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ABSTRACT Uncertainty and interconnectedness in complex engineering and engineered systems such
as power-grids and telecommunication networks are sources of vulnerability compromising the resilience
of these systems. Conditions of uncertainty and interconnectedness change over time and depend on
emerging socio-technical contexts, thus conventional methods which can conduct normative, descriptive
and prescriptive assessment of complex engineering and engineered systems resilience are limited. This
paper brings together contributions of experts in complex engineering and engineered systems who have
identified six methods, three each for uncertainty and interconnectedness, which form the foundational
methods for knowing complex engineering and engineered systems resilience. The paper has reviewed how
these methods contribute to overcoming uncertainty or interconnectedness and how they are implemented
using case studies in order to illustrate essential approaches to enhancing resilience. It is hoped that this
approach will allow the subject to be quantified and best practice standards to develop.

INDEX TERMS Resilience, reliability, robustness, interconnectedness, quantification, case studies.

I. INTRODUCTION

NEW challenges to the resilience of complex engineering
and engineered systems (CEES) have been emerging

due to the development of highly interactive systems, such as
nuclear power plants, power-grids, spacecraft, telecommuni-
cation networks, health-care delivery, along with multi-level
supply chain systems. Conventional methods of probabilistic
modelling and quantification of well-recognised system fail-
ure scenarios fail to deal with unanticipated failure modes of
complex engineered systems and their recovery options.

CEES defines a holistic system, since an engineered sys-
tem requires an engineering system. An engineering system
includes the set of processes and resources that produce a
technical result, whilst an engineered system is a collection
of components with specific characteristics which is the

outcome of an engineering activity [1]. Systems’ resilience
is achieved by the capability of the system to sustain system
functionality in different conditions and deal with uncer-
tainties caused by natural hazards or human interventions.
It is necessary to understand and assess uncertainty and
interconnectedness within CEES to provide optimal resilient
design and control solutions that can be trusted by society.

In the field of engineering resilience generally refers to the
system’s capability to bounce back from disruption, restoring
some degree of before-shock performance, and exceeding
it after recovery is desirable [2]. Most resilience definitions
centre on uncertainty quantification, risk management and
adaptation [3]. The scope of a resilient CEES is therefore
to be able to prepare itself for an emergent situation by:
increasing system’s awareness, determining weak nodes and
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components by monitoring them; predicting the possibility of
failure by monitoring key points; being robust; exploiting re-
dundancy; recovering functionality to fulfil system objective;
and learning to improve future resilience.

Designing a resilient CEES is a significant challenge as
there is a high level of interconnectedness between systems,
as each belongs to a system of systems, constraining the value
of adopting a traditional approach of assessing a system’s
resilience in isolation. Isolated assessment means to consider
a restricted set of predetermined parameters and conditions,
which fails to take account of the system’s endless need to re-
spond to changing needs and related adaptation and evolution
processes over its entire life span. Coupled interdependencies
between system components and among systems increase
their complexity, and make resilience much more difficult
to assess. Therefore, the impact on resilience of interdepen-
dencies, emergence, and other CEES characteristics should
be understood using a complexity science framework which
exposes the need for appropriate tools [1] . This supports
the need to establish alternative methodologies for assessing
a system’s resilience, as traditional methods cannot address
these challenges. Resilience has attracted significant atten-
tion in non-engineering academic domain such as ecology,
psychology, economics and organisational science in recent
years. Yet in complex engineering and engineered systems,
most methods are merely descriptive statistics which are used
after a disruptive event rather than methods that address
uncertainty and interconnectedness of modern engineering
solutions embedded in socio-technical systems [4, 5].

A growing community of interdisciplinary scholars, un-
der the umbrella term of engineering systems research, are
striving to provide a rigorous set of tools and methods to
design and predict the behaviour of such large socio-technical
complex systems [5]. Driven by the tenets of systems and
complexity thinking, the engineering systems (ES) themes of
interest to scholars are aspects of system interconnectedness,
structure or architecture [6] and the influence of uncertainties
[7, 8].

Addressing these issues of interconnectedness and un-
certainties are the topic of the emerging domain on ES
resilience. The construct of ES resilience is a measure of a
system’s preparedness toward known and unknown threats.
Although ES resilience is characterised as an essential func-
tional requirement of commissioned systems, resilience as a
concept is still an evolving interdisciplinary domain that suf-
fers from a considerable degree of taxonomical and method-
ological discrepancy. This is not least because the resilience
of an ES is dynamic and changes over its functional life
span, being influenced by a multitude of parallel, complex
and dynamic interactions, both with elements located within
and outside the system.

An apt ES resilience method should be able to provide a
theoretical and methodological basis to account for intercon-
nectedness and uncertainties that a system might experience
over its functional life time. This necessitates the use of
methodological pluralism to unpack the tensions in different

scenarios originating out of the coupling of embedded and
nested ES. Responding to these challenges and with an
intention to contribute to the emerging field of complex ES
resilience, a team of interdisciplinary experts joined efforts
for this paper to frame the scope, methods and future direc-
tions of this domain.

The purpose of this paper is to introduce a set of method-
ological alternatives available in literature for conducting a
normative, descriptive and prescriptive assessment of com-
plex ES resilience, addressing the two primary issues of
uncertainty and interconnectedness. This paper responds to
these issues by providing six methods organised as follows:
2. Methods for taking uncertainties into account; 2.1 The
Bayesian Network for quantifying uncertainty; 2.2 Robust
Bayesian modelling for severe uncertainty; 2.3 Multidisci-
plinary Design Optimisation under uncertainty; 3. Methods
for modelling complex interactions; 3.1 Resilience of net-
worked systems; 3.2 Convergent Cellular Automata: theory
and application to resilient systems; 3.3 Agent-Based Mod-
elling for complex interactions.

Each of the six methods is described in the context of
ES resilience, and provides at least one case study, with a
critical assessment of benefits and limitations. The authors
do not suggest that an exhaustive list of methods is presented.
Instead the objective of the paper is to introduce the readers
to the methodologies that can serve as a good starting point
to study ES resilience.

II. METHODS FOR TAKING UNCERTAINTIES INTO
ACCOUNT
Being embedded into system of systems, the modern engi-
neering system behaviours go beyond their unitary identity
into realm of complex and emergent behaviours that are
increasingly difficult to model or analyse. A set of tools,
categorized under uncertainty quantification use probability
driven methods to analyse individual component and system
behaviours originating from multiple interactions and system
wide complex interdependencies.

A. THE BAYESIAN NETWORK FOR QUANTIFYING
UNCERTAINTY
A Bayesian network (BN), also known as belief network, is a
directed acyclic graph G = (V,E) which represents a set of
vertices (variables/nodes) showed by V = X1, X2, · · · , Xn,
and a set of edges (casual relations) showed by E that
aims to represent conditional probabilities among variables
of interest. An outgoing edge from node Xi to Xj indicates
a casual relation between these two nodes in which the value
of Xj is dependent on the value of Xi. In fact, Xi is the
parent node of Xj and Xj is a child node of Xi. In general,
three classes of nodes exist in BN: (i) nodes without a child
node are called leaf nodes, (ii) nodes without a parent node
are called root nodes, and (iii) nodes with parent and child
nodes are called intermediate nodes.

The causal relationships among variables of a BN are
measured by conditional probability distributions. A condi-
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FIGURE 1: Bayesian Network representation with five vari-
ables.

tional probability attached to node Xi conditioned on the
set of all parents of node Xi, pa(Xi), and is presented by
P (Xi|pa(Xi)).

Moreover, the full joint probability of all the variables
specified in set V is given by,

P (X1, · · · , Xn) = P (X1|X2, X3, · · · , Xn)×
P (X2|X3, X4, · · · , Xn)× · · ·
P (Xn − 1|Xn)P (Xn)

=
n∏
i=1

P (Xi|Xi+1, · · · , Xn). (1)

However, equation (1) can be further simplified with
knowledge of conditional interdependency as such, the joint
probability distribution of a BN can be written using parent
nodes of each node,

P (X1, X2, · · · , Xn) =
n∏
i=1

P (Xi|pa(Xi)). (2)

For example, the full joint probability distribution of the
BN for Figure 1 consisting of 5 variables X1, X2,· · · , X5 is
presented as

P (X1, · · · , X5) = P (X1)P (X2|X1)P (X3|X1)×
P (X4|X2, X1)P (X5|X2, X3, X1) (3)

If we know that nodeX4 has exactly one parent,X2, then the
part of joint probability distribution P (X4|X2, X1) can be
replaced with P (X4|X2), as only X2 affects the occurrence
of X4. As such, the joint probability distribution of the BN
can be written using parent nodes of each node,

P (X1, · · · , X5) = P (X1)P (X2|X1)P (X3|X1)×
P (X4|X2)P (X5|X2, X3). (4)

This is a key advantage of BN that it requires less param-
eter than conventional methods and is capable of modeling
joint distributions in a compact and economical form.

BNs are constructed based on Bayes’ theorem and one of
its properties is belief propagation which enables a decision
maker to update probabilities of variables P (Xi) after ob-
serving the values of some variables. This observed informa-
tion is called evidence and is denoted by e. For instance in
Figure 1, the probability distribution of variableX3 given the

value of all variables except X3, (e = X1, X2, X4, X5) is
calculated as

P (X3|e) =
P (X1, X2, X3, X4, X5)∑
X3
P (X1, X2, X4, X5)

. (5)

In real world applications of risk analysis, there are fre-
quently many unknown variables and many distinct pieces of
evidence, some of which may be linked [8]. BNs can graph-
ically represent such problems where uncertain variables are
represented as nodes, with an edge representing the causal
relationship between two nodes. BNs are an excellent tool
for computing the posterior probability distribution of un-
observed variables conditioned on some variables that have
been observed, encoding both quantitative and qualitative
information in a conditional probability format.

The ability to model variables of several types
(e.g., variables could be Boolean (yes/no), qualitative
(low/medium/high), or continuous, among others) is the
main property of BN that motivates us to employ it for
quantifying of system resilience [7]; [8]; [9]. Consider a large
interconnected network like power grids where the failure of
a component could possibly trigger the failure of successive
components. BNs can be used to quantify the resilience of
such systems due to their interconnected structure among
their components.

BNs have been deployed in several applications of infras-
tructure system reliability [10]; [11]; [12]; [13]; [14], but
their use in modeling resilience is underdeveloped in the
literature. For example, [10] proposed a novel BN model
using event log data for analyzing the lateness probability
in port logistics. The proposed BN model is constructed by
decomposition of a dependency graph that generated from
event log data in port management systems. The proposed
BN model can then provide valid inference for activity late-
ness probabilities and also beneficial recommendations to
port managers for improving existing activities.

1) Case Study: The resilience of an Inland Water Port, the
Port of Catoosa

A case study of the Port of Catoosa, an inland waterway
port in the Mississippi River Navigation System located near
Tulsa, Oklahoma, is used to illustrate the measurement of
resilience using BNs [7]. These ports serve as hubs that
connect components of intermodal transportation systems
[15].

A BN was employed to quantify the Port of Catoosa’s
resilience. Natural disasters (e.g., floods, tornados) and haz-
ardous material threats (e.g., fires, explosions, liquid spills)
are the primary disruption concerns of decision makers at
the Port of Catoosa. As such, natural disasters and hazardous
material threats are considered in the BN model as major
sources of vulnerability at the port [7]. The graphical model
of proposed BN is shown in Figure 2. Three types of vari-
ables were used to model the various elements of resilience
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FIGURE 2: The BN model of the inland waterway port system
[7]

capacity, depending on how each are measured: (i) Boolean
variables that measure a dichotomous response (true/false,
yes/no, on/fail), (ii) qualitative (discrete) variables that mea-
sure ordinal categories used for weights of factors contributed
to the absorptive, adaptive, and restorative resilience capac-
ities, and (iii) continuous variables that measure random
variables with a known probability distribution. Resilience
was modeled as the ratio of recoverability to vulnerability
and the resilience node is presented in Figure 2 (node 19,
see Table 1). In Figure 2 an outgoing edge from Xi to Xj
indicates a relationship that value of variable Xj is dependent
on the value of Xi variable. For example, the value of the
resilience improvements (node 24) is dependent on both the
resilience (node 19) and the desired resilience (node 25). For
example, if (desired resilience-actual resilience < A), then the
value of improved resilience will be computed. Moreover, the
reliability (node 8) is dependent on Time to failure (node 12)
and is a cause of the adaptive capacity (node 10).

A useful feature of BNs is the ability to propagate the
effect of evidence through the network, referred to as "propa-
gation analysis" [16]. Forward propagation implies the prop-
agation of an observed variable and measures its impact on
the target variable. If enough evidence of an observation
is available, then the observation can be entered into the
model, and the probabilities of all unobserved variables can
be updated [7].

In this case four decision variables were chosen such
that contributions were believed to be significant to the port
resilience: maintenance, backup utility system, quick evacu-
ation, and restoration resource. Variables were chosen to fall
into each of absorptive (maintenance, backup utility system),
adaptive (quick evacuation), and restorative (restoration re-
source) capacities and four scenarios were performed:
• The first scenario refers to the case when there observa-

tion is made that maintenance is not successful.
• The second scenario assumes two failure events of

maintenance and restoration resource, leading to a re-
duction in recovered capacity due to the reduction in
restorative capacity which eventually results in a reduc-
tion of the port’s expected resilience.

• The third scenario simulates the impacts of failures of

FIGURE 3: Y axis indicates the resilience, and X axis indi-
cates the probability. This figure shows the compression of
the probability distributions of the port resilience for different
scenarios [7].

backup utility system and quick evacuation, and results
indicate that the reduction in restorative capacity has a
larger adverse impact on resilience.

• The fourth scenario accounts for failure of all four
variables, dropping the expected resilience of the port
to 55%.

A comparison of the forward propagation analysis scenarios
1, 3, and 4 using BN is illustrated in Figure 3. Figure 3 shows
that the distribution of resilience is skewed to the left when
adaptive and restorative capacities are reduced, suggesting
that adaptive and restorative strategies are important to build-
ing resilience.
Consequently, the BN’s results show that the resilience ca-
pacity of an inland port is related to the three components
of absorptive capacity (a means to withstand a disruptive
event, or a reduction in vulnerability), adaptive capacity (a
means to temporarily adapt to maintain performance), and
restorative capacity (a means to restore performance in a
long term manner, which with adaptive capacity constitutes
recoverability). So, various pre-disaster and post-disaster
strategies can improve the three capacities to varying extents,
all combining to improve the resilience capacity of the port
[7]; [17].

2) Conclusions and limitations
BNs have the ability to combine historical data and expert
knowledge, using calculation of prior and posterior condi-
tional probability. BNs provide a rigorous tool for handling
risks and decision making under uncertainty based on con-
figuration of a graphical framework. It is a powerful tool for
generating risk scenarios.

Many contributions to resilience are qualitative in nature
rather than quantitative. Quantifying and assessing resilience
from such qualitative variables are difficult when relying on
the result of a mathematical optimization model, though such
a task is relatively straightforward in a BN (when underlying
variables are effectively assessed). Although the BNs also
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TABLE 1: Nodes of purposed BN in Figure 2. Note that CH and CF stand for Cargo Handling, and Capacity Factor, respectively.

Node Variable (Variable type) Node Variable (Variable type) Node Variable (Variable type)

1 On time repair scheduling (Continuous) 11 Skilled labor and management (Boolean) 21 Post disaster strategy (Boolean)
2 Availability of spare equipment(Continuous) 12 Time to failure of port (Continuous) 22 Adaptive capacity (Boolean)
3 Space utilization (Boolean) 13 Extra CH (Boolean) 23 Weights of adaptive CF (Qualitative)
4 System surge protection (Boolean) 14 In-and outbound CH-DOC (Continuous) 24 Resilience improvement (Boolean)
5 Communication and coordination (Boolean) 15 Recovered capacity of CH (Continuous) 25 Desired resilience (Continuous)
6 Backup utility system (Boolean) 16 Repositioning (Boolean) 26 In- and outbound CH-MOC (Continuous)
7 Maintenance (Boolean) 17 Substitution (Boolean) 27 Restorative capacity (Boolean)
8 Reliability (Boolean) 18 Quick evacuation (Boolean) 28 Restoration budget availability (Boolean)
9 Weight of absorptive CF (Qualitative) 19 Resilience (Continuous) 29 Weight of restorative CF (Qualitative)

10 Adaptive capacity (Boolean) 20 lost capacity of CH 30 Restorative resource availability (Boolean)

have been applied in a number of fields, their application to
quantifying resilience is still sparse.

Limitations: In spite of the remarkable power and potential
to address the dependency between the variables and their
conditional probabilities, there are some inherent limitations
to BNs:

• Conducting full Bayesian learning is computationally
very expensive. This even holds true when the network
structure is already given.

• BNs need data and perform poorly with very small data
sets.

• Three types of variables: discrete, continuous, and hy-
brid which includes both discrete and continuous vari-
ables can be used in BNs. Although, Dynamic BNs
(DBN)s are an extension of BNs that represent temporal
changes of variables and edges are used to represent
probabilistic dependencies between variables across
time (feedback loop).

When the size of data is small, selecting the proper distri-
bution model to describe the data has a notable effect on the
quality of the resulting network. Moreover, to remediate this
problem (small data set), one of the suggestions is to combine
the BN method with the Bayesian optimization method. A
Bayesian optimization method can be used to provide more
sampling data points from the system’s function to improve
the data sets used by the BN. Improving the learning process
can also reduce the computation time of BN.

B. ROBUST BAYESIAN MODELLING FOR SEVERE
UNCERTAINTY

In complex engineering systems, we may be interested in
resilience against rare events of which we have only few
observations, or we would like to study resilience in systems
for which we do not have accurate models, or where the in-
teractions are not yet completely understood. Consequently,
in the context of Bayesian analysis (see Section II-A), (i)
we may have insufficient data relative to the complexity of
the model, leaving a situation where the prior potentially
drives a large part of the analysis, (ii) due to lack of expert
information and/or lack of experience, it may be hard to
identify the prior, (iii) due to model complexity, the full
impact of the prior on the posterior may be hard to quantify.

To address problem (ii), non-informative priors have been
suggested (see for instance [18] and [19]). Such a prior deems
all possibilities equally likely. However, such a statement is
still very informative. Therefore, non-informative priors have
been strongly criticised by [20], [21], and many others. When
there is a lot of data, then the prior has little influence on
the posterior, and therefore the prior is not critical. However,
when there is little data, it has been argued that it may be
better to propagate a set of prior distributions, in order to fully
propagate the effects of prior ignorance on the inference.
This is called robust Bayesian analysis [22], and allows for
a proper treatment of prior ignorance. A problem with this
approach is the large computational effort required. However,
in many cases, we can work with sets of distributions. Work-
ing with sets of distributions also helps us understanding
how the prior drives the analysis when data are lacking,
particularly in situations where the models are also highly
complex (problems (i) and (iii) above).

A wide variety of models have been proposed for dealing
with uncertainty and resilience in reliability problems. These
include autoregressive time series models, Markov chains
[23], Bayesian networks [13], as well as dynamic Bayesian
networks [14].

A very powerful yet simple imprecise stochastic model
is discussed that allows us to relax stationarity and Markov
conditions for dealing with stochastic processes. Then a case
study is presented where the set of posterior distributions can
be analytically evaluated based on conjugate analysis, and
we show how the resulting bounds can be used to quantify
resilience of a power network under very weak assumptions
about failure and repair times.

Markov chains [24] are commonly used in reliability anal-
ysis to quantify resilience of complex engineering systems
against system failure, using a variety of risk indices [23].
Informally, a Markov chain is a family (Xt)t∈R of random
variables taking values in a state space S, satisfying:
• For all s < t and all δt > 0,Xt+δt is independent ofXs

conditional on Xt.
• There is a matrix Q (called rate matrix) such that for

small positive δt ' 0:

P (Xt+δt = j|Xt = i) ' P (Xt = j|Xt = i) +Qijδt
(6)

The first condition is called the Markov condition. In the
above, infinitesimal notation for convenience was used. Also
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note that P (Xt = j|Xt = i) is simply 1 if i = j and 0
otherwise. Equation (6) says that the transition probabilities
vary slowly, and are independent of time, i.e. the process is
stationary.

When using Markov chains to study resilience against
system failure, such as the network system that we will
consider further, typical issues are that both the Markov
assumption and the stationarity assumption are violated, and
moreover that only little data is available to estimate param-
eters. The good news is that we can use probability bounding
(i.e. imprecise probability) and robust Bayesian analysis to
address all these issues at once. Note that robust Bayesian
analysis is by no means restricted to Markov chains, and can
be applied to any statistical model, in theory. For example,
credal networks are an extension of Bayesian networks to sets
of distributions, and have been widely studied and used. We
chose to demonstrate robust Bayesian analysis on Markov
chains here because they provide a very common model of
system reliability.

Imprecise Markov chains model the process (Xt)t∈R using
a set of stochastic processes, subject to the assumption that
there is a set Q of matrices, so that for all t and all histories
xs:s<t, there is a Q(t, xs:s<t) ∈ Q such that:

P (Xt+δt = j|Xt = i,Xs:s<t = xs:s<t) '
P (Xt = j|Xt = i) +Qij(t, xs:s<t)δt (7)

The above definition is, for brevity, kept informal; a formal
mathematical definition can be found in [25]. Also, note that
our choice of rate matrix can fully depend on history and
time. Only the set Q cannot depend on history and time.
This model can address issues with stationarity and with
the Markov condition. It can also address issues with prior
information, as it allows us to use sets of distributions if
insufficient information is available.

Even though the processes in the set are far more complex
than Markov chains, it turns out that typical quantities of
interest can be calculated almost as easily as with standard
Markov chains, through a generalisation of the matrix ex-
ponential [25]. The next case study demonstrates how this
works.

1) Case Study: Power Network Resilience

The case study presented here is based on [26], [27], [28],
and [29]; also see [30] and [31].

Consider a power network consisting of two components
(say, transmission lines). When both components fail, the
system fails, and we want to quantify system resilience
against such failure. As model parameters, we have the
common-cause failure rate q2, the ‘single-cause’ failure rate
per component qA1 and qB1 , and the repair rates rA and
rB . Figure 4 depicts the Markov chain for this network.
Usually, the failure rates are not observed directly. Instead,
we parameterize the system using the alpha-factor model
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Figure 1. Graph representing continuous time Markov chain for a 2 component system with com-
mon cause failure. Arrows denote possible transitions, and labels on the arrows denote transition
rates. The node AB represents a fully working system, A a system where only A works, B a system
where only B works, and ; a system where neither component works.

3. Imprecise Markov chains

A standard approach to modelling a stochastic time-varying process is to use a Markov chain [9]. Informally, a
Markov chain is a family (Xt)t2R of random variables taking values in a state space S, satisfying the following two
conditions:

• For all s < t and all �t > 0, Xt+�t is independent of Xs conditional on Xt.
• There is a matrix Q (called rate matrix ) such that for all positive �t ' 0:

(2) P (Xt+�t = j | Xt = i) ' P (Xt = j | Xt = i) + Qij�t

The first condition is called the Markov condition. In the above, we used infinitesimal notation for convenience.
Also note that P (Xt = j | Xt = i) is simply 1 if i = j and 0 otherwise. Equation (2) embodies the fact that the
transition probabilities vary slowly, and are independent of time, i.e. the process is stationary.

When using Markov chains in complex engineering systems, such as the network system that we will consider
further, typical issues are that both the Markov assumption and the stationarity assumption are violated, and
moreover that only little data is available to estimate parameters. The good news is that we can use probability
bounding (i.e. imprecise probability) and robust Bayesian analysis to address all these issues to a good degree.

Indeed, imprecise Markov chains model the random variables (Xt)t2R using a set of stochastic processes, subject
to the following condition:

• There is a set Q of matrices, so that for all t and all histories xs:s<t, there is a Q(t, xs:s<t) 2 Q such that:

(3) P (Xt+�t = j | Xt = i, Xs:s<t = xs:s<t) ' P (Xt = j | Xt = i) + Qij(t, xs:s<t)�t

Note that the above definition is, for brevity, kept informal; a proper formal mathematical definition can be found
in [11]. Also, note that our choice of rate matrix can fully depend on history and time. Only the set Q cannot
depend on history and time. This model can address issues with stationarity and with the Markov condition. It
can also address issues with prior information, as it allows us to use sets of distributions if insu�cient information
is available.

Even though the processes in the set are considerably more complex than plain Markov chains, it turns out
that typical quantities of interest can be calculated almost as easily as with standard Markov chains, through a
generalisation of the matrix exponential [11]. The next case study will demonstrate how this works.

4. Case study

The case study presented here is based on [15, 14, 16, 12]; also see [3, 4]. Consider a power network consisting
of two components (say, transmission lines). When both components fail, the system fails. We are interested in
modelling the reliability of this simple network.

We identify the following model parameters: the common-cause failure rate q2, the ‘single-cause’ failure rate per
component qA

1 and qB
1 , and the repair rates rA and rB . The Markov chain representing the network is depicted in

fig. 1. The failure rates are not usually observed directly. Instead, a standard way of parametrizing goes via the
so-called alpha-factor model:

q2 =
↵2

↵1 + 2↵2
(qA

t + qB
t ) qA

1 = qA
t � q2 qB

1 = qB
t � q2(4)

FIGURE 4: Continuous time Markov chain for a 2 component
system with common cause failure. Arrows denote possible
transitions, and arrow labels denote transition rates. The node
AB represents a fully working system, A a system where only
A works, B a system where only B works, and ∅ a system
where neither component works.

[32]:

q2 = α2

α1+2α2

(
qAt + qBt

)
,

qA1 = qAt − q2, qB1 = qBt − q2. (8)

This expresses our parameters in terms of observable quanti-
ties, namely α2 which is the fraction of faults due to common
cause (note that α1 = 1−α2), and qAt and qBt , which are the
failure rates of the components seen separately.

As failure rates are not constant in time, but follow a so-
called bathtub curve, there is clear violation of stationarity.
Additionally, we have severe uncertainty about the rates
themselves, particularly for common cause events. Moreover,
the Markov condition is normally violated as well, as repair
rates depend on system history, and repair times are not ex-
ponentially distributed as predicted by the model. Finally, we
have missing covariates. For instance, repair rates depend on
operation of the entire power system. Under severe weather,
we may see many simultaneous failures, but the number of
repair crews may be limited.

Our data consists of nationwide statistics concerning α2

through observations of consumer disconnections which are
typically associated with common cause failures, and also
concerning qAt and qBt through from nationwide statistics
about constituents such as average failure rate per kilome-
ter of overhead line. However, regional dependencies are a
considerable concern. Therefore, we also use data from the
specific network under study, even if this data is only very
sparse. Through robust Bayesian analysis, we can use the
nationwide statistics to inform our set of prior distributions,
which we can then update with the data from the actual
network. For the specific data we have available, we find the
following posterior intervals on the failure rates (expressed in
failures per year):

qA1 ∈ [0.32, 0.37], qB1 ∈ [0.32, 0.37], q2 ∈ [0.19, 0.24]. (9)

The repair rates are elicited directly by expert judgment. For
instance, if we deem that mean repair times can vary between
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6 and 12 hours, we get:

rA ∈ [730, 1460], rB ∈ [730, 1460]. (10)

The use of imprecise Markov chains means that we allow any
time-varying and history dependent repair rate between these
bounds.

We can easily construct a set Q of rate matrices that
is compatible with these bounds. We can then evaluate for
instance bounds on the limit behaviour: 9.985×10−1

2.623×10−4

2.623×10−4

6.513×10−5

 ≤ lim
t→∞

 P (Xt=AB)
P (Xt=A)
P (Xt=B)
P (Xt=∅)

 ≤
 9.994×10−1

7.252×10−4

7.252×10−4

1.647×10−4

 .
(11)

Similarly, the expected downtime is between 0.57 and 1.44
hours per year, and the expected number of downtime periods
is between 0.19 and 0.24 per year. These bounds on risk
indices comprise a robust quantification of system resilience
under severe uncertainty about system behaviour. This is
valuable to decision makers who need to be careful about the
impact of model assumptions.

2) Conclusions and Limitations
Authors have discussed how robust Bayesian methods can
help quantifying resilience of complex engineering system
under severe uncertainty, due to prior ignorance and/or due
to lack of data, by using sets of probability distributions. It
has been discussed how such sets propagate through models,
and imprecise Markov chains was highlighted as a specific
example of where such propagation can be done effectively.
Authors demonstrated these methods on resilience of a power
network.

Authors have concluded that novel mathematical tech-
niques such as imprecise Markov chains enable a much wider
class of statistical processes to be used in practice, reducing
model discrepancies and improving risk analysis for complex
engineering systems. They are useful especially when data is
lacking, or when the process itself might not satisfy strong
stationarity or Markovian assumptions due to the specific
hard to model features of the system itself.

Nevertheless, issues might arise, such as how to get proper
probability bounds from data in general, how to incorporate
additional covariates if such data is available, and how this
analysis can be used in decision making [33], for instance
to quantify the trade-off between cost of redundancy and
resilience against common-cause failures. Additionally, the
utility or loss functions used in decision analysis might be
prone to imprecision themselves.

Further challenges arise in complex systems where the
likelihood is not from the exponential family, in which
case analytical evaluation is impossible, and simulation tech-
niques such as Markov chain Monte Carlo are needed. These
techniques are very expensive to run over large sets of priors,
especially when the parameter space is very large, and more
work is needed in this area.

Future work might focus on Monte Carlo methods for
probability bounding, including Markov chain Monte Carlo

so data can be adequately incorporated in complex mod-
els, similar how to how this is done in modern Bayesian
analysis. In addition, elicitation methods for using expert
information could be extended to allow experts to express
partial probability statements to allow treatment of problems
where experts find it hard to express full prior probability
distributions.

C. MULTIDISCIPLINARY DESIGN OPTIMISATION UNDER
UNCERTAINTY
The Multidisciplinary Design Optimization (MDO) ap-
proach, emerged as a new holistic design discipline providing
a set of methods and tools to help engineers in the design of
system for which the whole is greater than the sum of the
parts.

Several MDO methods have been developed to handle the
flow of information among the involved disciplines and, then,
the complexity of the interactions. The MDO problem in its
most general form can be formulated as [34]:

min f0(x,y) +

N∑
i=1

fi(x0,xi,yi)

w.r.t. x, ŷ,y, ȳ

s.t. c0(x,y) ≥ 0

ci(x0,xi,yi) ≥ 0 for i = 1, ..., N
cci = ŷi − yi = 0 for i = 1, ..., N
Ri(x0,xi, ŷj 6=i,yi, ȳi) = 0 for i = 1, ..., N

(12)

which is known as the “all-at-once” (AAO) problem. In
this formulation, N is the number of disciplines, xi are the
discipline variables (x0 are variables shared by more than
one discipline), yi are the coupling variables (output from
a single discipline analysis), ȳi are the state variables (used
only inside one discipline analysis), x is the concatenation
of all the discipline variables, x = [xT0 ,x

T
1 , ...,x

T
N ]T , y

is the concatenation of all the coupling variables, y =
[yT0 ,y

T
1 , ...,y

T
N ]T , f0 is the global objective function, c0 are

the global constraints, fi are the discipline objectives, ci are
the discipline constraints, cci are the consistency constraints,
and Ri are the discipline analysis constraints. This form of
the design optimization problem includes all coupling vari-
ables, coupling variable copies, state variables, consistency
constraints, and residuals of the governing equations directly
in the problem statement.

Uncertainty is an inherent component of complex systems
and cannot be avoided. For this reason, researchers have been
developing methods and tools to quantify uncertainty and to
optimize systems subject to it, by considering that different
levels of uncertainty can be present in different steps of the
design and can be directly or indirectly related to models,
interfaces, and operational conditions. Uncertainty is also
added into the process by the fact that several engineers from
many disciplines have to interact and exchange information.
Moreover, further uncertainty is introduced by the design
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process itself, and during the design process, uncertainty also
changes with time, due to modifications of requirements.

The common formulation of MDO does not necessarily
mean that uncertainties are considered during the design
process. When this happens, that is better referred to as
MDO under Uncertainty (MDOU) [35], which includes 1)
the reliability based multidisciplinary design optimisation
(RBMDO), 2) the robust multidisciplinary design optimisa-
tion (RMDO), or 3) a combination of both. While the aim of
RMDO is to optimise the expected performance of the system
and reduce at the same time the sensitivity of the optimal
result to the expected uncertainties, the RbMDO aims to
optimise the expected performance and at the same time
keep the violations of the design constraints under acceptable
probability thresholds. Clearly, a complete formulation of
the problem should consider both robustness and reliability
criteria, and then being a robust and reliability based MDO
(RRbMDO) problem.

By using the general MDO formulation in (12), the formu-
lation of a generic RRbMDO can be written as in (13),
where, ui are the discipline uncertainties (u0 are uncer-
tainties shared by more than one discipline), u is the con-
catenation of all the discipline uncertainties, and u =
[uT0 ,u

T
1 , ...,u

T
N ]T . In this formulation, each objective func-

tion fi is measured by Ξi , which is a measure of either
performance criteria or performance variation criteria, for
example, the standard deviation or the percentile difference
of the performance, and Λ’s refer to measures of uncertainty
that can rely on probability theory, as well as on evidence
theory, possibility theory, interval theory and others.

Resilience can be seen as the ability of a system to adjust
its functioning prior to, during, or following changes and
disturbances, so that it can sustain required operations under
both expected and unexpected conditions. In mathematical
terms, this can be seen as the attribute of a dynamical system
(or any time dependent system) to be both robust and reliable
at the same time. The system resilience can be considered
and optimised through modelling of the failure modes and a
formulation of the MDOU problem that explicitly takes into
account the recovery time.

1) Case study: Space Systems Resilience
There are different sources of uncertainty, which gener-
ally can be divided into epistemic and aleatory. Epistemic
uncertainties are reducible uncertainties and are due to a
lack of knowledge. Aleatory uncertainties are non-reducible
uncertainties that depend on the very nature of the phe-
nomenon under investigation. They can generally be captured
by well-defined probability distributions as one can apply a
frequentist approach. E.g. measurement errors. In this case,
the concept of design for resilience in the context of space
systems engineering is introduced, and a method to account
for imprecision and epistemic uncertainty is proposed. The
quantification of robustness and reliability, essential elements
of the resilience, in the early stage of the design of a space
system is generally affected by uncertainty that is epistemic

in nature. As the design evolves from phase A down to phase
E, the level of epistemic uncertainty is expected to decrease
but still a level of variability can exist in the expected opera-
tional conditions and system requirements.

The Evidence Network Models (ENM), a non-directed
network of interconnected nodes where each node represents
a subsystem with associated epistemic uncertainty on system
performance and failure probability, are used to introduce
time-dependencies reliability in the modeling of a complex
space system. Once the reliability and uncertainty on the
performance of the spacecraft are quantified, a design opti-
misation process is applied to improve resilience and perfor-
mance.

Given that a generic engineering system is affected by
both design parameters d ∈ D and uncertain parameters
u ∈ U , the system can be represented as a network of nodes
that share information, where each node is a subsystem and
information is shared through the links between subsystems,
and the generic objective function can then be defined as:

F (d,u) =
N∑
i=1

gi(d,ui,hi(d,ui,uij)), (14)

where N is the number of subsystems involved,
hi(d,ui,uij) is the vector of scalar functions hij(d,ui,uij)
where j ∈ Ji and Ji is the set of indexes of nodes connected
to the i-th node; ui are the uncertain variables of subsystem i
not shared with any other subsystem and uij are the uncertain
variables shared among subsystems i and j.

The test case function used to validate the proposed ap-
proach describes the operations of a cube-sat in Low Earth
Orbit (LEO). The problem is affected by epistemic uncer-
tainty modelled with the use of Dempster-Shafer theory
(DST)[36], and in particular the ENM presented in [37, 38]
was used to evaluate the associated Belief and Plausibility
curves. The robustness of the solution is guaranteed by the
minmax algorithm described in [39, 40, 41]. Finally the
resilience of the system during its mission is optimised
considering three possible operational states.
The problem is to minimise the mass of the satellite and
maximise the amount of data sent back to the ground station.
These performance indices depend on design and uncertain
parameters. The spacecraft system is modelled as multi-state
with a finite number of possible states. The fully or partially
functional system can deteriorate or the partially functional
system can recover. Once a total failure of the system occurs
the system is not able to recover anymore and the satellite is
considered lost. The time dependent reliability of a satellite
is typically modelled by a Weibull distribution [42, 43]. This
work also adopted the Weibull distributions for modelling the
reliability, i.e. the transition between both functional states to
the failure state.

In this case, better and more extensively described in [44],
the sub-system responsible for the recovery from failure is
not explicitly modelled, but it would be just an additional
element of the multidisciplinary model.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992239, IEEE Access

min Ξ0[f0(x,u,y)] +
N∑
i=1

Ξi[fi(x0,xi,u0,ui,yi)]

w.r.t. x, ŷ,y, ȳ

s.t. Λc,0[c0(x,u,y) ≥ 0]− ΛReqc,0 ≥ 0

Λc,i[ci(x0,xi,u0,ui,yi) ≥ 0]− ΛRec,i ≥ 0 for i = 1, ..., N
Λcc,i[ŷi(u)− yi(u) = 0]− ΛReqcc,i ≥ 0 for i = 1, ..., N
ΛR,i[Ri(x0,xi,u0,ui, ŷj 6=i,yi, ȳi) = 0− ΛReqR,i ≥ 0 for i = 1, ..., N

(13)

2) Conclusions and Limitations

As also emerged during the Defence Academic Pathways
Complex Systems Event, held on 4th April 2017, the holistic,
model based design management permitted by the MDOU
framework will be more and more crucial to design complex
systems that have to operate in complex and uncertain envi-
ronments/conditions, as well as to plan the deployment and
use of already designed complex systems.

The reasons why the application of MDOU approaches
is still at an initial level are linked to at least two kinds of
limitations and technical challenges [45]. One of the key
issues to have an efficient MDOU process is the further
development of efficient uncertainty propagation techniques
in a multidisciplinary environment, as several problems may
arise in the propagation of uncertainty among the disciplines.
On the other hand, especially at the early stages of the design,
the number of uncertainties may be very high and their range
can also be relatively broad. In this respect computationally
efficient uncertainty quantification techniques must be fur-
ther developed.

Depending on the nature of uncertainty the literature of-
fers different techniques to address the coupling dilemma
[38, 41, 44]. The main difficulty is to devise generally appli-
cable techniques that preserve the required accuracy of the
quantification. Model reduction, on the other hand, yields
a smaller size problem by identifying and working only
with the most important parameters. Another key solution
to mitigate the computational complexity of MDOU is the
use of surrogate models to create a low cost representa-
tion of expensive computational steps. However, building
high dimensional surrogates is a challenge in its own right,
and again decomposition is instrumental to allow managing
complexity and accuracy. In addition, the introduction of
approximations, like meta-modelling, brings a further degree
of uncertainty that needs to be quantified.

The other challenge in MDOU, often overlooked, is how to
correctly model uncertainty. Uncertainty comes in many dif-
ferent flavours. While many techniques exist to treat standard
aleatory uncertainty (completely known random processes),
the treatment of epistemic uncertainty (lack of knowledge)
in MDOU is still a matter of research. Epistemic uncertainty
is often not well understood and it has been demonstrated
that in many cases it is incorrectly modelled as an aleatory
uncertainty with some paradoxical results.

Finally, it is worth mentioning the cultural difficulty in
adopting MDOU in the private sector. Overcoming this
difficulty requires a considerable cultural shift both in the
characterisation of the input uncertainty and in the inter-
pretation of the results. A proper characterisation implies
understanding the nature of uncertainty, correctly treating
data, understanding the limitations of process and system
models, managing subjective probabilities and imprecision
and finally understanding the meaning of design solutions.
All these aspects add a layer of complexity that is often
rejected in favour of simpler, though less meaningful, safety
margins. The use of safety margins is also supported by
historical data while MDOU often lacks a validation step as
design solutions never reach the implementation stage.

III. METHODS FOR MODELLING COMPLEX
INTERACTIONS
A. RESILIENCE OF NETWORKED SYSTEMS

The operations of many complex systems involve networking
together sub-systems and individual entities. The collective
system functionality depends on each component’s individ-
ual functionality, as well as the coupling dynamics in be-
tween. Many of our complex engineering systems exhibit
networked dimensions, including electric grids, transporta-
tion, telecommunications, water distribution, mail delivery
and supply chains. When these networks are large, complex
network analysis [46] is not sufficient due to the embedded
non-linear dynamics in these networks. To avoid exhaustive
simulation studies, it is worth considering complexity and
statistical physics methods to better understand networked
dynamics and its resilience.

Complexity science has had tremendous success in apply-
ing complex network analysis to natural systems. Its track
record goes back to the 1970s, where it was shown that
a random graph’s stability scales inversely proportional to
the size and average connectivity of the graph [47]. This
demonstrated the risk of growing and connecting systems
without thought to its stability. In the past decade, advances
have been made to solve challenges in ecology and biology,
with examples such as: understanding the stability [48],
and robustness of food webs under environmental stres-
sors [49, 50], and universal critical behaviour of biological
regulatory networks. In all these examples, topology of
the networked interactions has been deemed the dominant
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force behind behaviour. Unlike their natural world counter
parts, many complex engineering systems behave with higher
order complexities (e.g. 2+ dimensions). To fully understand
networked cascade effects that lead to a loss of resilience,
it is important to consider local functional dynamics (e.g.
behaviour of a transformer) and the global topology (e.g.
structure of the electricity grid) together, and give attention
to the sensitivity to demand conditions and the need for tight
control.

Definition of resilience and robustness in networks
Resilience is the ability to bounce back to a desirable stable
behaviour, often after a perturbation that leads it to temporar-
ily be in an undesirable regime. For a given performance
metric x at a component (node) i, xi; we can broadly define
a set of desirable and undesirable stable equilibrium points:
{xi = xi,d,dxi/dt = 0} and {xi = xi,u,dxi/dt = 0}
respectively. As these are stable equilibrium points, each
node cannot bounce back from xi,u to xi,d alone, but through
the network’s mutualistic coupling, it has the ability to
bounce back (e.g. be resilient). A number of metrics can be
considered, such as the time to recover from failure as well
as the area under the recovery profile (e.g. the resilience loss
triangle(RLT)) [2].

Robustness is the case when topology dominates dynam-
ics, as is the case in may natural and simple engineering sys-
tems, we can simply state that connected nodes will always
bounce back and unconnected nodes can never recover from
a failure [50]. As such, the binary nature of robustness can
be regarded as a special case of the resilience property and
more of interest to the macro-state of the network than each
node’s local functional dynamics. Checking for the robust-
ness of a networked system involves sequential node or edge
removal is performed to simulate node or coupling failure,
and secondary failures are nodes that become isolated. The
sequential node removal process can be random or targeted,
and as such, the role of the network topology plays a big part
in determining the robustness of the system.

In Figure 5, examples of resilience of a single sub-system
and robustness of a networked system (consisting of N sub-
systems) are illustrated. In Figure 5a-i, it is shown how a
single sub-system with control parameter β can move from
a desirable xd (blue) to an undesirable xu (red). In fact, if
this moves too far, it becomes unrecoverable (even if we
restore β). In Figure 5a-ii,a similar dynamic response, where
the performance drops to a recoverable undesirable state and
recovers later in time t = t1 is illustrated. Here, the loss of
performance over t1−t0 is known commonly as the RLT [2].
In Figure 5b-i, many aforementioned sub-systems together
are connected via a network and they mutually affect each
other. In many cases, they can exhibit a critical behaviour,
where unrecoverable functionality in many sub-systems leads
to overall collapse of the whole networked system. This
appears similar to the case of robustness where one only con-
siders topological failure (Figure 5b-ii), and indeed in many

simple dynamical systems, they exhibit similar behaviours
[51].

Mean field compression of high dimensional networked
resilience dynamics
When explicit functions are given for each node and edge’s
dynamical behaviour (e.g. ODEs or PDEs), direct analysis
and deeper insight is possible. For example, the Markovian
behaviour x of any given networked node i can be written as
[52]:

dxi
dt

= f(xi, β) +
N∑
j=1

aijg(xi, xj), (15)

where f(·) is the self-dynamic of node i and g(·) is the
coupling dynamic between node i and node j. The con-
nectivity matrix aij describes the topology of the network.
When the dynamics are trivial, the topology dominates
overall behaviour and classical complex network analysis
applies. When the coupling dynamics are non-trivial, we
cannot ignore the high dimensionality of the network (e.g.
N -dimensions) and explicit analysis with insight of the gov-
erning dynamics is ruled out.

In recent years, Gao et al. first proposed a homogeneous
mean field approach to compresses the N -dimensional dy-
namics into a 1-dimensional effective dynamic [52]:

ẋeff = f(xeff) + βeff × g(xeff, xeff), (16)

where the effective dynamic of the whole system xeff is
governed by the original local functional behaviours, coupled
via a βeff parameter. This parameter represents the role of
topology in connecting local dynamics, which is often a com-
bination of weighted degree centrality, but can potentially
take on other network centrality measures. This maps the
relative importance of self-dynamics f(·) and the role of
topology and coupling dynamics βeff × g(·). Whilst this is
the first explicit relationship between dynamics and complex
network topology, other approaches have also been used to
identify this coupling relationship later on [53].

Here, the collective networked components’ dynamics are
compressed into an effective average behaviour xeff, which
maybe misleading when there is significant heterogeneity
in the network. A further innovation by Moutsinas et al.,
showed that sequential substitution of the homogeneous
equilibrium solution xeff back into the original dynamical
equation given by Eq.(15) can recover the node level re-
silience dynamics [51].

1) Case studies: Electricity Grid Cascade Outage,
Telecommunication Load Balancing, Rail Transport
Resilience
Electricity Grid Cascade Outage: Modeling the dynamical
state of electrical transmission networks requires at least 2-
dimensional dynamics and a recent framework [54] introduce
a framework that takes into account both the event-based na-
ture of cascades and the essentials of the network dynamics.
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FIGURE 5: Resilience and Robustness in Networked Dynamical Systems: a) a dynamical sub-system, and b) overall
networked system.

It was found that transients in the flows of a power grid play
a crucial role in the emergence of collective behaviors and
propose a forecasting method to identify critical lines and
components in advance or during operation. Here, the flow
on the line (i, j) with coupling Kij is given by:

Fij(t) = Kij sin (θj(t)− θi(t)), (17)

where θ is the phase angle as a fixed point solution to a
power flow analysis. Overload occurs when the flow exceeds
a capacity threshold, often set as a tunable threshold of the
flow:

|Fij(t)| > Cij = αKij , (18)

Where F is the “power flow” (1/s2), K is coupling strength
in power flow (1/s2), and C is the capacity of the line (1/s2).

A critical behaviour in unsynchronized nodes can be found
as a function of α, demonstrating the importance of tuning
capacity in power lines. This has widespread importance
in understanding vulnerability power grids to perturbations
[55].

Telecommunication Load Balancing: Wireless traffic de-
mand is highly stochastic across spatial and temporal do-
mains. Load is defined as the ratio between traffic demand
and capacity: L(t) = D(t)/C. An open challenge is whether
cascade offloading can cause unstable behaviour, e.g. an
endless cycle of offloading between a network of nodes,

ultimately degrading the entire network’s performance with
no benefit. In load balancing dynamics, the self-dynamic of
each node tends to wish to move load to a stable equilibrium
of L(t) = 1, and the coupling offloading dynamic tends to be
governed by a difference equation [51]:

dLi
dt

= β(1− Li) +
N∑
j=1

aij(Lj − Li). (19)

The topology of the network can be accurately modeled using
Poisson Point Processes (PPP) and Poisson Cluster Processes
(PCP) [56], whereby points are base station nodes and edges
are load balancing relations predefined by the operator. The
resulting network has a high spatial embeddedness, but in
this particular case, is not important to its stability. In the
load balancing case of g(·) ∝ (Lj−Li), it can be shown that
the stability is governed by the eigenvalues of the Jacobian.
In this particular case of load balancing dynamics, the Gersh-
gorin circle theorem determines the location of eigenvalues
of the weighted in-degree Laplacian of the graph and it can
be shown that the system is always stable, irrespective of
the topology. There are a whole host of stability problems in
wireless and telecommunication networks, including power
control [57], antenna and sleep mode coordination [58].

Rail Transport Resilience: In many cases, explicit dy-
namics on the nodes and links are not available, but data
is available on the flows. In one particular case, the rail
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transport network’s resilience is examined as a function of
its multi-modal topology and the flow dynamics along each
link between station nodes. In a case study [59], the morning
commute journey flow for the Greater London and surround-
ing counties were examined on all train and overground
rail services. For homogeneous linear stability, one might
equate resilience with equilibrium points and look at the
leading eigenvalue of the Jacobian matrix [47], e.g. instability
from leading eigenvalue scales with the size N and average
connectivity C of a random graph: ∼

√
NC. Instability in

any random graph is proportional to its leading eigenvalue,
which is ∝

√
NC, where N is the size of the graph and C is

the average connectivity (degree) of the graph. That is to say,
larger and more connected random networks are less stable
to perturbations. When linear stability is not suitable due to
complex dynamics and flow data, many authors have studied
system resilience from different perspectives. Some consider
the dynamic response (e.g., time to recovery) of the whole
system after a specific disruption [7], whilst others use ran-
dom perturbations to numerically quantify system response.
However, such approaches depend strongly on assumptions
about the system, such as details of the dynamics or the
number of neighbours required for a node to function. In this
work we make use instead of recent advances in ecological
system analysis to study resilience and robustness, which
can be obtained directly from the adjacency matrix (even
for weighted and directed networks) and have been found
to be good proxies for resilience in ecosystems [48]. The
network is thus rearranged into a hierarchical graph, where
each trophic level represents its order in the energy transfer
of the network (e.g. the highest level takes in most energy and
gives out the least). Here, the trophic coherence incoherence
q is a proxy metric for the number of unstable feedback loops
in the network across different scales, defined as:

q =

√
1

L

∑
ij

aijx2ij − 1, (20)

where aij is the adjacency matrix, xij = si−sj is the trophic
level difference between levels si and sj , and L is the number
of connections in the whole network. The conversion of real
data flows to a hierarchical network can be done using either
basal node enforcement or flow filtering and this is discussed
in [59]. For a network with no feedback, the incoherence is
zero; and for a random network, incoherence approaches one.

It was found that the trophic incoherence was highly
correlated with both the consumer dissatisfaction and the
major delays and cancellations statistics. This shows that
incoherent feedback loops cause cascade delays and can-
cellations that lead to customer dissatisfaction. Compared
to potential confounding variables, trophic incoherence con-
tributed more than the size of the network, its robustness,
and other operational and network science parameters. This
highlights that when explicit dynamics are not available,
one can still infer useful resilience metrics from the trophic
structure of the network. The researchers go on to identify

paths where a service can be increased or decreased to
dramatically improve the overall network coherence and
hence resilience (details can be found in the paper [59]).

2) Conclusion and limitations
In order to retain tractable understanding of the relation-
ship between dynamics and graph topology, the theoretical
challenge going forwards lie in considering more complex
dynamical functions. The high-dimensional space of the net-
work domain is not the greatest concern, but high-dimension
space of the functional domain, when coupled via a network,
is challenging. The major limitations of current Markovian
low-dimension space and low-order ODEs (decoupled) is
that they can only be applied to a limited set of engineering
and ecosystem dynamics, forcing data-driven proxy and sta-
tistical methods to play a large role than desired in many net-
worked dynamical systems analysis. Regarding the network
properties themselves, extreme variations in heterogeneity in
network structure (e.g. strong clustering coefficient in the
network) can also reduce the accuracy of mean field analysis.

This leads nicely for researchers to consider data inform-
ing uncertainty in the parameters and inputs of the system,
which enables the quantification of noise [60], optimal sam-
pling theorems on dynamical graphs [61], and the develop-
ment of stochastic and data-driven control systems [62].

Further research will focus on topological heterogeneity,
non-Markovian dynamics, higher order dynamics, coupling
PDEs with ODEs. These are very challenging complexity and
non-linear dynamic questions which are essential to faithfully
modeling real world engineering systems. Effective model
linearisation using Koopman operators to compress nonlin-
ear models into polynomial linear component dynamics can
provide a pathway towards tractable complex analysis. And
data-driven embedding of appropriate dynamic features can
provide a pathway to finding resilience trends in the enriched
phase space in absence of tractable models.

B. CONVERGENT CELLULAR AUTOMATA: THEORY
AND APPLICATION
A major challenge in creating built-in fault resilience and
self-organising capability within complex platforms lies in
the merging between effective detection and mitigation via
triggered recovery mechanisms. Ideally this should be im-
plemented without incurring major resource overhead or
complex coupled-domain behavior. Relevant techniques for
fault resilience are summarised in Table 2, arranged broadly
in ascending order of complexity. A fault is defined as an
undesirable state that may lead to an error state and subse-
quent malfunction. Fault-driven methods take two fundamen-
tal approaches to the problem: fault masking without explicit
detection; and fault detection, isolation and recovery (FDIR).
By way of example, successful fault masking in electronic
systems entails securing error-free operation while the fault
condition remains in place and until it either clears naturally
(transient) or remains until power off (persistent).
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To address the need for design architectures that sup-
port resilient design, one option is to utilitise dedicated
reconfigurable platforms, of which the FPGA1 remains a
classic platform in electronic systems [63, 64]. There are
however limitations as to what can be achieved using state
of the art COTS2 FPGA and specialised architectures. The
necessary target hardware resources, the expected fault sce-
narios and the required degree of robustness are key factors.
When considering complex systems and their integrated sub-
systems, fault detection represent a complex design trade-
offs; the economic investment required for built-in resilience
becoming relatively high in comparison to the functional
resources due to design integration and hardware outlay. In
this situation, cellular arrays such as cellular automata (CA)
are eminently compatible with existing and future config-
urable platforms and are essentially built upon a compromise
between hardware-identical and information redundancies at
the fine-grained level. As will be discussed in the following
sections, by combining CA with re-configurable information
and technology platforms, new possibilities for resilience
design strategies, such as self-diagnosis, self-reconfiguration
and self-maintenance become available without the specific
need for fault detection.

Achieving convergence with Cellular Automata
CA systems are dynamic systems in which space and time
are discrete. These tend to be highly distributed systems,
composed of large or infinite arrays of cells that use simple
programs or sets of rules to determine their next state (e.g. by
selecting a colour from a discrete set) according to the current
state of their neighbouring cells. The simple behaviour of the
local interactions between cells belies the often complicated,
chaotic or complex behaviour evident across the entire array.
The relationship between the simple behaviour of each cell
and resulting emergent properties of the larger array have fas-
cinated mathematicians, computer scientists and biologists
since their conception in the 1940’s. CA are described by the
size and number of dimensions of the array of the cells, the
boundary conditions of the array, the set of states each cell
can be in, the initial state of each cell, the algorithm used by
each cell to determine its next state and the size and shape of
the ’neighbourhood’ of cells about each cell which form the
inputs to this algorithm.

Recent research has focused on whether local rules can be
devised such that the CA has desirable emergent properties
with practical applications. For instance, an electronic circuit
or computer system is an arrangement of individual compo-
nents. If the emergent behaviour of an automaton is defined
as a desired arrangement of components, the correct arrange-
ment will re-emerge in the event that it is corrupted by an
external event, leading to the Convergent cellular Automata
(CCA). However, achieving resilience properties that are

1Field programmable gate array
2Commercial off-the-shelf

applicable to engineering systems is challenging. Barr [71]
explored the use of adaptive euler-solvers, Eggenberger [72]
tested various unsupervised evolutionary algorithms to derive
local rules obeyed by each cell such that specific behaviour is
observed across the entire array. More recently, increasingly
advanced evolutionary algorithms ([73, 74, 75, 76] have
enabled further control.

The CCA is defined here as regular array of identical
cells, cx,y , each with a corresponding neighbourhood of cells
cx−1,y, cx+1,y, cx,y−1, cx,y+1. If we restrict the rules each
cell uses to determine its next state to be a sum-of-products
function of the state of its neighbours, such that the next state
of each cell is determined by the formula

cx,y,t+1 = u.cx−1,y+v.cx+1,y+w.cx,y−1+x.cx,y+1+y.cx,y+z
(21)

where u, v, w, x, y are constants common to each cell. Con-
verting the CA matrix to a row-major vector Ct, a transition
matrixA can be formed such that the next state of the entire
automata can be generated:

Ct+1 = A.Ct +D (22)

A and D are the structured arrays of variables u, v, w, x, y
and z. For instance, a 2 × 2 array of cells using the next-
state rule (21) would have a the following transition matrix
equation

c0,0,t+1

c0,1,t+1

c1,0,t+1

c1,1,t+1

 =


y v x 0
u y 0 x
w 0 y v
0 w v y




c0,0,t
c0,1,t
c1,0,t
c1,1,t

+


z
z
z
z


(23)

By the repeated application of this transition function, the
transition from Ct=0 to Ct=n (where n > 0) becomes

Ct=1 = A(AC0 +D) +D (24)
Ct=2 = A(A(AC0 +D) +D) +D (25)
Ct=3 = A3C0 + A2D + AD +D (26)

This can be expanded to form

Ct=n = AnC0 + An−1D+ An−2D+ ...+ AD+D (27)

Using the geometric series equation this can be simplified to
form

Ct=n = AnC0 + (
I−An

I−A
)D (28)

If the automata always converges to a single global pattern
regardless of its starting state, given sufficient iterations
(discrete time-steps of the CA) the final pattern must be
independent of the initial pattern. Thus An, the coefficient
of C0, must equal zero. For this to be so, referring to the
coefficients of the states of the cells above, below, left and
right and of the cell itself respectively, the following must
hold: either u or v must equal zero, either w or x must equal
zero, z must equal zero. That is, A must be an upper-diagonal
or lower-diagonal matrix.

Given sufficiently large n and a transition matrix that
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TABLE 2: Concepts of resilience in order of ascending complexity.

Feature Aim of strategy Examples

Fine-grained fault
masking

Fault masking at lowest design levels; no awareness of
fault condition

Redundant elements. See [65];

Self-diagnosis Determine cause of unexpected faults (possibly cross-
domain); intelligent management of resources

Software domain techniques [66]; MEMS integrity test
[67]

Self-reconfiguration Automatic organisation of redundant resources; realloca-
tion

Evolvable hardware [68, 64]

Self-maintenance Persistent correction of faults during active service to re-
duce maintenance requirements

Self-maintaining design strategies [69]

Self-preservation Able to preempt and reduce impact of fault event to reduce
impact

Electromechanical shock protection [70].

meets the above criteria, both An and An−1 of equation
(28) will equal zero, and thus Ct=n = ( I

I−A )D. After
sufficient iterations, the CA will converge to a final pattern
Cd according to:

(I−A)Cd −D = 0 (29)

Using the above approach it is possible to design CCA
such that a desired pattern will emerge from any initial
configuration and will continue to be refreshed in the event of
corruption occurring to the configuration. Solving equation
(29) for A, Cd given some desired final pattern Cd, the next-
state rule for each cell of the CA can be determined such
that the CA always converges to the pattern Cd. For instance,
Figure 8 shows an automata resiliently converging towards
a specified complex pattern by virtue of its 140x60 cells
obeying the derived rule set.

Convergence as a resilience property
Using the above approach it is possible to design CCA such
that a desired pattern will emerge from a defined initial
configuration that will continue to be enforced in the event
of corruptions. Solving equation (29) for A, Cd given some
desired final patternCd, the next-state rule for each cell of the
CA can be determined such that the CA always converges to
the pattern Cd. For instance, figure 6 shows a trivial automata
resiliently converging towards a simple 2x2 checker flag. Al-
though the initial state shown is an array of zeros convergence
is guaranteed for any initial state. The next-state rule used for
this automata is cx,y,t+1 = 1− cx−1.y.t − cx,y−1,t.

A more detailed illustration of the robustness of conver-
gence is depicted in figure 7. This shows the recovery of a
4x4 pattern after being subjected to a combination of both
state randomisation and temporary fault condition.

For both cases, the CCA reconstructs the correct pattern
within 9 iterations. The temporary fault takes the form of
an incorrect cell coding that is overridden by the CCA rule
and is hence restored to the correct state. Boundary cells
to the left and above the active area (i.e., outside the white
box) influence the coding of rules and states for the given
target pattern; boundary cells to the right and below the
active area are determined by the current state and, for the

t = 0
0 0
0 0

5 6
-5 1

↓ ↓
t = 1

1 1
1 1

1 -4
-4 0

↓ ↓
t = 2

1 0
0 -1

1 0
0 9

↓ ↓
t = 3

1 0
0 1

1 0
0 1

(a) (b)

FIGURE 6: Example CA convergence from null (a) and ran-
dom (b) initial conditions to Cd

example shown, should always display the combination seen
in figure 7h. These boundary cells can therefore given an
indication of the presence of fault conditions [77]. Figure 8
shows much larger automata converging towards a specified
complex pattern by virtue of its 140x60 cells obeying the
derived rule set.

1) Case study: Protecting Digital Logic
In order to demonstrate how convergence can be captured
a resilience property in engineering systems, we consider
the case of electronic systems, whose modular, hierarchical
design structure appears a good match to the CCA architec-
ture. The convergent pattern must represent some functional
importance. For instance, a data set, logical configuration
or machine memory state. For cases in which the required
memory for storing CCA next-state rule is smaller than that
needed to store the emergent pattern, encoding the memory
within a CCA will add resilience to the design. This is
most obvious where the data pattern is highly repetitive such
as in the checkered flag pattern (figure 6); most complex
patters and therefore incur increasing rules and state storage
overhead.

For the particular case of protecting digital logic the
CCA can be utilised as a coordinating layer that directs
configuration functional logic, in turn organising the actual
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FIGURE 7: Recovery of a 4x4 CCA from a combination of random state initialisaton and a transient fault event persisting during
iteration step 1. (a) Target pattern as viewed externally; (b) internal state representation; (c) Random initial state of CCA; (d)
location/value of faulty cell state whose state can be overridden by the CCA rule set; (e) internal state after single refresh of cells
and including state of faulty cell; (f-g) internal state ofter 4 and 9 iterative updates respectively; (h) resulting CCA pattern after
convergence, which matches that seen in (a). The active CCA region is contained within region encircled by white box; boundary
cells are denoted by white numbers.

FIGURE 8: A 140× 60 CA from null (left), and corrupt (right) initial conditions over 200 iterations.

behvaiour of the logic unit. This concept is illustrated in
Figure 9a where the (convergent) cell states are mapped to
a set of logic functions. The central idea is to protect logic
by exploiting without resorting to fault detection mechanism;
instead this duty is performed by virtue of each cell obeying
the rule set and, in turn, continually refreshing the correct
logic configuration. This offers the advantage of abstracting
the resilience level from the (typically) optimised functional
logic layer such that the hardware implementation may share
either common or distinct resources.

A more detailed breakdown of the approach is illustrated
in Figure 9b for a full adder3. The 1-bit full-adder circuit is
assembled using three logic functions mapped to the states
1, 2, 3 within the CCA state map, resulting in a compact 4×4

3The full adder is considered a fundamental building block of common
logic cells used in arithmetic logic units.

CCA layout though finer-grained solutions are also possible.
The choice of granularity is an ongoing area of research and
involves several trade-offs concerning efficiency of mapping
to the hardware platform and the expected nature of fault and
its coverage4.

To demonstrate the technique, the example configuration
of Figure 9b has been extended into a 4 × 4 CCA design
and synthesised into a Xilinx Vertex 5 FPGA platform via
VHDL. Further details of the specific implementation and
fault injection testing platform can be found in [77]. The
test case involved subjecting the CCA configuration to one
or more faults that result in the functional logic becom-
ing invalid. This included the extreme case of randomising

4Fault coverage is discussed at length by Cheatham [64] Parris [63]; it is
broadly defined here as the expected region of logic that is typically affected
by a fault event. This may occur at the singular gate level or involve multiple
gates/cells.
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all CCA cell states. Ordinarily this scenario would require
highly complex fault detection logic or else would rely upon
complete resetting of the logic with associated down-time.
By contrast, the CCA implementation is able to reconfigure
the correct logic in all cases without intervention.

2) Conclusions and limitations

CCA present an alternative strategy to conventional fault
detection and mitigation mechanisms for increased resilience
in complex systems. The approach has been considered in
the electronics domain, for which there exists a number es-
tablished detect-mitigate strategies that have well-established
limitations. By encoding convergent behaviour directly into
the design fabric, threats appearing in the form of transient
upset fault conditions can be addressed without the need for
dedicated detection. Further, the core configuration becomes
protected by a distributed rule set shared among all cells.
The approach is extensible to much larger automata [78] than
the example described here, including 3-D automata [79] and
automata that converge towards a sequence of patterns [80].

Although this platform presents an attractive proposition
for protecting the configuration of reconfigurable platforms,
several challenges remain: i) Scalability is important and the
associated key factors governing this are choosing of design
granularity and the necessary rule/state set size. This is well-
understood for smaller CCA but is currently estimated for
larger designs. ii) Fault condition: the approach is most effec-
tive for transient fault conditions since permanent fault con-
ditions require repairing or replacing the affected resources.
This requires changing the configuration by triggering either
an alternative rule set or a new set of boundary cell values.
An additional challenge is that the underlying fabric must
support re-routing between affected and replacement cells.
iii) Resource reuse and scalability: for electronic platforms
a reasonably fine-grained implementation is possible via
FPGAs but high density implementations will require new
reconfigurable platforms optimised for CCA resources. Some
future directions for CCA are suggested below:

• Scalability: Success of the CCA method depends on
deriving efficient rule and state sets that scale favourably
for a given pattern size/complexity. The approach
adopted in [77] can be used as a model for further
investigation.

• Stuck-at fault detection: while the CCA is intrinsically
resilient to transitory error events, persistent stuck-at
faults may prohibit convergence to the correct state. One
potential solution is to exploit CCA cell state redun-
dancy together with observation of boundary cell state
values in order to pinpoint the location of the affected
cell [77].

• Stuck-at fault mitigation: this requires further research
into supporting hardware platforms that not only sup-
port CCA architecture, but also allow for dynamic con-
nectivity between the cellular fabric. This is closely
related to evolvable hardware platforms [68].

• Alternative applications: aside from protecting critical
cell states that represent patterns and data, the CCA
method may also be applied to self-assembling hard-
ware whose configuration is then protected in a similar
fashion. This requires further investigation of local CCA
neighbourhoods and their common boundary cells [80].

C. AGENT-BASED MODELLING FOR COMPLEX
INTERACTIONS
Unlike other complexity modelling methodologies described
within this paper, agent-based modelling (ABM) offers ex-
plicit description of autonomous and heterogeneous facets of
a system of interest. Whereas CA demonstrates how spatial
proximity and interaction of cells yield models of systemic
robustness, ABM relaxes constraints on the representation of
entities, allowing for the individual representation of tech-
nical objects, subsystems, human decision-makers, and any
other relevant individual actors. These entities are individual
and autonomous ‘agents’ in ABMs and allow for the inte-
gration of distinct social and technical system components,
and therefore enable a more holistic simulation of system
resilience with particular relevance to complex engineered
and engineering systems (CEES) that accommodate a het-
erogeneous population of socio-technical components.

Complex systems are characterised by nonlinearity in the
relationship between individual actions and exhibited col-
lective behaviour. Through the interdependencies and in-
teractions between components within a complex system,
a variety of common characteristics can be observed. Two
important forms of this behaviour are emergence – a system
trait that cannot be attributed to the actions of an individual
component – and self-organisation – the formation of collec-
tive structures or behaviours based on cooperation or compe-
tition between agents. These two characteristics are observed
across a wide variety of contexts, outlined in more detail be-
low. But importantly, complex systems are dynamic in nature,
meaning these collective structures can form and dissolve
over time, often on the basis of very small perturbations in
individual behaviour. It is not unusual to observe phase tran-
sitions in complex system behaviour as a result of changes
in behaviour of only a relative few components. Complex
systems may also be adaptive, meaning that modelled com-
ponents can have memories, learn and adjust behaviour based
on feedback, some following rational rules and others acting
stochastically. Learning can potentially maintain or threaten
a system held in equilibrium. Finally complex systems can
evolve which means that through acquisition of new traits or
through access to different resources, parts of the system can
mature their capability and we recognise that the system has
changed and usually describe it.

Agent-based modelling has emerged as a core methodol-
ogy in the understanding and simulation of both technical
and social components of complex systems within a single
integrated simulation. Through representation of individual
agents and their interactions with each other and with CEES
products and systems, ABMs replicate the microscopic be-
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FIGURE 9: Illustration of resilient logic implemented using a CCA coordination layer and functional logic layer. (a) arrangement
of coordination and function layers along with example component cell configurations; (b) Illustrative example configuration for
combinatorial logic adder with simple CCA coordination pattern.

haviours that lead to emergence (e.g. congestion), self-
organisation (e.g. autonomous re-routing), evolution (novel
forms or topologies), and other properties of complex sys-
tems (e.g. repeated patterns/waves). An ABM allows us to
test the conditions under which these properties arise and
dissipate in response to changes in internal or external con-
ditions. Within this context, ABM represents the ability of
a system to resist threats, absorb shocks and recover from
events. Resilience is described as an emergent property of
complex systems [81, 82], and for CEES we engage with
both the technical and compositional resilience of a product
or engineered system structure and the functional resilience
associated with its use, capabilities, and user behaviour.

ABM is defined through the specification of a simulation
environment, the agents, and their interactions. Within these
bounds a vast variety of configurations are possible, drawn
from a variety of academic disciplines, meaning ABM lacks
a widely agreed methodology. Outlined below are the key
components of ABM, and approaches towards their definition
(for more details see Chapter 3 in [83] and [84, 85]).

Environment

Prior to the specification of agents, the simulation environ-
ment must be defined to as a bound all individual behaviour
and interaction. There are three important components to
define:

• Extent (or boundary): Considering that everything can-
not be modelled within our simulation, we must limit
the model extents and define pathways for interaction
with external systems. For example, we may wish to
model specific households exposed to three types of
services contract (30). Thus, we define model extents
early on and take inputs from external models or data
where necessary.

HTot(t) =

3∑
k=1

HK(t) (30)

1: A household population, subject to three exogenous
services [86].

• Space: Simulation space may be cellular (like CA),
abstract, topological, or geographic (associated with
GIS data). These definitions constrain the movement of
agents and placement of features.

• Time: ABMs are dynamic and progress through simula-
tion by a particular time step referred to as a ‘tick’. At
each tick, agent behaviours are executed, and all simu-
lation data updated. In modelling a real-world system,
a tick must be tied to a real temporal unit, which then
governs agent movement speeds. A time limit, e.g. a
day, 5 years, is usually placed on the simulation.

Agents

Agents are defined through their characteristics and be-
haviours, which must be representative of the component
subset or population of interest. In defining agents, one must
balance simplicity and explainability with the level of detail
required to fully elucidate the context [87, 88]. Multiple types
of agents can be defined within a single ABM.

• Characteristics: The characteristics of an agent allow
us to differentiate between agent types and integrate
heterogeneity within agent populations. Characteristics
can be assigned uniformly to subsets of agents, drawn
from a random distribution or populated from evidence.
Characteristics will influence decision-making, move-
ments, and interactions with other agents.
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FIGURE 10: state chart for hybrid electric cars showing when
charging occurs [89].

An agent, such as an organisation, when subjected to
a particular threat, may have four resilience charac-
teristics: Ability to resist, Ability to absorb, Ability to
recover, and Ability to adapt to harmful events. The
values of the variables representing these traits will
be different for different organisations, and so when
a specific organisation is subject to a simulated threat,
their characteristics will determine what decisions
they can make and how they can act.

• Decisions: Decisions can vary from very simple rules
(e.g. always travel on the same train) to sophisticated
decision-making frameworks (e.g. based on cognitive
frameworks, or reinforcement learning), and result in
a change of agent state. Agent decisions will be pro-
voked by time, interaction, or changes in internal or
external states, and will result in an action being taken.
Agent decision models should closely reflect, or provide
a reasonable representation of theoretical or observed
behaviour, else results cannot be relied upon.

• Actions: Actions are responses to agent decisions and
vary widely in nature, potentially including the fail-
ure or death of an agent, the movement of the agent
in space (constrained by extent/boundary), interaction
with nearby agents, execution of additional decision
rules, consumption/depletion of available resources.
The agent state may change as a result of a decision,
for example, for hybrid electric vehicles, five states are
possible: start, normal, accelerate, cruise and brake. The
change of mode occurs as a response to a decision, such
as to drive faster or to stop. Charging is constrained to
cruise mode for the model in Fig. 10.

Interactions
Interactions between the agents and their environment are
essential in the production of emergent properties of a sys-
tem. Agent interactions may involve active exchange or occur
passively through proximity alone, but will typically trigger
agent decisions and actions.

• Proximity and Connectivity: In these cases, the presence
or absence of other agents provokes a change in the state
of an agent. Proximity is defined through spatial repre-
sentation, so may relate to adjacent grid cells, topolog-
ical connections, or visual observations in geographic
space. Near proximity of agents may furthermore result
in an interaction of competing physical forces, whereby
agents are attracted or repulsed by the presence of other
agents.

• Communication: Given proximity or connectivity be-
tween agents, communication may occur, whereby an
agent state is influenced or changed by another agent.
These communications may result in influencing de-
cisions and actions of the agents. Communication of
information between agents is a key component of agent
decision making.

• Resource Exchange: Interactions may equally result in
the exchange of resources, be that through cooperation
(e.g. sharing of storage capacity) or competition (e.g.
attempting to serve the same customers). The resulting
redistribution of resources may be unconstrained, mean-
ing a potential detriment to the wider system of interest.

The development of an ABM, and specification of the
model descriptions listed above, produces a large number
of parameters. Following specification of an initial model
structure therefore, a secondary stage of model calibration
and validation will be undertaken. This process (fully elabo-
rated in[85, p.262] involves a) calibrating parameter settings
against observed trends; and b) testing the relative effect of
minor adjustments to parameter settings on system behaviour
(sensitivity analysis). In general, this process will only be
conducted on a few, uncertain parameters in order to limit
the search space. A calibrated model should then be tested
against unseen data to validate its wider suitability.

Modelling Resilience with ABM
ABM excels in its ability to represent the emergent behaviour
of a system through its ability to represent the interactions
between social and technical components of an engineered
system [5], and expose interdependencies and fragility in
their interaction [90]. ABMs can indicate the capability of a
system to be resilient to threats (scenarios), the degree of fail-
ure (to provide services), the time to recover and the degree of
recovered services. CEES are often too expensive or simply
cannot be tested in practice against a variety of threats, and
so based on the rules of behaviour and interactions between
system components, an ABM can simulate and quantify the
resilience of a CEES in response to attack or disruption,
and the emergence of system adaptation and absorption of
change.

Previous models have captured the interdependency be-
tween human and infrastructural systems in crises. As [4]
demonstrated, the effect of infrastructure failure results in
policy and behavioural changes that ultimately result in
failures in the road and wireless phone networks. ABMs

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992239, IEEE Access

have captured the economic and social disruption caused
by power and market network failure by explicitly mapping
interdependencies between systems [91, 92]. As described
elsewhere (Hasan and Foliente, 2015; Rinaldi et al., 2001),
ABM is broadly able to capture n-th order effects resulting
from infrastructure failure. Hasan and Foliente reference the
example of electric power failure, leading to gas, water,
and oil supply disruption and later effects on transporta-
tion networks and the banking sector (Hasan and Foliente,
2015). Through enabling the configuration of autonomous
and heterogeneous agents, be them infrastructural and hu-
man decision-makers, ABM is able to replicate interactions
between critical components.

Agent-based modelling has also been applied in predicting
system-level changes and response, through the actions and
adaptation of its individual components. In Busch, the focus
of external change was on the implementation of district
heating networks, and how different intervention strategies
lead to the success or failure of the policy [93]. Others
have explored how ABM can realistically capture the inde-
pendence and coordination of components in earthmoving
operations [94, 95].

1) Case study: Electrical Power Supply System
[96] highlight the importance being placed by academia,
corporations and governments on understanding system re-
silience and identifying ways to enhance it, especially for
interdependent infrastructures on which our daily activities
depend. They highlight limitations of past methods and
frameworks to comprehensively assess and analyse system
resilience. These limitations include tailoring to specific dis-
ruptive hazards/events, and inadequately dealing with ab-
sorption, adaptation, and recovery. They design and imple-
ment a hybrid ABM which incorporates an integrated metric
to quantify system resilience. The ABM is used to simulate
a specific electrical power supply system and then to quan-
tify the improvement to resilience from alternative targeted
strategies.

The key components of ABM are implemented in this
model as follows:
• Environment - Extent (or boundary): Electric power

supply systems (EPSS) consists of three interdependent
subsystems: System Under Control (SUC) – the techni-
cal components; Operational Control System (OCS) –
the control mechanisms – specifically SCADA (Super-
visory Control and Data Acquisition) is used for this;
and human operator level system (HOL) – the non-
technical (i.e. people) parts responsible for monitor-
ing/processing generated alarms, switching off compo-
nents at remote substations and sending commands to
remote substations. Environment - Space: The model
is implemented using data from the real Swiss high-
voltage EPSS, which consists of 219 transmission lines
and 129 substations, has experienced hazards such as
earthquakes and winter storms causing significant dam-
age in at least 9 events over the past 1000 years. Envi-

ronment - Time: the total power demand in a snapshot of
the Swiss transmission grid on a day in winter is used. It
is assumed that the disruptive event occurs at time 3 h.
At t¼3 h, the disconnection of the 17 transmission lines
in the selected region is triggered.

• Agents – Characteristics: Each hardware device is mod-
eled as an agent, which maps the hardware status includ-
ing operational and failures modes. Multiple devices
and components exist in each layer, e.g. transmission
lines (SUC), field instrumentation devices (FIDs) (OCS
- SCADA), and emotion status (HOL) and each are
represented by agents or objects. They have charac-
teristics such as power flow (real number) and status
(boolean). Over 1,000 individual agents appear in the
model. Agents - Decisions: ABM approaches capture
dynamic behaviors at the functional level. Specific be-
havioral rules are assigned to each agent, including both
deterministic and stochastic time-dependent processes,
triggered by time or inputs from other agents. E.g. a
deterministic process is the power overload of a trans-
mission line, and a stochastic process is the triggering of
a component failure mode, e.g., the unplanned outage of
a generator. Agents - Actions: SUC - physical and oper-
ational processes are modelled by means of DC power
fiow calculations. HOL - the operator acknowledges the
alarm and issues the control command. HOL subtasks
are sent to the “behavior” component to determine pos-
sible error modes and causes during their execution.

• Interactions - Proximity and Connectivity: The variables
that define the interactions among the three subsys-
tems act as coupling points among the three models.
They are either input or output from subsystem, e.g.
Status of transmission line (line connected, line dis-
connected) is input to SUC and HOL and output from
OCS (SCADA). Interactions - Communication: The
OCS (SCADA) subsystem includes various objects such
as commands, alarms and monitors, whose aim is to
transmit data among agents. RTU (remote terminal unit)
agents (SUC) decide to whether or not to raise an alarm,
and if so, it is forwarded to the relevant MTU (master
terminal unit) agent. The operator (in HOL subsystem)
interprets the alarm and issues a command to the MTU
for related corrective actions. The MTU forwards the
command to the RTU which initiates corrective action
in field devices, e.g., to FCD agent to disconnect a
transmission line. Interactions - Resource Exchange:
The variables that define the interactions among the
three subsystems act as coupling points for exchange.
Power flow, and Actual load are examples of resource
exchanges between agents in the SUC sub-system.

• Self-organisation: the whole system is seen to self-
organise into new performance regimes with the intro-
duction of single or combined strategies (e.g. higher
RTU battery capacity improves absorptive capacity dur-
ing disruption phase). The effects of enhancing the
resilience of one system have a much more significant
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impact on an interdependent system when physical de-
pendencies are present.

• Emergence: Resilience capabilities (i.e. absorptive,
adaptive and restorative capability) emerge in the model
as expected and are measured although we do not know
the actual form (time elapse and pattern of system
performance loss) at outset. Strategies, such as storage,
which delay dependency failures, are an important fac-
tor for minimizing negative effects caused by interde-
pendencies among systems.

2) Conclusions and Limitations
ABMs like all models are simplifications of reality, albeit
ABMs are the most mature tool to represent the diversity
of reality including self-organisation and emergence. Rep-
resentations used in models either focus on a sub-set of
reality which means some aspects are ignored (outside scope)
e.g. voltage magnitude is neglected in the case study; or
reality is sufficiently abstracted to keep much of it in scope.
Simplifications create uncertainty. The data collection need
can be great especially when a specific geographical area
is to be modelled. Data is needed for calibration as well as
validation, and whilst methods exist to generate test data, the
proximity to real world data is often uncertain. Uncertainty is
usually managed by running 1000s of iterations of an ABM
varying the value of variables, and usually for different sce-
narios (possible futures). This allows us to create a reasonable
interpretation of a real system’s properties but increases the
computational burden. Efforts to clarify uncertainty and to
assess ABM results more robustly are needed.

Researchers using ABM methods have largely addressed
the need for standard frameworks to describe their models
however capturing and predicting human behaviour remains
challenging and relies on knowing population distributions of
likely practice (which are not always Gaussian) or knowing
probabilities for types of actions and responses, which are not
always predictable. There is also an opportunity to hybridize
ABMs as in the case study with other models to represent
behaviour. More potential future directions for ABMs are
listed below:
• The integration of real-time data within ABMs, via

methods such as ‘data assimilation’, will enable the
updating of simulation entities (in terms of their state,
location, and behaviour) with new information. This
step will ensure that agents do not diverge on unrealistic
trajectories of behaviour to only be assessed as unsuc-
cessful during model evaluation.

• The combination of modelling methodologies can im-
prove the comprehensiveness of ABMs. This may in-
clude the improved modelling of agents via advanced
machine learning (e.g. deep reinforcement learning),
and the integration of ABM and other simulation
methodologies to represent higher level or hierarchical
processes.

• Novel approaches are required for describing and com-
municating uncertainty in ABM predictions. This can be

achieved through simultaneous implementation of dif-
ferent modelling designs and assumptions via ’ensemble
modelling’. Where models agree, greater certainty in
future outcomes can be presented.

IV. DISCUSSION AND CONCLUSION
Three methods for uncertainty analysis in complex engineer-
ing system resilience were reviewed.

Uncertainty in Bayesian Networks is dealt with by mea-
suring conditional probability distributions of the causal
relationships among variables. The ability to model vari-
ables of several types, e.g. Boolean (yes/no), qualitative
(low/medium/high), continuous, together with the ability
to deal with absent data typical in the real world, makes
Bayesian Networks a powerful tool for assessing engineering
resilience. This can further be expanded in different scenar-
ios, as the inland waterway port case study demonstrated.
Limitations of the Bayesian Networks method are its com-
putational cost and poor performance with very small data.

For robust Bayesian analysis of severe uncertainty, it is
necessary to have a proper treatment of prior ignorance by
propagating a set of prior distributions which will determine
accurate inference. Imprecise Markov Chains allow us to
quantify resilience of complex engineering system under
severe uncertainty. The method was demonstrated on a power
network and showed how statistical processes to be used
in practice to reduce model discrepancies and improving
risk analysis for complex engineering systems. Limitations
include computational cost, and use for decision making
to quantify the trade-off between cost of redundancy and
resilience against common-cause failures.

Multidisciplinary Design Optimization (MDO) methods
consider systems holistically by handling the flow of in-
formation among the involved disciplines and, then, the
complexity of the interactions. MDO under Uncertainty
(MDOU) includes reliability based multidisciplinary design
optimisation (RBMDO), and robust multidisciplinary design
optimisation (RMDO). MDOU for resilience requires the
dynamical system to be both robust and reliable at the same
time. A space systems case study addresses imprecision and
epistemic uncertainty. A key issue is the need for efficient
uncertainty propagation techniques in a multidisciplinary
environment which deals with early stages of the design,
when the number of uncertainties may be very high and their
range can also be relatively broad. In this respect computa-
tionally efficient uncertainty quantification techniques must
be further developed.

Three methods dealing with interconnectedness in com-
plex engineering system resilience were reviewed.

Network science is able to fully understand cascade effects
that lead to loss of resilience, by considering local functional
dynamics (e.g. behaviour of a transformer) and the global
topology (e.g. structure of the electricity grid) together, and
give attention to the sensitivity to demand conditions and
the need for tight control. This requires more processing to
understand robustness and resilience than for non-engineered
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TABLE 3: Benefits arise from each method

Method Benefits arise from each method
Bayesian Network • computing the posterior probability distribution of unobserved variables conditioned on some variables that have been

observed,
• encoding both quantitative and qualitative information in a conditional probability format. In fact, the ability to model

variables of several types (e.g., variables could be Boolean (yes/no), qualitative (low/medium/high), or continuous,
among others) is the main property of BN that motivates us to employ it for quantifying of system resilience.

Robust Bayesian mod-
elling

• quantifies resilience of a complex engineering system under severe uncertainty, due to prior ignorance and/or due to lack
of data, by using sets of probability distributions.

Multidisciplinary
design optimization

• helps engineers in the design of systems for which the whole is greater than the sum of the parts. Several MDO methods
have been developed to handle the flow of information among the involved disciplines and, then, the complexity of the
interactions.

• RMDO optimises the expected performance of the system and reduces at the same time the sensitivity of the optimal
result to the expected uncertainties.

• RbMDO optimises the expected performance and at the same time keeps the violations of the design constraints under
acceptable probability thresholds. System resilience can be considered and optimised through a proper modelling of the
failure modes and a formulation of the MDOU problem that explicitly takes into account the recovery time.

Networked system • helps to fully understand networked cascade effects that lead to a loss of resilience, considers local functional dynamics
and the global topology together, and gives attention to the sensitivity to demand conditions and the need for tight
control.

• a number of metrics can be considered, such as the time to recover from failure as well as the area under the recovery
profile.

Convergent Cellular
Automata

• creates built-in fault resilience and self-organising capability within complex platforms through effective detection and
mitigation via triggered recovery mechanisms.

• eminently compatible with existing and future configurable platforms and are essentially built upon a compromise
between hardware-identical and information redundancies at the fine-grained level.

• by combining CA with re-configurable information and technology platforms, new possibilities for resilience design
strategies, such as self-diagnosis, self-reconfiguration and self-maintenance become available without the specific need
for fault detection.

Agent based modelling • relaxes constraints on the representation of entities, allowing for the individual representation of technical objects,
subsystems, human decision-makers, and any other relevant individual actors. These entities are individual and
autonomous ‘agents’ in ABMs and allow for the integration of distinct social and technical system components, and
therefore enable a more holistic simulation of system resilience with particular relevance to complex engineered and
engineering systems (CEES) that accommodate a heterogeneous population of socio-technical components.

• replicates the microscopic behaviours that lead to emergence (e.g. congestion), self-organisation (e.g. autonomous
re-routing), evolution (novel forms or topologies), and other properties of complex systems (e.g. repeated
patterns/waves).

• allows the testing of conditions under which these properties arise and dissipate in response to changes in internal or
external conditions. ABM represents an ideal approach for simulating resilience, and the ability of a system to resist
threats, absorb shocks and recover from events.

systems. Electricity, telecommunications, and rail transport
cases are provided. Limitations focus on the relationships
between topology and dynamics, the ability to faithfully
represent real engineering systems, and data informing un-
certainty in the parameters and inputs of the system.

By combining Cellular Automata with re-configurable in-
formation and technology platforms, new possibilities for
resilience design strategies, such as self-diagnosis, self-
reconfiguration and self-maintenance become available with-
out the specific need for fault detection. Simple rules to-
ward convergent cellular automata underpin the design of
engineering systems such that desired patterns emerge from
any initial configuration. A case study in electronics is
considered. Limitations of convergent cellular automata in-
clude scalability, fault conditions (most effective for transient
faults) and resource re-use.

Agent-based modelling (ABM) offers explicit description
of autonomous and heterogeneous facets covering both tech-
nical and social components of complex engineering systems
within a single integrated simulation. ABMs can quantify
ability to resist threats, absorb shocks and recover from
events, and models can be infinitely configurable. An electric
power system is reviewed in the case study, showing the

emergence of resilience capabilities (i.e. absorptive, adaptive
and restorative) through self-organisation, e.g. in response to
battery capacity. Limitations include the uncertainties created
by simplification and data collection, as well as accurately
predicting human behaviour .

Although methods contain limitations and areas for future
research, those selected in this paper provide a fundamental
diversity of sound approaches to assess engineering system
resilience. Comparison of methods is beyond the scope of
our paper, and future researchers are recommended to do this
comparison. Furthermore, the potential research methodolo-
gies or any integrated approaches (i.e., integrated BN and
Markov chain) that have not been used in the past but can
be used as an alternative approach in the future should be
considered. The case studies in this paper are only exemplars
and others case studies exist.

The distinct benefits of each method in the context of
resilience research study are presented in table [3]. The
summary highlights the range and diversity of the methods
to address uncertainty and interconnectedness in complex
engineered and engineering systems.
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