylbenzenesulfonamide (4-6).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as white solid (1.190 g, 87%). 1H 
NMR (CDCl3, 400 MHz): δ 7.90 (d, 2H, J = 8.2 Hz), 7.66 (d, 
2H, J = 8.2 Hz), 7.31 – 7.21 (m, 6H), 7.15 (d, 2H, J = 7.9 Hz), 
4.96 (dd, 1H, J = 9.1, 4.5 Hz), 4.88 (d, 1H, J = 8.4 Hz), 4.46 
(d, 1H, J = 8.4 Hz), 3.39 (dd, 1H, J = 12.6, 9.1 Hz), 3.22 (dd, 
1H, J = 12.6, 4.5 Hz), 2.43 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H). 
13C{1H} NMR (CDCl3, 101 MHz): δ 163.7 (C), 143.4 (C), 
142.5 (C), 140.2 (C), 138.5 (C), 136.7 (C), 129.7 (CH), 
129.46 (CH), 129.1 (CH), 128.7 (CH), 127.0 (CH), 125.5 
(CH), 124.2 (C), 76.0 (CH2), 75.7 (C), 51.7 (CH2), 21.7 (CH3), 
21.5 (CH3), 21.1 (CH3). IR: (neat) ν = 2981 (w), 1639 (s), 
1328 (s), 1158 (s), 1088 (s), 1075 (s), 891 (s), 658 (s), 547 
(s). HRMS (ESI) m/z: [M + H]+ calcd for C25H26N2O3S, 
435.1742l; found, 435.1737.

N-((4-(4-chlorophenyl)-2-(4-(trifluoromethyl)phenyl)-4,5-
dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide 
(4-7).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (1.077 g, 70%). 
1H NMR (CDCl3, 400 MHz): δ 8.07 (d, 2H, J = 8.1 Hz), 7.62 
(m, 4H), 7.24 (d, 2H, J = 8.1 Hz), 7.16 (m, 4H), 5.30 (dd, 1H, 
J = 9.4, 4.6 Hz), 4.95 (d, 1H, J = 8.5 Hz), 4.50 (d, 1H, J = 8.5 
Hz), 3.37 (dd, 1H, J = 12.8, 9.4 Hz), 3.17 (dd, 1H, J = 12.8, 
4.6 Hz), 2.37 (s, 3H), 2.32 (s, 3H). 13C{1H} NMR (CDCl3, 101 
MHz): δ 164.0 (C), 143.6 (C), 140.5 (C), 137.7 (C), 136.7 
(C), 133.5 (q, J = 32.5 Hz, C), 130.5 (C), 129.8 (CH), 129.62 
(CH), 129.1 (CH),  127.0 (q, J = 207.1 Hz, C),127.0 (CH), 
125.4 (q, J = 3.81 Hz, CH), 76.3 (CH), 76.2 (C), 51.9 (CH2), 
21.6 (CH3), 21.16 (CH3). IR (neat)  = 3267 (w), 2982 (w), 
1649 (m), 1321 (s), 1160 (s), 1073 (s), 1090 (s), 853 (m), 
730 (s), 510 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C25H24F3N2O3S, 489.1503; found, 489.1505.

N-((2-(3-cyanophenyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-8).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as white solid (0.491 g, 35%). 
m.p. = 217-220 °C. 1H NMR (DMSO-d6, 400 MHz): δ 8.15 (d, 
1H, J = 8.3 Hz), 7.84 (t, 1H, J = 6.9 Hz), 7.67 (d, 3H, J = 7.7 
Hz), 7.30 (d, 5H, J = 7.7 Hz), 7.15 (d, 2H, J = 7.7 Hz), 4.97 (d, 
1H, J = 8.4 Hz), 4.44 (d, 1H, J = 8.4 Hz), 3.13 (dd, 1H, J = 
13.4, 7.9 Hz), 2.98 (dd, 1H, J = 13.4, 5.9 Hz), 2.30 (s, 3H), 
2.25 (s, 3H). 13C{1H} NMR (DMSO-d6, 101 MHz): δ 162.2 (C), 
142.6 (C), 141.0 (C), 137.7 (C), 136.8 (CH), 136.5 (C), 136.1 
(CH), 131.3 (CH), 130.7 (CH), 129.5 (CH), 129.1 (CH), 127.6 
(C), 126.5 (CH), 125.7 (CH), 117.2 (C), 112.8 (C), 76.4(C), 
75.1 (CH2), 52.1 (CH2), 20.9 (CH3), 20.6 (CH3). IR (neat)  = 
2979 (w), 1633 (m), 1591 (s), 1328 (m), 1156 (s), 1088 
(s), 1071 (m), 810 (s), 703 (m), 659 (s), 562 (m), 548 (s). 
HRMS (ESI) m/z: [M + H]+ calcd for C25H24N3O3S, 446.1538; 
found, 446.1530.

N-((2-(4-(2-bromoacetyl)phenyl)-4-(4-chlorophenyl)-4,5-
dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide 
(4-9).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as pale yellow crystals (1.203 g, 
68%). m.p. = 120-122 °C. 1H NMR (CDCl3, 400 MHz): δ 8.04 
(d, 2H, J = 8.0 Hz), 7.95 (d, 2H, J = 8.0 Hz), 7.58 (d, 2H, J = 
7.9 Hz), 7.19 (d, 2H, J = 7.9 Hz), 5.18 (dd, 2H, J = 8.7, 5.0 
Hz), 4.90 (d, 2H, J = 8.7 Hz), 4.43 (m, 3H), 3.31 (dd, 1H, J = 
12.8, 8.7 Hz), 3.17 (dd, 1H, J = 12.8, 5.0 Hz), 2.37 (s, 3H). 
13C{1H} NMR (CDCl3, 101 MHz): δ 191.6 (C), 164.2 (C), 
143.7 (C), 141.9 (C), 136.6 (C), 136.3 (C), 133.8 (C), 131.6 
(C), 129.8 (CH), 129.1 (CH), 128.9 (CH), 128.9 (CH), 127.1 
(CH), 126.9 (CH), 76.2 (CH2), 76.1 (C), 49.8 (CH2), 30.8 
(CH2), 22.7 (CH3). IR (neat)  = 3302 (w), 1694 (m), 1642 
(m), 1312 (m), 1151 (s), 1088 (s), 834 (s), 814 (s), 654 (s), 
546 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C25H23N2O4

79BrS35Cl, 561.0250; found, 561.0236. 
N-((4-(4-chlorophenyl)-2-(4-(2-
(methyl(phenyl)amino)ethyl)phenyl)-4,5-dihydrooxazol-
4-yl)methyl)-4-methylbenzenesulfonamide (4-10).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 8:2 v/v) as Yellow oil (1.204 g, 65%). 1H 
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NMR (CDCl3, 700 MHz): δ 8.09 (d, 2H, J = 8.4 Hz), 8.01 (d, 
2H, J = 8.4 Hz), 7.62 (d, 2H, J = 8.3 Hz), 7.29 (s, 4H), 7.25 – 
7.20 (m, 4H), 6.75 (tt, 1H, J = 7.6, 1.0 Hz), 6.69 (d, 2H, J = 
7.6 Hz), 4.91 (d, 1H, J = 8.4 Hz), 4.81 – 4.78 (m, 3H), 4.47 (d, 
1H, J = 8.4 Hz), 3.34 (dd, 1H, J = 12.8, 8.6 Hz), 3.21 (dd, 1H, J 
= 12.8, 5.1 Hz), 3.11 (s, 3H), 2.40 (s, 3H). 13C{1H} NMR 
(CDCl3, 176 MHz): δ 196.4 (C), 164.4 (C), 149.1 (C), 143.8 
(C), 141.9 (C), 138.0 (C), 136.8 (C), 133.9 (C), 131.3 (C), 
129.9 (CH), 129.4 (CH), 129.2 (CH), 129.0 (CH), 127.9 (CH), 
127.2 (CH), 127.0 (CH), 117.5 (CH), 112.5 (CH), 76.2 (C), 
76.2 (CH2), 59.4 (CH2), 51.9 (CH2), 39.7 (CH3), 21.6 (CH3). 
IR: (neat) ν = 1697 (s), 1647 (m), 1331 (m), 1159 (s), 1089 
(s), 812 (m), 744 (m), 660 (m), 546 (s). HRMS (ESI) m/z: 
[M + H]+ calcd for C32H31N3O4S35Cl, 588.1724; found, 
588.1714.

N-((2-(1H-pyrrol-2-yl)-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-11).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 8:2 v/v as Yellow oil (0.748 g, 58%). 1H 
NMR (CDCl3, 400 MHz): δ 10.02 (s, 1H), 7.53 (d, 2H, J = 8.0 
Hz), 7.16 (d, 2H, J = 8.0 Hz), 7.08 (d, 2H, J = 8.0 Hz), 7.05 – 
6.95 (m, 3H), 6.50 (s, 1H), 6.16 (s, 1H), 4.91 (d, 1H, J = 8.4 
Hz), 4.28 (d, 1H, J = 8.4 Hz), 3.54 (dd, 1H, J = 13.4, 9.6 Hz), 
3.03 (dd, 1H, J = 13.4, 4.0 Hz), 2.32 (ap. s, 6H). 13C{1H} NMR 
(CDCl3, 101 MHz): δ 160.8 (C), 143.2 (C), 141.0 (C), 137.5 
(C), 136.9 (C), 129.7 (CH), 129.5 (CH), 126.8 (CH), 125.5 
(CH), 123.0 (CH), 118.6 (C), 114.7 (CH), 110.1 (CH), 75.9 
(CH2), 75.3 (C), 52.6 (CH2), 21.5 (CH3), 21.1 (CH3). IR: 
(neat) ν = 3333 (w), 1640 (s), 1429 (m), 1307 (m), 1155 
(s), 1087 (m), 985 (m), 813 (s), 738 (s), 660 (s), 547(s). 
HRMS (ESI) m/z: [M + H]+ calcd for C22H24N3O3S, 410.1538; 
found 410.1542.

1-((4-(4-chlorophenyl)-4-((4-
methylphenylsulfonamido)methyl)-4,5-dihydrooxazol-2-
yl)methyl)pyridin-1-ium salt (4-12).

Product isolated by crystallization  from Hexane:EtOAc as 
white solid (0.547 g, 38%). m.p. = 227-230 °C. 1H NMR 
(CD3OD , 400 MHz): δ 8.92 (d, 2H, J = 6.0 Hz), 8.64 (t, 1H, J = 
7.9 Hz), 8.14 (t, 2H, J = 7.0 Hz), 7.70 (d, 2H, J = 7.9 Hz), 7.35 
(m, 6H), 5.62 (s, 2H), 3.98 (d, 1H, J = 11.1 Hz), 3.88 (d, 1H, J 
= 11.1 Hz), 3.55 (q, 1H, J = 13.8 Hz), 2.44 (s, 3H). 13C{1H} 
NMR (CD3OD, 101 MHz): δ 156.2 (C), 138.1 (CH), 138.0 
(CH), 135.4 (C), 130.5 (C), 129.1(C), 124.5(C), 121.3 (CH), 
119.8 (CH), 119.5 (CH), 119.3 (CH), 118.5 (CH), 56.6 (CH2), 
54.7 (C), 53.9 (CH2), 36.3 (CH2), 11.9 (CH3). IR: (neat) ν = 
2982 (w), 1700 (m), 1493 (m), 1154 (s), 1010 (s), 548 (s). 
HRMS (ESI) m/z: [M + H2O] calcd for C23H25N3O4S35Cl, 
474.1254; found, 474.1247.

4-methyl-N-((2-(thiophen-2-yl)-4-(p-tolyl)-4,5-
dihydrooxazol-4-yl)methyl)benzenesulfonamide (4-13).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as yellow oil (1,048 g, 78%). m.p. 
= 130-133 °C. 1H NMR (CDCl3, 400 MHz): δ 7.65 (m, 3H), 
7.50 (d, J = 5.0 Hz, 1H), 7.29 – 7.19 (m, 4H), 7.19 – 7.07 (m, 
3H), 4.87 (d, 2H, J = 8.3 Hz), 4.46 (d, 1H, J = 8.3 Hz), 3.37 
(dd, 1H, J = 12.6, 9.3 Hz), 3.17 (dd, 1H, J = 12.6, 4.4 Hz), 
2.38 (s, 3H), 2.32 (s, 3H). 13C NMR (CDCl3, 101 MHz): δ 
161.0 (C), 143.5 (C), 140.7 (C), 137.5 (C), 136.7 (C), 131.5 
(CH), 130.7 (CH), 129.8 (CH), 129.5 (C), 129.5 (CH), 127.8 
(CH), 127.0 (CH), 125.5 (CH), 76.4 (CH2), 76.1 (C), 51.6 

(CH2), 21.6 (CH3), 21.1 (CH3). IR: (neat) ν = 3056 (w), 1635 
(s), 1326 (s), 1159 (s), 1084 (s), 813 (s), 727 (s), 714 (s), 
659 (s), 548 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C22H23N2O3S2, 427.1107; found, 427.1112. 

4-methyl-N-((2-(thiophen-2-ylmethyl)-4-(p-tolyl)-4,5-
dihydrooxazol-4-yl)methyl)benzenesulfonamide (4-14).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as yellow oil (1.054 g, 76%). 1H 
NMR (CDCl3, 400 MHz): δ 7.63 (d, 2H, J = 8.4 Hz), 7.29 (dd, 
1H, J = 5.0, 3.0 Hz), 7.24 – 7.19 (m, 3H), 7.13 – 7.05 (m, 5H), 
5.34 (dd, 1H, J = 9.1, 4.7 Hz), 4.80 (d, 1H, J = 8.5 Hz), 4.31 
(d, 1H, J = 8.5 Hz), 3.84 – 3.66 (m, 2H), 3.27 (dd, 1H, J = 
12.8, 9.1 Hz), 3.04 (dd, 1H, J = 12.8, 4.7 Hz), 2.39 (s, 3H), 
2.31 (s, 3H). 13C NMR (CDCl3, 101 MHz): δ 168.1 (C), 143.4 
(C), 140. (C), 137.4 (C), 137.0 (C), 134.4 (C), 129.8 (CH), 
129.4 (CH), 128.3 (CH), 126.9 (CH), 126.1 (CH), 125.38 
(CH), 122.8 (CH), 76.2 (CH2), 75.6 (C), 51.7 (CH2), 29.4 
(CH2), 21.5 (CH3), 21.0 (CH3). IR: (neat) ν = 1649 (s), 1418 
(m), 1326 (s), 1161 (s), 1088 (s), 811 (s), 751 (s), 662 (s), 
559 (s), 550 (s), 540 (s). HRMS (ESI) m/z: [M + H]+ calcd 
for C23H25N2O3S2, 441.1307; found, 441.1321.

N-((2-(5-amino-1-(2,5-dichlorophenyl)-1H-pyrazol-3-yl)-
4-(4-chlorophenyl)-4,5-dihydrooxazol-4-yl)methyl)-4-
methylbenzenesulfonamide (4-15). 

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as white solid (1.060 g, 57%). 
m.p. = 91-93 °C. 1H NMR (CDCl3, 400 MHz): δ 7.67 (s, 1H), 
7.61 (d, 2H, J = 8.3 Hz), 7.53 – 7.46 (m, 2H), 7.42 (dd, 2H, J = 
8.6, 2.5 Hz), 7.27 – 7.18 (m, 6H), 5.36 (s, 2H), 5.28 (m, 1H), 
4.63 (d, 1H, J = 8.4 Hz), 4.27 (d, 1H, J = 8.4 Hz), 3.26 (dd, 1H, 
J = 12.3, 7.7 Hz), 3.16 (dd, 1H, J = 12.3, 5.4 Hz), 2.40 (s, 3H). 
13C NMR (CDCl3, 101 MHz): δ 161.5 (C), 149.1 (C), 143.6 
(C), 143.6 (C), 142.4 (C), 140.2 (CH), 136.5 (C), 135.8 (C), 
133.72 (C), 133.4 (C), 131.6 (CH), 131.1 (CH), 130.4 (C), 
130.1 (CH), 129.8 (CH), 128.8 (CH), 127.2 (CH), 127.0 (CH), 
75.2 (C), 75.1 (CH2), 52.1 (CH2), 21.6 (CH3). IR: (neat) ν = 
3278 (w), 1643 (s), 1616 (s), 1157 (s), 1090 (s), 811 (s), 
661 (s), 552 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C26H23N5O3S35Cl3, 590.0587; found, 590.0595. 

N-((4-(4-chlorophenyl)-2-(7-hydroxy-4-methyl-2-oxo-2H-
chromen-3-yl)-4,5-dihydrooxazol-4-yl)methyl)-4-
methylbenzenesulfonamide (4-16).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as yellow oil (0.713 g, 42%). 1H 
NMR (CDCl3, 400 MHz): δ 7.76 (d, 2H, J = 7.9 Hz), 7.43 (d, 
1H, J = 8.8 Hz), 7.33 – 7.27 (m, 6H), 6.88 (dd, 1H, J = 8.8, 2.2 
Hz), 6.75 – 6.63 (m, 2H), 5.13 (d, 1H, J = 8.7 Hz), 4.45 (d, 
1H, J = 8.7 Hz), 3.50 – 3.38 (m, 1H), 3.08 (d, 1H, J = 12.3 
Hz), 2.40 (d, 6H, J = 7.2 Hz). 13C{1H} NMR (CDCl3, 101 MHz): 
δ 162.9 (C), 160.5 (C), 154.7 (C), 143.7 (C), 143.6 (C), 
138.83 (C), 136.2 (C), 133.7 (C), 130.0 (CH), 129.7 (CH), 
129.3 (CH), 127.3 (CH), 127.1 (CH), 126.9 (CH), 126.4 (CH), 
114.9 (C), 111.8 (C), 102.1 (C), 76.3 (C), 76.2 (CH2), 52.0 
(CH2), 21.2 (CH3), 17.8 (CH3). IR: (neat) ν = 3453 (m, OH), 
1595 (w), 1330 (s), 1182 (s), 1147 (s), 1088 (s), 909 (m), 
815 (s), 675 (s), 603 (s), 562 (s), 515 (s). HRMS (ESI) m/z: 
[M + H]+ calcd for C27H24N2O6S35Cl, 539.1044; found, 
539.1036.
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N-((4-(4-chlorophenyl)-2-(1-(4-nitrophenyl)-1H-1,2,3-
triazol-4-yl)-4,5-dihydrooxazol-4-yl)methyl)-4-
methylbenzenesulfonamide (4-17).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as yellow oil (0.939 g, 56%). 1H 
NMR (CDCl3, 400 MHz): δ 9.01 (s, 1H), δ 8.48 (d, 2H, J = 9.0 
Hz), 8.10 (d, 2H, J = 9.0 Hz), 7.59 (d, 2H, J = 8.3 Hz), 7.19 – 
7.13 (m, 4H), 7.08 (d, 2H, J = 8.0 Hz), 6.39 (s, 1H), 5.14 (d, 
2H, J = 8.6 Hz), 4.49 (d, 2H, J = 8.6 Hz), 3.49 (dd, 1H, J = 
13.4, 9.4 Hz), 3.15 (dd, 1H, J = 13.4, 4.6 Hz), 2.32 (s, 3H). 
13C{1H} NMR (CDCl3, 101 MHz): δ 158.7 (C), 147.8 (C), 
143.6 (C), 140.7 (C), 140.0 (C), 137.9 (C), 137.7 (C), 137.1 
(C), 129.9 (CH), 129.7 (CH), 126.8 (CH), 125.8 (CH), 125.4 
(CH), 124.6 (CH), 121.2 (CH), 42.1 (CH2), 27.1 (CH2), 25.1 
(C), 21.6 (CH3), 21.1 (CH3). IR: (neat) ν = 1487 (m), 1202 
(m), 1157 (m), 904 (s), 728 (s). HRMS (ESI) m/z: [M + H]+ 
calcd for C26H25N6O5S, 533.1607; found, 533.1590.

4-(4-(4-chlorophenyl)-4-((4-
methylphenylsulfonamido)methyl)-4,5-dihydrooxazol-2-
yl)-4-(2-hydroxy-2-methylpropyl)-3,3-dimethylcyclohex-
1-enecarboxylic acid (4-18).

Product obtained by crystallization from Hexane EtOAc) as 
white solid (1.503 g, 81%). m.p. = 88-90 °C. 1H NMR (CDCl3, 
600 MHz): δ 7.61 (d, 2H, J = 8.3 Hz), 7.32 – 7.29 (m, 2H), 
7.24 – 7.19 (m, 4H), 6.62 (dt, 1H, J = 14.4, 1.8 Hz), 5.59 (m, 
1H), 4.35 – 4.26 (m, 2H), 3.37 (dd, 1H, J = 13.4, 7.1 Hz), 3.17 
(dd, 1H, J = 13.4, 4.7 Hz), 2.39 (s, 3H), 2.37 – 2.33 (m, 1H), 
2.33 – 2.24 (m, 1H), 2.20 (d, 1H, J = 13.5 Hz), 2.06 – 1.99 
(m, 1H), 1.88 (dddd, 1H, J = 13.9, 10.1, 6.2, 3.3 Hz), 1.75 (d, 
1H, J = 13.5 Hz), 1.42 (s, 3H), 1.38 (s, 3H), 1.10 (s, 3H), 0.98 
(d, 3H, J = 2.5 Hz).13C{1H} NMR (CDCl3, 151 MHz): δ 166.7 
(C), 148.0 (CH), 143.5 (C), 139.7 (C), 136.6 (C), 133.7 (C), 
129.7 (CH), 128.4 (CH), 127.3 (C), 127.2 (CH), 127.1 (CH), 
81.5 (C), 74.6 (C), 69.2 (CH2), 50.4 (C), 50.1 (CH2), 45.7 
(CH2), 37.2 (C), 30.5 (CH3), 30.0 (CH2), 29.90 (CH3), 29.36 
(C), 26.26 (CH3), 23.06 (CH3), 21.7 (CH2), 21.61 (CH3). IR: 
(neat) ν = 2986 (w), 1711 (m), 1654 (m), 1248 (s), 1156 
(s), 1090 (s), 1046 (m), 814 (m), 660 (s), 549 (s). HRMS 
(ESI) m/z: [M + H]+ calcd for C30H38N2O6S35Cl, 589.2139; 
found, 589.2136.

N,N'-(((meso)-2,2'-(propane-1,3-diyl)bis(4-phenyl-4,5-
dihydrooxazole-4,2-diyl))bis(methylene))bis(4-
methylbenzenesulfonamide) (4-20)

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 8:2 v/v) as white solid (0.441 g, 20%). 1H 
NMR (C2D6OS, 400 MHz): δ 7.66 (d, 6H, J = 7.9 Hz), 7.35 – 
7.28 (m, 12H), 7.25 (m, 2H), 4.69 (d, 2H, J = 8.6 Hz), 4.19 (d, 
2H, J = 8.6 Hz), 3.38 (s, 6H), 2.99 (dd, 2H, J = 13.1, 7.9 Hz), 
2.82 (dd, 2H, J = 13.1, 5.8 Hz), 2.46 – 2.38 (m, 4H), 2.04 – 
1.90 (m, 2H). 13C{1H} NMR (C2D6OS , 101 MHz): δ 167.0 (C), 
144.2 (C), 142.6 (C), 137.7 (C), 129.6 (CH), 128.4 (CH), 
127.2 (CH), 126.5 (CH), 125.8 (CH), 75.9 (C), 74.4 (CH2), 
52.0 (CH2), 26.7 (CH2), 21.9 (CH2), 20.9 (CH3). IR: (neat) ν = 
3338 (w), 2971 (w), 1742 (w), 1663 (w), 1333 (m), 1157 
(s), 1131 (m), 1092 (m), 818 (m), 700 (s), 664 (s), 543 (s). 
HRMS (ESI) m/z: [M + H]+ calcd for C37H41N4O6S2, 
701.2468; found, 701.2480. 

N,N'-(((Rac)-2,2'-(propane-1,3-diyl)bis(4-phenyl-4,5-
dihydrooxazole-4,2-diyl))bis(methylene))bis(4-
methylbenzenesulfonamide) (4-21)

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 8:2 v/v) as white solid (0.441 g, 20%). 1H 
NMR (CDCl3, 400 MHz): δ 9.17 (dd, 2H, J = 10.2, 3.7 Hz), 
7.56 (d, 4H, J = 8.0 Hz), 7.29 (s, 10H), 7.01 (d, 4H, J = 8.0 
Hz), 5.10 (d, 2H, J = 8.6 Hz), 4.29 (d, 2H, J = 8.6 Hz), 3.47 
(dd, 1H, J = 13.7, 10.2 Hz), 3.11 (ddd, 2H, J = 15.0, 10.0, 8.7 
Hz), 2.82 (dd, 1H, J = 13.7, 3.7 Hz), 2.59 (dt, 2H, J = 15.0, 4.5 
Hz), 2.30 (s, 6H),  2.08 (td, 2H, J = 10.0, 8.6, 4.5 Hz). 13C{1H} 
NMR (CDCl3, 101 MHz): δ 170.4 (C), 143.6 (C), 142.8 (C), 
138.6 (C), 129.6 (CH), 128.9 (CH), 127.8 (CH), 126.2 (CH), 
124.6 (CH), 76.3 (CH2), 76.0 (C), 50.8 (CH2), 24.6 (CH2), 
20.9 (CH3), 19.3 (CH2). IR (neat)  = 3062 (w), 2870 (w), 
1164 (s), 1147 (w), 1130 (s), 1158 (s), 1091 (s), 1010 (s), 
912 (m), 723 (m), 764 (s), 554 (s). HRMS (ESI) m/z: [M + 
H]+ calcd for C37H41N4O6S2, 701.2468; found, 701.2474. 

N-((2-(3-cyanopropyl)-4-phenyl-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-22)

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (0.265 g, 22%). 
1H NMR (CDCl3, 400 MHz): δ 7.67 (d, 2H, J = 8.1 Hz), 7.36 – 
7.30 (m, 2H), 7.30 – 7.18 (m, 5H), 5.21 (dd, 1H, J = 8.9, 5.0 
Hz), 4.86 (d, 1H, J = 8.6 Hz), 4.39 (d, 1H, J = 8.6 Hz), 3.24 
(dd, 1H, J = 13.0, 8.9 Hz), 3.10 (dd, 1H, J = 13.0, 5.0 Hz), 
2.60 (t, 2H, J = 7.1 Hz), 2.53 (t, 2H, J = 7.1 Hz), 2.39 (s, 3H), 
2.09 (p, 2H, J = 7.1 Hz). 13C{1H} NMR (CDCl3, 101 MHz): δ 
167.5 (C), 143.7 (C), 142.5 (C), 136.4 (C), 129.9 (CH), 129.0 
(CH), 128.0 (CH), 127.0 (CH), 125.5 (CH), 119.2 (C), 76.3 
(CH2), 75.7 (C), 49.4 (CH2), 27.2 (CH2), 21.7 (CH2), 21.6 
(CH3), 16.7 (CH2). IR: (neat) ν = 3263 (w), 2177 (w), 1663 
(w), 1327 (w), 1160 (s), 1091 (m), 906 (s), 727 (s), 702 (s), 
551 (s). HRMS (ESI) m/z: [M + H]+ calcd for C20H22N3O3S, 
384.1338; found, 384.1335.

N-((4-methoxy-2-(p-tolyl)-2,3-dihydrobenzofuran-2-
yl)methyl)-4-methylbenzenesulfonamide (7).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as white solid (0.533 g, 40%). 1H 
NMR (CDCl3, 400 MHz): δ 7.65 (d, 2H, J = 8.2 Hz), 7.28 (d, 
2H, J = 8.2 Hz), 7.11 (d, 2H, J = 8.2 Hz), 7.05 (d, 2H, J = 8.4 
Hz), 6.89 (d, 1H, J = 8.7 Hz), 6.44 (d, 1H, J = 6.5 Hz), 4.71 (d, 
1H, J = 9.0 Hz), 4.51 (d, 1H, J = 9.0 Hz), 4.26 (dd, 1H, J = 8.5, 
4.5 Hz), 3.79 (s, 3H), 3.55 (dd, 1H, J = 12.2, 8.5 Hz), 3.35 
(dd, 1H, J = 12.2, 4.5 Hz), 2.43 (s, 3H), 2.31 (s, 3H). 13C{1H} 
NMR (CDCl3, 101 MHz): δ 162.1 (C), 161.5 (C), 143.7 (C), 
139.5 (C), 137.2 (C), 136.5 (C), 129.9 (CH), 129.7 (CH), 
127.1 (CH), 126.4 (CH), 125.0 (CH), 120.9 (C), 107.2 (CH), 
96.7 (CH), 82.3 (CH2), 55.6 (CH3), 53.3 (C), 49.9 (CH2), 21.6 
(CH3), 21.0 (CH3). IR: (neat) ν = 3263 (w), 1621 (w), 1326 
(m), 1156 (s), 1091 (m), 804 (m), 661 (m), 549 (s). HRMS 
(ESI) m/z: [M + H]+ calcd for C24H26NO4S, 424.1583; found, 
424.1583. 
N-((5-methoxy-2-phenyl-2,3-dihydrobenzofuran-2-
yl)methyl)-4-methylbenzenesulfonamide (8)

Product obtained by crystallization  (Hexane:EtOAc) as 
white crystals (0.580 g, 45%). 1H NMR (CDCl3, 400 MHz): δ 
7.64 (d, 2H, J = 8.2 Hz), 7.33 – 7.18 (m, 7H), 6.77 – 6.70 (m, 
2H), 6.59 (dd, 1H, J = 2.3, 0.8 Hz), 4.70 (d, 1H, J = 9.1 Hz), 
4.64 (dd, 1H, J = 8.6, 5.4 Hz), 4.52 (d, 1H, J = 9.1 Hz), 3.69 (s, 
3H), 3.61 (dd, 1H, J = 12.5, 8.6 Hz), 3.43 (dd, 1H, J = 12.5, 
5.4 Hz), 2.41 (s, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 
154.6 (C), 154.3 (C), 143.6 (C), 141.5 (C), 136.0 (C), 130.0 
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(C), 129.8 (CH), 128.9 (CH), 127.4 (CH), 127.0 (CH), 126.5 
(CH), 114.5 (CH), 110.8 (CH), 110.5 (CH), 80.9 (CH2), 55.9 
(CH3), 54.4 (C), 49.3 (CH2), 20.5 (CH3). IR (neat)  = 3270 
(w), 2254 (w), 1489 (m), 1160 (m), 904 (s), 723 (s), 648 
(s), 661 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C23H24NO4S, 410.1426; found, 410.1445.

3-((4-methoxyphenyl)thio)-3-(p-tolyl)-1-tosylazetidine 
(9).

Product obtained by crystallization  ( Hex: EtOAc = 1:1 
v/v) as brown solid (0.969 g, 70%). m.p. = 124-126 °C. 1H 
NMR (CDCl3, 400 MHz): δ 7.63 (d, 2H, J = 8.3 Hz), 7.28 – 
7.22 (m, 2H), 7.06 – 6.99 (m, 4H), 6.76 (d, 2H, J = 8.2 Hz), 
6.71 (d, 2H, J = 8.8 Hz), 4.24 (d, 2H, J = 8.3 Hz), 4.13 (d, 2H, J 
= 8.3 Hz), 3.78 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H). 13C{1H} 
NMR (CDCl3, 101 MHz): δ 160.8 (C), 144.1 (C), 139.1 (C), 
138.0 (CH), 137.0 (C), 132.2 (C), 129.7 (CH), 128.9 (CH), 
128.2 (CH), 126.1 (CH), 121.9 (C), 114.3 (CH), 61.7 (CH2), 
55.3 (CH3), 49.3 (C), 21.6 (CH3), 21.1 (CH3). IR: (neat) ν = 
2980 (w), 1588 (m), 1465 (m), 1344 (m), 1158 (s), 1037 
(m), 813 (m), 725 (s), 673 (s), 548 (s). HRMS (ESI) m/z: [M 
+ H]+ calcd for C24H26NO3S2, 440.1354; found, 440.1342.

3-((3-methoxyphenyl)thio)-3-(p-tolyl)-1-tosylazetidine 
(10).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as orange oil (1.177 g, 85%). 1H 
NMR (CDCl3, 400 MHz): δ 7.66 (d, 2H, J = 8.3 Hz), 7.27 (d, 
2H, J = 7.7 Hz), 7.09 (dd, 1H, J = 8.4, 7.6 Hz), 7.02 (d, 2H, J = 
7.7 Hz), 6.87 – 6.79 (m, 3H), 6.72 (ddd, 1H, J = 7.6, 1.6, 1.0 
Hz), 6.48 (dd, 1H, J = 1.6, 1.0 Hz), 4.26 (d, 2H, J = 8.4 Hz), 
4.15 (d, 2H, J = 8.4 Hz), 3.60 (s, 3H), 2.40 (s, 3H), 2.29 (s, 
3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 159.3 (C), 144.2 (C), 
138.9 (C), 137.1 (C), 132.3 (C), 131.8 (C), 129.7 (CH), 129.5 
(CH), 128.9 (CH), 128.2 (CH), 127.6 (CH), 126.2 (CH), 119.8 
(CH), 115.6 (CH), 62.1 (CH2), 55.1 (CH3), 49.1 (C), 21.6 
(CH3), 21.0 (CH3). IR: (neat) ν = 2980 (w), 1587 (m), 1346 
(m), 1157 (s), 908 (m), 813 (m), 725 (s), 672 (s), 548 (s). 
HRMS (ESI) m/z: [M + H]+ calcd for C24H26NO3S2, 440.1357; 
found, 440.1346. 

N-(2-(4-bromophenyl)-2-oxoethyl)-4-methyl-N-((2-
methyl-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)benzenesulfonamide (11).

Product isolated as Yellow oil (0.649 g, 60%). 1H NMR (400 
MHz, CDCl3): δ 7.64 (d, 2H, J = 8.6 Hz), 7.61 (d, 2H, J = 8.3 
Hz), 7.57 (d, 2H, J = 8.4 Hz), 7.33 – 7.31 (m, 4H), 7.24 (d, 
2H, J = 8.4 Hz), 4.98 (d, 1H, J = 8.7 Hz), 4.88 – 4.70 (m, 2H), 
4.33 (d, 1H, J = 8.7 Hz), 3.83 (d, 1H, J = 14.8 Hz), 3.61 (d, 1H, 
J = 14.8 Hz), 2.40 (s, 3H), 1.86 (s, 3H). 13C{1H} NMR (CDCl3, 
101 MHz): δ 192.7 (C), 166.3 (C), 144.1 (C), 143.6 (C), 
136.5 (C), 134.0 (C), 132.1 (CH), 129.7 (CH), 129.34 (CH), 
128.7 (CH), 128.7 (C), 127.6 (CH), 127.6 (CH), 125.8 (CH), 
77.0 (C), 76.1 (CH2), 56.5 (CH2), 54.5 (CH2), 21.6 (CH3), 14.1 
(CH3). IR: (neat) ν = 2924 (w), 1672 (m), 1585 (m), 1334 
(m), 1156 (s), 982 (s), 908 (s), 729 (s), 547 (s). HRMS (ESI) 
m/z: [M + H]+ calcd for C26H26N2O4S79Br, 541.0797; found, 
541.0780.

N-((2-(5-bromopentyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-23).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (1.088 g, 70%). 

1H NMR (CDCl3, 400 MHz): δ 7.65 (d, 2H, J = 8.0 Hz), 7.23 (d, 
2H, J = 8.0 Hz), 7.16 – 7.06 (m, 4H), 5.02 (dd, 1H, J = 9.3, 4.6 
Hz), 4.72 (d, 1H, J = 8.5 Hz), 4.28 (d, 1H, J = 8.5 Hz), 3.41 (t, 
2H, J = 6.7 Hz), 3.24 (dd, 1H, J = 12.6, 9.3 Hz), ), 3.04 (dd, 
1H, J = 12.6, 4.6 Hz),  2.39 (s, 3H), 2.31 (s, 3H), 1.94 – 1.83 
(m, 2H), 1.78 – 1.62 (m, 2H), 1.52 (ddd, 2H, J = 10.2, 8.4, 4.8 
Hz). 13C{1H} NMR (CDCl3, 101 MHz): δ 169.8 (C), 143.5 (C), 
140.8 (C), 137.4 (C), 136.8 C), 129.9 (CH), 129.4 (CH), 
127.0 (CH), 125.4 (CH), 75.8 (CH2), 75.0 (C), 51.7 (CH2), 
33.7 (CH2), 32.3 (CH2), 28.5 (CH2), 27.0 (CH2), 25.3 (CH2), 
22.3 (CH3), 21.0 (CH3). ); IR (neat) ν = 3089 (w), 2868 (w), 
1651 (m), 1333 (s), 1160 (s), 1089 (s), 811 (s), 659 (m), 
554 (s), 545 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C23H30

79BrN2O3S, 493.1161; found, 493.1146. 

N-((2-(6-bromohexyl)-4-(4-chlorophenyl)-4,5-
dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide 
(4-24).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (1.247 g, 75%). 
1H NMR (CDCl3, 400 MHz): δ 7.62 (d, 2H, J = 8.2 Hz), 7.20 
(m, 4H), 7.15 (d, 2H, J = 8.7 Hz), 5.44 (dd, 1H, J = 8.7, 5.0 
Hz), 4.68 (d, 1H, J = 8.6 Hz), 4.20 (d, 1H, J = 8.6 Hz), 3.37 (t, 
2H, J = 7.0 Hz), 3.21 (dd, 1H, J = 12.8, 8.7 Hz), 3.01 (dd, 1H, J 
= 12.8, 5.0 Hz), 2.37 (s, 3H), 2.35 – 2.24 (m, 2H), 1.83 (p, 
2H, J = 7.0 Hz), 1.64 (p, 2H, J = 7.0 Hz), 1.52 – 1.28 (m, 
4H).13C{1H} NMR (CDCl3, 101 MHz): δ 170.2 (C), 143.5 (C), 
142.3 (C), 137.2 (C), 133.4 (C), 130.0 (CH), 129.7 (CH), 
126.9 (CH), 126.8 (CH), 75.5 (CH2), 75.3 (C), 51.5 (CH2), 
33.9 (CH2), 32.4 (CH2), 28.2 (CH2), 27.9 (CH2), 27.7 (CH2), 
25.8 (CH2), 21.5 (CH3). IR: (neat) ν = 2932 (w), 1658 (m), 
1328 (m), 1157 (s), 1090 (s), 813 (s), 661 (s), 548 (s). 
HRMS (ESI) m/z: [M + H]+ calcd for C23H29

79Br35ClN2O3S, 
527.0736; found, 527.0743.

N-((2-(7-bromoheptyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-26).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (1.232 g, 75%). 
1H NMR (CDCl3, 400 MHz): δ 7.65 (d, 2H, J = 8.1 Hz), 7.22 (d, 
2H, J = 8.1 Hz), 7.15 – 7.05 (m, 4H), 5.26 (dd, 1H, J = 9.2, 4.6 
Hz), 4.72 (d, 1H, J = 8.4 Hz), 4.27 (d, 1H, J = 8.4 Hz), 3.39 (t, 
2H, J = 6.8 Hz), 3.25 (dd, 1H, J = 12.7, 9.2 Hz), 3.01 (dd, 1H, J 
= 12.7, 4.6 Hz), 2.43- 2.30 (m, 2H), 2.38 (s, 3H), 2.30 (s, 
3H), 1.84 (p, J = 6.9 Hz, 2H), 1.71 – 1.62 (m, 2H), 1.49 – 1.28 
(m, 6H).13C{1H} NMR (CDCl3, 101 MHz): δ 170.1 (C), 143.4 
(C), 140.9 (C), 137.3 (C), 136.8 (C), 129.7 (CH), 129.4 (CH), 
126.9 (CH), 125.3 (CH), 75.7 (CH2), 75.3 (C), 51.6 (CH2), 
34.0 (CH2), 32.7 (CH2), 29.0 (CH2), 28.3 (CH2), 28.1 (CH2), 
28.0 (CH2), 26.0 (CH2), 21.5 (CH3), 21.0 (CH3). IR: (neat) ν = 
1652 (m), 906 (s), 726 (s), 661 (m), 551 (m). HRMS (ESI) 
m/z: [M + H]+ calcd for C25H34

79BrN2O3S, 521.1474; found, 
521.1475.

N-((2-(10-bromodecyl)-4-(p-tolyl)-4,5-dihydrooxazol-4-
yl)methyl)-4-methylbenzenesulfonamide (4-27).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (1.331 g, 75%). 
1H NMR (CDCl3, 400 MHz): δ 7.65 (d, 2H, J = 8.0 Hz), 7.22 (d, 
2H, J = 8.0 Hz), 7.13 (d, 2H, J = 8.3 Hz), 7.08 (d, J = 8.3 Hz, 
2H), 5.34 (dd, 1H, J = 9.1, 4.6 Hz), 4.73 (d, 1H, J = 8.4 Hz), 
4.27 (d, 1H, J = 8.4 Hz), 3.39 (t, 2H, J = 6.9 Hz), 3.25 (dd, 1H, 
J = 12.7, 9.1 Hz), 3.03 (dd, 1H, J = 12.7, 4.6 Hz), 2.38 (s, 3H), 
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2.30 (s, 3H), 1.84 (p, 2H, J = 6.9 Hz), 1.66 (t, 2H, J = 7.4 Hz), 
1.47 – 1.21 (m, 14H). 13C{1H} NMR (CDCl3, 101 MHz): δ 
170.4 (C), 143.3 (C), 140.8 (C), 137.2 (C), 136.8 (C), 129.7 
(CH), 129.3 (CH), 126.9 (CH), 125.3 (CH), 75.7 (CH2), 75.2 
(C), 51.5 (CH2), 34.0 (CH2), 32.7 (CH2), 29.3 (CH2), 29.3 
(CH2), 29.1 (CH2), 29.1 (CH2), 28.7 (CH2), 28.1 (CH2), 28.1 
(CH2), 26.1 (CH2), 21.4 (CH3), 21.0 (CH3). HRMS (ESI) m/z: 
[M + H]+ calcd for C28H40

79BrN2O3S, 563.1965; found, 
563.1970.

1-(p-tolyl)-3-tosyl-10-oxa-3,12-diazabicyclo[7.2.1]dodec-
9(12)-ene (14-1).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as colourless oil (0.330 g, 40%). 
1H NMR (CDCl3, 400 MHz): δ 7.62 (d, 2H, J = 8.3 Hz), 7.29 – 
7.22 (m, 4H), 7.18 – 7.14 (m, 2H), 5.20 (d, 1H, J = 8.5 Hz), 
4.20 (d, 1H, J = 8.5 Hz), 3.81 (d, 1H, J = 14.0 Hz), 3.17 – 2.96 
(m, 2H), 2.77 (d, 1H, J = 13.9 Hz), 2.57 – 2.48 (m, 1H), 2.38 
(s, 3H), 2.33 (s, 3H), 2.15 (ddd, 1H, J = 14.6, 11.3, 3.8 Hz), 
1.99 – 1.82 (m, 4H), 1.59 (ddq, 2H, J = 10.9, 8.0, 5.2 Hz). 
13C{1H}NMR (CDCl3, 101 MHz): δ 170.1 (C), 143.4 (C), 140.9 
(C), 137.1 (C), 134.6 (C), 129.7 (CH), 129.3 (CH), 127.4 
(CH), 125.7 (CH), 76.8 (C), 74.5 (CH2), 61.5 (CH2), 49.8 
(CH2), 29.5 (CH2), 27.2 (CH2), 24.5 (CH2), 23.6 (CH2), 21.4 
(CH3), 21.0 (CH3). IR: (neat) ν = 2923 (w), 1664 (m), 1334 
(m), 1159 (s), 1014 (m), 908 (m), 815 (m), 728 (s), 712 (s), 
646 (m), 547 (s). HRMS (ESI) m/z: [M + H]+ calcd for 
C23H29N2O3S, 413.1899; found, 413.1895.

1-(p-tolyl)-3-tosyl-11-oxa-3,13-diazabicyclo[8.2.1]tridec-
10(13)-ene (14-2).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v) as white solid (0.614 g, 72%). 1H 
NMR (CDCl3, 400 MHz): δ 7.65 (d, 2H, J = 8.6 Hz), 7.33 (d, 
2H, J = 8.2 Hz), 7.27 (d, 1H, J = 8.6 Hz), 7.17 (d, 2H, J = 8.2 
Hz), 5.52 (d, 1H, J = 8.9 Hz), 4.28 (d, 1H, J = 8.9 Hz), 3.96 (d, 
1H, J = 15.0 Hz), 3.32 – 3.21 (m, 1H), 2.84 (d, 1H, J = 15.0 
Hz), 2.59 (dt, 1H, J = 13.2, 4.1 Hz), 2.51 – 2.42 (m, 1H), 2.39 
(s, 3H), 2.33 (s, 3H), 2.30 – 2.03 (m, 3H), 1.73 – 1.54 (m, 
3H), 1.54 – 1.30 (m, 3H). 13C{1H} NMR (CDCl3, 101 MHz): δ 
168.7 (C), 143.5 (C), 142.9 (C), 136.9 (C), 134.7 (C), 129.6 
(CH), 129.2 (CH), 127.6 (CH), 125.7 (CH), 76.5 (C), 74.9 
(CH2), 61.7 (CH2), 52.5 (CH2), 27.7 (CH2), 27.3 (CH2), 26.4 
(CH2), 22.6 (CH2), 22.2 (CH2), 21.4 (CH3), 20.9 (CH3). IR: 
(neat) ν = 2930 (w), 1661 (m), 1335 (m), 1160 (s), 984 
(m), 816 (m), 697 (m), 548 (s). HRMS (ESI) m/z: [M + H]+ 
calcd for C24H31N2O3S, 427.2055; found, 427.2042. 
1-(4-chlorophenyl)-3-tosyl-11-oxa-3,13-
diazabicyclo[8.2.1]tridec-10(13)-ene (14-3).

Product isolated by cryatallization (DCM) as white solid 
(0.625 g, 70%). m.p. = 143-145 °C. 1H NMR (CDCl3, 400 
MHz): δ 7.55 (d, 1H, J = 8.0 Hz), 7.27 (d, 1H, J = 8.6 Hz), 7.23 
– 7.16 (m, 4H), 5.42 (d, 1H, J = 9.0 Hz), 4.13 (d, 1H, J = 9.0 
Hz), 3.81 (d, 1H, J = 15.0 Hz), 3.16 (ddd, 1H, J = 13.2, 11.0, 
3.5 Hz), 2.71 (d, 1H, J = 15.0 Hz), 2.46 (dt, 1H, J = 13.2, 4.0 
Hz), 2.42 – 2.33 (m, 1H), 2.30 (s, 3H), 2.17 – 1.94 (m, 3H), 
1.68 – 1.16 (m, 6H). 13C{1H} NMR (CDCl3, 101 MHz): δ 169.3 
(C), 144.4 (C), 143.7 (C), 134.7 (C), 133.1 (C), 129.8 (CH), 
128.7 (CH), 127.7 (CH), 127.5 (CH), 76.5 (C), 74.8 (CH2), 
61.5 (CH2), 52.6 (CH2), 27.8 (CH2), 27.4 (CH2), 26.3 (CH2), 
22.6 (CH2), 22.2 (CH2), 21.5 (CH3). IR: (neat) ν = 2937 (w), 
1661 (m), 1332 (m), 1155 (s), 1086 (m), 999 (m), 952 (m), 

816 (s), 700 (m), 648 (m), 579 (s), 563 (s), 545 (s). HRMS 
(ESI) m/z: [M + H]+ calcd for C23H28N2O3S35Cl, 447.1509; 
found, 447.1508. 

1-(p-tolyl)-3-tosyl-15-oxa-3,17-
diazabicyclo[12.2.1]heptadec-14(17)-ene (14-4).

Product isolated via column chromatography (eluent 
Hexane : EtOAc = 7:3 v/v) as white solid  (0.616 g, 70%). 1H 
NMR (CDCl3, 400 MHz): δ 7.53 (d, 2H, J = 8.3 Hz), 7.27 (d, 
2H, J = 8.3 Hz), 7.21 (d, 2H, J = 8.0 Hz), 7.12 (d, 2H, J = 8.0 
Hz), 5.07 (d, 1H, J = 8.8 Hz), 4.38 (d, 1H, J = 8.8 Hz), 3.81 (d, 
1H, J = 14.8 Hz), 3.13 (ddd, 1H, J = 13.7, 8.3, 5.3 Hz), 3.01 – 
2.86 (m, 2H), 2.39 (m, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 2.10 
(dtt, 1H, J = 15.9, 7.7, 3.3 Hz), 1.83 (ddt, 2H, J = 16.7, 8.7, 4.4 
Hz), 1.70 (ddt, 1H, J = 10.6, 8.7, 3.3 Hz), 1.66 – 1.45 (m, 4H), 
1.20 (dtd, 2H, J = 16.7, 7.7, 4.4 Hz). 13C{1H} NMR (CD3OD , 
101 MHz): δ 171.4 (C), 145.2 (C), 143.3 (C), 138.3 (C), 
135.2 (C), 130.8 (CH), 130.3 (CH), 128.7 (CH), 126.5 (CH), 
77.7 (C), 76.9 (CH2), 60.6 (CH2), 51.4 (CH2), 28.6 (CH2), 
28.3 (CH2), 28.2 (CH2), 25.4 (CH2), 23.4 (CH2), 22.4 (CH2), 
21.5 (CH3), 21.1 (CH3). IR: (neat) ν = 2931 (w), 1662 (m), 
1334 (m), 1159 (s), 1088 (m), 815 (m), 730 (s), 696 (s), 
547 (s). HRMS (ESI) m/z: [M + H]+ calcd for C25H33N2O3S, 
441.2212; found, 441.2208. 

1-(p-tolyl)-3-tosyl-15-oxa-3,17-
diazabicyclo[12.2.1]heptadec-14(17)-ene (14-5).

Product isolated via column chromatography (eluent 
Hexane:EtOAc = 7:3 v/v)  as Pale yellow oil (0.318 g, 33%). 
1H NMR (CDCl3, 400 MHz): δ 7.59 (dd, J = 8.3, 1.4 Hz, 2H), 
7.29 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 
8.1 Hz, 2H), 4.99 (d, J = 8.3 Hz, 1H), 4.34 (d, J = 8.3 Hz, 1H), 
3.78 (d, J = 14.7 Hz, 1H), 3.21 (dd, J = 14.7, 10.2 Hz, 1H), 
3.10 (m, 2H), 2.39 (s, 3H), 2.33 (s, 3H), 1.77 – 1.63 (m, 3H), 
1.43 – 1.11 (m, 15H). 13C{1H} NMR (CDCl3, 101 MHz): δ 
143.4 (C), 142.3 (C), 137.1 (C), 136.1 (C), 136.0 (C), 129.7 
(CH), 129.2 (CH), 127.3 (CH), 125.8 (CH), 77.0 (C), 75.4 
(CH2), 58.1 (CH2), 51.3 (CH2), 29.9 (CH2), 29.7 (CH2), 29.7 
(CH2), 29.4 (CH2), 29.2 (CH2), 28.7 (CH2), 28.4 (CH2), 27.4 
(CH2), 25.8 (CH2), 21.5 (CH3), 21.0 (CH3). IR: (neat) ν = 
2924 (w), 1662 (w), 1334 (m), 1160 (m), 907 (s), 729 (s), 
649 (m), 549 (m). HRMS (ESI) m/z: [M + H]+ calcd for 
C28H39N2O3S, 483.2681; found, 483.2684.
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