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ABSTRACT

Context. Classification will be an important first step for upcoming surveys aimed at detecting billions of new sources, such as
LSST and Euclid, as well as DESI, 4MOST, and MOONS. The application of traditional methods of model fitting and colour-colour
selections will face significant computational constraints, while machine-learning methods offer a viable approach to tackle datasets
of that volume.
Aims. While supervised learning methods can prove very useful for classification tasks, the creation of representative and accurate
training sets is a task that consumes a great deal of resources and time. We present a viable alternative using an unsupervised machine
learning method to separate stars, galaxies and QSOs using photometric data.
Methods. The heart of our work uses Hierarchical Density-Based Spatial Clustering of Applications with Noise (hdbscan) to find
the star, galaxy, and QSO clusters in a multidimensional colour space. We optimized the hyperparameters and input attributes of three
separate hdbscan runs, each to select a particular object class and, thus, treat the output of each separate run as a binary classifier.
We subsequently consolidated the output to give our final classifications, optimized on the basis of their F1 scores. We explored the
use of Random Forest and PCA as part of the pre-processing stage for feature selection and dimensionality reduction.
Results. Using our dataset of ∼50 000 spectroscopically labelled objects we obtain F1 scores of 98.9, 98.9, and 93.13 respectively
for star, galaxy, and QSO selection using our unsupervised learning method. We find that careful attribute selection is a vital part of
accurate classification with hdbscan. We applied our classification to a subset of the SDSS spectroscopic catalogue and demonstrated
the potential of our approach in correcting misclassified spectra useful for DESI and 4MOST. Finally, we created a multiwavelength
catalogue of 2.7 million sources using the KiDS, VIKING, and ALLWISE surveys and published corresponding classifications and
photometric redshifts.
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1. Introduction

The identification and classification of astronomical objects is
at the forefront of any astronomical analysis. Hubble (1926)
introduced the eponymous tuning-fork diagram of galaxy mor-
phologies, while exotic objects such as quasi-stellar radio objects
(quasars) and later quasi-stellar objects (QSO) were identified
as sources with point-source appearance on photographic plates
but with non-stellar spectra (Schmidt 1963). Modern multiwave-
length extragalactic surveys have created sophisticated colour
selection criteria to isolate stars, galaxies, and active galactic
nuclei (AGN) including QSO (for example, Baldwin et al. 1981;
Daddi et al. 2004; Stern et al. 2005, 2012; Patel et al. 2012; Assef
et al. 2018).

Machine-learning methods can be broadly categorized accor-
ding to the strategy during the training phase, split into supervised
or unsupervised learning. Supervised learning requires a training
set used to learn the underlying correlations between the input fea-
tures and the target. Neural networks have been embraced in their
ability to classify point-like versus extended sources in several
? The catalogues (see Appendix) are only available at the CDS via

anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A154

early works (Odewahn et al. 1992; Storrie-Lombardi et al. 1992;
Lahav et al. 1995; Weir et al. 1995), with very notable applica-
tion thestellarityparameter inSextractor (Bertin&Arnouts1996).
However, see Soumagnac et al. (2015) for an improvement to the
stellarity parameter optimised for fainter magnitudes. More recent
works have taken advantage of the excellent imaging capabilities
of the Hubble Space Telescope to create accurate training samples
(for example, Huertas-Company et al. 2015) and engagement with
the public through citizen-science projects such as Galaxy Zoo
(Lintott et al. 2008, 2011; Willett et al. 2013) deployed to classify
galaxies observed with the Sloan Digital Sky Survey (SDSS, York
et al. 2000). Another popular supervised approach is the exploita-
tion of decision trees. Methods based on decision trees have also
been widely applied on imaging data to separate stars and galaxies
(Weir et al. 1995; Vasconcellos et al. 2011; Bai et al. 2019).

Another approach for machine-learning classification is
unsupervised learning, which searches for clusters in the input
feature space with minimal tuning. Distance based algorithms
such as k-means (also Voronoi tesselation) require an a priori
definition of the expected number of clusters, while density-
based algorithms, such as dbscan (Ester et al. 1996), require
only the definition of the minimum number of objects belonging
in a cluster and a distance between points. Other applications of
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unsupervised learning include source classification and physical
parameter estimation with self-organizing maps (Geach 2012;
Masters et al. 2017, 2019; Hemmati et al. 2019).

Upcoming large extragalactic surveys will produce an
unprecedented volume of data which will require new, robust, and
automated processing methods (Dubath et al. 2017). Machine-
learning methods offer viable solutions for a category of prob-
lems, including source classification, which is the focus of this
work. Indeed, a number of recent machine-learning methods have
been applied to morphological classification (Huertas-Company
et al. 2015; Barchi et al. 2019), point-source identification
(Kuntzer et al. 2016; Vafaei Sadr et al. 2019), QSO detection
(Jin et al. 2019), star classification (Torres et al. 2019), and
novelty and anomaly detection (Gieseke et al. 2017).

In this work, we apply Hierarchical Density-Based Spatial
Clustering of Applications with Noise, (HDBSCAN, Campello
et al. 2013) to the problem of star, galaxy, and QSO separation.
In Sect. 2 we describe the dataset used in this work to build
the classification model. In Sect. 3 we define the performance
metrics used throughout the paper. In Sect. 4 we present our
method for feature selection and dimensionality reduction used
as input in the final classifier. In Sect. 5 we describe hdbscan,
as well as the optimization and final construction of the clas-
sifier. In Sect. 6 we discuss the impact of the input attributes,
including colours and half-light radii, as well as the photometric
depth and photometric uncertainties. In Sect. 8 we compare our
results to the automatic labels of the Sloan Digital Sky Survey
(SDSS DR14), the refined labels of the SDSS Quasars catalogue
of Pâris et al. (2018), and the KIDS DR3 quasar catalogue of
Nakoneczny et al. (2019). Finally, we apply and publicly release
our classifications on the Kilo Degree Survey, matched with the
VIKING and ALLWISE surveys (∼3 million sources).

Due to its speed and scalability, we motivate the use of
our classifications and photometric redshift estimates to separate
stars, galaxies and QSO, particularly useful to assess the opti-
mal spectroscopic templates for spectroscopic redshift estima-
tion, applicable for future all-sky spectroscopic surveys, such as
4MOST and DESI. Throughout the paper, we use the AB mag-
nitude system.

2. Dataset

To explore the capabilities of unsupervised learning in classifica-
tion, we use the sample of Fotopoulou & Paltani (2018, hereafter
FP18). This sample was constructed to be a representative pop-
ulation of spectroscopically observed stars, galaxies, and QSO
selected on the basis of their complete photometric coverage in
the optical, near infrared, and mid-infrared wavelengths. In this
work, we are using the uk–ir sample, a total of 49 181 sources
with continuous photometric coverage from u–W2 without any
missing photometric data.

2.1. Catalogues

In brief, the FP18 sample is a collection of spectroscopically
observed sources from public spectroscopic surveys (SDSS/
DR121; Alam et al. 2015, GAMA/DR22; Liske et al. 2015,
VIPERS/DR13; Garilli et al. 2014, VVDS/DR2; Le Fèvre et al.
2013, PRIMUS/DR1; Coil et al. 2011; Cool et al. 2013, 6df/DR3;

1 http://www.sdss.org/dr12/data_access/bulk/
2 http://www.gama-survey.org/dr2/data/cat/SpecCat/
v08/
3 http://vipers.inaf.it/rel-pdr1.html

Table 1. Breakdown of spectroscopic redshift labels, as given by the
surveys considered in this work and the rectified number of sources.

Initial labels Final labels

hclass Label N sources hclass Label N sources

STAR 0 7689 STAR 0 7731
GAL 1 11 391 GAL 1 36 763
AGN 2 495 AGN – –
QSO 3 4192 QSO 2 4192
Unknown −1 25 414 Unknown – –
Total 49 181 Total 48 686

Notes. We removed all AGN sources from our sample, and attribute
“unknown” labelled sources as either stars (z< 0.0015) or galaxies
(z > 0.0015).

Jones et al. 2004, 2009) matched with associated z, Y, J, H, and
K photometry from the ESO near-infrared Public VISTA sur-
veys4 (Arnaboldi et al. 2007) (VIKING (Jlim,AB = 22.1, PI W.
Sutherland) and VIDEO (Jlim,AB = 24.5, PI M. Jarvis).

The optical filters (u, g, r, i, z) originate from the SDSS sur-
vey (DR12, ilim,AB = 21.3, Alam et al. 2015), CFHTLS (T0007,
ilim,AB = 24.8, Hudelot et al. 1926) and KiDS (DR2, ilim,AB =
24.2, de Jong et al. 2015) surveys. The mid-infrared observa-
tions in the W1 and W2 filters of the WISE satellite (ALLWISE5,
W1lim,AB = 20.3, Wright et al. 2010; Mainzer et al. 2011).
All photometric measurements were corrected according to the
Schlegel maps of Galactic absorption (Schlegel et al. 1998) and
the Cardelli law for the Milky way (Cardelli et al. 1989).

2.2. Spectroscopic labels

FP18 created a framework for optimal photometric redshift esti-
mation suited for large area surveys. To that end, they created a
labelling system tailored to selecting the best photometric red-
shift library setup and performed supervised learning using Ran-
dom Forest. In this work, we use unsupervised learning methods
to identify the nature of the sources without any prior knowl-
edge. Labels are only needed to judge the performance of the
classifier and they are not used at any point during the training
stage of the algorithm6. Contrary to FP18, we use the labelling
assigned by each spectroscopic survey.

However, the spectroscopic labels are assigned by a non-
homogeneous process, either automatic as in the case of SDSS
spectra or manual as is the case, for example, in VIPERS
and VVDS. Table 1 shows the breakdown of the spectral
labels. About 52% of the spectra unfortunately carry no label
(UNKNOWN). We label the 42 sources with the UNKNOWN
label at z < 0.0015 (vertical dashed line) as stars, while all
remaining 25 372 sources are labelled as galaxies, assuming that
the lack of information means that there was nothing special in
the spectrum to report.

The left hand side of Fig. 1 shows the spectroscopic redshift
distribution of our sample split according to the spectroscopic
labels. As expected, sources classified as stars lie at very low
redshift values, while sources classified as QSO tend to be at

4 https://www.eso.org/sci/observing/PublicSurveys/
sciencePublicSurveys.html
5 http://wise2.ipac.caltech.edu/docs/release/allwise/
6 Since we use spectroscopic classifications to judge the performance
of the classifier after the clustering is performed, our approach could
also be described as semi-supervised.
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Fig. 1. Left: redshift distributions of the spectroscopic classes, as defined in each survey. The category AGN is mixture of QSO and AGN. Part of
the subsample lacking categorization, labelled as UNKNOWN are evidently stars (z < 0.0015). Right: colour-colour plot colour coded according
to spectroscopic labels.

higher redshifts compared to the GAL category. Only four of
the spectroscopic surveys assigned an AGN category (Primus,
SDSS, VIPERS, VVDS). Given the small amount of spectra in
this category, and not having access to all 1D spectra to assess
their overlap with the QSO class, we decided to exclude these
objects from our sample, reducing the sample that we use to
48 686 sources.

The right-hand side of Fig. 1 shows the loci of the spectro-
scopically assigned labels on a colour-colour space known to sep-
arate well between the populations. We note that about 10% of
sources with spectroscopically assigned QSO label are located in
the galaxy locus. These sources include reddened quasars, either
due to intrinsic absorption or due to the intergalactic medium, and
AGN. We discuss the impact of this further in Sect. 8.1.

3. Performance metrics

In this section, we describe the metrics that we use in this work to
measure the performance of the star, galaxy, QSO classification
model that we build, and define some of the terms that we use in
this work.

We refer to the input features (colours, half-light radii) to the
machine learning algorithm as attributes. We refer to a parame-
ter of the machine learning model, whose value is set before the
training process and can be changed to improve model perfor-
mance, as a hyperparameter. We refer to a binary classifier, or
a model with binary labels, when we separate only two popula-
tions – OBJECT and NON-OBJECT (where OBJECT is one of
star, galaxy, QSO); whereas when we refer to a multi-label clas-
sifier, we are separating all three populations simultaneously. It is
possible to create a multi-label classifier with a number of binary
classifiers, and combine their output labels, which is ultimately
the setup that we choose to use in this work.

We use various metrics to evaluate the success of our classifi-
cations. They utilize the following information, which we obtain
by comparing the predicted labels from our model with the true
(spectroscopic) labels. We will explain them using the example
of a binary star classifier: (i) TP – true positive: an object with
true label star is classified as a star; (ii) TN – true negative: an
object with true label non-star is classified as a non-star; (iii) FP –
false positive: an object with true label non-star is classified as a
star; (iv) FN – false negative: an object with true label star is clas-
sified as a non-star.

The metrics that we use in this paper are:

Accuracy. Fraction of correct predictions:

ACC =
TP + TN

TP + TN + FP + FN
· (1)

Precision. Fraction of correct positive predictions. In astron-
omy it is common to refer to precision as purity, and the words
precision and purity will be used interchangeably in this work:

P =
TP

TP + FP
· (2)

Recall. Fraction of truly positive predictions. In astronomy
it is common to refer to recall as completeness, and the words
recall and completeness will be used interchangeably in this
work:

R =
TP

TP + FN
· (3)

F1 score. Harmonic mean of precision and recall:

F1 = 2 ·
P · R
P + R

· (4)

Fall-out. Fraction of FP over negative condition:

F =
FP

TN + FP
· (5)

When building a classifier, one tries to obtain the highest
accuracy, precision and recall (and therefore F1 score), and the
lowest fall-out. Throughout this work, we focus on the F1 score,
as it is a trade off between precision and recall. However, if a
higher precision may be favoured over a higher recall, then it is
straightforward to optimize the final classification model that we
present in this work to suit those needs.

Additionally, we also use the area under the curve (AUC)
of the Receiver Operating Characteristic curve (ROC, Bradley
1997) to assess classifier performance. The ROC curve is a plot
that shows how the True Positive rate (TPR, also referred to
as recall which we define in Eq. (3)) and False Positive Rate
(FPR, defined as TN/(TN+FP)) change for a binary classifier
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as the classification threshold is varied. As our algorithm, hdb-
scan, does not provide a useful probability for each classifica-
tion (except for the “highest-probability” method presented in
Sect. 5.3) we calculate AUC scores for the spectroscopic labels
as true labels, and the predicted labels. The AUC gives us the
probability that the classifier will rank a randomly chosen posi-
tively classified object higher than a randomly chosen negatively
classified object, and is often used as a summary statistic of a
ROC curve or more generally of a classifier’s performance.

4. Pre-processing and feature selection

Most machine learning algorithms are, in general, sensitive to
the selection of input attributes and the presence of correlations
between attributes. In this section we explain how we create the
sets of attributes that we used as input into the hdbscan classi-
fier (the hdbscan algorithm is outlined in 5.1.2).

4.1. Pre-processing

Our sample contains 48 686 data points with measured total and
3′′ aperture magnitudes in the u, g, r, i, z, Y, H, J, K bands
and total magnitude in the W1 and W2 bands. We created all
unique colour combinations from these photometric bands, cre-
ating 190 colours which we use to identify the optimal input
attributes for hdbscan.

In addition, we explore the use of the half-light radius (HLR)
values and their ratios for the Y−K bands. Whenever we use the
Y−K HLR values as part of our attributes, we remove all data
points that have missing data for any of their Y−K HLR values,
or those that have unrealistic values (0′′ < HLR < 20′′), giving
43 348 data points. We do not use the u−z HLR values, as there
are too many missing values in our data set to use these without
drastically reducing the size of our data set.

Before inputting the chosen attributes to any of the machine
learning methods used, we used scikit-learn (Pedregosa
et al. 2011) to normalize and whiten the data to give zero mean
and a variance of one for the attributes. It is crucial that the same
scaling transformation that is applied on the training data is also
applied on any new data.

4.2. Dimensionality reduction and feature selection

Dimensionality reduction and attribute selection is often the
most important part of a machine learning pipeline. We want
to reduce our high number of attributes that we have from the
colour (and HLR) information to a lower number of attributes as
machine learning methods often struggle when faced with a large
number of attributes. We do this by either converting all of our
attributes into a lower number of dimensions (Sect. 4.2.1) using
Principal Component Analysis (PCA), or by selecting the most
informative attributes for our needs (Sect. 4.2.2) using Random
Forest (RF, Breiman 2001) or we use a combination of RF fol-
lowed by PCA. For both algorithms we use the scikit-learn
implementations in Python (Pedregosa et al. 2011).

4.2.1. Principal component analysis

Principal component analysis (PCA) is a dimensionality reduc-
tion technique, and has been widely applied to problems in
astronomy (for example Francis et al. 1999; McGurk et al. 2010;
Paraficz et al. 2016). Shlens (2014) gives a nice introduction to
PCA. In short, PCA works by creating an optimal rotation of a

Table 2. Top 10 attributes from the output of RF.

STAR GAL QSO ALL

J3 −W1 K − Y3 z − u3 K − Y3
K − J3 K − J3 i − u3 K − J3
Y3 −W1 K − Z3 r − g3 K − H3
K − H3 K − H3 u3 − z3 J3 −W1
J3 − K3 J3 − K3 u3 − i3 J3 − K3
H3 −W1 Y3 − K3 Y − u3 Y3 −W1
K − Y3 J3 −W1 u − z H3 −W1
H3 − K3 Y3 −W1 z − g3 H3 − K3
Y3 −W2 J − K r − u3 J − K
J − K H3 − K3 u − i Y3 − K3

Notes. The first three columns are the top 10 attributes for when the
labels were binary for STAR/non-STAR, GAL/non-GAL, QSO/non-
QSO and the fourth column is for the multi-label setup.

new coordinate system aligned with the maximum variance of
the data. PCA then outputs new vectors for each data point by
converting the data points in the new coordinate system, encom-
passing the maximum information for each data point from the
high-dimensional parameter space. The new attributes are then
used as input to hdbscan. It is crucial that the same PCA trans-
formation that is applied on the training data is also applied on
any new data.

4.2.2. Random forest
Random forest (RF, Breiman 2001) is a supervised learning
method that can be used to classify data. An RF is an ensemble
learning method, and consists of a collection of decision trees.
Each decision tree is trained using a different random sub-sample
of the total input attributes. To use the RF as a classifier, each
decision tree’s final output is used as a “vote” to assign a class
for each input data point: the RF can either return a probabil-
ity7 for each data point to belong to a certain class, or return
a single class prediction for each data point by returning the
class with the highest number of “votes” for each data point. The
RF’s use of multiple decision trees, each with different attribute
sets, ensures that it is robust to overfitting, in contrast to a single
decision tree. In addition to functioning as a supervised learning
classifier, the RF algorithm can return an importance for each of
the input attributes, which represents predictive power of each
attribute. When using the RF to calculate importances in this
work, we use Gini impurity based importances.

We use the RF to obtain ranked lists of attributes for four
different label setups (see Table 2 for the top 10 from each).
We keep the original multi-label setup (referred to in Table 2 as
ALL), with labels for STAR/GAL/QSO, and run the RF on three
other labels setups, where we convert the labels to be binary for
STAR/non-STAR, GAL/non-GAL and QSO/non-QSO (referred
to in Table 2 as STAR, GAL and QSO respectively). We pro-
duce the list of importances by running the RF 1000 times for
each of the three binary label setups and also the multi-label
setup, and rank the attributes by average importance over all
1000 runs for each different setup. This is necessary as RF is
non-deterministic, due to the fact that the random sub-samples
chosen for each decision tree in the training phase of the RF will
be different each time the RF is trained.

7 The probability is equal to the number of “votes” that the object is in
that class divided by the total number of decision trees.
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Fig. 2. Left: correlation matrix for the top 10 attributes from the three RF binary label and one multi-label output, and the Jhlr attribute. The STAR,
GAL, QSO, ALL labels show the top 10 attributes grouped together for the different RF setups (explained in Sect. 4.2.2). Right: correlation matrix
for the top 10 attributes from the three classifiers A, B and C from FP18, the colours g−J and Y−W1, and the Jhlr attribute. The A, B, C labels
show the top 10 attributes grouped together for the classifiers A, B and C from FP18.

4.2.3. Lists of colour attributes from FP18

In addition to the four ranked lists of important attributes from
the RF runs that we detail above, we also use the ranked lists
of important attributes from the RF classifiers A, B and C from
FP18 (see paper for more detail on these classifiers), and the
two colours g−J and Y−W1 as used in Fig. 4 in FP18. Although
classifiers B and C were constructed for different purposes com-
pared to the work we are doing, we still expect the output colours
from them to be significantly more informative than just choos-
ing colours at random. We also find that the attributes in classi-
fiers B and C are generally not highly correlated (see Sect. 4.2.4
and right panel in Fig. 2), further validating our choice to use
them in the construction of attribute sets.

4.2.4. Correlated attributes

Figure 2 (left) shows that there is a high degree of correlation
among the input attributes. This is also seen in Table 2 where it
is clear that many similar attributes are in the top 10 attributes
from RF – for example both J3 −W1 and Y3 −W1 are in the top
three most important attributes for the STAR RF binary classi-
fier. This is because RF looks only at a single attribute at each
decision point in each decision tree. This is in contrast to hdb-
scan, where all attributes are used simultaneously. This means
that if we use, for example, the top 10 attributes from the list of
important attributes from the RF star classifier, some are likely
to be highly correlated with each other, so when using the com-
bination of these 10 attributes as an input to hdbscan, it might
not actually be an informative selection of attributes for hdb-
scan; in fact, by adding highly correlated attributes to the input
attributes, we may simply be adding noise.

To mitigate against this issue of inputting highly correlated
attributes to hdbscan, we applied the following approaches:

– We combined the top attributes as given by each of the three
binary and the one multi-label RF classifiers and also com-
bined those from the classifiers A, B and C from FP18, as
the combinations are expected to be less correlated. This is
confirmed by inspecting a correlation matrix (see Fig. 2).

– We added the colours g−J and Y−W1 to the top attributes
from the classifiers A, B and C from FP18, as these are
uncorrelated with certain attributes from these classifiers’
ranked lists of attributes. For example, g−J and the top 10
attributes from classifier A in Fig. 2 are not highly correlated,
so adding g−J to this set of attributes will likely improve the
performance of hdbscan when using the list of attributes
from classifier A with the colour g−J added as opposed to
without it.

– We “trimmed” the top 10 important attributes from the RF
output by removing the most correlated attributes.

– We investigated the impact of adding the HLR information
to the colour data, as the HLR is not expected to be highly
correlated with our colour input attributes (this is clear in
Fig. 2). We would expect the HLR information for each data
point to be useful, as it gives an indicator of how point-like
the object is. In addition, ratios between HLRs can be used
as extra attributes, and are also useful in separating galaxies
from point sources. As mentioned in Sect. 4.1, for this work
we used the Y−K HLR values and their ratios as attributes.

4.2.5. Construction of attribute sets

Using the RF’s lists of importances for different classifier setups
as explained above we created a large number of different sets
of attributes, by selecting different numbers of attributes from
each list: the top 3–20 attributes at a time were chosen from the
RF classifiers’ lists of attributes by importance (top 10 of each
are shown in Table 2), and the top 3–10 for classifiers A, B and
C from FP18 to create different attribute sets. We also used the
methods as discussed in Sect. 4.2.4 to create further attribute sets
with reduced correlation between attributes in each attribute set.
We also added the Y−K HLR values and their ratios to these
attribute sets – however, we also keep the attribute sets with just
colour information, as we can compare the classification results
of using just colour data versus colour data and HLR values,
to investigate the impact of adding HLR values to the colour
information (see Sect. 6.3).
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Fig. 3. Main steps in the dbscan algorithm shown for an example where
the min_samples hyperparameter is set to 3.

We then performed PCA on these sets of attributes to reduce
the number of input attributes further. From an initial explo-
ration of hdbscan, we found that the best performance on our
data set was obtained when our parameter space was reduced
from ∼200 attributes to ∼5–30 attributes and PCA was then per-
formed to reduce those attributes to ∼2–5 dimensions, so our
sets of attributes are constructed loosely following these rules.
In total, we constructed ∼4000 different attribute combinations.
Figure 5 shows a summary of the method we used for creating
our attribute sets

5. Classification model

5.1. Algorithm description

hdbscan (Hierarchical Density-Based Spatial Clustering of
Applications with Noise, Campello et al. 2013) is an unsuper-
vised clustering algorithm, based on dbscan (Density-based
Spatial Clustering of Applications with Noise, Ester et al. 1996).
The hdbscan algorithm is first presented in Campello et al.
(2013). In this work, we are using the implementation8 of
McInnes et al. (2017).

5.1.1. DBSCAN

dbscan (Ester et al. 1996) is a density-based clustering algo-
rithm. Density-based clustering algorithms work by finding clus-
ters of points by looking for regions in the parameter space of
the data where there is a high density of points, surrounded by
a region where there is a lower density of points. In addition to
being an intuitive way of searching for clusters, it also works
well in practice.
dbscan requires two hyperparameter values to be spec-

ified: a neighbourhood distance (eps in the scikit-learn
implementation) which is used to define the maximum distance
between two points for them to be considered in the same clus-
ter, and minimum points (min_samples in the scikit-learn
implementation) which defines the value at which a neighbour-
hood of points is considered dense. The algorithm works by
defining core points, border points and noise points. A sketch of
the dbscan algorithm’s key steps are shown in Fig. 3. In brief:

8 https://pypi.org/project/hdbscan/

Fig. 4. Example of a dendrogram from an hdbscan run. In this
example, three clusters are found, and are circled. The λ value is
1/distance.

(i) a core point is defined such that it has at least the value of
min_samples of points within a distance eps; (ii) a border point
is defined such that it has at least one core point in its neighbour-
hood and isn’t a core point itself; (iii) a noise or outlier point is
any other point that is not a core or a border point; (iv) clusters
are formed by picking a core point in the data set and search-
ing for any other points that are within a distance eps of this
core point, assigning them to the same cluster as this initial core
point. The algorithm repeats this process until all core points
have been assigned to a cluster; (v) clusters consist of core and
border points. Noise points are considered outliers, and are not
part of any cluster.

Advantages of using dbscan include: it can discover any
number of clusters; it can find clusters of varying size and shape;
it can detect and ignore outliers. Disadvantages of using dbscan
include: it is sensitive to the choice of the hyperparameter eps –
if it is too small, then a sparse cluster will be labelled as noise,
and if it is too large then dense clusters will be merged together
as one cluster.

5.1.2. HDBSCAN

The main difference between dbscan and hdbscan is that
instead of counting points within a fixed radius eps to define
core, boundary and noise points, hdbscan effectively does this
using an expanding radius, such that the only hyperparameter of
importance is the min_cluster_size (the minimum size that a
cluster can be). By effectively running dbscanwith every possi-
ble value of eps, hdbscan takes advantage of the fact that in the
dbscan algorithm, when decreasing eps, clusters will only frag-
ment into smaller clusters (or remain the same). This means that
a hierarchical tree or dendrogram can be produced that shows the
clustering output (for a given value of hdbscan’s hyperparam-
eter min_cluster_size). By making a cut through the tree we
can produce an equivalent outcome as running dbscan for a par-
ticular value of eps. hdbscan finds the optimal cut through the
dendrogram by returning the most persistent clusters. An exam-
ple of a dendrogram output from a run of hdbscan is shown in
Fig. 4. From the hierarchy of potential clusters, hdbscan returns
a flat clustering, which corresponds to the cluster labels.

One advantage of hdbscanoverdbscan is that it can identify
clusters of varying density. For our data, the density of points in
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individual clusters varies significantly, so being able to find clus-
ters of varying density is an important requirement. hdbscan is
also faster than dbscan by a factor of ∼2 for the ∼50 000 data
points that we are training on; this discrepancy in speed only
increases with more data points. In addition, hdbscan is more
robust to the hyperparameter selection of the model, whereas
dbscan is very sensitive to the choice of hyperparameters.

We explored hyperparameters of hdbscan to assess their
impact on the performance of the classifier. We found that
(1) the distance metric “Euclidean” and “Manhattan” are the
best choices, giving similar results and speed. We chose to use
“Euclidean” distance in this work. (2) The minimum number
of points in a neighbourhood for a point to be recognized as a
core point (min_samples), did not impact the results. There-
fore, we used the default, where it is automatically set to the
same value as min_cluster_size. (3) Finally, we explored
the cluster_selection_method and found that the default
Excess of Mass (“eom”) worked best. In summary, changing the
other hyperparameters (aside from min_cluster_size) never
improved the performance of hdbscanwith regards to our needs.

Given it is an unsupervised learning method, hdbscan sim-
ply returns a number of clusters and their members, and does
not assign an object class (STAR/GAL/QSO) to each cluster. It
is possible to visually inspect the clustering output, and assign
clusters to an object – however this becomes inefficient over a
large number of runs. Instead, we automate this step, by assign-
ing each cluster to the most frequently occurring object in that
cluster, in order to then be able to calculate the metric scores for
each setup for hdbscan that we explore (see Sect. 5.2). In the
case where there are more than three clusters returned by hdb-
scan, the cluster with the largest number of each object is the
cluster we assign to that object. In some cases, more than three
clusters are found, and in these cases we do not ascribe a class
to these other clusters that are found.

In addition to returning a number of clusters and their mem-
bers, hdbscan also returns an outlier class for points that do not
clearly belong to any other cluster, and returns an outlier score,
which tells us how “strong” of an outlier each outlier point is.
Additionally, for each data point (including those in the outlier
class) hdbscan can return the probability that it belongs to a cer-
tain cluster; however this is a simple probability that is based on
the distance of a point from the centre of a cluster – we present
a method to produce more informative probabilities in Sect. 5.3.

5.2. Model construction

In this section, we describe the method that we use to find
the optimal setup for our hdbscan classifier. This section
describes the final two steps in Fig. 5. The goal of the attribute
selection step is to select the attributes (and corresponding
min_cluster_size value) that give optimal performance for
hdbscan for the classification of stars, galaxies and QSOs.

From our large list of potential attribute sets (see Sect. 4.2.5),
we search for the optimal set of attributes to use in our final
model setup by trying each attribute set as input into hdb-
scan, and varying the min_cluster_size hyperparameter of
the hdbscan algorithm over a range of values for each attribute
set. We use the metrics as described in Sect. 3 (with the focus
on F1 score for the purposes of this work) to evaluate the
performance of hdbscan for when each of the attribute sets
were used as input. The values of the min_cluster_size
hyperparameter that we iterate over are: 2–70 (1), 70–100 (2),
100–120 (5), 120–200 (20), 200–500 (50), 500–1000 (100),
1000–2000 (200), 200–5000 (500), with the ranges shown and

Sample

All 190 colours + Y –
K HLR information

Use RF to select most
important attributes

Use PCA to reduce
attributes further

Run gridsearch on
all attribute sets

Choose best for
STAR/GAL/QSO

Models

Fig. 5. Flowchart to show the method we used to select the best
attributes for our hdbscan classifier. The first four steps are detailed
in Sect. 4.2 and the final two steps are detailed in Sect. 5.2.

their step size in parentheses. In total, there are 114 different
min_cluster_size values that we test. We refer to this step as
a gridsearch (over the different attribute sets and over the differ-
ent min_cluster_size values to find which attribute set and
min_cluster_size combination gives the best classification
performance). This step is a brute force method; however, we
constructed our different attribute sets in an informed manner
(see Sects. 4.2.4 and 4.2.5). This gridsearch provides us with
predicted labels for all points, from which we can calculate the
associated metrics (defined in Sect. 3) for the STAR, GAL and
QSO class, for each set of input attributes, and for each of the
min_cluster_size values that we iterated over.

Inspecting these output metrics, it is clear that the best met-
ric scores for a specific object (for example, the STAR class),
are obtained with a specific attribute setup that is different to
the attribute setup with which we can obtain the highest metric
scores for a different object (for example, the QSO class). Thus,
for our final model of classifying STAR/GAL/QSO, we opt to
use the output of three hdbscan runs, enabling us to use differ-
ent attribute and min_cluster_size value setups for the clas-
sification of each object class. Although hdbscan returns the
number of clusters it finds automatically, we convert the cluster-
ing the output to a binary one, for example, STAR, non-STAR
allowing us to use the output as a binary classification. The met-
ric that we use to select our best classifier setups (attribute set
and min_cluster_size) is the F1 score, though this is flexible
– if for a specific science case purity was considered more impor-
tant, then it is straightforward to choose the setup that maximizes
purity, while keeping the completeness above a certain threshold,
for example. We choose the setup that maximizes the F1 score
for the STAR class, the GAL class, and the QSO class separately,
giving us three binary classifiers in our final classifier model.

Table 4 shows the optimal setups of our three binary object
classifiers, and their respective metric scores at this point in the
method (i.e. before consolidation – see Sect. 5.3), using just the
colour data as input attributes and using all data points in our
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STAR Model
(output interpreted
as STAR/non-STAR)

GAL Model (output
interpreted as
GAL/non-GAL)

QSO Model (output
interpreted as

QSO/non-QSO)

Consolidation

Final Object Classifications

Fig. 6. Flowchart to show the final model setup. The setups for the
STAR, GAL and QSO models are detailed in Tables 4 and 5 respectively
for when just colour and for when both colour and HLR information are
used as attributes. The “Consolidation” step is described in Sect. 5.3.

dataset. Table 5 shows the optimal setups of our three binary
classifiers, and their respective metric scores at this point in
the method (i.e. before consolidation – see Sect. 5.3), using
the Y−K HLR information in addition to the colour data as
input attributes, with the reduced dataset where data points with
missing Y−K HLR values have been removed. Although when
inputting just colour attributes to hdbscan we do use the full
sample (with results reported in Table 4), we also input to
hdbscan the same colour attributes with the reduced dataset
where data points with missing (or unrealistic) Y−K HLR values
have been removed, and the results using this reduced dataset
and just colour attributes are also shown in Table 5, so as to
be able to make a fair comparison between the case where our
attribute sets include the Y−K HLR values and their ratios to the
case where we are using only the colour attributes (see Sect. 6.3).

The time taken to train hdbscan depends on the number of
attributes fed to the algorithm, and also the min_cluster_size
that we use. Most of the attribute combinations that we use
as input to hdbscan have 2–5 attributes, and take at most a
few seconds to train (apart from when we use very high val-
ues of min_cluster_size values, where hdbscan can take
up to 30 seconds to train). The longest time to train hdbscan
is when we use all attributes that we have together (∼200),
when it takes ∼10 mins to train with little dependence on the
min_cluster_size. We used one core to train each model on
an Intel(R) Xeon(R) CPU E5-2680 v4.

5.3. Consolidation

During the consolidation phase (see Fig. 6), we combine the out-
puts of these three binary classifiers to give the final classifica-
tions of each data point. For the final classifications of all of the
data points, the objects that are classified positively by the STAR
binary classifier are considered STAR, and so on for GAL and
QSO.

We consider three consolidation methods “optimal”, “alter-
native”, and the “highest-probability” defined as follows:

Optimal method. For data points that are classified positively
by two binary classifiers separately, we assign the point to the
rarest object class, as follows: (i) sources classified as both STAR
and GAL, we call STAR; (ii) sources classified as both QSO and
GAL, we call QSO; (iii) sources classified as both STAR and
QSO, we call QSO.

We also define an outlier class, (different to the hdbscan
outlier class) that we refer to as the “post-consolidation outlier”
class. These post-consolidation outliers are those that are not
classified positively by any of the binary classifiers.

Alternative method. The second consolidation method we
investigated, which we refer to as the “alternative” method, we
simply reassign all doubly positively classified objects to the
post-consolidation outlier class.

Highest-probability method. Finally, we created 100 cata-
logue realizations based on the CPz sample using a Gaussian
distribution centred on that data point’s value with a sigma equal
to the uncertainty value. The maximum value for sigma that we
allow is 1, so for any error values above this we use a sigma of
1; 8175 data points in the u−W2 photometric bands have errors
greater than 1, with the majority of these being in the u or u3
bands. The Y−K HLR values have no associated errors, so we
use the same value in all new realizations.

From the predicted labels of the 100 realizations based on the
CPz catalogue, we estimated a probability for each data point to
belong to a certain class, calculated as the number of times it was
classified (using the “optimal” consolidation method) as a cer-
tain class, divided by the number of realizations. From the prob-
ability information we can also predict a final label for each data
point, by finding the object class (including post-consolidation
outlier) that has the highest probability value for each data point.
In the cases where two classes are equally probable, we assign
the data point to the rarest object class (as in the “optimal” con-
solidation method). We call these new final labels the “highest-
probability” labels.

A comparison of the F1 scores obtained using the three dif-
ferent consolidation methods is shown in Tables 6 and 7 when
using just the colour information as input data, and when using
both the colour and Y−K HLR information as attributes respec-
tively. Comparing the “alternative” method to the “optimal”
method, the GAL classifier metric scores do not change, but for
the STAR and QSO classifiers the precision increases (and fall-
out decreases) for the “alternative” method, however all the other
metric scores decrease for the STAR and QSO classifiers, lead-
ing to the F1 scores for the STAR and QSO classes decreasing.
However, if precision was the desired outcome, the “alternative”
method would be the best choice for combining labels.

We find that the “highest-probability” method produces
fewer outliers compared to the other two methods, while the F1
scores change by a negligible amount. Since we find that the
“highest-probability” method gives similar results to running our
hdbscan model once on the observed data, we do not choose to
use the “highest-probability” labelling method over the original
method; however, the probabilities for each point given by this
method are clearly useful and more informative than the simple
hdbscan probabilities, and we present these in the catalogues
as well as the “highest-probability” labels (see Appendix A.2).

5.4. F1 uncertainties

In order to obtain an estimate of the level of uncertainty on the
metric values that we present in Tables 6 and 7 we predicted
the labels and metric scores for the 100 catalogue realizations
described in Sect. 5.3, using the optimal hdbscanmodel trained
on the original CPz catalogue. When training on colour data, we
find the mean F1 scores for the star, galaxy, and QSO class to
be 98.52± 0.04, 98.42± 0.03 and 89.19± 0.18 (error given is the
standard deviation). When training on both colour and HLR data,
we find the mean F1 scores for the star, galaxy, and QSO class to
be 98.62± 0.05, 98.71± 0.02 and 91.85± 0.14. We note that the
F1 scores are slightly lower than those in Tables 6 and 7; this is
expected as we are testing on data different to what the hdbscan
model was optimized on. However, by using a predefined model
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Table 3. Attribute lists of binary model setups in Tables 4 and 5.

Attribute list Colours

best_star_colours K − Y3 K − J3 K − z3 K − H3 J3 − K3 Y3 − K3 J3 −W1 Y3 −W1 J − K H3 − K3

H3 −W1 Y − K H − Y3 Y3 −W2 J3 −W2 i − g3 z3 −W1 z3 − K3 z − u3 H − J3

best_gal_colours g − J Y −W1 J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3 H3 −W1
z3 −W1 K − H3 H −W2 K −W2 W1 −W2 i −W2 g − K g − H i −W1 r − H
g3 − i3 r − z3 r − i r3 − i3 K3 −W2 r − z r − Y3 H − J3 i − u3

best_qso_colours J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3 H3 −W1 z3 −W1 K − H3

H −W2 K −W2 W1 −W2 g − J i −W2 g − K g − H i −W1 r − H g3 − i3

r − z3 r − i r3 − i3 K3 −W2 r − z r − Y3 H − J3 i − u3

best_star_colours_comp g − J Y −W1 J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 H −W2 K −W2 W1 −W2
i −W2 r − z3 r − i r3 − i3 K3 −W2 r − z

best_gal_colours_comp g − J Y −W1 J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3 H3 −W1
z3 −W1 K − H3

best_qso_colours_comp J3 −W1 Y3 −W1 J3 −W2 H3 −W2 Y3 −W2 z3 −W2 K − J3 H3 −W1 z3 −W1 K − H3

H −W2 K −W2 W1 −W2 g − J i −W2 g − K g − H i −W1 r − H g3 − i3

r − z3 r − i r3 − i3 K3 −W2 r − z r − Y3 H − J3 H −W2 i − u3 K − J3

best_star_atts J3 −W1 Y3 −W1 J3 −W2 H −W2 K −W2 W1 −W2 r − z3 r − i r3 − i3 KHLR

best_gal_atts g − J Y −W1 J3 −W1 Y3 −W1 J3 −W2 H −W2 K −W2 W1 −W2 r − z3 r − i
r3 − i3 KHLR

best_qso_atts H −W2 K −W2 W1 −W2 g − J i −W2 i −W1 r − H g3 − i3 YHLR

Notes. The attributes in italics are the colours that are part of the attributes that are used as part of the final best model setup when just colour data
are used as attributes. The attributes in bold are the colours and HLR values or ratios that are part of the attributes that are used as part of the final
best model setup for when HLR data are used in addition to the colour data as attributes.

Table 4. Pre-consolidation colour-only classification setup and performance.

Model Attributes PCA min_cluster_size F1 ACC P R F

STAR best_star_colours 3 33 98.64 99.57 99.51 97.79 0.09
hdbscan GAL best_gal_colours 3 59 98.65 97.96 98.25 99.06 5.43
48 686 data points QSO best_qso_colours 3 49 91.07 98.51 94.44 87.93 0.49

Notes. The full list of colours from the Attributes column are shown in Table 3.

Table 5. Same as Table 4 for colour and HLR input attributes.

Model Attributes PCA min_cluster_size F1 ACC P R F

hdbscan STAR best_star_colours_comp 3 61 98.84 99.61 99.52 98.17 0.1
43 348 data points GAL best_gal_colours_comp 3 62 98.62 97.97 98.29 98.96 4.82
(no HLR data used) QSO best_qso_colours_comp 3 56 92.28 98.61 94.14 90.49 0.57
hdbscan STAR best_star_atts 3 78 98.92 99.63 99.48 98.36 0.11
43 348 data points GAL best_gal_atts 3 36 98.83 98.28 98.53 99.14 4.13
HLR data used QSO best_qso_atts 3 34 93.13 98.77 95.12 91.22 0.47

Notes. Sources with missing HLR have been removed from this sample.

and a perturbed dataset we can assess the generalization of the
model and use it with confidence on previously unseen data.

5.5. Summary of model setup

Figures 5 and 6 summarize the process followed for the classifi-
cation of STAR, GAL and QSO using hdbscan. Briefly, starting
from the initial parameter space of about 200 attributes, we iden-
tified the highest importance attributes using Random Forest and
further reduced that parameter space to three components using
PCA. Finally, we ran a gridsearch to identify the best hyperpa-
rameters on the basis of the F1 score, estimated using the spec-
troscopic labels as the truth.

By selecting favorable input attributes and hdbscan hyper-
parameters per object class we constructed three classifiers. The
output of the binary classifiers can then be consolidated for over-
all optimal F1 score or optimal precision. The specific setup of
the STAR, GAL and QSO model is shown in Tables 4 and 5
respectively for when we use just colour attributes and for when
we use both colour attributes and HLR information as input. The
exact attribute lists are given in Table 3.

6. HDBSCAN performance

In the following section, we discuss the performance of our clas-
sifier under various selections of the input attributes, assuming
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Table 6. Post-consolidation colour-only performance.

Consolidation method Class F1 ACC P R F AUC Nsources

STAR 98.64 99.57 99.51 97.78 0.09 0.988 7596
Optimal GAL 98.7 98.04 98.43 98.98 4.86 0.971 36 967

QSO 91.07 98.51 94.44 87.93 0.49 0.937 3903
STAR 98.45 99.51 99.64 97.28 0.07 0.986 7548

Alternative GAL 98.7 98.04 98.43 98.98 4.86 0.971 36 967
QSO 90.91 98.5 94.94 87.21 0.44 0.934 3851

Highest- STAR 98.62 99.56 99.46 97.79 0.1 0.988 7601
probability GAL 98.72 98.06 98.42 99.02 4.91 0.971 36 990

QSO 91.11 98.52 94.33 88.1 0.5 0.938 3915

Notes. Comparison of the optimal and alternative consolidation
methods, defined in Sect. 5.1.2. The “optimal”, “alternative”, and
“highest-probability” consolidation methods give 220, 320 and 180
post-consolidation outliers respectively.

that the spectroscopic labels are correct. We revisit this assump-
tion in Sect. 8.1.

6.1. Classification performance

For context, a very bad classification scenario can be assessed
if we assume all of the data points to belong to one cluster, i.e.
all points classified as STAR, or GAL, or QSO. In this extreme
scenario, the recall and fall-out would be 100% (see definitions
in Sect. 3), the accuracy and precision would be equal to each
other, being 15.88% for stars, 75.71% for galaxies and 8.61%
for QSO. Respectively, the F1 score would be 27.41% for stars,
86.05% for galaxies, and 15.85% for QSO.

6.1.1. Colour data as attributes

We present our final model setup and performance metrics
in Table 4 for the case when we use just colour data as
attributes. The optimal setups are shown for the STAR, GAL and
QSO binary classifier models, specifically detailing the optimal
min_cluster_sizevalue and input attributes, and the number of
dimensions to which those attributes are then reduced using PCA.
The colours in each of these top attributes are shown in Table 3.

Using the “optimal” consolidation method, the F1 scores that
we obtain when using just colour attributes and the full data set
are F1STAR = 98.64, F1GAL = 98.7 and F1QSO = 91.07 (Table 6).
On the other hand, the “alternative” consolidation method
that favours precision over completeness gives F1STAR = 98.45,
F1GAL = 98.7 and F1QSO = 90.91. The “optimal” method pro-
duces 220 post-consolidation outliers, and the “alternative”
method produces 320 post-consolidation outliers. The “highest-
probability” method gives F1STAR = 98.62, F1GAL = 98.72 and
F1QSO = 91.11 and 180 outliers. In addition, we present the AUC
scores for all consolidation methods in Table 6. We find simi-
lar AUC scores for all consolidation methods, between 0.986 and
0.988 for stars, 0.971 for galaxies and between 0.934 and 0.938
for QSOs.

6.1.2. Colour and HLR data as attributes

In Table 5, we present the final model setup and performance
metrics when using the Y−K HLR data in addition to the colour
data as the attributes. Similarly to the colour-only case we show
the optimal setups for the STAR, GAL and QSO binary classifier
models including the optimal min_cluster_size values, input
attributes, and the number of PCA components. The colours and
HLR data in each of these top attributes are shown in Table 3.

Table 7. Same as Table 6 for colour and HLR input attributes.

Consolidation method Class F1 ACC P R F AUC Nsources

STAR 98.9 99.62 99.5 98.31 0.1 0.991 7359
Optimal GAL 98.9 98.39 98.71 99.1 3.61 0.983 32 051

QSO 93.13 98.77 95.12 91.22 0.47 0.925 3811
STAR 98.83 99.6 99.54 98.13 0.09 0.990 7343

Alternative GAL 98.9 98.39 98.71 99.1 3.61 0.983 32 051
QSO 92.7 98.7 95.49 90.06 0.43 0.920 3748

Highest- STAR 98.94 99.64 99.5 98.39 0.1 0.991 7365
probability GAL 98.92 98.41 98.7 99.14 3.64 0.983 32 067

QSO 93.01 98.74 94.87 91.22 0.5 0.927 3821

Notes. The “optimal”, “alternative”, and “highest-probability” con-
solidation methods give 127, 206 and 95 post-consolidation outliers
respectively.

After the consolidation step using the “optimal” consolidation
method, the F1 scores that we obtain when using the Y−K HLR
data in addition to the colour data, and a reduced data set with no
missing Y−K HLR values (43 348 sources), are F1STAR = 98.9,
F1GAL = 98.9 and F1QSO = 93.13 with 127 post-consolidation
outliers (Table 7). The “alternative” consolidation method shows
F1STAR = 98.83, F1GAL = 98.9 and F1QSO = 92.7 with 206 out-
liers. The “highest-probability” method gives F1STAR = 98.94,
F1GAL = 98.92 and F1QSO = 93.01 and 95 outliers. In addition,
we present the AUC scores for all consolidation methods in
Table 7. We find the AUC scores to be between 0.990 and 0.991 for
stars, 0.983 for galaxies and between 0.920 and 0.927 for QSOs.

The confusion matrices for each of the binary classifiers are
shown in Fig. 7. In panel d it is clear that the reason QSOs
have poorer F1 scores than the galaxy and star class because
about ∼8% are classified as galaxies, even with the inclusion
of the Y−K HLR data. This is due to the overlap between the
QSO and galaxy clusters in the colour space as discussed in
Sect. 2.2 (see Fig. 1), and more specifically the broad definition
of QSO which can include both blue, unobscured objects as well
as broad-absorption line (BAL) systems.

6.2. Optimal attribute lists, PCA components and feature
Importances

Using all of the 190 colours that are available from the u−W2 pho-
tometric bands as input attributes to hdbscan, we can obtain an
F1 scores of F1STAR = 87.92, F1GAL = 86.05 and F1QSO = 45.13
when running the hdbscan in binary mode. Even with the use
of PCA to reduce this large number of attributes to 3 dimen-
sions, we only obtain F1 scores of F1STAR = 94.42, F1GAL = 93.5
and F1QSO = 54.76. Thus, successful attribute selection is criti-
cal to optimize the performance of our model. We find that for
our optimal setups for our hdbscan final classifier, we generally
reduce ∼10–30 attributes to 3 attributes using PCA for input into
hdbscan (see Tables 4, 5 and 3).

In Figs. 8–10 we show the PCA components of the binary
STAR, GAL and QSO classifiers respectively, when using both
colour and Y−K HLR data in our attributes for the hdbscan
model setup. It is clear the each different component combina-
tion is providing some extra information for hdbscan to be able
to separate different object types. The left column in these fig-
ures shows the binary class assignment, while the right-hand side
shows the post-consolidation class assigned in each respective
PCA space projection, including the post-consolidation outliers.

In Table 3, we show the list of attributes for the optimal
model setups for each of the STAR, GAL and QSO binary clas-
sifiers. The best attribute list names are shown in italics and
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(a) (b)

(c) (d)

Fig. 7. Confusion matrices of post-consolidation predicted labels using colour and HLR input attributes. (a) STAR (b) GAL, (c) QSO and (d) the
combined output. We note that for panel d, the predicted label “post-consolidation outlier” is not shown, hence the star and QSO rows’ values do
not sum to 1.

bold respectively when using just the colour data as attributes,
and when HLR data are included. It can be seen that in all of
these top attributes, the WISE bands (i.e. W1 and W2) appear
frequently, suggesting that the inclusion of these WISE bands
is critical in order to classify STAR, GAL and QSO to a high
level of precision and accuracy. Interestingly, the RF’s list of top
10 attributes for the binary QSO classifier (shown in Table 2)
setup does not include any of the WISE bands in the colours,
whereas the optimal attribute list for the hdbscan QSO binary
classifier model includes many colours that use the WISE band
photometry (see Table 3). This confirms that different attributes
are more important for hdbscan compared to RF, which vali-
dates our choice to use the top attributes from classifiers A, B
and C from FP18 when creating the potential attribute lists for
hdbscan which we tested as input to our hdbscan binary clas-
sifiers. Even though classifiers B and C were used for different
purposes as to what we are doing in this work (as explained in
Sect. 4.2.3), their attributes were still useful for hdbscan.

It is also clear that combining information from the different
apertures is important – a mix of 3′′ aperture magnitudes and

total magnitudes carries information particularly for stars and
QSOs, providing information on the morphology. This was also
the case for the RF top attributes output, in Table 2.

6.3. Impact of HLR information

When removing missing Y−K HLR data, the number of faint
sources decreases, hence, the immediate increase in classifica-
tion performance compared to using only colours. In Table 5 we
show the best gridsearch result (as described in Sect. 5.2) run
over all attribute sets using just colour attributes using the dataset
where the data points with missing Y−K HLR are removed, so
as to be able to make a fair comparison. The STAR classification
performance increases slightly (from 98.84 to 98.92), the GAL
performance also increases slightly (from 98.62 to 98.83), but it
is the QSO performance that increases the most (from 92.28 to
93.13).

Additionally, in Table 3 we see that the optimal attribute
lists (for the case where we use both colour data and HLR
data as attributes) for each of the STAR, GAL and QSO binary
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Fig. 8. PCA components for the STAR classifier using colour and HLR data as input attributes. Left column: labels that we obtain from the
hdbscan STAR classifier. Right column: post-consolidation labels including outliers.

Fig. 9. Same as Fig. 8 for the GAL classifier.

hdbscan classifiers in our final model include the KHLR attribute
and also the YHLR attribute. However, if only one HLR value is
available (for example the KHLR data), good performance can
still be achieved. In the case of using the optimal attributes that
include just the KHLR value from the HLR data for the QSO
classifier, the F1 scores changes from 93.13 (achieved using an
attribute list that includes the KHLR attribute) to 93.0. There is
also a benefit of using just one HLR value, especially clear in
the case of our dataset; if alistically high – HLR> 20′′) Y−K
HLR values, then it is only necessary to drop those objects
that have missing, for example, JHLR values. In the case of our
dataset, we could then use 47 652 points from our data set if just

removing those points that have missing KHLR values, compared
with 43 348 when we remove all of data points from our data set
that have missing Y−K HLR values.

6.4. Dependence of performance on photometric depth and
redshift

Figure 11 shows the performance of the colour-only hdbscan
model as function of the r magnitude9 for each of the object

9 The double peaked magnitude distribution in the galaxy histograms
is due to the combination of shallow (SDSS DR12) and deep surveys
(CFHTLS, KiDS) surveys in the CPz sample of FP18.

A154, page 12 of 25

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936648&pdf_id=8
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936648&pdf_id=9


C. H. A. Logan and S. Fotopoulou: Unsupervised star, galaxy, QSO classification

Fig. 10. Same as Fig. 8 for the QSO classifier.

classes. Figure 12 shows the same distributions for the colour
and HLR classifiers. The number of points in each magnitude
bin is also shown on the right hand axes.

In general, all classifiers achieve very high accuracy across
all magnitudes (dot-dashed green line). The star classifier shows
excellent performance at least up to magnitude r = 19. At fainter
magnitudes, the accuracy remains very high, however the com-
pleteness seems to decrease. At the same time those bins suffer
from very low number of objects and this performance at those
magnitudes should be re-examined with deeper data.

The galaxy classifier shows overall great performance and
stability, apart from the faintest magnitude bin (r > 24) which
suffers from low number statistics. The stable performance is
retained also as a function of redshift as seen in the left-hand
side ofr data set if just rem Fig. 13.

The QSO classifier shows excellent accuracy performance
across all magnitudes, in line with the two other classifiers. The
difference appears in the completeness (recall curve, dotted cyan
line). As mentioned in Sect. 8.1, the definition of QSO based on
the spectroscopic sample contains a variety of objects, includ-
ing unobscured quasars, AGN, and BALs. The missed objects
that reduce the completeness of this classifier are the 10% of
the labelled data that overlap with the galaxy cloud. Given that
hdbscan performs unsupervised clustering, this population is
not expected to be identified as QSO. The impact of this is also
seen in the right-hand side of Fig. 13. At the low redshift range,
AGNs with colours not dominated by the quasar have been spec-
troscopically classified as QSO. These sources typically lie in the
transition region between the QSO and GAL clouds. However,
at the high redshift regime the QSO sources are impacted by
the presence of BALs and intergalactic absorption hence extin-
guishing the blue part of the spectrum and moving these objects
to galaxy-like appearance in the optical magnitudes.

We also plot the probability distributions given by the
“highest-probability” consolidation method (see Sect. 5.3) in dif-
ferent r magnitude bins in Fig. 14. The left panel shows the
colour-only CPz sample while the right panel shows the colour
and HLR CPz performance.

7. Application to KiDS, VIKING, and ALLWISE
(KiDS-VW)

7.1. Catalogue creation

We updated the CPz sample of FP18 by cross matching the KiDS
DR4v3 catalogue10, with the VIKING DR3v3 survey11, and the
ALLWISE catalogue12. The overlap area among these surveys
is approximately 200 deg2 and about 2.7 × 106 sources have no
missing magnitudes in any of the filters u−W213. Similarly to
FP18, we are using 2.8′′ aperture magnitudes and total (auto
or petrosian magnitudes) and model magnitudes for WISE. A
comparison between aperture and total magnitudes revealed off-
sets ∆m = maper − mauto = zp. We estimated and applied a gen-
eral aperture correction by taking the offset in the magnitude
range 16–18 in each filter (u−K). We found for the KiDS survey
an offset of zp = 0.12 is needed in each band while for VIKING,
zp = −0.02 for the z band and zp = −0.04 for the J, H, and Ks
bands. Hereafter, we refer to this catalogue as the KiDS-VW cat-
alogue.

7.2. Classification

Applying the methodology described in Sect. 5 and Fig. 6,
we classified all sources without missing magnitudes into star,
galaxy, and QSO. We used the hdbscan model setup that uses
only colour information as attributes (see Table 4), as no HLR
data was available for the Y−K HLR bands. We applied the
hdbscanmodel trained on the CPz dataset of 48 686 data points

10 Downloaded single detection band catalogues from http://kids.
strw.leidenuniv.nl/DR4/format.php#cols1
11 Downloaded in its entirety using the ESO Catalogue Facility https:
//www.eso.org/qi/
12 Downloaded from https://irsa.ipac.caltech.edu/data/
download/wise-allwise/
13 We note that this is a small portion of the KiDS catalogue. The
photometry ad associated redshifts for the entire DR4 are published in
Kuijken et al. (2019).
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Fig. 11. Post-consolidation colour-only classification performance as a
function of magnitude. The number of objects in each magnitude bin
are shown as red bars for the final output of the hdbscan model, and
the hatched grey bars are for the spectroscopic labels.

to the 2 728 329 data points in the KiDS-VW sample. We then
combined the three sets of predicted labels from each of the
binary classifers in the consolidation phase (as described in
Sect. 5.3; we used the “optimal” consolidation method). Cru-
cially, the normalization and scaling that was applied to the new
data had to be the same that was applied on the training data, and
this was also true for the PCA transformation14.

14 Each of the three binary classifiers in the hdbscan model took
∼10 mins to predict the 3 million labels, so overall the total prediction
stage took ∼30 mins. This was run on one core on an Intel(R) Xeon(R)
CPU E5-2680 v4. The memory usage was dictated by the size of the

Fig. 12. Same as Fig. 11 for colour and HLR classification performance.

The results we obtained from the prediction stage on the
KiDS-VW sample was as follows: 1 184 222 objects classi-
fied as STAR, 1 379 850 as GAL and 123 084 as QSO, with
41 173 post-consolidation outliers. The distribution of sources
within different classes is different to that of the CPz sam-
ple due to the construction of the catalogues (for example,
higher fraction of QSOs in the CPz catalogue as sources had
to have spectroscopic classifications to be included, and QSOs
are more likely to be spectroscopically followed up than other
objects). In Figs. 17–19, we show the pre-consolidation and post-
consolidation labels in PCA component space for the STAR,
GAL and QSO hdbscan binary classifiers respectively for when

input data for prediction, however this potential bottleneck can be eas-
ily mitigated by predicting smaller batches of objects.
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Fig. 13. Post-consolidation colour and HLR classification as a function of redshift is shown for galaxies (left panel) and QSOs (right panel). The
number of objects in each magnitude bin are shown as red bars for the final output of the hdbscan model (after the consolidation step), and the
hatched grey bars are for the spectroscopic labels.

Fig. 14. Probability distributions for the CPz sample for six different r magnitude bins are shown. The classification probability of each object is
obtained using the “highest-probability” method (see Sect. 5.3). The left panel is for when just colours were used as attributes, and the right panel
is for when both colour and HLR information were used as attributes. The objects are in classes according to their “highest-probability” final label.

predicting on the KiDS-VW catalogue having trained on the CPz
sample.

7.3. Photometric redshift estimation

For the photometric redshift estimation of the 2 728 329 sources
in the KiDS-VW sample, we train and test a RF (the RF algo-
rithm is explained in Sect. 4.2.2), using the 55 383 sources in
KiDS-VW that are also in SDSS DR14 and therefore have a
spectroscopic redshift. We then use the trained RF to predict
photometric redshifts for the rest of the sample.

Salvato et al. (2009, 2011) demonstrated that photomet-
ric redshifts for X-ray AGN and QSO should be estimated
with tailored templates and absolute magnitude prior selec-
tion. The classification-aided photometric redshift estimation

(CPz) of FP18, generalized this approach by pre-classifying
all sources according to the best photometric library setup, in
the absence of X-ray information. Following the CPz approach,
we trained two different RFs for this purpose in the following
ways: (i) GAL_PHOTOZ_PREDICTOR – trained on galaxies;
(ii) QSO_PHOTOZ_PREDICTOR – trained on QSOs.

For the methods above, we select the galaxies and QSOs
according to their classification by our hdbscan model, using
the “optimal” method for consolidation, and just the colour
attributes.

To find the optimal hyperparameter setups for each of the
two RFs, we split the 55 383 SDSS DR14 sources into a train,
validation and test sample (60%, 20% and 20% respectively).
Using the train and validation samples, we iterated over the
n_estimators (10, 20, 40, 60, 100, 200) and max_depth
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(a) (b)

Fig. 15. Comparison of the predicted photometric redshifts vs the spectroscopic redshifts for the test sample (20%) of the SDSS DR14 sources in
KiDS-VW. (a) Train the GAL_PHOTOZ_PREDICTOR and test on galaxies. (b) Train the QSO_PHOTOZ_PREDICTOR and test on QSOs. The
metric scores are also shown. For all plots and metric, we select the galaxies and QSOs according to their classification by our hdbscan model,
using the “optimal” method for consolidation, and just the colour attributes.

Fig. 16. SDSS DR14 median stacked spectrum of hdbscan identified
QSO. Top: sources at 0 < z < 0.8, normalized at rest-frame 5100 Å.
Bottom: sources at 0.8 < z < 3 normalized at 1925 Å. The lower subplot
shows the number of stacked spectra per pixel.

(3, 5, 10, 20, 50, None = no limit) hyperparameters of the
RF, training on the train sample and calculating metric scores
using the trained RF’s predictions for the validation sample and
the spectroscopic redshifts as the truth. We used two metrics
(accuracy, σNMAD = 1.48| zphot−zspec

1+zspec
|, and catastrophic outliers, η,

(N(| zphot−zspec

1+zspec
|) > 0.15) as well as visually inspecting each plot

for any systematic issues. We found that n_estimators= 200
and max_depth= None provided the best overall performance
for both of the RFs.

Having found the best hyperparameter setup for our RFs, we
then tested the performance on the test set. We present the metric
values and plots of the predicted photometric redshift compared
to the spectroscopic redshift for the test sample in Fig. 15 for
both of the RFs.

We also predicted the photometric redshifts for the whole
KiDS-VW sample, using the trained RFs. We present these
predicted photometric redshifts in the final KiDS-VW cata-
logue (Appendix A.2 in Cols. 65–66). Even though the RFs
are optimized for certain objects, we still predict redshifts
for the whole sample and if a user of the catalogue just
wants to select galaxies with redshifts calculated using the
GAL_PHOTOZ_PREDICTOR, they can, using the information
in the catalogue (i.e. the hdbscanclass columns in the final cata-
logue).

8. Discussion

In this section, we compare our best classifier to the litera-
ture, looking into the quasar identification of spectroscopic and
machine-learning methods with more depth.

8.1. Classifications

Quasar identification and spectroscopic follow-up has been one
of they main focus points of SDSS (for example, Richards
et al. 2001; Schneider et al. 2010; Bovy et al. 2011). Pâris
et al. (2018) presented an updated spectroscopic QSO cat-
alogue for SDSS-IV/eBOSS (DR14Q) which includes target
selection based on all previous SDSS quasar catalogues, WISE
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Fig. 17. KiDS-VW classification using the colour-only STAR classifier. Left: hdbscan STAR classifier output, right: post-consolidation labels.
The contours mark iso-number locations of the full KiDS-VW sample. A subset of 10 000 points per class is shown for guidance.

Fig. 18. Same as Fig. 17 for the GAL classifier.

and the Palomar Transient Factory. Briefly, the authors cre-
ated a superset of confirmed quasars from SDSS-I/II (79 487
sources Schneider et al. 2010) and quasar candidates for SDSS-
III/IV (819 611, following Pâris et al. 2017) for a total of
899 098 quasar candidates. Given the large number of candi-
dates, they partly rely on automated classification by the SDSS
pipeline classifying the sources as star, QSO, or galaxy and
partly on visual inspection of the spectra. From the super-
set of 899 098, the authors report that only 42 729 (4.5%)
of the sources did not have a secure star, QSO, or galaxy
designation. Of those 32 621 (3.6%) were visually inspected

during the construction of previous versions of the SDSS
quasar catalogue, leaving only 10 108 (1%) candidates to be
inspected for DR14Q. The final quasar catalogue of Pâris
et al. (2018) contains 526 356 quasars with 73.5% selected
through visual assessment and 26.5% though an automated
classification.

We first matched the CPz dataset (43 348 sources) with
SDSS DR14 (39 447 matches) within 1′′ match radius. In
Table 10 we show the breakdown of the classifications between
CPz and SDSS DR14. Overall, the fraction of stars, galaxies
and QSO is roughly comparable (stars: ∼18%, galaxies: ∼72%,
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Fig. 19. Same as Fig. 17 for the QSO classifier.

∼QSO: 10%). However, there are variations on the actual objects
per class as revealed by the confusion matrix between HDB-
SCAN and SDSS DR14.

We also matched the CPz dataset (43 348 sources) with the
Pâris et al. (2018) DR14Q catalogue (3 666 matches) within 1′′
match radius. In Table 11, we show the breakdown of the classi-
fication of HDBSCAN and SDSS DR14 using the 3666 matched
quasars of the DR14Q quasar catalogue of Pâris et al. (2018). It
is tempting to interpret the 99.5% quasar sample of SDSS DR14
as a very high quasar accuracy. However, there are two effects
that contribute largely to this. First, the procedure of Pâris et al.
(2018) trusts the automatic classification of SDSS under certain
quality conditions. Secondly and more importantly, a naive selec-
tion of QSO in the SDSS DR14 catalogue according to the pipeline
assigned class returns 996 936 quasars. Pâris et al. (2018) demon-
strated that the number of reliable quasars is 526 356 (53%),
meaning that the number of SDSS DR14 QSO is overestimated.

A visual inspection of the disagreement between the DR14Q
catalogue and HDBSCAN shows that in many cases the spectra
show prominent Lyman breaks and BALs. Both cases are nat-
urally more common at z > 2. This contributes to the decreas-
ing HDBSCAN performace as a function of redshift shown in
Fig. 13. Other cases of confusion are AGN and obscured quasars
at high redshift which appear similar to normal galaxies in the
optical and near infrared observed frame wavelengths, but have
prominent QSO mid infrared emission. Table 9 shows a visu-
alization of the confusion matrix highlighting selected cases of
disagreement between HDBSCAN and SDSS DR14. A com-
plete characterization of the galaxy/AGN parameters in the over-
lap regions between these high dimensional clusters is outside
the scope of this work, as it will be only possible with flux
limited redshift complete samples of future generation spectro-
scopic surveys.

Our unsupervised classification of a photometric dataset has
recovered spectroscopically confirmed quasar populations with
very high accuracy compared to DR14Q (>97%) and with com-
parable quality to the visual inspection of Pâris et al. (2018) thus,
our classifier can be used to automate and scale source identifica-

Table 8. Performance metrics for the KiDS-VW sample, excluding
sources already in the CPz sample.

Consolidation method Class F1 ACC P R F AUC Nsources

STAR 96.04 98.58 98.08 94.08 0.41 0.979 5352
Optimal GAL 97.42 96.55 96.05 98.82 7.82 0.963 20 659

QSO 90.47 97.17 97.57 84.33 0.4 0.925 4196
STAR 95.82 98.51 98.1 93.65 0.41 0.978 5326

Alternative GAL 97.42 96.55 96.05 98.82 7.82 0.963 20 659
QSO 89.96 97.04 97.75 83.32 0.36 0.920 4138

Highest- STAR 96.13 98.61 98.08 94.25 0.41 0.979 5361
probability GAL 97.37 96.49 95.98 98.81 7.97 0.963 20 673

QSO 90.69 97.23 97.56 84.72 0.4 0.927 4216

Notes. The “optimal”, “alternative”, and “highest-probability” con-
solidation methods give 307, 391 and 264 post-consolidation outliers
respectively.

tion to arbitrarily large datasets, particularly useful for all future
photometric and spectroscopic large area surveys.

8.2. KiDS-VW quasar catalogue

A positional match of 1′′ radius between the KiDS-VW and
SDSS DR14 yields 55 383. From this subset, we select the
sources that are not already in the CPz sample, giving us
30 514 points. Figure 16 shows the median stacked SDSS DR14
spectra for the latter sample of hdbscan identified QSO in two
redshift bins. The QSO identified with this method are protopy-
tical unobscured QSO.

Table 8 shows the performance metrics using the SDSS DR14
spectroscopic labels as the truth, for all three consolidation meth-
ods. We also estimated the uncertainties for the metric val-
ues (using the method described in Sect. 5.4, having used the
“optimal” method for consolidation) for these 30 514 points,
using the SDSS DR14 labels as the truth. We find the mean F1
scores for the star, galaxy and QSO class to be 95.97± 0.05,
97.26± 0.03 and 89.49± 0.15 (error given is the standard
deviation).
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Table 9. Example of classification overlap among HDBSCAN, SDSS DR14 and DR14Q for the CPz/SDSS-DR14 matched sample of
39 447 objects.

SDSS DR14
STAR GALAXY QSO

HDBSCAN STAR

GALAXY

QSO

OUTLIER

In comparison to the performance metrics found for the
CPz sample when just colours are used as attributes (shown
in Table 4), the F1 scores are lower for when training on
the CPz sample and applying to the new points in KiDS-VW
(see Table 8). This is expected, as the hdbscan was opti-
mized for the original CPz dataset. However, the QSO F1 score
barely decreases from the CPz sample to the application on
the KiDS-VW sample (at least for those with SDSS spectro-
scopic labels). The precision for the prediction on the KiDS-
VW sample is actually higher than that for the original CPz
sample.

For the 30 514 points in the overlap between the KiDS-VW
and SDSS DR14 samples, we show the breakdown of the classi-
fications between KiDS-VW and SDSS DR14 in Table 12. Over-
all, the fraction of stars, galaxies and QSO is roughly comparable
(stars: ∼18%, galaxies: ∼66–68%, QSO: ∼14–16%).

Figure 20a shows the 55 383 SDSSDR14 sources matched
to KiDS-VW, colour codes according the spectroscopic labels,
while panel b shows the same objects colour-coded according to
their hdbscan classification. The dark blue points are outliers as
identified by the optimal consolidation method. The SDSSDR14
QSO labels sources seem to span a large area on this colour
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Table 10. Confusion matrix between HDBSCAN and SDSS DR14 for
the CPz/SDSS-DR14 matched sample of 39 447 objects.

HDBSCAN SDSS DR14
S G Q O S G Q

18.0% 72.1% 9.6% 0.2% 18.3% 71.2% 10.5%

HDBSCAN S 7114 – – – 7,065 44 5
G 2858 – – 113 27,938 407
Q 3779 – 18 65 3696
O 96 12 42 42

SDSS S 7,208 – –
G 28,089 –
Q 4,150

Notes. The “O” refers to the post-consolidation outliers.

Table 11. Confusion matrix between HDBSCAN and SDSS DR14 for
the sample of 3666 DR14Q quasars.

HDBSCAN SDSS DR14
S G Q O S G Q

0.03% 1.9% 97.6% 0.5% 0.05% 0.4% 99.5%

HDBSCAN S 1 – – – 0 0 1
G 68 – – 0 0 68
Q 3578 – 2 15 3561
O 19 0 0 19

SDSS S 2 – –
G 15 –
Q 3649

Note. The “O” refers to the post-consolidation outliers.

Table 12. Classification overlap among HDBSCAN and SDSS DR14
for the KiDS-VW/SDSS-DR14 matched sample of 30 514 objects,
excluding any sources present in CPz.

HDBSCAN SDSS DR14
S G Q O S G Q

17.5% 67.7% 13.8% 1.1% 18.3% 65.8% 15.9%

HDBSCAN S 5352 – – – 5,249 97 6
G 20 659 – – 170 19 843 646
Q 4196 – 50 52 4094
O 307 110 88 109

SDSS S 5579 – –
G 20 080 –
Q 4855

Notes. The “O” refers to the post-consolidation outliers.

plot, extending into the star locus. Contrary, our method local-
izes the three populations very well, and the consolidation pro-
cedure identifies potential very problematic objects.

In addition, we present the AUC scores for all consolida-
tion methods in Table 8. We find the AUC scores to always be
0.979 for star, 0.963 for galaxies, and between 0.920 and 0.927
for QSOs. In Fig. 21 we show the probability distributions of
the “highest-probability” consolidation method (see Sect. 5.3) in
different r magnitude bins for the KiDSVW sample.

8.2.1. Comparison to DR14Q

We also matched the 30 514 sources from the overlap between
the KiDS-VW and SDSS DR14 samples with the Pâris et al.
(2018) DR14Q catalogue (4321 matches) within 1′′ match

Table 13. Classification overlap among HDBSCAN, SDSS DR14 and
DR14Q for the KiDS-VW/DR14Q matched sample of 4 321 DR14Q
quasars, excluding any sources present in CPz.

HDBSCAN SDSS DR14
S G Q O S G Q

0.0% 6.0% 91.9% 2.1% 0.12% 0.42% 99.5%

HDBSCAN S 0 – – – 0 0 0
G 259 – – 0 8 251
Q 3973 – 3 10 3960
O 89 2 0 87

SDSS S 5 – –
G 18 –
Q 4298

Notes. The “O” refers to the post-consolidation outliers.

radius. In Table 13 we show the breakdown of the classification
of HDBSCAN and SDSS DR14 using the 4321 matched quasars
of the DR14Q quasar catalogue of Pâris et al. (2018).

Figure 20c shows the DR14Q sources that are in SDSSDR14
– KiDS-VW sample (cyan for QSO, grey otherwise). It is clear
that the verification procedure of Pâris et al. (2018) has removed
a lot of interlopers, particularly sources with star-like colours.

8.2.2. Comparison to the KiDS-DR3 QSO catalogue

Nakoneczny et al. (2019) used KIDS DR3 to search for quasars
using ugri colours and magnitudes, and the stellarity morpholog-
ical index. They created a parent catalogue of 3.4 × 106 sources
and using SDSS DR14 spectroscopic labels, they identified a
total of 190 000 quasar candidates (r < 22). We matched our
KiDS-VW catalogue (2.7 × 106 sources) with the Nakoneczny
et al. (2019) parent catalogue (3.4 × 106 sources) using a match-
ing radius of 1′′ and found 837 624 matches. Our catalogue con-
tains less sources since it was built with the requirement to have
complete photometric detections in the full wavelength range of
the u−W2 bands.

Out of the 837 624 sources in common, we examined the
overlap of quasar positive classifications. We selected KIDS-
DR3 quasars using a threshold of Pr[QSO]> 0.7 suggested for
optimized completeness in Nakoneczny et al. (2019). Using the
matched sample, we find that the KIDS-DR3 catalogue identifies
29 878 quasar candidates while the KiDS-VW sample identifies
40 621 quasars. The sample in common between the two samples
is 25 784 sources. Figure 22 shows the magnitude distribution of
the quasar samples. The black lines shows the 25 784 sources
in common between the two samples, the red lines shows the
14 837 quasars identified within the KiDS-VW sample but not
in the KIDS-DR3, and the blue line shows the 4094 sources
identified within the KIDS-DR3 sample but not in the KiDS-
VW. Clearly, the discrepancies between the two samples have
a strong magnitude dependence, but they are however already
eminent at r < 20. For comparison, we matched the DR14Q
quasar catalogues (Pâris et al. 2018) to the overlap of KiDS-
VW and KIDS-DR3 catalogues finding 3889 sources (cyan line
in Fig. 22).

According to the feature importance ranking discussed in
Nakoneczny et al. (2019), the stellarity index carried the highest
weight. Hence, we conclude that the ugri colours where suffien-
cent to disentangle between stars and quasars leading to the cre-
ation of a pure quasar catalogue. On the other hand, the limited
input attribute parameter space has impacted the completeness
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(a) (b)

(c) (d)

Fig. 20. Classifications of all sources in SDSS DR14 matched to the KiDS-VW photometric catalogue. (a) SDSS DR14 spectroscopic label
assignment. The SDSS-QSO class contains a mixture of black holes in various states (BALs, AGN, obscured systems etc) (b) SDSS DR14 points
coloured by their hdbscan labels (using the “optimal” consolidation method). The outliers are post-consolidation outliers and are defined as
sources that could not be assigned unambiguously to a single object class by our hdbscan model in the PCA parameter space. (c) SDSS DR14
points, coloured in blue if in DR14Q, or grey if not in DR14Q. (d) SDSS DR14 points, coloured according to the labels of KIDS-DR3, or grey if
not in KIDS-DR3.

of the identified quasars. This is clear demonstration for the
importance of near and mid-infrared photometry in quasar
identification.

Finally, Fig. 20d shows the 55 383 sources in SDSSDR14
and the KiDS-VW sample, colour coded according to the KIDS-
DR3 quasar classification of Nakoneczny et al. (2019). Since this
classification was based on the spectroscopic labels of SDSS
DR14, it replicates the distribution of the sources in panel a,
including with the caveats of mislabelled sources that where
addressed in Pâris et al. (2018) shown in panel c.

Figure 20 reveals that our method serves a good alternative
to spectroscopic source labeling.

9. Conclusions

We used Hierarchical Density-Based Spatial Clustering of
Applications with Noise (hdbscan) for the classification of
stars, galaxies, QSO using only photometric data.

1. Exploring a range of input attributes for our classification
model, we found that using PCA to reduce the number of
attributes to a lower dimension results to optimal perfor-
mance for hdbscan.

2. We find that the best performance is achieved using a dif-
ferent model set ups for each of the STAR, GAL and QSO
classes.

3. The hdbscan classification benefits from the inclusion of
morphological information (in our case HLR data).

4. Our automatic classification is in very good agreement with
the Pâris et al. (2018) quasar catalogue, and at cases out-
performs the automated classification of SDSS, with the
only caveat z > 2.5 quasars with prominent Lyman Limit
Systems.

5. We applied our final model to the latest public version of
KiDS, VIKING, and ALLWISE catalogues (KiDS-VW) and
publicly release the classifications as well as photometric
redshift estimations.
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Fig. 21. Probability distributions for the KiDSVW sample for six dif-
ferent r magnitude bins are shown. The classification probability of
each object is obtained using the “highest-probability” method (see
Sect. 5.3). The objects are in classes according to their “highest-
probability” final label.

Fig. 22. Magnitude distribution of the KiDS-VW and KIDS-DR3 quasar
samples. Black line: quasars identified in both samples. Red line:
quasars identified only in KiDS-VW. Blue line: quasars identified only
in KIDS-DR3. Cyan line: DR14Q quasars matched to the overlap pho-
tometric catalogue of KiDS-VW and KIDS-DR3.

Our final model can classify stars, galaxies, and QSOs with
an F1 score of 98.64, 98.7, and 91.07, respectively, when using
only colour data; and 98.9, 98.9, and 93.13 when also using
HLR information. Given the scalability of the application of the
trained model, we motivate the use of our approach for current
and upcoming data-rich surveys.
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Appendix A: Accompanying catalogues

A.1. Practical considerations

For any readers interested in replicating this work, or applying
hdbscan to other data in a similar fashion, we note the follow-
ing practical considerations.

To reproduce our results, the random_state in the PCA (from
scikit-learn) was set to 1. Importantly, for the application
of the CPz trained model on the KiDS-VW data, both the nor-
malization (we used StandardScaler from scikit-learn) and
the PCA were the same that were applied to the CPz, and that
had “learned” using the CPz data. One quirk that we found to
be important is that the order of the attributes into the Stan-
dardScaler and PCA had to be the same each time, as if they
were different, the output values were sometimes different by
a tiny amount (of the order of 1e-12 at most), and hdbscan
was extremely sensitive to the values of the attributes. Deal-
ing with this was vital for reproducible results, and the solu-
tion was trivial: simply maintaining the order of the input
attributes for each run (the order of the attributes given in
Table 3 is the required order to obtain the results reported in this
paper).

To obtain the results presented in the paper, the packages
we used were as follows: python 3.7.3; scikit-learn 0.21.2;
pandas 0.24.2, numpy 1.16.4

A.2. Description of catalogues

We present two catalogues. The first catalogue is the CPz sam-
ple with predicted labels and other outputs for when we train
the hdbscan model setup with both colour and HLR attributes,
and predicted labels and other outputs for when we train the
hdbscan model setup with just colour attributes. The second
catalogue is the KiDS-VW catalogue with the labels and other
outputs for when we trained the hdbscan model on the CPz
sample using just colour data and then used this trained model
to predict the labels for the KiDS-VW catalogue. The KiDS-VW
catalogue also contains predicted photometric redshifts. For both
catalogues we describe the columns here:

Missing values are denoted by: empty entries, N/A, nan,
or −99. In the CPz catalogue, for the colour and HLR outputs
(Cols. 67–83) all −99 values are for those without Y−K HLR
values (as their labels and other outputs could not be generated
using that attribute setup due to having missing or unrealistic
Y−K HLR values).

CPz catalogue. For this catalogue, any data in the u, g, r, i
bands are from KiDS, any data in the Y, J, H, K bands are from
VIKING, and the data for the W1 and W2 bands are from WISE.
The catalogue is described in more detail in FP18, and briefly in
this paper in Sect. 2.

– Col. 1: Spectroscopic redshift ID (same as Col. 1 from the
CPz catalogue presented in FP18)

– Cols. 2, 3: Spectroscopic redshift coordinates (same as
Cols. 2, 3 in the CPz catalogue presented in FP18)

– Col. 4: Spectroscopic redshift value (same as Col. 4 in the
CPz catalogue presented in FP18)

– Col. 5: Spectroscopic redshift classification (same as Col. 5
in the CPz catalogue presented in FP18, with the change as

described in Sect. 2.2 for AGN and UNKNOWN). 0 = star,
1 = galaxy, 3 = QSO

– Cols. 6–27: u, g, r, i, z, Y, J, H, K, W1, W2 total magnitudes,
with associated errors

– Cols. 28–45: u, g, r, i, z, Y, J, H, K3′′ aperture magnitudes,
with associated errors

– Cols. 46–49: Half-light radius (in arcseconds) in Y, J, H, K
bands
Outputs for colour data as attributes (see Sect. 5.3 for infor-

mation on these)
– Cols. 50–58: PCA components for the STAR, GAL, QSO
hdbscan binary classifiers for the “optimal” method setup

– Col. 59: hdbscanclass_optimal_method_colours labels
(0 = outlier, 1 = star, 2 = gal, 3 = QSO)

– Col. 60: hdbscanclass_alternative_method_colours labels
(0 = outlier, 1 = star, 2 = gal, 3 = QSO)

– Col. 61: double_positives_colours
– Cols. 62–65: outlier_probability_colours, star_probability_

colours, gal_probability_colours, QSO_probability_colours
(probabilities are from the “highest-probability” consolida-
tion method)

– Col. 66: highest_probability_labels_colours labels (0 = out-
lier, 1 = star, 2 = gal, 3 = QSO)
Outputs for colour and HLR data as attributes (see Sect. 5.3

for information on these)
– Cols. 67–75: PCA components for the STAR, GAL, QSO
hdbscan binary classifiers for the “optimal” method setup

– Col. 76: hdbscanclass_optimal_method_colours+HLR lab-
els (0 = outlier, 1 = star, 2 = gal, 3 = QSO)

– Col. 77: hdbscanclass_alternative_method_colours+HLR
labels (0 = outlier, 1 = star, 2 = gal, 3 = QSO)

– Col. 78: double_positives_colours+HLR
– Cols. 79–82: outlier_probability_colours+HLR, star_proba-

bility_colours+HLR, gal_probability_colours+HLR,
QSO_probability_colours+HLR (probabilities are from the
“highest-probability” consolidation method)

– Col. 83: highest_probability_labels_colours+HLR (0 = out-
lier, 1 = star, 2 = gal, 3 = QSO)

KiDS-VW catalogue. For this catalogue, any data in the u, g,
r, i bands are from KiDS, and any data in the Y, J, H, K bands
are from VIKING, and the data for the W1 and W2 bands are
from WISE. The catalogue construction is described in detail in
Sect. 7. We note that all of the outputs are for just colour data as
attributes for this catalogue.

– Col. 1: serialid_kids_u_dr4v3
– Cols. 2, 3: alpha_j2000_kids_u_dr4v3, delta_j2000_kids_u_

dr4v3
– Col. 4: CLASS_sdssdr14 Spectroscopic redshift classifica-

tion
– Col. 5: Z_sdssdr14 Spectroscopic redshift value from SDSS

DR14
– Col. 6: Z_dr14q Spectroscopic redshift value from DR14Q

– this column can be used as a flag for if a point is in the
DR14Q catalogue – if it has a value, it is in the DR14Q cat-
alogue.

– Col. 7: id_cpz Spectroscopic redshift ID for data points in
the CPz sample (same as Col. 1 from the CPz catalogue pre-
sented in FP18)

– Cols. 8–29: u, g, r, i, z, Y, J, H, K, W1, W2 total magnitudes,
with associated errors
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– Cols. 30–47: u, g, r, i, z, Y, J, H, K3” aperture magnitudes,
with associated errors

– Cols. 48–56: PCA components for the STAR, GAL, QSO
hdbscan binary classifiers for the “optimal” method setup
See Sect. 5.3 for information on Cols. 57–64

– Col. 57: hdbscanclass_optimal_method labels (0 = outlier,
1 = star, 2 = gal, 3 = QSO)

– Col. 58: hdbscanclass_alternative_method labels (0 = outlier,
1 = star, 2 = gal, 3 = QSO)

– Col. 59: double_positives
– Cols. 60–63: outlier_probability, star_probability, gal_prob-

ability, QSO_probability (probabilities are from the “high-
est-probability” consolidation method presented in Sect. 5.3)

– Col. 64: highest_probability_labels (0 = outlier, 1 = star,
2 = gal, 3 = QSO)

– Col. 65: GAL_PHOTOZ_PREDICTOR (see Sect. 7.3)
photometric redshift predictions

– Col. 66: QSO_PHOTOZ_PREDICTOR (see Sect. 7.3)
photometric redshift predictions

– Col. 67: Training/validation/test set labels for the photomet-
ric redshift predictions (see Sect. 7.3) . If the source is in
SDSS DR14 it has a value from 1–10. The training set has
values 1–6, validation 7–8 and test 9–10. −99 values are for
sources not in SDSSDR14.
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