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p-adic L-functions on metaplectic groups

Salvatore Mercuri

Abstract

With respect to the analytic-algebraic dichotomy, the theory of Siegel modular forms of half-
integral weight is lopsided; the analytic theory is strong, whereas the algebraic lags behind. In
this paper, we capitalise on this to establish the fundamental object needed for the analytic
side of the Iwasawa main conjecture — the p-adic L-function obtained by interpolating the
complex L-function at special values. This is achieved through the Rankin–Selberg method and
the explicit Fourier expansion of non-holomorphic Siegel Eisenstein series. The construction of
the p-stabilisation in this setting is also of independent interest.
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1. Introduction

Traditionally, p-adic L-functions have dual constructions — analytic and algebraic — and it is
the substance of the Iwasawa main conjecture that these two are equivalent. This conjecture
can be formulated for various settings; for example, over GL1, the conjecture asserts that the
analytic construction — Kubota–Leopoldt’s p-adic interpolation of the Dirichlet L-function
— is equivalent to Iwasawa’s algebraic p-adic L-function. The Iwasawa main conjecture for
classical modular forms of integral weight is formulated over GL2 and this has been a recent,
active research area with its connections to the Birch and Swinnerton-Dyer conjecture, see [8,
9]. Provided one has both the analytic and algebraic machinery, the Iwasawa main conjecture
can be formulated for higher dimensional modular forms and groups, for example, [17].

The algebraic theory of half-integral weight modular forms, both classical and metaplectic,
has long been inchoate due to the difficulties present in developing the ‘Galois side’. Recent work
by Weissmann in [18] has made progress in this regard by developing L-groups for metaplectic
covers, the length and methods of which further underline the difficulties present here. The
analytic theory is substantial however, and in this paper we give the analytic construction of
the p-adic L-function for Siegel modular forms of half-integral weight and any degree n. In
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[5], we gave a similar construction when n = 1; in that case, the p-adic L-function was already
known to exist by the Shimura correspondence, this is not so for general n > 1.

The proof found here is adapted from the method of Panchishkin found in [7, Chapters 2
and 3], which proves the existence of the analytic p-adic L-function for Siegel modular forms
of integral weight and even degree n. This method makes critical use of the Rankin–Selberg
method and reduces the question of p-adic boundedness of the L-function down to that of
the Fourier coefficients of the Eisenstein series that are involved in the Rankin–Selberg integral
expression. For full generality, it is assumed that p does not divide the level of the modular form
f and a crucial step is to produce another form f0 such that p does divide the level. Significant
modifications to the method of [7] were required to make this work in the metaplectic case —
this is Section 4. Outside of this, the success of Panchishkin’s method is facilitated by the work
of Shimura in developing the Rankin–Selberg integral expression in this setting, [15], and the
arithmeticity of Eisenstein series, [16, Chapters 16–17]. Interestingly, the p-adic boundedness
of the Eisenstein series coefficients is almost immediate in this case, making the final step of
the proof simpler than that found in [7].

After preliminary Sections 2 and 3, we establish the p-stabilisation in Section 4. Fairly
elementary manipulations on the level of the Rankin–Selberg integral follow in Section 5.
Sections 6 and 7 are devoted to transformation formulae of theta series and Fourier expansions
of Eisenstein series — these are relatively well known. Finally the statement and proof of the
main theorem, and the subsequent existence of the p-adic L-function, are given in Section 8.

2. Siegel modular forms

This section runs through the very basics of the modular forms that we study and their Fourier
expansions are detailed.

For any ring R and any matrix a ∈ Mn(R), note the use of the following notation: a > 0
(a � 0) to mean that a is positive definite (respectively, positive semi-definite), |a| := det(a),
‖a‖ := |det(a)|, and ã := (aT )−1. For any collection a1, . . . , ar of matrices with entries in R,
let diag[a1, . . . , ar] be the matrix whose jth diagonal block is aj and is zero off the diagonal.

Let AQ and IQ denote the adele ring and idele group, respectively, of Q. The Archimedean
place is denoted by ∞ and the non-Archimedean places by f . If G is an algebraic group, let
GA denote its adelisation. Let G∞ := G(R), Gp := G(Qp), and denote by Gf the subgroup of
elements of GA whose Archimedean place is the identity of G∞. View G as a subgroup of GA

by embedding diagonally at every place, but view G∞ and Gp as subgroups by embedding
place-wise. Recall the adelic norm

|x|A = |x∞|
∏
p

|xp|p,

where x ∈ AQ, | · | denotes the usual absolute value on R, and | · |p denotes the p-adic absolute
value, normalised in the sense that |p|p = p−1. Let T denote the unit circle and define three
T-valued characters on C, Qp, and AQ, respectively, by

e : z �→ e2πiz,

ep : x �→ e(−{x}),

eA : x �→ e(x∞)
∏
p

ep(xp),

where {x} denotes the fractional part of x ∈ Qp; if x ∈ AQ and z ∈ C, then write e∞(x) = e(x∞)
and e∞(z) = e(z).
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For any fractional ideal r of Q, let rp denote the completion (with respect to the p-adic norm)
of the localisation of r at the prime p, which is an ideal of Zp. Understand 0 � N(r) ∈ Q to be
the unique positive generator of r.

Write any α ∈ GL2n(Q) as

α =
(
aα bα
cα dα

)
,

where xα ∈ Mn(Q) for x ∈ {a, b, c, d}. Define an algebraic group G, subgroup P � G, and the
Siegel upper half-space Hn by

G : = Spn(Q) = {α ∈ GL2n(Q) | αT ια = ι}, ι :=
(

0 −In
In 0

)
,

P : = {α ∈ G | cα = 0},
Hn : = {z = x + iy ∈ Mn(C) | x, y ∈ Mn(R), zT = z, y > 0}.

A half-integral weight is an element k ∈ Q such that k − 1
2 ∈ Z; an integral weight is an

element � ∈ Z. The factor of automorphy of half-integral weight involves taking a square root;
to guarantee consistency of the choice of root, one uses the double metaplectic cover Mpn of
Spn. The localisations Mp := Mpn(Qp) and the adelisation MA of Mpn(Q) can be described
as groups of unitary transformations, respectively, on L2(Qn

p ) and L2(AQ
n) with the exact

sequences

1 → T → Mx → Gx → 1,

where x ∈ {p,A}. There are natural projections prA : MA → GA and prp : Mp → Gp, either of
which will usually be denoted pr as the context is clear. On the flip side, there are natural lifts
r : G → MA and rP : PA → MA through which we view G and PA as subgroups of MA.

For any two fractional ideals x, y of Q such that xy ⊆ Z, congruence subgroups are defined
by the following respective subgroups of Gp, GA, and G:

Dp[x, y] : = {x ∈ Gp | ax, dx ∈ Mn(Zp), bx ∈ Mn(xp), cx ∈ Mn(yp)},

D[x, y] : = Spn(R)
∏
p

Dp[x, y],

Γ[x, y] : = G ∩D[x, y].

Typically these will take the form Γ[b−1, bc] for certain fractional ideals b and integral ideals
c.

One of the key differences in the theory of half-integral weight modular forms is in the
congruence subgroups one considers. The factor of automorphy involved can only be defined
for a certain subgroup M � MA, and any congruence subgroups Γ must therefore be contained
in M. This subgroup, M, is defined via the theta series and is given by

Cθ
p : = {ξ ∈ Dp[1, 1] | (aξbTξ )ii ∈ 2Zp, (cξdTξ )ii ∈ 2Zp, 1 � i � n},

Cθ : = Spn(R)
∏
p

Cθ
p ,

M : = {σ ∈ MA | pr(σ) ∈ PAC
θ}.

Typically we shall take b and c such that Γ[b−1, bc] � Γ[2, 2] � M.
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The spaces defined above interact with each other as follows. The action of Spn(R) on Hn

and the traditional factor of automorphy are given by

γ · z = γz : = (aγz + bγ)(cγz + dγ)−1,

j(γ, z) : = det(cγz + dγ),

where γ ∈ Spn(R) and z ∈ Hn. If α ∈ GA, then we extend the above by α · z = α∞ · z and
j(α, z) = j(α∞, z). If σ ∈ MA with α = pr(σ) ∈ GA, then put xσ = xα for any x ∈ {a, b, c, d};
the action of MA on Hn is given by σ · z = α · z.

For any σ ∈ M, we can define a holomorphic function hσ = h(σ, ·) : Hn → C satisfying the
following properties

h(σ, z)2 = ζj(pr(σ), z) for a constant ζ = ζ(σ) ∈ T, (2.1)

h(rP (γ), z) = |det(dγ)
1
2∞| if γ ∈ PA, (2.2)

h(ρστ, z) = h(ρ, z)h(σ, τz)h(τ, z) if pr(ρ) ∈ PA and pr(τ) ∈ Cθ. (2.3)

The proofs for the above three properties can be found in [11, pp. 294–295].
If k is a half-integral weight, then put [k] := k − 1

2 ∈ Z; if � is an integral weight, then put
[�] := �. The factors of automorphy of half-integral weights k and integral weights � are given
as

jkσ(z) : = hσ(z)j(pr(σ), z)[k],

j�α(z) : = j(α, z)�,

where σ ∈ M, α ∈ GA, and z ∈ Hn. Given a function f : Hn → C and an element ξ ∈ GA or
M, the slash operator of an integral or half-integral weight κ ∈ 1

2Z is defined by

(f ||κξ)(z) : = jκξ (z)−1f(ξ · z).

Definition 1. Let κ ∈ 1
2Z be an integral or half-integral weight, and let Γ � G be

a congruence subgroup with the assumption that Γ � M if κ /∈ Z. Denote by C∞
κ (Γ) the

complex vector space of C∞ functions f : Hn → C such that f ||κα = f for any α ∈ Γ. Let
Mκ(Γ) ⊆ C∞

κ (Γ) denote the subspace of holomorphic functions (with the additional cusp
holomorphy condition if n = 1). Elements of Mκ(Γ) are called modular forms of weight κ,
level Γ; if κ /∈ Z they are also known as metaplectic modular forms.

Elements of C∞
κ (Γ) and Mκ(Γ) have Fourier expansions summing over positive semi-definite

symmetric matrices, the precise forms for which are given later in this section. The subspace
Sκ(Γ) ⊆ Mκ(Γ) is characterised by all forms f such that the Fourier expansion of f ||κσ sums
over positive definite symmetric matrices, for any σ ∈ GA if κ ∈ Z, or for any σ ∈ M if κ /∈ Z.
Write

Xκ =
⋃
Γ

Xκ(Γ),

where X ∈ {M,S} and the union is taken over all congruence subgroups of G (that are
contained in M if κ /∈ Z).
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Take a fractional ideal b and integral ideal c and put Γ = Γ[b−1, bc]; when κ /∈ Z, always
make the crucial assumptions that

b−1 ⊆ 2Z, (2.4)

bc ⊆ 2Z, (2.5)

then we have Γ � M in this case.
By a Hecke character of Q, we mean a continuous homomorphism ψ : IQ/Q× → T. Denote

the restrictions to R×, Q×
p , and Q×

f by ψ∞, ψp, and ψf , respectively. We have that ψ∞(x) =
sgn(x∞)t|x∞|iν for t ∈ Z and ν ∈ R and we say that ψ is normalised if ν = 0. For any integral
ideal a, let ψa =

∏
p|a ψp.

Now take a normalised Hecke character ψ of Q such that

ψp(a) = 1 if a ∈ Z×
p and a ∈ 1 + cp, (2.6)

ψ∞(x)n = sgn(x∞)n[κ]. (2.7)

Modular forms of character ψ are then defined by

C∞
κ (Γ, ψ) : = {F : Hn → C ∈ C∞

κ | F ||κγ = ψc(|aγ |)F for all γ ∈ Γ},
Mκ(Γ, ψ) : = Mκ ∩ C∞

κ (Γ, ψ),

Sκ(Γ, ψ) : = Sκ ∩Mκ(Γ, ψ).

Understand pr = id if κ ∈ Z. If f ∈ Mκ(Γ, ψ), then its adelisation fA : pr−1(GA) → C is

fA(x) := ψc(|dw|)(f ||κw)(i),

where x = αw for α ∈ G and w ∈ pr−1(D[b−1, bc]), and i = iIn. To give the precise Fourier
expansions of these forms, define the following spaces of symmetric matrices:

S : = {ξ ∈ Mn(Q) | ξT = ξ}, S+ := {ξ ∈ S | ξ � 0},
S� : = {ξ ∈ S | ξii ∈ Z, ξij ∈ 1

2Z, i < j}, S�
+ := S� ∩ S+,

S(r) : = S ∩Mn(r), Sf (r) :=
∏
p∈f

S(r)p,

for any fractional ideal r of Q.
Take a congruence subgroup Γ = Γ[b−1, bc] (contained in M if κ /∈ Z), a modular form

f ∈ Mκ(Γ, ψ), and matrices q ∈ GLn(AQ), s ∈ SA. The Fourier expansion of fA is given as

fA

(
rP

(
q sq̃
0 q̃

))
= |q∞|[k]‖q∞‖κ−[κ]

∑
τ∈S+

cf (τ, q)e∞(tr(iqT τq))eA(tr(τs)),

for some cf (τ, q) = c(τ, q; f) ∈ C satisfying the following properties

cf (τ, q) 	= 0 only if eA(tr(qT τqs)) = 1 for all s ∈ Sf (b−1), (2.8)

cf (bT τb, q) = |b|[κ]‖b‖κ−[κ]cf (τ, bq) for any b ∈ GLn(Q), (2.9)

ψf (|a|)cf (τ, qa) = cf (τ, q) for any diag[a, ã] ∈ D[b−1, bc]. (2.10)

The proof of the above expansion and properties can be found in [14, Proposition 1.1].
The coefficients cf (τ, 1) are the traditional Fourier coefficients of f in the following sense. By
property (2.8), the modular form f ∈ Mκ(Γ, ψ) has Fourier expansion

f(z) =
∑
τ∈S+

cf (τ, 1)e(tr(τz)),
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where cf (τ, 1) 	= 0 only if τ ∈ N(b)S�
+. If F ∈ C∞

κ (Γ, ψ), then it has Fourier expansion of the
form

F (z) =
∑
τ∈S

cF (τ, y)e(tr(τx)),

where z = x + iy and the coefficients cF (τ, y) are smooth functions of y having values in C.
We have cF (τ, y) is identically zero unless τ ∈ N(b)S�.

We finish this section with some final key definitions. Consider b fixed in the definitions of
Γ = Γ[b−1, bc], so that this group depends only on c, and let ψ be a normalised Hecke character
satisfying (2.6) and (2.7). For any two f, g ∈ C∞

κ (Γ, ψ), the Petersson inner product is defined
by

〈f, g〉c = 〈f, g〉 := Vol(Γ\Hn)−1

∫
Γ\Hn

f(z)g(z)Δ(z)κd×z

in which

Δ(z) := det(Im(z)), d×z := Δ(z)−n−1
∧
i�j

(dxij ∧ dyij),

for any z = (xij + iyij)ni,j=1 ∈ Hn. This integral is convergent whenever one of f, g belongs to
Sκ(Γ, ψ).

3. Complex L-function

The standard complex L-function associated to eigenforms is defined in this section, and the
known Rankin–Selberg integral expression is stated. As in the previous section, take ideals b
and c satisfying (2.4) and (2.5), and set Γ = Γ[b−1, bc].

For any Hecke character χ of Q, let χ∗(p) = χ∗(pZ) denote the associated ideal character.
Although the integral expression can be stated for any half-integral weight k, we take k � n + 1
to ease up on notation — we shall be making this assumption later on anyway. For a prime p,
the association of the Satake p-parameters — an n-tuple (λp,1, . . . , λp,n) ∈ Cn — to a non-zero
Hecke eigenform f ∈ Sk(Γ, ψ) is well known (see, for example, [14, p. 46]). Now set a Hecke
character χ of conductor f. The standard L-function of f , twisted by χ, is then defined by

Lp(t) : =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∏
i=1

(1 − pnλp,it) if p | c,

n∏
i=1

(1 − pnλp,it)(1 − pnλ−1
p,i t) if p � c;

Lψ(s, f, χ) : =
∏
p

Lp

(
(ψcχ∗)(p)p−s

)−1
,

in which

ψc(x) :=
(

ψ

ψc

)
(x).

The Rankin–Selberg integral expression, (4.1) in [15, p. 342], is given there in generality; we
restate it now for our purposes. Fix τ ∈ N(b)S�

+ such that cf (τ, 1) 	= 0 and let ρτ be the
quadratic character associated to the extension Q(i[n/2]

√|2τ |); choose μ ∈ {0, 1} such that
(ψχ)∞(x) = sgn(x∞)[k]+μ.

The key ingredients of the integral are three modular forms: the eigenform f , a theta series
θχ, and a normalised non-holomorphic Eisenstein series E(z, s). To define the theta series, take
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any 0 < τ ∈ S and define an integral ideal t by the relation hT (2τ)−1h ∈ 4t−1 for all h ∈ Zn.
Take μ ∈ {0, 1} and a Hecke character χ such that χ∞(x)n = sgn(x∞)nμ. The theta series is
then the sum

θ(μ)
χ (z; τ) = θχ(z) :=

∑
x∈Mn(Z)

(χ∞χ∗)−1(|x|)|x|μe(tr(xT τxz)), (3.1)

where we understand (χ∞χ∗)(0) = 1 if f = Z and as zero otherwise. This has weight n
2 + μ,

level Γ[2, 2tf2] determined by [15, Proposition 2.1], character ρτχ
−1, and coefficients in Q(χ).

The Eisenstein series of weight κ ∈ 1
2Z is now defined in a little more generality. Let

Γ′ = Γ[x−1, xy] be a congruence subgroup, contained in M if κ /∈ Z, and let ϕ be a Hecke
character satisfying (2.6) with y in place of c, and also such that ϕ∞(x) = sgn(x∞)[κ] (note
that this is a more stringent condition than the usual (2.7)). The Eisenstein series is defined
by

E(z, s;κ, ϕ,Γ′) :=
∑

α∈P∩Γ′\Γ′
ϕy(|aγ |)(Δs−κ

2 ||κα)(z),

where recall Δ(z) = det(Im(z)), and we have z ∈ Hn, s ∈ C. This sum is convergent for
Re(s) > n+1

2 and can be continued meromorphically to all of s ∈ C by a functional equation
with respect to s �→ n+1

2 − s. This series belongs to C∞
κ (Γ, ϕ−1) and is normalised by a product

of Dirichlet L-functions as follows. Let a be any integral ideal and define

La(s, ϕ) :=
∏
p�a

(1 − ϕ∗(p)p−s)−1;

Λn,κ
a (s, ϕ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
La(2s, ϕ)

[n/2]∏
i=1

La(4s− 2i, ϕ2) if κ ∈ Z,

[(n+1)/2]∏
i=1

La(4s− 2i + 1, ϕ2) if κ /∈ Z.

The normalised Eisenstein series is given by

E(z, s;κ, ϕ,Γ′) := Λn,κ
y (s, ϕ̄)E(z, s̄;κ, ϕ,Γ′).

Set η := ψχ̄ρτ . In this setting, the integral expression of [15, (4.1)] becomes

Lψ(s, f, χ̄) =
[
Γn

(
s−n−1+k+μ

2

)
2cf (τ, 1)

]−1

N(b)
n(n+1)

2 |4πτ | s−n−1+k+μ
2

×
(

Λc

Λy

)(
2s−n

4

)∏
q∈b

gq
(
(ψcχ̄∗)(q)q−s

)〈f, θχ̄E(·, 2s−n
4 )〉yV, (3.2)

in which Λa(s) := Λn,k−n
2 −μ

a (s, η); y := c ∩ (2tf2); b is the finite set of primes q � c such that
ordq(|τ |) 	= 0 and gq ∈ Z[t] are certain polynomials satisfying gq(0) = 1;

E(z, s) := E(z, s; k − n
2 − μ, η̄,Γ[b−1, by]

)
;

and V := Vol(Γ[b−1, by]\Hn).

4. p-stabilisation

Fixing a prime p, the initial key ingredient in our construction of the p-adic L-function is
the replacement of an eigenform f with its so-called p-stabilisation f0. The form f0 is also
an eigenform away from p, whose eigenvalues there coincide with f , however, it has the key
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property that p divides the level of f0 and is an eigenform for the operator Up — the Atkin–
Lehner operator that shifts Fourier coefficients. Thus, the L-functions of f and f0 are easily
relatable and so for full generality we can begin with an eigenform f , assume that p � c does
not divide the level, and then pass to f0. In [5], we constructed f0 explicitly in the case n = 1
which was possible through explicit formulae on the action of the Hecke operators involved on
the Fourier coefficients. For general n, we modify the method of [7], which involves abstract
Hecke rings, the Satake isomorphism, and certain Hecke polynomials; at the end of this section,
however, we show how all this abstract Hecke yoga reduces to the explicit form found in [5],
when n = 1.

Let k be a half-integral weight, (b−1, bc) ⊆ 2Z × 2Z be ideals, and ψ be a Hecke character
satisfying (2.6) and (2.7); put Γ = Γ[b−1, bc] and D = D[b−1, bc]. Then define

Op : = GLn(Zp), O :=
∏
p

GLn(Zp),

Xp : = Mn(Zp) ∩GLn(Qp), X := GLn(Q)f ∩
∏
p

Xp,

Z0 : = {diag[q̃, q] | q ∈ X}, Z := D[2, 2]Z0D[2, 2].

If (Δ,Ξ) is a Hecke pair, in the sense of [1, pp. 77–78], then the abstract Hecke ring
R(Δ,Ξ) denotes the ring of formal finite sums

∑
ξ cξΔξΔ, where cξ ∈ C and ξ ∈ Ξ. Each

double coset has a finite decomposition into single right cosets, and the law of multiplication
is given in [1, pp. 78–79]. Consider the Hecke ring R(V,W ) defined in [14, p. 39] and let R
denote the factor ring of R(V,W ) defined in [14, p. 41] or analogously to (4.1) below — this
is the adelic Hecke ring which acts on forms in Mk(Γ, ψ), and it is factored in order to give
the Satake isomorphism. We need the use of a slightly different Hecke ring and we define this
more explicitly. Let D0 := D ∩ PA and Γ0 := Γ ∩ P ; define

Y0 : =

{
diag[r̃, r]

∣∣∣∣r ∈
∏
p

GLn(Qp)

}
,

and

W0 : = {(α, t) | t ∈ T,pr(α) ∈ Gf ∩D0Y0D0}
V0 : = {(α, 1) | pr(α) ∈ Gf ∩D0}.

Now define the Hecke ring S := R(V0,W0), which differs from R(V,W ) of [14] in allowing
denominators of p into the matrices r defining Y0 (contrast with the definition of Z0), and is
therefore analogous to the Hecke ring L0 of [1, pp. 81–82]. By [1, Lemma 1.1.3], there exists
a C-linear embedding ε : R(V,W ) → S defined on single cosets as ε(Dg) = D0g. The law of
multiplication in W0, and subsequent actions of S on fA and f ∈ Mk(Γ, ψ), are defined in the
same way as [14, pp. 39–41], and thus the factor ring

S0 := S/〈V0(α, 1)V0 − tV0(α, t)V0 | (α, t) ∈ W0〉 (4.1)

also has a well-defined action on f ∈ Mk(Γ, ψ) and fA. The action of the double coset
D diag[q̃, q]D ∈ R(V,W ) on Mk(Γ, ψ), for example, is given by first decomposing into single
cosets

G ∩ (D diag[q̃, q]D) =
⊔
α

Γα,

where α ∈ G ∩D diag[q̃, q]D and then summing over the actions of α on f by the slash operator
involving an extended factor of automorphy Jk(α, z) — see [14, Sections 2, 3, and 4] for the
details here.
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Let Aq ∈ R denote the image under projection of V (diag[q̃, q], 1)V ∈ R(V,W ), for q ∈ X, and
let Ar ∈ S0 denote the image under projection of V0(diag[r̃, r], 1)V0 ∈ S, for r ∈∏p GLn(Qp ∩
Q). Then the local rings Rp and S0p are the spaces generated by Aq and Ar, respectively,
where now q ∈ Xp and r ∈ GLn(Qp ∩ Q).

Assume p � c. Let Wn be the Weyl group of transformations generated by the transformations
xi �→ x−1

i ;xj �→ xj for j 	= i, and let C[x±
1 , . . . , x

±
n ]Wn denote the ring of Weyl-invariant complex

polynomials. The Satake map ωp : Rp → C[x±
1 , . . . , x

±
n ]Wn is defined in [14, pp. 41–42] through

the composition of two maps

ωp : Rp
Φp−−→ R(Op, GLn(Qp))

ω0p−−→ C[x±
1 , . . . , x

±
n ]Wn ,

which we now give. By [1, Lemma 1.2.2], this is an isomorphism.

The map Φp. If σ = diag[q̃, q] with q ∈ Xp, then by [13, Lemma 2.1], we have the
decomposition

DpσDp =
⊔
x∈X

⊔
s∈Yx

⊔
d∈Rx

Dpαd,s, αd,s =
(
d̃ sd
0 d

)
, (4.2)

where X ⊆ GLn(Qp), Rx ⊂ xOp represents Op\OpxOp, and Yx ⊆ Sp. To define Φp, we extend,
by C-linearity, the map

Φp(DpσDp) :=
∑
d,s

J(rP (αd,s))−1Opd,

where J(α) := J
1
2 (α, i) for α ∈ pr−1(D[2, 2]Z0D[2, 2]) (see [14, (2.7), Lemma 2.4] for the precise

definition and characterisation of J(α)). By [14, Lemma 4.3], the map Φp is injective.

The map ω0p. Note that any coset Opd with d ∈ GLn(Qp) contains an upper triangular
matrix of the form ⎛⎜⎜⎜⎝

pad1 � · · · �
0 pad2 · · · �
...

...
. . .

...
0 0 · · · padn

⎞⎟⎟⎟⎠ ,

with adi
∈ Z, and then define

ω0p(Opd) :=
n∏

i=1

(p−ixi)adi .

Through the decomposition OpxOp =
⊔

d Opd and C-linearity, we extend this to obtain ω0p.
By multiplying out elements of diag[r̃, r](D0)p, for r ∈ GLn(Qp ∩ Q), we see that

(D0)p diag[r̃, r](D0)p also has a single coset decomposition of the form (4.2). Thus, we can
analogously define Φ′

p : S0p → GLn(Op, GLn(Qp)) and

ω′
p := ω0p ◦ Φ′

p : S0p → C[x±
1 , . . . , x

±
n ].

The map Φ′
p, and therefore ω′

p, is no longer necessarily injective. There is a local embedding
ε0p : Rp → S0p and we have ωp = ω′

p ◦ ε0p. There exists Up ∈ S0p — called the Frobenius
element — defined by

Up = Γ0

(
p−1In 0

0 pIn

)
Γ0 =

⊔
u∈S(b−1/p2b−1)

Γ0

(
p−1In p−1u

0 pIn

)
.
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If n = 1, it is well known that Up corresponds to the pth Hecke operator when p | c; for general,
n > 1, this is no longer true. Note that ω′

p(Up) = p
n(n+1)

2 x1 · · ·xn.
Let C := {A ∈ S0p | UpA = AUp} denote the centraliser of Up in S0p. The map Φ′

p is injective
when restricted to C by the following argument.

Proposition 4.1. Any A ∈ C is a linear combination of double cosets

(D0)p

(
r̃ 0
0 r

)
(D0)p,

where r ∈ Mn(Zp) ∩GLn(Qp).

Proof. This is essentially the second statement of [1, Proposition 2.1.1] with δ = 0 (in the
notation of Andrianov). To prove it, define U−

p := Γ0(
pIn 0

0 p−1In
)Γ0 then multiply out the cosets

of both sides of the relation U−
p Ar = ArU

−
p to see that r must have entries in Z×

p [p−1]. Define
the involution Aι

r := Ar−1 , which satisfies U ι
p = U−

p and apply it to the condition UpAr = ArUp

to obtain the proposition. �

Proposition 4.2. The map Φ′
p is injective when restricted to C.

Proof. By the previous proposition, if Ar ∈ C, then r ∈ Mn(Zp) ∩GLn(Qp). We therefore
have the decomposition

(D0)p diag[r̃, r](D0)p =
⊔
d,s

(D0)pαd,s,

where αd,s is as in (4.2), ranging over d ∈ Op\OprOp and s ∈ S(b−1)p/dTS(b−1)pd. This
is easily seen by multiplying out diag[r̃, r](D0)p for such r and is analogous to the
case p | c in [14, Lemma 2.3]. Now J(rP (αd,s) = 1 by [14, Lemma 2.4], and therefore
Φ′

p(Ar) = |det(r)|−n−1
A OprOp, which shows injectivity. �

The definition of the p-stabilisation is now achieved through factorisations of a certain Hecke
polynomial. This polynomial is an element R̃n ∈ C[x±

1 , . . . , x
±
n ][z] defined by

R̃n(x1, . . . , xn; z) = R̃n(z) : =
∏

δi∈{±1}
(1 − p

n(n+1)
2 xδ1

1 · · ·xδn
n z),

It has an immediate decomposition of the form

R̃(z) =
2n∑

m=0

(−1)mT̃mzm,

where T̃m = T̃m(x1, . . . , xn) ∈ C[x±
1 , . . . , x

±
n ]. By definition of R̃n, the coefficients T̃m are clearly

invariant under the group of Weyl transformations so, by the Satake isomorphism, there exists
a polynomial

Rn(z) =
2n∑

m=0

(−1)mTmzm (4.3)

whose coefficients Tm ∈ Rp satisfy T̃m = ωp(Tm). If n = 1 and Tp denotes the pth Hecke
operator, then note, from [14, (5.4a)], that ωp(T1) = ωp(Tp), and so T1 = Tp in this case.

The polynomial Rn(z) has a factorisation involving the Frobenius element Up — this part is
similar to the methods found in [1, pp. 90–91; 7, pp. 42–50].
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Lemma 4.3. With Tm and Up defined as above

2n∑
m=0

(−1)mTmU2n−m
p = 0.

Proof. Denote the sum on the left-hand side by Y , this belongs to S0p. It is easy to check
that R̃n(z) = (p

n(n+1)
2 z)2

n

R̃n((pn(n+1)z)−1) so, immediately from (4.3), we have

Tm = pn(n+1)(m−2n−1)T2n−m. (4.4)

By (4.4) above and the same argument of Proposition 2.1.2 in [1, pp. 88–89], we therefore
have TmU2n−m

p ∈ C. Since Φ′
p is injective on C by Proposition 4.2, we just need to show that

ω′
p(Y ) = 0. For this, note

ω′
p(Y ) = ω′

p(Up)2
n

2n∑
m=0

(−1)mT̃m · (ω′
p(Up)−1)m

= ω′
p(Up)2

n

R̃n(ω′
p(Up)−1)

which is zero, since (1 − ω′
p(Up)z) = (1 − p

n(n+1)
2 x1 · · ·xnz) is a factor of R̃n(z). �

For any 0 � m � 2n, define

Vm,p = Vm :=
m∑
�=0

(−1)�T�U
m−�
p ∈ S0p.

Proposition 4.4. The Hecke polynomial R(z) can be factorised as

R(z) =

(
2n−1∑
m=0

Vmzm

)
(1 − Upz) (4.5)

Proof. By definition V0 = 1 and by Lemma 4.3, V2n−1Up = −T2n . For the rest, 1 � m �
2n − 2, we have

Vm − Vm−1Up =
m∑
�=0

(−1)�T�U
m−�
p −

m−1∑
�=0

(−1)�T�U
m−1−�
p Up = (−1)mTm.

Expanding the right-hand side of (4.5) therefore gives the factorisation (4.3), which concludes
the proof. �

Definition 2. Let f ∈ Mk(Γ, ψ) be a non-zero Hecke eigenform with Satake p-parameters
(λp,1, . . . , λp,n), assuming p � c. Set

λ0 := p
n(n+1)

2 λp,1 · · ·λp,n.

Then the p-stabilisation of f is defined by

f0 :=
2n−1∑
m=0

λ−m
0 f |Vm,p. (4.6)
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Proposition 4.5. If f ∈ Mk(Γ[b−1, bc], ψ) is an eigenform and p � c, then we have that
f0 ∈ Mk(Γ[b−1, bc0], ψ), where c0 = cp2(2n−1). Moreover,

f0|Up = λ0f0.

Proof. Recall U−
p := Γ0(

pIn 0

0 p−1In
)Γ0 ∈ S0p; clearly f |U−

p = pnkf(p2z) has level Γ[b−1, bcp2]
and therefore, as operators, U−

p Γ[b−1, bcp2] = U−
p . Recall ι as the involution on S0p defined

by Aι
r = Ar−1 , which satisfies Up = (U−

p )ι. So, by the argument of [7, p. 49], we have
UpΓ[b−1, bcp2] = Up as operators as well. So we have that f |Up ∈ Mk(Γ[b−1, bcp2], ψ) and
the first property follows by definition of f0 and Vm.

The action of α ∈ C on f is considered the scalar one, that is, f |α = αf . The second property
is then given by the calculation

f0|[λ0 − Up] = λ0f0|[1 − λ−1
0 Up]

= λ0f

∣∣∣∣
[

2n−1∑
m=0

(λ−1
0 )mVm,p

]
[1 − λ−1

0 Up]

= λ0f |R(λ−1
0 ),

where Proposition 4.4 was invoked in the last line and Definition 2 in the penultimate. This
is zero since we have that f |R(λ−1

0 ) = R̃(λp,1, . . . , λp,n;λ−1
0 )f and that (1 − λ0z) is a factor of

R̃(λp,1, . . . , λp,n; z). �

For q 	= p, the qth Hecke operator commutes with Vm,p. Therefore, f0 and f share the same
eigenvalues away from p, and we then have the following corollary.

Corollary 4.6. Assume f0 	= 0. If 1 � � ∈ Z and χ is a character of conductor p�, then
Lψ(s, f, χ) = Lψ(s, f0, χ).

In [5] we showed, if n = 1, that the p-stabilisation of f takes the form

f0(z) := f(z) −
(−1

p

)[k]

p−
1
2λ−1

p,1

(
f ⊗

( ·
p

))
(z) − pk−1λ−1

p,1f(p2z), (4.7)

where, for any Dirichlet character ϕ of conductor F ,

(f ⊗ ϕ)(z) :=
∞∑

n=1

ϕ(n)cf (n, 1)e(nz)

denotes the twist of f by ϕ. This satisfies f0|Up = pλp,1f0 by direct construction. If bc ⊆ b−1

(for example, if b = 2−1Z), then f ⊗ ϕ ∈ Sk(Γ[b−1, F 2bc], ψ ϕ2), so we can see immediately
that f0 ∈ Sk(Γ[b−1, bcp2], ψ) and this matches the first part of Proposition 4.5.

By definition, we have V1,p = Up − T1 = Up − Tp in this case, so the abstract definition of f0

in Definition 2, when we set n = 1, becomes

f0 = f + (pλp,1)−1f |V1,p = f + p−1λ−1
p,1f |Up − p−1λ−1

p,1Λ(p)f,

where Λ(p) denotes the eigenvalue of f under Tp. By [5, Lemma 3.1(c)], this is precisely the
form of (4.7) above.

Non-vanishing of f0. It is not clear from the above method that f0 	= 0 if f 	= 0. That f0

may vanish is entirely possible, as is remarked in [7, p. 50].
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Suppose that Λ : R → C is a homomorphism defining the eigenvalues of f , that is for all
1 � m � 2n, we have f |Tm = Λ(Tm)f . By the definition in (4.6) and of Vm,p, we get

f0 =
2n−1∑
m=0

λ−m
0

m∑
�=0

(−1)�Λ(T�)f |Um−�
p

=
2n−1∑
v=0

[
2n−1∑
u=v

(−1)u−vΛ(Tu−v)λ−u
0 f

]
|Uv

p .

Assume that f 	= 0, so that we can take τ ∈ S+ such that cf (τ, 1) 	= 0. Using the fact that
c(τ, 1; f |Up) = pn(n+1−k)cf (p2τ, 1), the above formulation of f0 gives

cf0(τ, 1) =
2n−1∑
v=0

[
2n−1∑
u=v

(−1)u−vΛ(Tu−v)λ−u
0

]
p

n(n+1)
2 (2−k)vcf (p2vτ, 1). (4.8)

The above formula may be used as a method of checking, computationally, whether one has
cf0(τ, 1) 	= 0 as well. Given the formula in (4.8) above, it seems unlikely that cf0(τ, 1) should
vanish for all τ outside of a few special cases. As an example, consider the n = 1 case and assume
that cf (τ, 1) 	= 0 for some 0 < τ ∈ Z such that p2 � τ . By (4.7), the coefficient cf0(τ, 1) = 0 only
if pλp,1 = (−1

p )[k](np )
√
p. This becomes less trivial a situation if cf (τ, 1) 	= 0 only for p2 | τ . As

things become significantly more complex for general n, we acknowledge that this does not
constitute a particularly strong argument, but it is hopefully enough to convince the reader
that there should exist eigenforms f 	= 0 for which f0 	= 0 as well.

In [2, Section 9], Böcherer and Schmidt give an alternative construction for the p-stabilisation
of a Siegel modular form of integral weight, which does guarantee that f0 	= 0. Although this is
perhaps stronger than our construction, one still needs to make an assumption that such
a non-zero f0 should exist and this is incorporated into Böcherer–Schmidt’s definition of
p-regular [2, p. 1431]. Their construction takes two Andrianov-type identities of Dirichlet
series for f and f0 and uses them to compare their Satake parameters directly. It has a
fairly simple generalisation to the present setting by using the identity of [14, Corollary 5.2].
Indeed this identity becomes almost exactly the same as that of [2, Proposition 9.1] by putting
[|x|Z] = Y ordp(|x|) and [v] = Y in the notations found in [14], as well as in the definition of
D(τ, p; f) in [14, Theorem 5.1]. All that remains is to manipulate the lattice sum, the far right-
hand component of [14, Corollary 5.2], and express it as a sum of the U(πi) Hecke operators
(defined as the double coset Γ0 diag[π̃i, πi]Γ0 and πi = diag[pIi, In−i]). This was done for the
Hermitian modular forms in [3, Section 7], but remains the same for our case.

5. Tracing the Rankin–Selberg integral

Given the relationship, established in Corollary 4.6, between L(s, f, χ) and (s, f0, χ), the focus
can be shifted to the latter. The level, y, of the Rankin–Selberg integral (3.2) will depend on
χ, which dependence we naturally seek to avoid. This is achieved in this section by making
crucial use of the behaviour of f0 under Up.

Fix 0 < τ ∈ S+ such that cf0(τ, 1) 	= 0. Recall t as an integral ideal such that hT (2τ)−1h ∈
4t−1 and define

τ̂ := N(t)(2τ)−1 ∈ Mn(Z). (5.1)

Take a Dirichlet character χ of modulus p� and conductor p�χ with 0 � �χ � � ∈ Z, choose a
μ ∈ {0, 1} such that (ψ∞χ)(−1) = (−1)[k]+μ, and put η := ψχ̄ρτ .
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This section involves many levels and liftings of modular forms through these levels, so first
we define and clarify these schematically. Fix b and note by (2.8) that b−1 | t, so we can think
of f0 as a form of level Γ[b−2, b2tc0] and put

yχ := [tcp�χ ]2.

The ideal yχ can be taken as the level of the integral in the Rankin–Selberg expression of
Lψ(s, f0, χ) only if �χ � 2n − 1; to avoid this condition, we generally choose higher levels. The
levels involved are Γα := Γ[b−2, b2yα], where the integral ideals yα are indexed by α ∈ {r, � ∈
Z | �χ � � � r} ∪ {0}. They are defined below, arranged in order of divisibility:

yr := y0p
2r

⊆

...⊆

y� := y0p
2�

⊆
...⊆
y1 := y0p

2

⊆

y0 := t2cc0.

Later on, when we invoke the Kummer congruences, we shall take a set of Dirichlet characters
of varying moduli p� and we shall be considering a sum of Rankin–Selberg integral expressions
of varying levels y�. Then we shall take a single r � 0 so that all characters in the set are defined
modulo pr and therefore we can simply lift all the Rankin–Selberg integrals of varying levels
to all be of the same level yr and finally we trace the Rankin–Selberg integral back down to
y0 which process is given in the rest of this section. This is so that we can treat all characters
uniformly. In specific cases, that is, when we consider a single primitive Dirichlet character
with � = �χ � 2n − 1, one need not lift up to r in the first place and such a case is given as an
example at the end of this section but will not be of much use later on.

Assuming that χ is a Dirichlet character of modulus p� with � � 1, the Rankin–Selberg
expression from [15, (4.1)] of Lψ(s, f0, χ̄) is given as

Lψ(s, f0, χ̄) =
[
Γn

(
s−n−1+k+μ

2

)
2cf0(τ, 1)

]−1

N(b)n(n+1)|4πτ | s−n−1+k+μ
2

×
(

Λc0

Λy0

)(
2s−n

4

)∏
q∈b

gq
(
(ψc0 χ̄)(q)q−s

)〈
f0, θχ̄E(·, 2s−n

4 )
〉
yr
Vr,

(5.2)

in which r � � and Vr := Vol(Γ[b−2, b2yr]\Hn).
Write Yα := N(b)

√
N(yα) ∈ Z for α ∈ {0, �, r, χ}; then Y0 = N(tbc)p2n−1, and note that

Yχ = Y0p
�χ , Y� = Y0p

�, and Yr = Y0p
r. Also Yχ = Y0p

�χ−2n−1 if �χ � 2n − 1.
The definition of the trace map on modular forms is well known; with b fixed, the map

Trc2c1 for any c2 ⊆ c1 takes modular forms in Mk(Γ2, ψ) down to forms in Mk(Γ1, ψ), where
Γi = Γ[b−2, b2ci], and is defined by decomposing Γ1 =

⊔
γ Γ2γ and summing over all the slash

operator actions by these coset representatives. If g ∈ Mn
2 +μ(Γ[b−2, b2yr], χρτ ), then put

Fg(z, s) := g(z)E(z, 2s−n
4 ; k − n

2 − μ, η̄,Γr) and we have

Tryr
y0

(Fg) =
∑

u∈S(Z/p2rZ)

Fg

∥∥
k

(
In 0

N(y0)u In

)
=

∑
u∈S(b−2/p2rb−2)

Fg

∥∥
k

(
In 0
Y 2

0 u In

)
.
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Define, for any M ∈ Z, the matrix

ιM :=
(

0 −M−1In
MIn 0

)
,

which belongs to Pι and is therefore in M. Associate to ιM the operator W (M), acting on any
modular form h of weight κ ∈ 1

2Z by h|W (M) = h‖κιM .

Proposition 5.1. Let χ be of modulus p�, and let g and Fg be as above. If r � 0 is an
integer, then

〈f0, Fg(·, s)〉yr
= (−1)n[k]

〈
f0, Hg(·, s)|Ur

pW (Y0)
〉
y0
,

where Hg := Fg|W (Yr).

Proof. By the definition of the trace map and substitution of variables in the integral, we
have

〈f0, Fg(·, s)〉yr
=
〈
f0,Tryr

y0
(Fg)

〉
y0
.

To finish, note that W (Y0)2 = (−1)n[k] and we claim Tryr
y0

(Fg)|W (Y0) = Hg|Ur
p , the proof of

which, in contrast to the integral-weight case, is twofold. That the matrices corresponding to
the operators match is given by the simple matrix multiplication(

In 0
Y 2

0 u In

)
ιY0 = ιYr

(
p−rIn −p−ru

0 prIn

)
,

for u ∈ S(b−2/p2rb−2) and in which we used Yr = Y0p
r. For the claim to hold, however, we

need to check that the half-integral weight factors of automorphy match up as well, for which
the requisite identity is

h

((
In 0
Y 2

0 u In

)
, ιY0z

)
h(ιY0 , z) = h(ιYr

, αuz)J
1
2 (αu, z), (5.3)

where αu = (p
−rIn −p−ru

0 prIn
). We have h(ιM , z) = |Miz| 12 by considering ιM ∈ Pι and using (2.2),

(2.3), and [12, (2.5)]. Per the definition of Jk in [14, (2.7)], write αu = zξ, where z ∈ Z0 and
ξ ∈ D[2, 2] are defined by z∞ := I2n, ξ∞ := αu, zq = (p

−rIn 0
0 prIn

), ξq = (In −u
0 In

) for all primes

q. Thus, we get J
1
2 (αu, z) = h(ξ, z) = h(αu, z) = p

rn
2 by (2.2).

Finally, by [12, Lemma 2.2], we have

h

((
In 0
Y 2

0 u In

)
, ιY0z

)
= | − uz−1 + In| 12 .

Making use of Yr = Y0p
r and combining all of the above, observe that both sides (5.3) coincide

with |Y0i(z − u)| 12 . Thus. the claim, and therefore the proposition, holds. �

As an example, assume that χ is primitive, that � = �χ � 2n − 1, and that g = θχ̄. Let
Hχ := Hθχ̄ and Vχ := Vol(Γ[b−2, b2yχ]\Hn). Taking r = �χ − 2n − 1 � 0, we have yr = yχ and
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Γr = Γχ, so applying the above proposition to the integral expression of (5.2) gives

Lψ(s, f0, χ̄) =
[
Γn

(
s−n−1+k+μ

2

)
2cf0(τ, 1)

]−1

N(b)n(n+1)|4πτ | s−n−1+k+μ
2

× (−1)n[k]

(
Λc0

Λy0

)(
2s−n

4

)∏
q∈b

gq
(
(ψc0 χ̄)(q)q−s

)
×
〈
f0, Hχ|U �χ−2n−1

p W (Y0)
〉
y0

Vχ.

6. A transformation formula of the theta series

Transformation formulae for theta series of the form θχ|W (Yχ) when χ is a primitive Dirichlet
character are generally well-known entities. The precise formula of this section is encompassed
by the generality of both Theorem A3.3 and Proposition A3.17 of [16]; what follows is a concrete
derivation and calculation of the integrals found in the aforementioned results. Theorem A3.3
of [16] gives the existence of a C-linear automorphism λ �→ σλ of M on the space of ‘Schwartz
functions on Mn(Qf )’, and it gives formulae of this action by PA and the inversion ι = ( 0 −In

In 0 ).
This is relevant since a more general class of theta series is defined using Schwartz functions λ
by

θ(z, λ) :=
∑

x∈Mn(Q)

λ(xf )|x|μe(xT τxz),

for a fixed τ ∈ S+ and μ ∈ {0, 1}. If χ is a Hecke character of conductor f, then putting λ :=∏
p λp and

λp(y) :=

⎧⎪⎨⎪⎩
1 if y ∈ Mn(Zp) and p � f,

χp(|y|) if y ∈ GLn(Zp) and p | f,
0 otherwise,

(6.1)

gives the series θ(z, λ) = θ
(μ)
χ (z; τ) of (3.1).

Assume that χ is a Hecke character of conductor p�χ and let ιχ = ιYχ
. Since ιχ ∈ Cθ, [16,

Proposition A3.17] says that

θ(z, λ)|W (Yχ) = θ
(
z, ι

−1
χ λ
)

(6.2)

and so we calculate ι−1
χ λ. Note ι−1

χ = ισ where

σ :=
(−YχIn 0

0 −Y −1
χ In

)
∈ P,

and so ι−1
χ λ = ι(σλ). Let d = n2

2 if n is even, d = 0 if n is odd, and let dpy be the Haar measure

on Mn(Qp) such that the measure of bMn(Zp) is |b|n2/2
p for any b ∈ Q. Theorem A3.3 (5), and

equation (A3.3) of [16], and the definition of λ in (6.1) above gives

ι(σλ)p(x) = idχ∞(−1)n|Yχ|
n2
2

p |det(2τ)|n2p
∫
Y −1
χ GLn(Zp)

χp(|Yχy|)ep(− tr(xT 2τy))dpy

= idχ∞(−1)n|det(2τ)|n2p
∫
GLn(Zp)

χp(|y|)ep
(
− tr(xT 2τy)

Yχ

)
dpy,
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making the change of variables y �→ Yχy in the last line. By the definition of τ̂ in (5.1) and
Yχ = N(tbc)p�χ we have ι(σλ)p(x) is equal to

|det(2τ)|n2p
(−i)dχ∞(−1)n

∑
a∈GLn(Z/p�χZ)

χp(|a|)e
(

tr(xT τ̂−1a)

N(bc)p�χ

)∫
p�χGLn(Zp)

ep

(
− tr(xT τ̂−1y)

N(bc)p�χ

)
dpy.

The integral in the above equation is non-zero if and only if the integrand is a constant function
in y — that is, if and only if x ∈ |N(bc)|−1

p τ̂Mn(Zp) — at which point it is p−�χ
n2
2 . Likewise by

the same process, if q 	= p, we have ι(σλ)q(x) 	= 0 if and only if x ∈ |N(bc)|−1
q τ̂Mn(Zq) at which

point it is |det(2τ)|n2q . Therefore, ι(σλ)(x) 	= 0 if and only if x ∈ N(bc)τ̂Mn(Z), for which

ι(σλ)(x) = idχ∞(−1)n|2τ |−n
2 p−�χ

n2
2 Gn(N(bc)−1τ̂−1x, χ̄), (6.3)

where, for any Hecke character ϕ of conductor f and X ∈ Mn(Z),

Gn(X,ϕ) :=
∑

a∈GLn(Z/N(f)Z)

ϕ−1
f (|a|)e

(
tr(XT a)
N(f)

)
denotes the n-degree Gauss sum and put Gn(ϕ) = Gn(In, ϕ). If ϕ is a primitive Dirichlet char-
acter, then Gn(X,ϕ) = ϕ(|X|)−1Gn(ϕ) if (|X|, N(f)) = 1 and Gn(X,ϕ) = 0 if (|X|, N(f)) 	= 1.
So, under the assumption that χ is a primitive Dirichlet character and x ∈ N(bc)τ̂Mn(Z), (6.3)
becomes

ι(σλ)(x) = idχ(−1)n|2τ |−n
2 p−�χ

n2
2 χ(|N(bc)−1τ̂−1x|)Gn(χ̄). (6.4)

Hence, by the calculation in (6.4), the transformation formula (6.2) on theta series with
Schwartz functions translates, when χ is a primitive Dirichlet character, to

θχ|W (Yχ) =
idχ(−1)n

|2τ |n2 p−�χ
n2
2 Gn(χ̄)

∑
x∈N(bc)τ̂Mn(Z)

χ(|N(bc)−1τ̂−1x|)|x|μe(xT τxz)

and this becomes, by writing x = N(bc)τ̂x′ and N(
√
t) = |N(t)

1
2 |, the desired formula

θμχ(z; τ)|W (Yχ) = χ(−1)n
idN(tbc)nμ

|2τ |n2 +μ
p−�χ

n2
2 Gn(χ̄)θ(μ)

χ̄

(
N(

√
tbc)2

z

2
; τ̂
)
. (6.5)

7. Fourier expansions of Eisenstein series

The holomorphic projection map Pr : C∞
κ (Γ) → Mκ(Γ, ψ) and its explicit action on Fourier

coefficients is well known when 2n < κ ∈ Z — see [7, Theorem 4.2, p. 71]. This has a simple
extension to the half-integral weight case with the formulae remaining unchanged, and we did
this in [6, Theorem 3.1].

Given Proposition 5.1 and the transformation formula (6.5), it will be germane to give the
explicit Fourier development of Pr([θ�χE�]|Ur

p ), where

θ�χ(z) : = θ(μ)
χ

(
N(

√
tbc)2

z

2
; τ̂
)
,

E�(z) : = E(z, 2m−n
4 ; k − n

2 − μ, η̄,Γr)|W (Yr),

for certain values m ∈ 1
2Z defined below. To ease up on notation, let

δ := n (mod 2) ∈ {0, 1}.
The projection map is only applicable for certain values s at which the Eisenstein series

satisfies growth conditions; restriction to the set of special values, Ωn,k, at which the standard
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L-function satisfies algebraicity results guarantees this and this set is given by

Ω+
n,k : =

{
m ∈ 1

2Z

∣∣∣∣k−m−μ
2 ∈ Z, n < m � k − μ

}
,

Ω−
n,k : =

{
m ∈ 1

2Z

∣∣∣∣m+k−μ−1
2 ∈ Z, 2n + 1 − k + μ � m � n

}
,

Ωn,k : = Ω−
n,k ∪ Ω+

n,k.

Proposition 7.1. For any ς ∈ S+, define

Vς :=
{

(ς1, ς2) ∈ Mn(Z) × S+ | N(
√
tbc)2

2 ςT1 τ̂ ς1 + ς2 = ς
}
.

Assume that k > 2n, χ is a Dirichlet character, and m ∈ Ωn,k. For any β ∈ Z, there exists
a polynomial P (σ, σ′;β) ∈ Q[ςij , ς ′ij | 1 � i � j � n], defined on σ, σ′ ∈ S+; a finite subset c
of primes; polynomials fσ,q ∈ Z[t], defined for each σ ∈ S+ and q ∈ c, whose coefficients are
independent of χ; and a factor

C�
±(σ,m) : = i−n([k−n

2 −μ])N(b2yr)n(
3n−2m

2 −k+μ)2n(k−μ+ 3
2 )πn(m+k−n−μ

2 )

× Γn

(
m+k−n−μ

2

)−1

|σ|m±
∏
q∈c

fσ,q(η̄(q)q
n+δ−1

2 −m),

where m+ = m− n− 1
2 and m− = 0, such that if m ∈ Ωn,k\{n + 1

2} (and m 	= n + 3
2 if n > 1

and (ψ∗χ)2 = 1), then Pr([θ�χE�]|Ur
p ) has non-zero Fourier coefficients only when σ > 0 at

which

c
(
σ, 1;Pr([θ�χE�]|Ur

p )
)

=
∑

(σ1,σ2)∈Vprσ

χ(|σ1|)|σ1|μC�
+(σ2,m)P

(
σ2, p

rσ; k−m−μ
2

)
if m ∈ Ω+

n,k, whereas

c
(
σ, 1;Pr([θ�χE�]|Ur

p )
)

=
∑

(σ1,σ2)∈Vprσ

χ(|σ1|)|σ1|μC�
−(σ2,m)P

(
σ2, p

rσ; k+m−μ−1−2n
2

)
if m ∈ Ω−

n,k.

Furthermore, the polynomial P (σ, σ′;β) satisfies P (σ, σ′;β) ≡ |σ|β (mod σ′
ij).

When k ∈ Z and n is even the above kind of result is well-known, see, for example, [7,
Theorem 4.6, p. 77]. Since the definition of the projection map remains unchanged, we can
obtain the above in a similar manner, by using results on the Fourier development of integral
and half-integral weight Eisenstein series as follows.

Let κ ∈ 1
2Z be such that 2κ + n /∈ 2Z, and let Eκ(z, s) = E(z, s;κ, η̄,Γ[x−1, xy]), assuming as

always that (x−1, xy) ⊆ 2Z × 2Z if κ /∈ Z. Further assume that N(y) and N(x) are both squares
and let Y :=

√
N(xy) ∈ Z. If 2s + n

2 ∈ Ω±
n,k, s 	= n+1

4 , and s 	= n+3
4 if n > 1 and η2 = 1, then

by [16, Proposition 17.6], the analytic continuation of the Eisenstein series, and the fact that
ιΓ[x−1, xy]ι = Γ[xy, x−1], we have

Eκ(z, s)|ι =
∑

0<σ∈S+
N(xy)σ∈S�

c±(σ, y, s)e(σx),
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where, if σ > 0, we have by [16, Propositions 16.9 and 16.10] that

c±(σ, y, s) : = in(κ−[κ])N(xy)−
n(n+1)

2 |y|s−κ
2 ξ(y, σ; s + κ

2 , s− κ
2 )

×
∏
q∈c

fY 2σ,q(η̄(q)q−2s+[κ]−κ),

ξ(g, h; s, s′) : =
∫
S∞

e(−hx)|x− ig|−s|x− ig|−s′dx,

defined for 0 < g ∈ S∞, h ∈ S∞, and s, s′ ∈ C. The above integral converges for large enough
Re(s + s′), but is continued analytically via the hyperconfluent geometric function ω(g, h; s, s′)
of [10]. Through this analytic continuation, one can represent ξ(y, σ, s + κ

2 , s− κ
2 ), for the above

values of s, in terms of the polynomial

R(g;β, s′) : = (−1)βnetr(g)|z|β+s′ det
[
∂n
∂ng

]β
(e− tr(g)|z|−s′),

∂n
∂ng

: =
(

1 + δij
2

∂

∂gij

)n

i,j=1

,

where 0 � β ∈ Z. This is obtained by using, in order, the relation (17.11) and analytic
continuation of the hyperconfluent geometric function of [10, Theorem 3.1]; the properties
(4.7.K) and (4.10) of [10] and the definitions (3.23)–(3.24) of [7, p. 63]; and, finally,
Proposition 3.2 of [10] to get

c+(σ, y, s) = C(σ, s)|4πy|s−κ
2 R
(
4πσy; κ

2 − s, n+1−κ
2 − s

)
e−2π tr(σy),

c−(σ, y, s) = C(σ, s)|4πy|n+1−κ
2 −sR

(
4πσy; s + κ−n−1

2 , s− κ
2

)
e−2π tr(σy),

C(σ, s) : = i−n[κ]N(xy)−
n(n+1)

2 2n(κ+n+3
2 )πn(s+κ

2 )Γn(s + κ
2 )−1

× |σ|2s+κ−n−1
2

∏
q∈c

fY 2σ,q(η̄(q)q−2s+[κ]−κ).

(7.1)

Now, since Eκ(z, s)|W (Y ) = Y −nκ(Eκ(·, s)|ι)(Y 2z), we have that

Eκ(z, s)|W (Y ) =
∑

0<σ∈S�
+

c±y (σ, y, s)e(σx),

where c±y (σ, y, s) := Y −nκc±(Y −2σ, Y 2y, s) are given explicitly by

c+y (σ, y, s) = Y −nκC(Y −2σ, s)|4πσy|s−κ
2 R
(
4πσy; κ

2 − s, n+1−κ
2 − s

)
e−2π tr(σy),

c−y (σ, y, s) = Y −nκC(Y −2σ, s)|4πσy|n+1−κ
2 −sR

(
4πσy; s− n+1−κ

2 , s− κ
2

)
e−2π tr(σy).

Put C+
y (σ, s) := Y −nκ|σ|s−κ

2 C(Y −2σ, s) and C−
y (σ, s) := Y −nκ|σ|n+1−κ

2 −sC(Y −2σ, s).
Now let g ∈ M� be a holomorphic modular form and let F �

g (·, s) = g[Eκ(·, s)|W (Y )]. By
analogy to [7, Theorem 4.6, p. 77] and using (7.1), the coefficients after application of Pr are
given by

c(σ, 1;Pr(F �
g (·, s)|Ur

p )) =
∑

σ1+σ2=prσ

cg(σ1, 1)Cy(σ, s)P
(
σ1, p

rσ; κ
2 − s

)
(7.2)



248 SALVATORE MERCURI

when 2s + n
2 ∈ Ω+

n,k, s 	= n+1
4 (s 	= n+3

4 if η2 = 1 and n > 1), and σ > 0, whereas

c(σ, 1;Pr(F �
g (·, z)|Ur

p )) =
∑

σ1+σ2=prσ

cg(σ1, 1)Cy(σ, s)P
(
σ1, p

rσ; s + κ−n−1
2

)
, (7.3)

if 2s + n
2 ∈ Ω−

n,k and σ > 0. In both cases, the coefficients are zero for σ � 0.
Specialising (7.2) and (7.3) to the case x = b2, y = yr, κ = k − n

2 − μ, � = n
2 + μ, g = θ�χ, and

s = 2m−n
4 for m ∈ Ω±

n,k, and also putting C�
±(σ,m) := C±

yr
(σ, 2m−n

4 ) gives Proposition 7.1.

8. p-adic interpolation

8.1. p-adic measures and the main theorem

Alhough complex L-functions are defined on variables s ∈ C, they can equally be viewed as
Mellin transforms of the continuous characters R>0 → C×; y �→ ys. In this latter vantage point,
p-adic L-functions can naturally be constructed as Mellin transforms of continuous characters
on Z×

p with respect to a p-adic measure.

Fix a prime p � c, let Cp := Q̂p denote the completion of the algebraic closure of Qp, and fix
an embedding ιp : Q ↪→ Cp. The p-adic norm naturally extends to Cp and its ring of integers
is given by

Op := {x ∈ Cp | |x|p � 1}.
The domain of the p-adic L-function will be

Xp := {x ∈ Hom(Z×
p ,C

×
p ) | x is continuous}.

The discussion in [7, pp. 23–25] concerning the decomposition of Xp tells us that any Cp-
analytic function F on Xp is uniquely determined by its values F (χ0χ) for a fixed χ0 ∈ Xp

and χ ranging over non-trivial elements of Xtors
p . This torsion subgroup can be identified as

the group of primitive Dirichlet characters having p-power conductor. So to define a p-adic
measure, it is enough to give its values on χx

[m]
p where χ is a non-trivial primitive Dirichlet

character of p-power conductor, [m] = m− 1
2 ∈ Z, and

x[m]
p : Z×

p → C×
p

y �→ y[m].

Definition 3. Let LC(Z×
p ,Cp) denote the Cp-module of all locally constant functions

Z×
p → Cp, and let A be a Cp-module. An A-valued distribution on Z×

p is an A-linear
homomorphism

ν : LC(Z×
p ,Cp) → A,

which we denote by

ν(φ) =
∫
Z×
p

φdν,

for any φ ∈ LC(Z×
p ,Cp).

When A = C these are called complex distributions, whereas when A = Cp they are p-adic
distributions.



p-ADIC L-FUNCTIONS ON METAPLECTIC GROUPS 249

Since Z×
p = lim←−(Z/piZ)× is a profinite group, taken with respect to the natural projections

πij : (Z/piZ)× → (Z/pjZ)× for each i � j, to any distribution there associates a system of
functions νi : (Z/piZ)× → A satisfying

νj(y) =
∑

x∈π−1
ij (y)

νi(x), y ∈ (Z/pjZ)×.

This association works by noting that each φ ∈ LC(Z×
p ,Cp) factors through some (Z/piZ)×

and by ∫
Z×
p

φdν =
∑

x∈Z/piZ

φ(x)νi(x).

The compatibility criterion of [7, p. 17] tells us when we can run the above process backwards.

Proposition 8.1 (Compatibility criterion). Consider and arbitrary system of func-
tions {νi : (Z/piZ)× → A}∞i=1. If we have, for any fixed j ∈ Z and any function
φj ∈ LC((Z/pjZ)×, A), that the sum∑

y∈(Z/piZ)×
φj(πij(y))νi(y)

is independent of i for large enough i � j, then there exists a distribution ν on Z×
p associated

to {νi}i.

Definition 4. Let C(Z×
p ,Cp) denote the topological Cp-module of all continuous functions

Z×
p → Cp. A p-adic measure is a Cp-module homomorphism

ν : C(Z×
p ,Cp) → Cp.

So distributions are generally quite easy to define; p-adic measures arise from p-adic
distributions that are p-adically bounded. Hence, defining a distribution interpolating L-values
is relatively trivial and showing that these expressions are bounded is the crux of the matter.
To do this, we will invoke the abstract Kummer congruences, which criterion is well known in
generality and is due to Katz in [4, p. 258]; we give a specialisation of it.

Proposition 8.2 (Kummer Congruences). Suppose, for an index set I, that {fi}i∈I ⊆
C(Z×

p ,Op) is such that spanCp
{fi | i ∈ I} is dense in C(Z×

p ,Cp). For a given system

{ai}i∈I ⊆ Op, there exists an Op-module homomorphism ν : C(Z×
p ,Op) → Op such that∫

Z×
p

fidν = ai

if and only if, for any finite subset S ⊆ I and any system {bi}i∈S ⊆ Cp, the condition∑
i∈S

bifi ⊆ pNOp

for an integer N implies ∑
i∈S

biai ∈ pNOp.

The proof of this can be found in [7, pp. 19–20]; it covers Cp-valued measures as well by
multiplication of some non-zero constant. An easy example of these criteria is the Fourier
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coefficients of the Eisenstein series given in the previous section. Recall the finite set of primes
c and polynomials fσ,q ∈ Z[t] from Proposition 7.1.

Corollary 8.3. If m− 1
2 ∈ Z and 0 < σ ∈ S+, then there exists a p-adic distribution Σσ,m

defined on non-trivial elements χ ∈ Xtors
p by

Σσ,m(χ) = ιp

[∏
q∈c

fσ,q(χ̄(q)q
n+δ−1

2 −m)

]
.

Setting Σσ = Σσ, 12
defines a p-adic measure that satisfies∫

Z×
p

χx[m]
p dΣσ = Σσ,m(χ).

Proof. That Σσ,m satisfies the compatibility criterion is immediate. By taking Re(s) → ∞
in the identity (16.46) of [16], we see that the product of polynomials has no constant term.
Take χx

[m]
p as the system {fi}i∈I in the statement of the Kummer congruences. If X ⊆ Xtors

p

is a finite subset and
∑

χ∈X bχχx
[m]
p ⊆ pNOp, then∑

χ∈X
bχ

∫
Z×
p

χx[m]
p dΣσ ∈ pNOp

is immediate, by the crucial fact that the coefficients of fσ,q are independent of χ. �

If ν(χx[m]
p ) = am(χ) for some am : {T-valued characters} → Cp and ω is a primitive T-valued

character whose conductor is prime to p, then the twist of ν by ω, given by [ν ⊗ ω](χx[m]
p ) :=

am(χω), is also a p-adic measure.
A non-zero Hecke eigenform f with Satake p-parameters (λp,1, . . . , λp,n) is p-ordinary if

|λ0|p = 1, where recall that λ0 = p
n(n+1)

2 λp,1 · · ·λp,n. As usual, take a half-integral weight k,
ideals b and c satisfying (2.4) and (2.5), a normalised Hecke character ψ satisfying (2.6) and
(2.7). The main theorem is given as follows.

Theorem 8.4. Let p � c be a prime, k > 2n, and f ∈ Sk(Γ[b−1, bc], ψ) be a p-ordinary Hecke
eigenform. Assume the existence of τ ∈ S+ such that cf (τ, 1) 	= 0, c(τ, 1; f0) 	= 0, and recall t as
an integral ideal such that hT (2τ)−1h ∈ 4t−1 for all h ∈ Zn. There exist bounded Cp-analytic
functions

ν±f : Xp → Cp

that are uniquely determined by the following. In both cases, χ ∈ Xtors
p is a primitive

Dirichlet character of conductor p�χ with 1 � �χ ∈ Z; η = ψχ̄ρτ ; μ ∈ {0, 1} is chosen so that
(ψ∞χ)(−1) = (−1)[k]+μ; recall τ̂ = N(t)(2τ)−1; put Λτ (s) := (Λc/Λtc)(2s−n

4 ), which is a finite
product of Euler factors defined by Section 3, and also put gτ (s) :=

∏
q∈b gq((ψcpχ̄)(q)q−s)−1,

which is a product of polynomials in Z[t] also defined in Section 3; and recall d = n2

2 if n is
even, d = 0 if n is odd.

(i) For any m− 1
2 ∈ Z with n � m � k − μ, the measure ν+

f is given by∫
Z×
p

χx[m]
p dν+

f = ιp

[
(−1)n[k]|2τ |n2 +μ

idN(tbc)nμ

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+m−μ−1−2n

2

× pn�χ(n+1−k−m)Gn(χ̄)
Λτ (m)gτ (m)

λ
−�χ
0

Lψ(m, f, χ̄)
πn(k+m−n)〈f, f〉

]
,
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whenever [m] ≡ [k] + μ (mod 2) (that is, whenever m ∈ Ω+
n,k) and m 	= n + 1

2 (with the further

condition that m 	= n + 3
2 if (ψ∗χ̄)2 = 1 and n > 1), otherwise the integral is zero.

(ii) For any m− 1
2 ∈ Z with 2n + 1 − k + μ � m � n, the measure ν−f is given by∫

Z×
p

χx[m]
p dν+

f = ιp

[
(−1)n[k]|2τ |n2 +μ

idN(tbc)nμ

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+3m−μ−2−4n

2

× pn�χ(n+1−k−m)Gn(χ̄)
Λτ (m)gτ (m)

λ
−�χ
0

Lψ(m, f, χ̄)
πn(k+m−n)〈f, f〉

]
,

whenever [m] ≡ μ + 1 − [k] (mod 2) (that is, whenever m ∈ Ω−
n,k), otherwise the integral is

zero.

Remark 8.5. The condition that m 	= n + 1
2 (and m 	= n + 3

2 when (ψ∗χ̄)2 = 1) arises as a
result of complications in the Fourier expansion of the Eisenstein series at this value, as seen in
the previous section. It is unique to the half-integral weight case since n + 1

2 does not belong to
the set of special values when k ∈ Z. Most likely it can still be interpolated since one can use
the Kubota–Leopoldt measure to interpolate the extra Fourier coefficients arising here, but it
is not necessary in order to give the existence of the measure.

The p-adic Mellin transform of a p-adic measure is defined by

Lν(x) :=
∫
Z×
p

xdν

for any x ∈ Xp.

Definition 5. Let f ∈ Sk(Γ, ψ) be a p-ordinary Hecke eigenform. The p-adic L-functions
of f are defined by

L±
p (s, f, χ) := Lν±

f
(χxs− 1

2
p ) =

∫
Z×
p

χx
s− 1

2
p dν±f .

8.2. Proof of Theorem 8.4

The proof of the main theorem now follows along the following lines: prove the existence
of p-adic distributions interpolating Lψ(m, f, χ̄) and show that they satisfy the Kummer
congruences, thus defining p-adic measures. Although it is enough to define the p-adic
distribution in terms of non-trivial primitive characters χ ∈ Xtors

p , to use the Kummer
congruences we need all characters in Xtors

p and we achieve this by lifting the undesirable
primitive characters (that is, the trivial character) into desirable imprimitive characters. The
definition of the distribution on primitive characters is similar to that seen in Theorem 8.4.
For imprimitive characters, we cannot use the transformation formula of the theta series (6.5),
instead we define it in terms of the Rankin–Selberg Dirichlet series

D(s, f, g) :=
∑

σ∈S+/GLn(Z)

ν−1
σ cf (σ, 1)cg(σ, 1)|σ|−s− k−�

2 ,

where f ∈ Mk, g ∈ M�, and νσ := #{a ∈ GLn(Z) | aTσa = σ}. This Rankin–Selberg Dirichlet
series has an integral expression similar to (3.2) — in fact it is used as an intermediary step
in the proof of (3.2) — and the flexibility in choice of g allows us to pre-empt the right-hand
side of the transformation formula (6.5).



252 SALVATORE MERCURI

Proposition 8.6. There exists a complex distribution ν+
s on Z×

p which is uniquely

determined on Dirichlet characters of p-power conductor p�χ as follows. If χ is primitive and
1 � �χ ∈ Z, then it is defined by

ν+
s (χ) :=

(−1)n[k]|2τ |n2 +μ

idN(tbc)nμ

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣−k+s−μ−1−2n

2

× p−n�χ(n+1−k−s)Gn(χ̄)
Λτ (s)gτ (s)

λ
−�χ
0 Lψ(s, f, χ̄),

(8.1)

where d, Λτ , and gτ are as in Theorem 8.4.
In general, for any � > �χ � 0, let χ� denote the character modulo p� associated to χ and,

for any r > �, define

ν+
s (χ) :=

|τ | s−n−1+k+μ
2

cf0(τ, 1)

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+s−μ−1−2n

2
Λy0(

2s−n
4 )

× prn( 5n
2 +2−2k−s)λ−r

0 D
(

2s−3n−2
4 , f0, θ

�
χ�
|W (Yr)

)
,

(8.2)

where, recall, θ�χ�
(z) = θ

(μ)
χ� (N(

√
tbc)2z/2; τ̂).

Proof. By the compatibility criterion, Proposition 8.1, we just need to show that the
definition of νs is independent of � and r. When χ is primitive, this is immediate. The
expression (8.2) is evidently independent of � since � > �χ. Now fix �, to show independence
of r let V (M) for M ∈ Z be the operator associated to (MIn 0

0 M−1In
), which acts as g|V (M) =

Mn�g(M2z) if g is of weight �. Note W (Yr) = W (Y�)V (pr−�) as operators, so the Dirichlet
series D( 2s−3n−2

4 , f0, θ
�
χ�
|W (Yr)) becomes

pn(�−r)(n
2 +μ)

∑
σ∈S+/GLn(Z)

ν−1
σ cf0(p

2r−2�σ, 1)c
(
σ, 1; θ�χ�

|W (Y�)
)|p2(�−r)σ|− s−n−1+k+μ

2 .

We have cf0(p
2r−2�σ, 1) = pn(n+1−k)(�−r)c(σ, 1; f0|Ur−�

p ) and so the powers of pr in (8.2) cancel.
Since f0|Up = λ0f0, the proposition is proved. �

Remark 8.7. Through the identities [13, (5.9b, 8.8)] relating D(s, f0, g) to
Lψ(s, f0, χ), Corollary 4.6, the transformation formula (6.5) with the fact that Gn(χ)−1 =
χ(−1)np−n2�χGn(χ̄), and the manipulations on D(s, f, g) found in the above proof, one can
check that the two definitions, (8.1) and (8.2), coincide if χ is primitive (that is, when � = �χ).

Proposition 8.8. If k > 2n then, for any Dirichlet character χ of p-power conductor and
m ∈ Ω+

n,k, we have

ν+
m(χ)

πn(k+m−n)〈f, f〉 ∈ Q.

Proof. In [6, Theorem 7.6], we showed the existence of a non-zero constant μ(Λ, k, ψ)
through which the Petersson inner product, and subsequently the L-value, satisfied an
algebraicity result. Plugging g = f into that theorem of [6] gives 〈f, f〉 ∈ μ(Λ, k, ψ)Q. So
whenever χ is primitive, this is immediate from the main theorem, Theorem 7.8, of [6]. This
is also given in [16, Theorem 28.8].
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If χ is not primitive, then use the unfolded integral expression [13, (8.5)] of D(s, f, g) to
obtain the expression

ν+
m(χ) =

[
2cf0(τ, 1)Γn

(
m−n−1+k+μ

2

)]−1∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+m−μ−1−2n

2

×N(b)n(n+1)|4πτ |m−n−1+k+μ
2 prn( 5n

2 +2−2k−m)λ−r
0

× 〈f0, θ
�
χ�
|W (Yr)E(z, 2m−n

4 ; k − n
2 − μ, η̄,Γr)

〉
yr
Vr.

(8.3)

Repeating the process of proving the algebraicity of L-values in [6] — applying Proposition
7.5 with g = θ�χ�

|W (Yr) and Theorem 7.6 found in that paper — proves the proposition in this
case too. �

By the above proposition, we can define a p-adic distribution ν0+
m for all m− 1

2 ∈ Z with
n � m � k − μ by putting

ν0+
m (χ) := ιp

[
ν+
m(χ)

πn(k+m−n)〈f, f〉
]
,

for m ∈ Ω+
n,k\{n + 1

2} (that is, whenever (ψ∞χ)(−1) = (−1)[m]), and by otherwise putting
ν0+
m (χ) = 0 (and moreover ν0+

n+ 3
2
(χ) = 0 if n > 1 and (ψ∗χ̄)2 = 1). To make the following

expressions more manageable, we collect superfluous terms into a constant Cr, independent of
χ, as follows:

Cr : = (−1)n([k−n
2 −μ])

[
πn(k+m−n)2cf0(τ, 1)Γn

(
m+k+μ−n−1

2

)]−1

N(b)n(n+1)

× |4πτ |m+k+μ−n−1
2 prn( 5n

2 +2−2k−m)Vr.

The factor of (−1) appears as a result of θ�χ�
|W (Yr)2 in the following calculation. Combining

the integral expression (8.3) above with the case g = θ�χ�
|W (Yr), for large enough r, of

Proposition 5.1, we get

ν0+
m (χ) = ιp

[
Cr

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+m−μ−1−2n

2
λ−r

0

〈f0, [θ�χ�
E�]|Ur

pW (Y0)〉y0

〈f, f〉
]
, (8.4)

where recall E�(z) = E(z, 2m−n
4 ; k − n

2 − μ, η̄,Γr)|W (Yr). In light of the Fourier expansion in
Proposition 7.1, we make one final, artificial adjustment to this expression by inserting a
constant Dk. Define

Dk : =
in([k−n

2 −μ])2−n(k−μ+ 3
2 )

N(b2yr)n(
3n−2m

2 −k+μ)π
n(m+k−n−μ)

2

Γn

(
m+k−n−μ

2

)
,

R+
r (·,m;χ�) : = Dk

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+m−μ−1−2n

2
Pr
(
[θ�χ�

E�]|Ur
p

)
,

which latter is an element of Mk(Γ[b−2, b2yχ], ψ) (which is true for all m ∈ Ωn,k). For the
values of m ∈ Ω+

n,k given in Proposition 7.1 (which are those upon which our distribution ν0+
m

is non-zero), it has cyclotomic Fourier coefficients that are non-zero only when σ > 0 at which
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point, by Proposition 7.1, they are

c(σ, 1;R+
r (·,m;χ�)) =

∑
(σ1,σ2)∈Vprσ

χ�(|σ1|)|σ1|μC�
+(σ2,m)P

(
σ2, p

rσ; k−m−μ
2

)
,

C�
+(σ2,m) : =

∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣− k+m−μ−1−2n

2 |σ2|m−n− 1
2

×
∏
q∈c

fσ,q(η̄(q)q
n+δ−1

2 −m).

(8.5)

Insertion of Dk to the expression (8.4) above leaves us with

ν0+
m (χ) = ιp

[
CrD

−1
k λ−r

0

〈f0,R
+
r (·,m;χ�)|W (Y0)〉y0

〈f, f〉
]
. (8.6)

The distribution ν−s . To define ν−s , we just replace | −N(
√
tbc)2τ̂ /2|− k+s−μ−1−2n

2 in the
definitions (8.1) and (8.2) with | −N(

√
tbc)2τ̂ /2|− k+3s−μ−2−4n

2 . As before, for m− 1
2 ∈ Z with

2n + 1 − k + μ � m � n normalise this into the following p-adic distribution

ν0−
m (χ) := ιp

[
ν−m(χ)

πn(k+m−n)〈f, f〉
]
.

whenever m ∈ Ω−
n,k and ν0−

m (χ) = 0 otherwise.
Define R−

r := | −N(
√
tbc)2τ̂ /2|−(m−n− 1

2 )R+
r , this has cyclotomic Fourier coefficients that

are non-zero only when σ > 0. In such a case, they are given, when m ∈ Ω−
n,k, by

c(σ, 1;R−
r (·,m;χ�)) =

∑
(σ1,σ2)∈Vprσ

χ�(|σ1|)|σ1|μC�
−(σ2,m)P

(
σ2, p

rσ; k+m−μ−1−2n
2

)
,

where C�
−(σ2,m) = | −N(

√
tbc)2τ̂ /2|−(m−n− 1

2 )C�
+(σ2,m). We obtain the expression

ν0−
m (χ) = ιp

[
CrD

−1
k λ−r

0

〈f0,R
−
r (·,m;χ�)|W (Y0)〉y0

〈f, f〉
]
. (8.7)

Define the linear functional

�f : Mk(Γ[b−2, b2y0], ψ) → Q

g �→ 〈f0, g|W (Y0)〉
〈f, f〉 ,

and we have �f (g) ∈ Q(f, g,Λ, ψ) where Λ are the eigenvalues of f . Taking the similarly defined
linear functional Lf , found in (3.51) of [7, p. 109], we have that �f ∈ 〈f0, f0〉〈f, f〉−1LfQ. The
functionals �f and Lf are equal up to some algebraic constant, of bounded p-adic norm,
determined by the differences of the operator W (Y0) between this paper and [7]. So, by
[7, (3.52), p. 109], there exist positive definite σ1, . . . , σt ∈ S�

+ and β1, . . . , βt ∈ Q(f,Λ, ψ)
satisfying

�f (g) =
t∑

i=1

βicg(σi, 1). (8.8)

For any subset, X ⊆ Xtors
p take the integers � large enough so that all χ� for χ ∈ X are

non-trivial and then take r so that they are all defined modulo pr. Thus, the expressions (8.6)
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and (8.7) hold for all χ ∈ X . We have

ν0±
m (χ) = ιp

[
CrD

−1
k λ−r

0 �f (R±
r (·,m;χ�))

]
. (8.9)

By assumption |λ0|p = 1 and, by definition, Cr and Dk are independent of χ and have bounded
p-adic valuation. So whether ν0±

m (χ) defines a measure or not is directly dependent on the
p-adic boundedness of �f (R±

r ). By the expressions (8.5) and the analogous one for R−
r , the

Qab-coefficients of R±
r do not depend on the modulus p� of χ, and therefore setting c±σ,r,m(χ) :=

ιp[c(σ, 1;R±
r (·,m;χ�)] for m as in Proposition 7.1 defines a p-adic distribution. By (8.8), we

see that �f (R±
r ) is bounded if c±σ,r,m give rise to a p-adic measure.

Fix σ and for any (σ1, σ2) ∈ Vprσ fix σ1; by definition of c±σ,r,m, we may assume p � |σ1|. By
Proposition 7.1, we have, for any β ∈ Z, the congruences

|σ2| ≡
∣∣∣−N(

√
tbc)2

2 τ̂
∣∣∣|σ1|2 (mod prOp), (8.10)

P (σ2, p
rσ;β) ≡ |σ2|β ≡

[∣∣∣−N(
√
tbc)2

2 τ̂
∣∣∣|σ1|2

]β
(mod prOp). (8.11)

So we have, by definition of R±
r (see (8.5)), and Corollary 8.3, that

c±σ,r,m(χ) ≡
∑

(σ1,σ2)∈Vprσ

χ�(|σ1|)|σ1|k+m−1−2n[Σσ2 ⊗ ωτ ](χ�x
[m]
p ) (mod prOp), (8.12)

where ωτ is the primitive character associated to ψ̄∗ρτ . The conductor of ωτ is tc, where t is
the conductor of ρτ , and tc is prime to p by the following argument. By assumption p � c, we
just show (t, p) = 1. Since bc ⊆ 2Z and c ⊆ 4Z, we see p � b−1 as well, so that ρτ (p) 	= 0 if and
only if ( |2N(b)−1τ |

p ) 	= 0. That latter Legendre symbol makes sense since we know 2N(b−1)τ ∈
Mn(Z) by the Fourier coefficient property (2.8) of f . We can assume |σ2| 	≡ 0 (mod prOp),
since otherwise c±σ,r,m(χ) ≡ 0 (mod pr) by congruence in (8.11). By definition, following by the
use of the congruence in (8.10) above, we see( |2N(b)−1τ |

p

)r

=
(
N(b−1t)

p

)rn( |τ̂ |
p

)r

=
(−N(bc2)/2

p

)rn( |σ2|
pr

)
,

which is non-zero by assumption. So we see p � t and hence Σσ2 ⊗ ωτ defines a p-adic measure.
Now define c±σ,r := c±

σ,r, 12
, which satisfies c±σ,r(χx

[m]
p ) = c±σ,r,m(χ) by (8.12).

The Kummer congruences now complete the proof that c±σ,r defines a measure. Assume∑
χ∈X

bχχx
m
p ⊆ pNOp,

for some bχ ∈ Op. Then the congruence (8.12) above gives∑
χ∈X

bχc
±
σ,r(χx

[m]
p ) ≡

∑
(σ1,σ2)∈Vprσ

|σ1|k−1−2n
∑
χ∈X

bχ

∫
Z×
p

(χ�x
[m]
p )(y|σ1|)[dΣσ2 ⊗ ωτ ](y)

taken modulo pNOp. The right-hand side of the above is clearly in pNOp since we have
|σ1| ∈ O×

p and we know Σσ2 ⊗ ωτ is a measure satisfying the Kummer congruences.
We have shown that ν0±

m defines a p-adic measure. To finish the proof of Theorem 8.4, put
ν±f := ν0±

1
2

. By (8.8), (8.9), (8.12), and the fact that c±σ,r(χx
[m]
p ) = c±σ,r,m(χ), we have

ν±f (χx[m]
p ) = ν0±

m (χ).
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The main identities of Theorem 8.4 follow by using the definitions of the underlying
distributions, for example, (8.1), and the subsequent normalisations.
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