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Abstract: Among the major neurodegenerative disorders (NDDs), Alzheimer’s disease (AD) and
Parkinson’s disease (PD), are a huge socioeconomic burden. Over many centuries, people have sought
a cure for NDDs from the natural herbals. Many medicinal plants and their secondary metabolites
are reported with the ability to alleviate the symptoms of NDDs. The major mechanisms identified,
through which phytochemicals exert their neuroprotective effects and potential maintenance of
neurological health in ageing, include antioxidant, anti-inflammatory, antithrombotic, antiapoptotic,
acetylcholinesterase and monoamine oxidase inhibition and neurotrophic activities. This article
reviews the mechanisms of action of some of the major herbal products with potential in the treatment
of NDDs according to their molecular targets, as well as their regional sources (Asia, America

J. Clin. Med. 2020, 9, 1061; doi:10.3390/jcm9041061 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0129-3178
https://orcid.org/0000-0003-3962-8666
https://orcid.org/0000-0002-1740-4867
https://orcid.org/0000-0003-0378-8887
https://orcid.org/0000-0003-3183-7623
https://orcid.org/0000-0002-5934-5201
https://orcid.org/0000-0003-4174-4586
https://orcid.org/0000-0002-1523-9116
https://orcid.org/0000-0002-7301-8151
http://dx.doi.org/10.3390/jcm9041061
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/4/1061?type=check_update&version=3


J. Clin. Med. 2020, 9, 1061 2 of 19

and Africa). A number of studies demonstrated the beneficial properties of plant extracts or their
bioactive compounds against NDDs. Herbal products may potentially offer new treatment options for
patients with NDDs, which is a cheaper and culturally suitable alternative to conventional therapies
for millions of people in the world with age-related NDDs.

Keywords: neurodegenerative disorders; Alzheimer’s disease; dementias; Parkinson’s disease;
natural compounds; plants secondary metabolites; pharmacological activities

1. Introduction

Neurological disorders (NDDs) are diseases that affect the central and peripheral nervous systems.
NDDs can arise due to several factors, such as injury of the nervous system, ischaemia, oxidative and
ER cellular stress, inflammation abnormal protein deposition in neural tissue, autoimmune-mediated
neuronal loss and viral or prion infections [1]. Depending on the site affected, the neuronal loss, gliosis
or demyelination can lead to motor deficits, behavioral disturbances and cognitive decline [2].

NDDs of the brain can be characterized by: memory loss or personality changes—Alzheimer’s
disease (AD), impaired movement capacity and attention deficits—Parkinson’s disease (PD), weakness
and cognitive decline—amyotrophic lateral sclerosis [1]. Peripheral nerve disorders include diabetic
neuropathy, other metabolic neuropathies, endocrine neuropathies and disorders of myelin loss,
with sensation deficits and autonomic dysfunction—Multiple sclerosis [1].

NDDs display severe impact to quality of life, characterized by a high disability-adjusted life
years (DALY) (a measure of the loss of years of healthy life lost due to illness). Furthermore, the highest
number of deaths due to NDDs is caused by stroke, placing it among the leading causes of non-traumatic
death in industrialized countries [3–5]. The prevalence of NDDs is second only to headache disorders,
and the global incidence of NDDs, such as AD and PD, are predicted to rise with population growth
and increasing life expectancies [4]. Treatments currently available for NDDs are focused primarily on
temporary symptomatic relief. Therefore, there is a high demand for the discovery of novel therapies
and neuroprotective agents to prevent and retard the progression of NDDs [6]. Recently, transcranial
magnetic stimulation (TMS) has been increasingly used as a non-invasive imaging technique for
evaluating cortical function in patients with strokes and NDDs, to better understand the neurological
changes produced and to apply a personalized treatment [7]. TMS has also showed efficacy in promoting
clinical recovery after stroke and NDDs, the latter including vascular and post-stroke dementias,
but this applicability is still in its infancy [1,8]. Other non-pharmacological approaches, for example,
Shiatsu, physical activity, music therapy, have also showed beneficial effects for Quality of Life
(QoL) in patients with several types of dementia [9,10]. The undesirable side-effects associated
with some pharmacological compounds, used in conventional medicine, support the relevance of
creating alternative therapies with higher efficacy and bioavailability, and fewer side-effects [11,12].
In this regard, plants can be a veritable source of novel compounds with therapeutic value for NDDs.

This article aims to review the beneficial role of plants and secondary metabolites in the prevention
and management of NDDs. The first part of the discussion introduces secondary metabolites and
focuses on their beneficial effects: antioxidants, anti-inflammatory, neuroprotective, antithrombotic,
anti-acetylcholinesterase (AChE) and anti-monoamine oxidase (MAO) activities, while the second
part focuses on the preclinical studies, and the effects of medicinal plants and their derived bioactive
constituents on the pharmacotherapeutic management of NDDs

2. Methods

We conducted a PubMed search for the studies published between 2014 and 2019 using multiple
combinations of keywords, including the following: natural compounds, flavonoids, bioflavonoid and
neuroprotection, neurodegenerative diseases, Parkinson’s disease, Alzheimer’s disease. The review
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included only the relevant studies on the topic that used in vitro or in vivo models of AD and PD.
Articles available only as abstract, bibliography, editorials, articles not written in English language and
human studies were excluded.

3. Results and Discussion

The initial search identified 1826 publications on the topic, 28 studies were excluded at this stage,
as they were not published in English. Checking the list, the human studies were excluded,
that represented 535 studies, and, subsequently, 1263 potential eligible studies were considered.
41 studies based on their design and 1000 studies based on the relevance to the subject, respectively.
Following abstract evaluation, 222 studies in full text, were analyzed. Of the 222 studies that
were analyzed, 69 were finally included in the review. The selection procedure was performed
according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow
chart [2] (Figure 1).
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3.1. Plants Secondary Metabolites: A Brief Overview

3.1.1. Background

Man’s reliance on nature for treating illness predates recorded history, and the plant kingdom
is one of the most important sources of medicines [3–9]. The medicinal properties of plants are
mostly ascribed to secondary phytochemical metabolites [10]. Secondary metabolites, also known
as natural products, refer to small-molecule organic compounds that are not directly involved in
growth and development, but play an adaptive role in aiding the survival of the organism [11–15].
Secondary metabolites are categorized into a number of compound classes, including terpenoids,
alkaloids and phenylpropanoids and allied phenolic compounds, depending on their biosynthetic
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origins [11], or are broadly classified as nitrogen-containing or non-nitrogen-containing metabolites [10]
(Figure 2).
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Current evidence supports the applicability of natural compounds in human health, and their high
diversity makes secondary metabolites a valuable source of novel drugs [16]. In fact, there is a growing
interest in the potential use of secondary metabolites to prevent and manage NDDs. Some secondary
metabolites may play protective roles in NDDs, including—but not limited to—neuroprotection from
excitotoxicity, oxidative and ER stress, neuroinflammation and the prevention of proteinopathies [17,18].

3.1.2. Ethnopharmacological Relevance of Natural Compounds for NDDs

Historical documents revealed that herbal therapies to treat NDDs date back to 6000 B.C. in
India (Ayurvedic medicine), China, Africa and in Pre-Columbian America, especially with the
Incas and the Aztecs [19]. Traditional herbal therapies still play an important role in the treatment
of NDDs today. The Food and Drug Administration (FDA) consider herbal therapies as dietary
supplements, rather than drugs. Complementary and alternative medicine (CAM) for NDDs have
been widely used in most cultures. The National Institutes of Health National Center of Complementary
and Alternative Medicine (NIH–NCCAM) defines CAM therapies as healthcare and medical practices
that are not an integral part of conventional medicine as practiced in the west [20].

Herbal medicine is commonly used in Africa and up to 80% of the population uses traditional
medicines as treatment [21]. In 2006, scientists predicted that the prevalence of NDDs in Sub-Saharan
Africa was 2- to 3-fold higher than in developed countries [22]. In Africa, NDDs have a severe
social impact, and patients face discrimination in education and employment [23]. Herbal drugs
used for the treatment of NDDs included: Alchornea laxiflora, Acanthusmontanus, Ficus platyphylla,
Sutherlandia Frutescens, Gladiolus dalenii, Voacanga africana [24].

In America, the pre-Columbian cultures, particularly Incas and Aztecs, have used more than
1500 plants to treat NDDs according to Spanish chroniclers [25]. The Aztec herbal textbook, “The Libellus
de Medicinalibus Indorum Herbis” described the herbal treatments of NDDs and several plants
were listed, such as Bidenspilosa, Plucheaodorata, Lobelia laxiflora, Cassia occidentalis, Iresinecalea, Erythrina
coralloides and Luffa operculate [25,26]. In contemporary America, the herbal therapies are used in
complementary or alternative medicine for many diseases and one in three patients with NDDs use
herbal therapies. The most frequently used plant species for the treatment of NDDs in the United States
are St. John’s wort (Hypericum perforatum), ginkgo (Ginkgo biloba), garlic (Allium sativum), black cohosh
(Actaearacemosa), soy (Glycine max) and kava (Piper methysticum) [27].

In Asia, traditional Chinese medicine has a long history and recorded the use of herbal medicine
in the treatment of NDDs. “The Yellow Emperor’s Classic of Internal Medicine” mentioned for the
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first time [28]. Chinese physicians believed that the balance between specific energies of the world;
Yin and Yang determine the stability of the person’s health. If the balance is disturbed, NDDs will
be manifested eventually [29]. For this reason, physicians worked to stabilize the balance between
YIN and YANG by using herbs or acupuncture. The most preferred herbs are Ginkgo biloba, Panax,
Ganoderma lucidum, Salvia miltiorrhiza, Uncaria rhynchophylla and Zingibe rofficinale [30].

The Indian medical system, Ayurveda (4500–1500 B.C.) “science of life”, is the oldest medical
reference in the world [31]. In the Ayurvedic system, mechanisms within the human body were
categorized by physiological and physicochemical activities and related to disease, including NDDs.
Various herbal formulations are mentioned, including the amount of each component and the method
of preparation [32]. The contents of these preparations include gandhaka (sulfur), butter oil and plants:
Ficus carica, Achythesaspena, Alstonia scholaris, Holanthena antidysenterica. Some mixtures of herbal
formulations, such as Pancarnula and Triphala ahave are included [33].

These ethnopharmacological uses of plants have guided scientific investigation for a large number
of plant species, and has led to the identification of thousands of secondary metabolites, with desirable
biological properties, including antioxidant, antimicrobial [34,35], anticancer [36,37], antidiabetic [38],
anti-inflammatory [39] and neuroprotective properties [40].

3.2. Pharmacological Activities of Plants Secondary Metabolites on Neurodegenerative Disorders (NDDs):
in vitro and in vivo Studies.

Recent studies have revealed that polyphenolic compounds, including flavonoids, phenolic acids
and stilbenes; alkaloids, carotenoids, catechins and terpenes have great potential in treating NDDs
(Table 1). Secondary metabolites with multiple beneficial effects on neurological health deserve special
attention as they demonstrate the ability to act simultaneously on various targets and may assist in
treating disorders with complex pathophysiologies (Figure 3).
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Figure 3. Summarized neuroprotective effects of plants secondary metabolites: Resveratrol may inhibit
the formation of amyloid plaques from Alzheimer’s disease (AD); flavonoids stimulate the formation
of glutathione (GSH), a powerful antioxidant that inhibits the formation of Reactive Oxygen Species
(ROS) and participates in the defense of cells against oxidative damage. Flavonoids also inhibit Nuclear
factor-κB (NF-κB), Tumor necrosis factor-α (TNFα), thus, preventing inflammatory-induced neuronal
death. Symbols: ↑ stimulation; ↓ inhibition.

3.2.1. Preventing Protein Misfolding and Aggregation

Protein misfolding is a key pathological aspect of NDDs, such as AD, Huntington’s disease
(HD) and PD [41] (Figure 3). In AD, the formation of extracellular senile plaques due to the
accumulation of amyloid-β aggregates and neurofibrillary tangles (NFT) of tau proteins is associated
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with synaptic dysfunction, neuroinflammation and loss of neurons. Under normal physiological
conditions, tau protein is involved in stabilizing microtubules. In AD, however, hyperphosphorylation
of tau protein causes protein aggregation and the formation of intracellular NFT and the resultant
degeneration of dendrites and axons [42]. Similarly, PD is characterized by the presence of the
α-synuclein aggregates (Lewy bodies and Lewy neurites), the majority of which are found within
the substantia nigra pars compacta (SNc) region of the midbrain. These α-synuclein aggregates
acquire neurotoxic properties and compromise neuronal function and survival such as mitochondrial
dysfunction, lysosome dysfunction, disruption of axonal transport and microglial activation leading to
neuroinflammation [43]. Therefore, the prevention of proteinopathies is a strategy for treating NDDs.

A number of secondary metabolites are credited with the ability to prevent aggregation of Aβ
and reduce Aβ burden in experimental models of AD: the flavonoids apigenin [44], baicalein [45],
hesperidin, isoquercetin, morin [46], narirutin [47] and quercetin [48]; the alkaloid berberine found
in plants from the genus Berberis [49]; the carotenoid curcumin from Curcuma longa [50]; the catechin
epigallocatechin gallate (EGCG) present in tea (Camellia sinensis) [51,52]; the stilbenoid resveratrol
which is found primarily in grape skin and wine [53]; the monoterpene linalool, a major constituent
in the essential oils (EOs) of a number of aromatic species such as lavender, rosemary and lemon
balm [54]; withanolides from Withania somnifera, a medicinal plant also known as ‘Ashwadhanda’ in
Ayurvedic medicine [44]. Curcumin also destabilizes Aβ aggregates and promotes disaggregation
of existing Aβ deposits [50]. The reduction in Aβ aggregation is usually mediated via the inhibition
of β-secretase (BACE1) and γ-secretase, enzymes involved in the processing of amyloid precursor
protein (APP): berberine, quercetin, hesperidin [55] and narirutin [47], two secondary metabolites
abundant in Citrus species, such as oranges and grapefruit, are inhibitors of BACE1; ginsenoside Rg1
from Panax ginseng, a widely used plant in Chinese medicine [49], isoquercetin and morin [46], act via
the inhibition of both β-secretase (BACE1) and γ-secretase. Crocin, the principle carotenoid from
saffron (Croscus sativus) inhibited tau hyperphosphorylation in the cerebral cortex of a rodent model
of AD [56]. Isoquercetin, morin [46], linalool [54] also reduce tauopathy by inhibiting tau protein
hyperphosphorylation. Quercetin was shown to block tau hyperphosphorylation by upregulating
adenosine monophosphate-activated protein kinase (AMPK) and inhibiting glycogen synthase kinase 3
beta (GSK3β) [57]. The secondary metabolites with reported protective effects against synucleinopathy
in PD include aegeline; an alkaloid-amide from Aegle marmelos [58], curcumin [50], EGCG, ginsenosides
and withanolide A (from W. somnifera). The mechanism of inhibition of α-synuclein aggregation by
these compounds remains unclear, and further investigation is necessary to reach conclusive results.

3.2.2. Antioxidant Activity

The brain is highly susceptible to oxidative stress (OS) due to its high metabolic activity, elevated
oxygen requirement and the presence of high levels of redox-active metals and oxidizable lipids [59].
OS is an important mechanism involved in the pathogenesis and progression of many NDDs [60]
(Figure 3). For example, mitochondrial injury and disrupted energy metabolism during cerebral
ischemia and reperfusion generate nitric oxide (NO), and reactive oxygen species (ROS), subjecting
the brain to an acute OS insult [61]. Aβ and cell damage induces the chronic production of ROS in
the brains of AD patients. In PD, dopamine metabolism, mitochondrial dysfunction [62] and the
neurotoxic effects of abnormal accumulation of α-synuclein, all promote the generation of ROS [63].
Furthermore, evidence suggests that there is reduced activity of endogenous antioxidant systems
in PD patients [64]. Therefore, antioxidation is a major way by which phytochemicals exert their
neuroprotective effects, which is a vital defense mechanism for neurological health.

Antioxidant activity has been previously reported in a wide range of phytochemicals, with apigenin,
baicalein, berberine, crocin, curcumin, ginsenosides, quercetin, resveratrol and rutin being some of the
most effective [15,65–67]. Baicalein attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxicity
(a common model of PD) by minimizing mitochondrial dysfunction and OS, and prevented NO
production, by inhibiting inducible nitric oxide synthase (iNOS) in microglia [45]. Resveratrol also
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reduced NO and iNOS expression induced by Aβ in glial cells [53]. Berberine [49] and crocin decreased
the expression of cyclooxygenase 2 (COX2) and iNOS in vitro and in vivo, respectively, and protected
neurons from oxidative injury [68]. Quercetin promoted mitochondrial biogenesis, thereby protecting
neurons from mitochondrial dysfunction-related ROS production and thus enhancing neuronal
survival [40].

Acacetin [69], asiatic acid from Cantella asiatica [70], apigenin [44], ginsenosides, naringenin
common in Citrus species [71] and rutin [72] reduced ROS generation. Rutin [72], asiatic acid [70]
and ginsenosides [73] also attenuated mitochondrial dysfunction, and naringenin was observed to
upregulate endogenous antioxidant enzymes [71]. The enhancement of endogenous antioxidant
systems is often mediated via the activation of the nuclear factor-like 2 (Nrf2) signaling pathway which
regulates the gene expression of antioxidant enzymes. Luteolin [54]; sulforaphane, an isothiocyanate
found in cruciferous vegetables [15,74]; and naringenin [71] are examples of secondary metabolites
with demonstrated Nrf2 activation properties in neuronal tissue. These secondary metabolites protect
neurons from toxicity caused by a range of agents, including hydrogen peroxide, rotenone, Aβ and
copper overload [40,44,70].

Epileptic seizures are common underappreciated symptoms found in many NDDs, including
AD. The kindling model of epilepsy is a common model for studying epileptogenesis and the cerebral
effects of multiple seizures. Kindling is generally induced by repeated focal stimulation of the
brain [75]. The effects of curcumin supplementation on a model of neurological disorders in rats
has been reported [76]. Cortical and hippocampal neurons were protected from seizure-induced
death, this being attributable to the restoration of glutathione (GSH) levels in the brain. The authors
also found that curcumin prevented seizure-induced mitochondrial dysfunction and damage of the
mitochondrion ultrastructure in cortical and hippocampal neurons [76]. Luteolin increased GSH
levels and lowered MDA (malondialdehyde, a marker of lipid peroxidation) in the pentylenetetrazole
(PTZ)-induced seizure model of mice, demonstrating neuroprotection [77]. The restoration of GSH by
curcumin and luteolin signifies an increase in endogenous antioxidant defenses, which in turn prevents
protein oxidation and mitochondrial swelling, by attenuating oxidative injury to mitochondrial
membranes [75] D. The activation of microglia is another prominent source of ROS and reactive
nitrogen species (RNS). Baicalein [45], ginsenosides [78], linalool [54] and rutin [72] have demonstrated
the ability to block the activation of microglia in in vitro and in vivo models of NDDs. Naringin,
a flavanone-glycoside commonly found in Citrus plants, downregulated the expression of the glial
fibrillary acidic protein (GFAP), which in turn reduced microglial activation in a rodent model of
PD [48].

3.2.3. Anti-inflammatory Activity

Neuroinflammation is a factor that plays an essential role in the increased loss of neuronal tissue
and brain damage in cerebral ischemia, as well as in inflammatory diseases of the central nervous
system (CNS) (Table 1). For example, neuronal damage due to the accumulation of Aβ, tau protein and
α-synuclein results in the recruitment and activation of microglia, which initiates the inflammatory
response [43,79,80]. Cerebral ischemia and reperfusion injury (CI/RI) trigger the recruitment of
resident microglia as well as infiltrating macrophages and neutrophils, which is followed by an
enhanced inflammatory response and an over-production of inflammatory mediators (cytokines) [81,82].
The inhibition or downregulated expression of key pro-inflammatory mediators and/or the upregulation
of anti-inflammatory cytokines are beneficial for preventing chronic inflammation and further cell
death [83].

The neuroprotective properties of secondary metabolites can be attributed, in part, to their
antioxidant capacity and anti-inflammatory potential. Genistein, a secondary metabolite of plant
origin, has the structure and function similar to the primary female sex hormone, 17-beta-estradiol [84].
Genistein is capable of attaching itself to the receptive proteins of the female sex hormones and having
estrogen-specific hormonal effects, even being able to replace them, triggering either an estrogenic
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or a regulatory hormonal impact [85]. To date, studies have shown that the anti-inflammatory
activity of curcumin, genistein, resveratrol and naringenin are arbitrated via the inhibition or
downregulated translocation of nuclear factor-κB (NF-κB), which regulates the transcription of
cytokines [80]. Ginsenosides [49], linalool [54], quercetin [57], resveratrol [53] and sulforaphane [74]
inhibit pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β,
IL-6 and IL-8 to reduce neuroinflammation in neurodegenerative models. In addition, quercetin also
reduced GFAP in the brains of a rodent model of AD [57]. Curcumin [86] and kolaviron, a bioflavonoid
complex isolated from Garcinia kola (bitter kola) [87], demonstrated neuroprotection from CI/RI by
attenuating inflammation. Furthermore, secondary metabolites also attenuate neuroinflammation by
preventing the activation of microglial cells [88].

3.2.4. Antiapoptotic and Neurotrophic Activities

AD and PD are characterized by the primary loss of cholinergic and dopaminergic neurons in the
neocortex and substantia nigra of the midbrain, respectively. The variety of clinical aspects of NDDs,
such as cognitive, behavioral and movement deficits are the result of neurodegeneration and loss of
neurons. Therefore, preventing neuronal cell death and promoting neuron survival and regeneration
are key mechanisms for reducing the impact of NDDs. In addition to the function of protecting neurons
against OS and inflammation, secondary metabolites are able to prevent apoptosis induced by various
neurotoxic agents, prevent excitotoxicity and promote neurogenesis via the upregulation of neurotrophic
factors [17,89] (Figure 3). Acacetin [69], baicalein [45] and ginsenosides [78] inhibited dopaminergic
neuron loss and preserved locomotor activity and coordination in rodent models of PD. Baicalein [45],
quercetin [57] and resveratrol have been shown to attenuate 6-OHDA-induced neurotoxicity.
Resveratrol also displayed neurotrophic properties in rat hippocampus by activating extracellular
signal-regulated kinases (ERK)1-2/ cAMP-response element-binding protein (CREB) pathways which
increase brain-derived neurotrophic factors (BDNF) and glial cell line-derived neurotrophic factor
(GDNF) [40] which contribute to synaptic plasticity in key parts of the brain. Resveratrol has
anti-inflammatory and antioxidant properties and can reduce the oxidation and formation of amyloid
plaques in AD. Therefore, it has the potential also of reducing the pathology of PD or HD, through
similar mechanisms [90,91]. Baicalein has also been shown to prevent lipopolysaccharide (LPS)-induced
inflammatory-based neurotoxicity [45], while asiatic acid [70] reduced apoptosis, and resveratrol
prevented neurotoxicity by activating the AMP-activated protein kinase/sirtuin 1 (AMPK-SIRT-1)
autophagy pathway (crucial for the orderly degradation and recycling of cellular protein components
compromised in NDD proteinopathies) in rotenone-induced models of PD [40]. The neuroprotective
effect of asiatic acid was also partially mediated by activation of the extracellular-signal-regulated kinase
(ERK) and phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin/glycogen
synthase kinase 3 beta (PI3K/Akt/mTOR/GSK-3β) pathways.

In experimental models of AD, apigenin, genistein, ginsenoside Rg1, isoquercitrin, morin, quercetin
and rutin all protected cells from Aβ-induced apoptosis. Apigenin [44] and rutin [92] were seen to
modulate mitogen-activated protein kinases (MAPK) activation. Ginsenoside Rg1 [49], isoquercetin [46]
and morin [46] reduced caspase-3, and caspase-9 expression which inhibits apoptosis. Apigenin [44],
sulforaphane [93] and withanolide A [89] exhibited neurotrophic properties in AD models. For
sulforaphane, the neurotrophic mechanism of action was shown to be via increased expression of
p75NTR (p75 neurotrophin receptor) [93], while apigenin restored the compromised ERK/CREB/BDNF
pathway, thus promoting neuroplasticity mechanisms and neurogenesis [44].

Baicalein and ginsenosides were shown to protect neurons from cerebral ischemia injury [45].
Baicalein protected rat hippocampi from glutamate-induced neurotoxicity by chelating intracellular
Ca2+, which reduces presynaptic glutamate release [45]. Ginsenoside Rd showed beneficial effects for
strokes through increased neuron survival following CI/RI, reduced infarct volume and protection of
neurons against excitotoxicity by upregulating the glial glutamate transporter 1 (GLT-1), thus enhancing
glutamate clearance by astrocytes [73]. Kolaviron also reduced necrotic cell death in rats subjected
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to bilateral common carotid artery occlusion-induced global ischemia/reperfusion injury. Prevention
of excitotoxicity by reducing the release of excitatory neurotransmitters, and the preservation of
Na/K/ATPase pump activity, which assists with electrolyte balance, has been proposed to be partially
responsible for this neuroprotective effect [87].

3.2.5. Acetylcholinesterase Inhibition Activity

Acetylcholinesterase (AChE) inhibitors are a widely used class of drugs for treating early-stage
dementias [94]. Acetylcholine (ACh), a neurotransmitter important for memory processing, is severely
depleted in AD due to the degeneration of cholinergic neurons in the basal forebrain and, in particular,
the nucleus basalis of Meynert which contributes to the cognitive impairment and memory loss seen in
AD [95,96] (Figure 3). AChE is responsible for the postsynaptic degradation of ACh and, therefore,
selective AChE inhibitors treat dementia by prolonging ACh activity.

Galantamine, an alkaloid extracted from Galanthus species, is a currently prescribed AChE
inhibitor drug for AD and dementia [94,97]. Other promising secondary metabolites of note with
AChE inhibitory activity are crocin, EGCG and naringin. In a recent study, crocin improved memory by
inhibiting AChE and increasing ACh levels in the cortex and hippocampus in an AD-model mouse [68].
Naringin [92] and EGCG [18] exhibited AChE inhibitory activity and restored cognitive function and
memory in rodent models of AD and dementia, respectively.

3.2.6. Monoamine Oxidase Inhibitors (MAOs)

Monoamine oxidases (MAO) are mitochondrial enzymes involved in the oxidative deamination of
amine neurotransmitters [98,99]. In humans, two MAO isoforms are described, MAO-A and MAO-B,
which share a degree of overlap between their substrate specificities. For example, both enzymes
can metabolize dopamine, which makes them an important therapeutic target for PD [99,100].
MAO-A inhibitors have applications in the treatment of depression, anxiety and mood disorders as the
enzyme subtype is also involved in the selective deamination of serotonin [98,100].

Molecular simulation studies have discovered chrysin, myricetin and genistein, an isoflavonoid
from soybean, to possess strong inhibitory capacities versus MAO-A [99] (Figure 3). In a molecular
docking study, the MAO-A-inhibitory potential of baicalein and decursin; two compounds isolated from
the roots of Scutellaria baicalensis was reported [99]. In recent research, secondary metabolites, including
berberine, maackiain and 3-phenyl coumarins were identified as novel MAO-B inhibitors [101].

3.2.7. Antithrombotic Activity

Acute cerebral ischemia is usually initiated by thrombotic or thromboembolic obstruction of a
cerebral artery, which causes a sudden drop in blood flow to part of the brain. The resultant hypoxia
and reduction in glucose supply to neurons causes depletion of adenosine triphosphate (ATP) and
irreparable damage to surrounding neurons [102] (Figure 3). Reducing the risk of thrombosis using
antithrombotic or antiplatelet agents is a preventative strategy for ischemic stroke [80,103]. In addition,
preventing thrombosis of collateral arteries can potentially improve cerebral perfusion and protect the
ischemic penumbra from further post-ischemic damage [104].

Studies on the antithrombotic properties of secondary metabolites appear to be limited. However,
recent reviews have highlighted that carvacrol, α-cyperone and nootkatone; terpene compounds from
the essential oils (Eos) of Cyperus rotundus [105], showed antiplatelet aggregation activity. On occasion,
natural derivatives with a coumarin structure may have anticoagulant and antithrombotic activity,
via a vitamin K antagonist mechanism, which has relevance to vascular dementias. Coumarin is
well absorbed in the digestive tract, binds to plasma proteins and is metabolized by the liver [106].
The response settles slowly, is dose-dependent, within the range of interindividual variations and
influenced by some associated pathologies (liver disease, thyroid disease) as well as some foods
or medicines. Thus, the consumption of large quantities of green vegetables, rich in vitamin K,
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will mitigate the anticoagulant effects while the consumption of alcohol or the combination of
non-steroidal anti-inflammatories or of anti-platelet agents may increase the risk of bleeding [107].

Andrographolide, a diterepene-lactone from Andrographis paniculata, is reported to delay
thrombus formation by activating endothelial nitric oxide-nitric oxide eNOS-NO/cyclic GMP pathways,
which result in the downregulation of the phospholipase/protein tyrosine kinase (PLC-γ2/PKC) and
PI3K/Akt/p38 MAPK cascades [104]. The inhibition of PLC-γ2/PKC and PI3K/Akt/p38 MAPK cascades
block platelet activation and aggregation by preventing cytoplasmic Ca2+ mobilization necessary
for the production of thromboxane A2, and inhibiting phosphorylation of PLA2 (phospholipase
A 2) [108]. Wogonin from Scutellaria baicalensis, and the terpene-derivative borneol (found in a number
of species, such as lavender, rosemary and Artemisia) also demonstrated anticoagulation activity.
The anticoagulation activity of wogonin appears to be via the suppression of the synthesis and activity
of thrombin and factor-Xa, which in turn disrupts coagulation pathways and reduces activated partial
thromboplastin time (APTT), and prothrombin time (PT) [108].

Table 1. Summarized beneficial effects of plant secondary metabolites in the pharmacotherapy of
neurodegenerative disorders.

Compound/Type Natural Source Experimental
Model Effects/Mechanisms of action Ref

Acacetin/flavanoid
Chrysanthemi indici,
Calamintha, Linaria

spp

In vitro
model of PD

↓6-hydroxydopamine-induced cell death
↓caspase-3, ↓caspase-9, ↓PARP and cytochrome c
↑Bcl-2/Bax, ↓ROS, ↓phosphorylation of JNK,

↓p38, ↓ERK1/2 MAPK

[69]

Aegeline/alkaloid-amide Aegle marmelos In vitro
yeast model of PD Prevented α-synuclein-induced apoptosis, ↓ROS [58]

Andrographolide/diterpene
lactone

Andrographis
paniculata

In vitro
model of PD

↓PAF-induced platelet aggregation,
↓collagen-stimulated platelet activation, ↑TXA2,
↑phosphorylation of PKC, MAPK and AKT

↑eNOS, ↑NO, ↑eNOS-NO/cyclic GMP pathways,
↓PI3K/Akt/p38 MAPK ↓ PLC-γ2/PKC

[104]

Apigenin/flavanoid
common

constituent
in plants

In vitro
induced

neurogenesis
In vivo

mouse model of
AD

↓inflammatory cytokines, ↓cortical
hyperexcitation

↓Aβ burden, ↓oxidative stress,
↑ERK/CREB/BDNF pathway

↓β-amyloid neurotoxicity, ↑mitochondrion
protection

[44,92]
[109]

Asiatic acid/triterpene Centella asiatica

In vitro
model of PD

In vivo
mouse model of PD

↓apoptosis, ↓ROS
↑ERK, ↑PI3K/Akt/mTOR/GSK-3β pathways,

↓MAPK/P38, ↓JNK, ↓ERK, ↓dopamine depletion,
↑NTFs

[110]
[70]

Baicalein/flavanoid Scutellaria
baicalensis

Molecular docking
simulation

In vivo
model of PD

↓MAO-A, ↓Aβ
↓brain hypoxia, ↓H2O2, ↓iNOS, ↓NF-κB, ↓NO,
↓TNF-α, ↓oxidative stress, ↓mitochondrial

dysfunction, ↑JNK, ↓TNF-α,
↓IL-6, ↓NF-κB, ↓MAPK, ↓dopaminergic neuron

loss, ↓LDH, ↓NO, ↓glutamate

[111]
[45]

Berberine/alkaloid Berberis genus

In vitro
model of AD

In vivo
rodent model of

AD

↓AChE, ↓MAO-B, ↓BACE1, ↑IκB-α, ↑Akt,↑p38
kinase ERK1/2

↓NF-κB, ↓TNF-α,↓IL-6 production, ↓MCP-1,
↓COX 2,↓iNOS

↓Aβ plaque, ↓ CTF-α, ↓CTF-β (which reflects α-
and β-secretase processing of APP)

[112]
[101]
[49]

Borneol/terpene derivative
common

constituent
in plants

Ex vivo
rat blood ↑PT, ↑TT, ↓thrombosis in veins [108]

Carvacrol/monoterpenoid
phenol Cyperus rotundus

In vitro
MAO A and MAO

B
↓antiplatelet aggregation [105]

Chrysin/flavanoid Hypericum afrum,
Cytisus villosus

Molecular docking
simulation ↓MOA-A [99]

Crocin/carotenoid Gardenia jasminoides
Crocus sativus

In vivo
mouse model of

AD
In vivo

rat model of AD

↓oxidative stress, ↑SOD, ↓MDA
↓AChE, ↑ACh activity

↓neuroinflammation, ↓TNF-α, ↓PGE, ↓iNOS,
↓COX2

↓Tau hyperphosphorylation

[68]
[56]
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Table 1. Cont.

Compound/Type Natural Source Experimental
Model Effects/Mechanisms of action Ref

Curcumin/carotenoid Curcuma longa

In vivo
Dania rerio

(zebrafish) model
of NDD
In vivo

mouse model of
stroke
in vivo

mice model of PD

Neuroprotective,↓tonic-clonic seizures
↓oxidative stress

↑GSH in cortex and hippocampus
↓infarct volumes, ↑M2 polarization of

microglia/macrophages,
↓Aβ aggregation, ↓NF-κB, ↓α-synuclein

oligomerization

[113]
[76]
[86]

[50,114]

Decursin/pyranocoumarin
Angelica gigas,

Scutellaria
baicalensis

In vitro
model of PD ↓MOA-A [111]

Epigallocatechin
gallate/catechin Camellia sinensis

In vivo
rat model of AD
rat model of PD

↓Aβ fibrillogenesis, ↓oxidative stress, ↓AchE
↓α-synuclein aggregation [18,51]

Genistein/flavanoid Glycine max

Molecular docking
simulation

In vitro
model of AD

↓MAO
↓inflammation, ↓NF-κB ↓Aβ toxicity, ↑apoptosis

[99]
[44]

Ginsenoside Rd/triterpene
glycosides Panax ginseng

In vivo
rodent model of

stroke
↓excitotoxicity, ↓Ca2+ influx, ↑ GLT-1, ↓ ROS [73]

Ginsenoside Rg1/triterpene
glycosides Panax notoginseng In vitro

cell model of AD

↓β- and γ-secretases, ↓NO, ↓ROS, ↓lipid
peroxidation, ↓IL-1,↓IL-8, ↓TNF-α, ↓Aβ plaque,

↓caspase-9, ↓caspase-3
[49]

Hesperidin/flavanoid Valeriana officinalis

Molecular docking
simulation

In vivo
rat model of AD

↓ BACE1
↓oxidative stress, ↓Aβ fibril formation

[109]
[46,55]

Isoquercitrin/flavonoid Common in plants In vivo
rat model of AD

↓BACE1, ↓γ-secretase, ↓Aβ fibrillogenesis,
↓caspase-3, ↓caspase-9, ↓apoptosis, ↓amyloid

plaque, ↓tau hyperphosphorylation
[46]

Kolaviron/bioflavanoid
complex Garcinia kola In vivo

rat model of stroke
↓MPO, ↓necrotic cell death, Preserved

Na/K/ATPase activity [87]

Linalool/monoterpene

Lavandula spp.
Rosmarinus

officinalis Melissa
officinalis

Cymbopogon citratus

In vivo
mouse model of

AD
In vitro

cell model of ND

Anti-inflammatory
↓p38, ↓MAPK, ↓Nos2, ↓COX2, ↓IL-1β↓

Aβ in the hippocampus
↓tauopathy, inhibition of T-type Ca2+ channels

[54]
[115]

Luteolin/flavanoid
Common

constituent in
plants

In vivo
mouse model of

ND
In vivo

animal model of
stroke

↑GSH, ↓oxidative stress, ↓MDA, ↑Nrf2,
antioxidant/anti-inflammatory

↑Nrf-2 dependent transcription of HO-1
neuroprotective against cerebral I/R injury

[77]
[116]
[82]

Morin/flavanoid
Common

constituent in
plants

In vivo
rat models of AD

↓BACE1, ↓γ-secretase, ↓Aβ fibrillogenesis
↓apoptosis, ↑caspase-3, ↑caspase-9

↓amyloid plaque, ↓tau hyperphosphorylation
[46]

Myricetin/flavanoid
Common

constituent in
plants

Molecular docking
simulation ↓MAO [99]

Naringenin/flavanoid Citrus paradise
Citrus sinensis

In vitro
models of AD

↓inflammatory cytokines, ↓NF-κB signalling,
↑Nrf2/ARE signaling

↓NO
[71]

Naringin/flavanoid Citrus spp.

In vivo
rat model of AD

In vivo
rodent model of PD

↓AChE, ↓cognitive deficit,
↓GFAP, ↑neurotrophic factors

[92]
[48]

Narirutin/flavanoid Citrus spp. In vitro ↓BACE1
↓Aβ aggregation [47]

Nootkatone/sesquiterpene Cyperus rotundus In vitro
MAOA and MAOB ↓platelet aggregation [105]
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Table 1. Cont.

Compound/Type Natural Source Experimental
Model Effects/Mechanisms of action Ref

Quercetin/flavanoid Tea, citrus

Molecular
docking simulation

In vivo
mouse model of

AD
In vivo

rodent model of PD

↓MAO, ↓PKC-ε
↓oxidative stress by ERK1/2 phosphorylation,

p38MAPK dephosphorylation,
↓TNF-α, ↓IL-6,

↓GFAP, ↓MDA, ↑glutathione peroxidase, ↑AMPK
activity ↓apoptosis, ↓GSK3β, ↓tau

phosphorylation, ↓ROS, ↓Aβ aggregation ↓
BACE1, ↑NF-κB, ↓ROS, improved

6-OHDA-induced tremors

[99]
[116]
[48]
[40]
[57]

Resveratrol/stilbenoid Vitis vinifera

In vivo
rat model of PD

In vivo
rodent model of PD

↓COX2, ↓TNF-α, ↓NF-κB, ↓β-amyloid plaques
↓TNF-α, ↓IL-6, ↑BDNF, ↑IL-10, ↓TNF-α, ↓NF-κB
↑ERK1-2/CREB, ↑BDNF, ↑GDNF, ↓NO, ↓iNOS,

↓Aβ in glial cells, ↑AMPL-SIRT-1

[53]
[40]

Rutin/flavanoid Abundant in Citrus
fruits

In vitro
In vitro
In vivo

rodent model of
AD

↓pro-inflammatory cytokines, ↓ROS
Protected neurons against oxidative injury

↑SOD, ↑CAT, ↑GPx, ↓iNOS
↑MAPK, ↑apoptosis, ↑JNK, ↑p38 MAPK
↓ IL-1, ↓IL-6, ↑BDNP expression

[72]
[92]

[117]
[92]

Silibinin/flavanoid Silybinisus
laborinum

In vivo
rat model of AD

In vivo
rat model of PD

In vivo
rat model of stroke

↓AChE, ↓ROS
↓Aβ aggregation, ↓hypoxic/ischemic injury

Protected neurons from H2O2-mediated
oxidative stress

↓LC3-II, ↓Beclin-1 levels

[118]
[57]

[119]

Sulforaphane/isothiocynate Cruciferous
vegetables

In vitro
cell model of AD

In vivo
mouse model of

AD

↓IL-1β, ↓Aβ1-42-stimulated THP-1 macrophages
Dephosphorylated STAT-1, ↑Nrf2

↑neurogenesis, ↓aluminium load, ↓Aβ deposition
↑p75NTR, ↓Aβ burden

[74]
[120]
[93]

Withanamides A and
C/amido compounds Withania somnifera In vivo

rat model of AD ↓Aβ fibril formation [44]

Withanolide A/amido
compound Withania somnifera In vivo

rat model of AD
↑axonal/dendritic regeneration
exhibited neurotrophic activity [89]

Withanone Withania somnifera In vivo
rat model of AD Protect neurons and glial cells [121]

Wogonin/flavanoid Suctellaria
baicalensis

In vivo
rat model of stroke

↓synthesis of thrombin, ↓factor-Xa
↓APTT, ↓PT [108]

α-cyperone Cyperus rotundus
In vivo

rodent model of
stroke

↓platelet aggregation [105]

Legend: ↓-reducing, ↑-increasing, Alzheimer diseases (AD), Parkinson disease (PD), poly ADP ribose polymerase
(PARP), c-Jun N-terminal kinase (JNK), extracellular signal-regulated, kinase 1/2 (ERK1/2) mitogen-activated protein
kinase (MAPK) (ERK1/2 MAPK), reactive oxygen species (ROS), Protein Kinase C (PKC), serine/threonine kinase
(Akt), Inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), nitric oxide (NO), guanosine
monophosphate (GMP), phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (Akt)/p38 mitogen-activated
protein kinase (MAPK) (PI3K/Akt/p38 MAPK), phospholipase C γ2-protein kinase C (PLC-γ2/PKC),
extracellular-signal-regulated kinase (ERK)/cAMP-response element binding protein (CREB)/Brain-derived
neurotrophic factor (BDNF), phosphoinositide 3-kinase (PI3K)/threonine kinase (Akt)mammalian target of
rapamycin (mTOR)/Glycogen synthase kinase 3 beta (GSK3β), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
Monoamine oxidase A, (MAO-A), Amyloid β protein (Aβ), lipopolysaccharide (LPS), nuclear factor (NF-κB), tumor
necrosis factor-α (TNFα), 6-hydroxydopamine (6-OHDA), Lactate dehydrogenase (LDH), Acetylcholinesterase
(AChE), Beta-secretase 1 (BACE1), inhibitor of kappa B (IκBα), Monocyte chemoattractant protein-1 (MCP-1),
cyclooxygenase-2 (COX-2), alpha-secretase (CTF-alpha) alpha-secretase (CTF-beta), Prostaglandin E2 (PGE2),
pentylenetetrazol (PTZ), terleukin-1 beta (IL-1 β), interleukin (IL-8), tumor necrosis factor alpha (TNF-α), sulfonylurea
receptor-1 (SUR1), myeloperoxidase (MPO), Malondialdehyde (MDA), erythroid 2-related factor (Nrf2), nuclear
heme oxygenase-1 (HO-1), extracellular signal-regulated kinase 1

2 (ERK1/2), p38 mitogen-activated protein kinases
(MAPKs), Protein kinase C epsilon typ PKC-ε, AMP-activated protein kinase (AMPK), glial fibrillary acidic protein
(GFAP), glycogen synthase kinase 3β (GSK3β), brain-derived neurotrophic factor (BDNF), AMP-activated protein
kinase/sirtuin 1 (AMPK/SIRT1), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), p75
neurotrophin receptor (p75NTR), mitogen-activated protein kinase (MAPK), Jun N-terminal kinase (JNK), p38
mitogen-activated protein kinase (p38 MAPK), brain-derived neurotrophic factor (BDNF), microtubule-associated
protein 1 light chain 3 (LC3), interleukin-1β (IL-1β), the 42 amino acid form of amyloid β (Aβ1–42), signal transducer
and activator of transcription 1 (STAT1), partial thromboplastin time (PTT), prothrombin time (PT), Thromboxane
A2 (TXA2), glial glutamate transporter 1 (GLT-1).
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4. Future Perspectives

The strength of this comprehensive and up-to-date study is the analysis of evidence from preclinical
studies from a large number of meta-analyses related to the impact of natural bioactive compounds
in NDDs. All these analyses focused on highlighting the molecular and cellular mechanisms of action
to open new beneficial therapeutic perspectives in the therapy of NDDs. It is difficult to attribute the
pharmacological activity of a plant/or plant extract to a single compound or class of compounds as the
observed beneficial properties are often the result of synergistic effects between multiple compounds
on multiple targets. Many of these compounds, for example, apigenin, crocin, curcumin, EGCG,
ginsenosides, hesperidin, linalool, quercetin, resveratrol, rosmarinic acid and withanolides, are either
common across many plant species, present in species used in traditional medicine, and/or found in
food sources, such as fruits, herbs and spices. These findings highlight the contribution of traditional
medicine to modern treatments, as well as the health benefits of dietary phytochemicals.

An important aspect which limits the therapeutic applications of these natural compounds for NDD
treatment is related to their poor bioavailability. For example, curcumin is a polyphenol with proven
effects in the pharmacotherapy of AD, but with very low absorption and bioavailability. To increase its
bioavailability, the resistance to metabolic processes and the passage through the blood-brain-barrier,
new pharmaceutical technologies are required, such as liposomal nano-encapsulation, polymeric
micelles, nanoparticles (nanocurcumin), cyclodextrins, nano-suspensions and nano-emulsions.
Furthermore, additional properties of secondary metabolites, such as their metabolism, ability to cross
the blood-brain-barrier, the dosage required for beneficial effects in humans, without toxic effects and
interactions with current medications, are also important factors to be taken into consideration which
need longitudinal investigations. It can be concluded that the plant secondary metabolites offer an
abundant source of structurally and functionally diverse molecules for new potential preventative and
therapeutic use in NDDs.
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