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ABSTRACT Behavior learning of microgrids (MGs) is a necessary and challenging task for multi-MGs 

cooperation and energy pricing of distribution energy market. With the increasing demand for user privacy, 

this problem becomes more severe because of much less limited access to device parameters and models 

behind the Point of Common Coupling (PCC), which hinders conventional model-based power management 

methods. In this paper, to address this problem, some novel model-free data-driven methods including Deep 

Neural Network (DNN) and Meta-model techniques, such as Radial Basis Function (RBF), Response Surface 

Methods (RSM), and Kriging methods are introduced. These methods can predict the behavior of MGs 

through continuous iterative learning by accessing merely the historical active power measurements at the 

PCCs as well as public electricity price and weather information behind the PCCs, without full system 

identification and no prior knowledge on the system. A comparative study has been fully carried out by 

comparing with the conventional model-based model to better understand their advantages, drawbacks and 

limitations. The validity and applicability of the proposed methods is verified by numerical experiments. This 

paper can provide some references for future MGs interactive operation under incomplete information. 

INDEX TERMS Data-driven method, Artificial Neural Network, Meta-model techniques, Micro-grids 

Behavior Learning  

NOMENCLATURE 

Sets and Indices 

𝑃𝑖𝑠 set of solar irradiance data 

𝑃𝑤𝑠 set of wind speed data 

𝑃𝑇 set of temperature data 

𝛾𝑃 set of electricity price data 

K set of random variables for sampling 

M set of PCC power data 

Acronyms 

MG Microgrid 

PCC Point of Common Coupling 

DNN Deep Neural Network 

RSM Response Surface Methods 

RBF Radial Basis Function 

DG Distributed Generator 

DR Demand Response 

ESS Energy Storage System 

ANN Artificial Neural Network 

DSO Distribution System Operator 

KDE kernel density estimation 

PDF probability density function 

CDF 
cumulative probability distribution 

function 

LHS Latin Hypercube Sampling 

RMSE root mean squared error 

LSTM Long Short-Term Memory 

RL Reinforcement learning 



2 
 

Constants 

h window size for kernel density 

estimation 

𝛼 Learning rate for RL 

γ Discount factor for RL 

Variables  

𝑓ℎ̃(𝑥) estimated density function of variable 

x 

𝜌𝑖𝑗 correlation between the row i and row 

j of matrix 

𝑃𝑚𝑒𝑡𝑎
𝑘  Predictive power by weighting sum 

of RSM, RBF and Kriging surrogated 

models. 

𝑀𝑅𝑆𝑀
𝑘  Predictive power by RSM model. 

𝑀𝑅𝐵𝐹
𝑘  Predictive power by RBF model 

𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘  Predictive power by kriging model 

𝐴𝑺,𝑘+𝑖∗24 Data at the k-th time interval for the i-

th day 

𝑠𝑡 Current state at time t for RL 

𝑎𝑡 Current action at time t for RL 
 
I. INTRODUCTION 

Microgrids (MGs) as an aggregate of Distributed 

Generators (DG), Renewable Energy Resources (RES), 

Demand Response Loads (DR) and Energy Storage Systems 

(ESS), has excellent potential and controllability to 

participate in energy market services through the optimal 

coordination operation of DG, RES, DR and ESS [1]. In 

order to realize effective interaction operation between MGs 

and the distribution network, and to achieve reasonable 

energy pricing, fast and accurate MG behavior prediction is 

the primary key However, predicting the behavior of MGs is 

evolving into an increasingly challenging task for utilities in 

recent years. The main difficulty is that utilities generally 

have limited access to real-time asset behaviors and models 

behind the Point of Common Coupling (PCC) with MGs. 

This problem becomes more severe with the increasing 

demand for user privacy [2]. Hence, how to deal with this 

challenge is an urgent issue that needs to be taken in 

distributed network operation and energy market design. 

Traditionally, the behavior prediction of MGs are 

formulated by the model-based power management methods 

[3-4], there have been substantial efforts to investigate the 

optimal calculating of PCC power in the literature, including 

heuristic techniques [5-6], nonlinear programming methods 

[7-8], and distributed optimization methods [9-10]. 

However, these power management methods all highly 

depend on the full system operator’s knowledge of MG 

operation behind the PCC and customers’ private data, which 

compromise the data ownership of MGs. Moreover, they 

have much of disadvantages. Such as: (1) Depending on ideal 

physical model and experience, the timeliness is poor. (2) 

Rules are formulated based on fixed model and typical 

operation mode, their inability to adapt to constantly-

changing system conditions when the amount of 

measurement data is limited. (3) Energy model and control 

mode need to be greatly simplified and approximated to 

ensure calculation efficiency. Moreover, the random power 

prediction error of renewable energy and loads will be 

further influencing the accuracy and reliability of the model.  

On the contract, model-free data-driven methods, such as 

Artificial Neural Network (ANN), Meta-model techniques, 

are new effective solutions for MGs behavior predicting, 

which can predict the behavior of MGs through function 

approximation or continuous iterative learning by accessing 

merely the active power measurements at the PCCs as well 

as public weather information and public electricity price 

information behind the PCCs, without full system 

identification and no prior knowledge on the system. There 

have been some useful preliminary exploration on the 

prediction of renewable energy generation, or on stability 

evaluation of power system, etc. Such as the utilization of 

ANN to forecast short-term load demand for MGs [11], 

prediction of uncertain factors [12-13], utilization of RSM to 

approximate the critical damping ratio of MGs [14]. 

However, for the behavior learning of MGs, there are strong 

uncertainties included in both power source side and load 

demand side, also, there exists complex energy management 

strategies in MGs. Moreover, due to the existence of energy 

storage and transferable loads, complex time-coupling 

relationship will be existed for MGs participates in demand 

response, thus the behavior characteristic of MGs will be 

more complex and difficult to predict than DGs. 

To the best of authors knowledge, the behavior predicting 

of MGs with strong uncertainties and incomplete 

information under complex energy management strategies 

have not yet been fully studied. In addition, a comparative 

study in testing various model-free data-driven methods to 

better understand their scope of applications are also not 

properly addressed. 

Based on the above challenges and motivations, In this 

paper, several recently introduced model-free data-driven 

methods, including DNN, RL, RBF, RSM, and Kriging in 

predicting the real-time behavior of MGs under incomplete 

information are carried out, the validity of the proposed 

method is verified by numerical experiments, especially, a 

comparative study is comprehensively implemented by 

compared with conventional model-based optimal methods, 

the main contributions of this paper can be listed as follows: 

1) A series of novel model-free method for predicting the 

real-time behavior of MGs are developed with access only to 

the historical active power measurements at the PCCs as well 

as public electricity price and weather information behind the 

PCCs, thus can handle the current limitations raised from 

data privacy and data ownership. 

2) A comparative study has been firstly carried out to 

compare novel DNN, RL and Meta-model techniques with 

the conventional model-based model in behavior learning of 

MGs under incomplete information, provided a  better 
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understanding of their advantages, drawbacks and 

limitations for future MGs interactive operation. 

The remainder of this paper is organized as follows. Section 

II presents the proposed data-driven based prediction 

mechanism for MGs behavior learning, which consists of the 

behavior predicting architecture and the data preprocessing 

method. Behavior learning method for MGs using DNN, RL, 

RBF, RSM, and Kriging are discussed in Section III. Two 

cases are tested and different data-driven methods are 

compared comprehensively in Section IV, followed by the 

conclusions in Section V. 

II.  NOVEL DATA-DRIVEN BASED PREDICTION 
MECHANISM FOR MG BEHAVIOR LEARNING 

A.  DATA-DRIVEN BASED MG BEHAVIOR PREDICTING 
ARCHITECTURE 

Considering the future MGs interactive operation under 

incomplete information, model-based solutions will be 

difficult to apply for their requirement of  completely 

observable and controllable information, thus in this paper, a 

novel data-driven based MG behavior predicting architecture 

is proposed in this paper, as shown in Fig. 1.  

 

FIGURE 1.  Proposed data-driven based MG behavior predicting 
architecture. 

In the upper level is the operation management layer, the 

distribution system operator (DSO) takes the role to optimize 

the pricing, realize market clearing and overall optimal 

operation only by observing the response of MGs to external 

signals at their PCCs, in our novel data-driven based 

prediction mechanism, DSO or MG will train a black box 

meta-model or neural network that describing the interactive 

behavior of the other MGs merely through the available active 

power measurements at the PCCs and the public historical 

data information, such as the statistical electricity price, local 

solar irradiance, wind speed and temperature information 

that independent of the MGs. Therefore, it is possible to 

predict the tie-line power of MG without knowing the internal 

units and parameters, and it is possible to better implement the 

interactive operation between multi micro-grid (MMG) or 

between MG and DSO under incomplete information. 

Moreover, by avoiding explicit MG modeling, the data-driven 

model becomes highly adaptable against changes in MG 

parameters which are excluded from MG’s state set.  

In the bottom level is the multi-MGs physical layer, the 

MGs receive the external price information from the upper 

layer DSO, and then carried out optimal power management 

to maximum its own interest with internal energy management 

system (EMS). 

 

B.  DATA CHARACTERISTICS ANALYSIS BASED ON 

MACHINE LEARNING 

Data characteristics analysis is the first key point for data-

driven behavior learning, probability distributions with fixed 

parameters are often used to describe the stochastic 

characteristics of weather information, such as weibull 

distribution for wind speed, beta distribution for solar 

irradiance and so on. However, these methods are merely 

approximate fitting of the actual probability histogram, the 

fitting errors are large especially at the edges [15], meanwhile, 

the parameters of these probability distributions are difficult to 

obtain. 

On this basis, this paper intends to introduce non-parametric 

kernel density estimation (KDE), an effective machine 

learning technique to mine the depth characteristics of weather 

data. Based on the sample data directly without any prior 

knowledge, KDE can achieve high-precision fitting on the 

basis of selecting the appropriate sliding window. The main 

principle is to estimate the distribution through the kernel 

function of each discrete interval (red dashed line in Fig. 2). 

The color dashed line (Blue Solid line in Fig. 2) is accumulated 

to approximate the equivalent histogram distribution interval. 

The calculation is shown in (1). 

 

FIGURE 2.  Principle of non-parametric kernel density estimation (KDE) 

method [16]. 
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(1) 

Where, #𝑥𝑖 ∈ [𝑥 − ℎ, 𝑥 + ℎ]  represents the number of 

samples falling on the interval [𝑥 − ℎ, 𝑥 + ℎ] . 

Let 𝐾 (
𝑋−𝑋𝐼

𝐷

ℎ
) = 𝑙(

𝑥−𝑥𝑖

ℎ
≤ 1), then (1) can be rewrite as 

𝑓ℎ̃(𝑥) =
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∑𝐾(
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𝐷

ℎ
)

𝑁

𝑖=1

 

(2) 

Where, 𝐾(∙) represents the kernel function, commonly used 

kernels function include Gauss kernels function, rectangular 

kernels function and so on. 

Taking the annual data of local weather information as well 

as local electricity price information as an example, we can 

first preprocess the annual data by classifying them with time 

interval, as shown in (3), and then analyze the statistical 

characteristics of each time interval with KDE separately. 

[
 
 
 
 
 𝐴𝑺,1⏞

𝑇=1

𝐴𝑺,2⏞
𝑇=2

𝐴𝑺,𝑘⏞
𝑇=𝑘

⋯ 𝐴𝑺,24⏞
𝑇=24

⋮ ⋮ ⋮ ⋱ ⋮
𝐴𝑺,1+𝑖∗24 𝐴𝑺,2+𝑖∗24 𝐴𝑺,𝑘+𝑖∗24 ⋯ 𝐴𝑺,24+𝑖∗24

⋮ ⋮ ⋮ ⋱ ⋮
𝐴𝑺,1+𝑁∗24 𝐴𝑺,2+𝑁∗24 𝐴𝑺,𝑘+𝑁∗24 ⋯ 𝐴𝑺,24+𝑁∗24]

 
 
 
 
 

    

𝑺 ∈ [𝑃𝑠𝑖, 𝑃𝑤𝑠 , 𝑃𝑇 , 𝛾𝑃] 
(3) 

Where, 𝐴𝑺,𝑘+𝑖∗24represents the data at the k-th interval for 

the i th day, S is the variable set, representing solar irradiance 

(𝑃𝑠𝑖), or wind speed (𝑃𝑤𝑡), or temperature (𝑃𝑇), or electricity 

price (𝛾𝑃). 

Assume the annual data of solar irradiance and wind speed 

are shown in Fig. 3 and Fig. 4 respectively, the probability 

density function (PDF) and cumulative probability 

distribution (CDF) of typical time interval obtained by KDE is 

shown in Fig. 5 and Fig. 6. 

 

FIGURE 3.  The annual data of solar irradiance. 

 

FIGURE 4.  The annual data of wind speed. 

 

FIGURE 5.  Probability density function (PDF) of several typical time 
interval obtained by KDE. 

 

FIGURE 6.  Cumulative probability distribution (CDF) of several typical 
time interval obtained by KDE. 

 

From Fig. 5 and Fig. 6, we can find that the proposed KDE 

method described the probability distribution characteristics 

of each time interval well, different from the traditional single 

peak approximation fitting of normal distribution or Weibull 

distribution with fixed parameters, the distribution function 

calculated by KDE method has the characteristics of multi 
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peak and multi valley, more coincides with its histogram and 

has better fitting accuracy. 

C.  DATA ENHANCEMENT BASED ON LATIN 
HYPERCUBE SAMPLE METHOD 

Considering the acquired data are often hard to exhaust and 

cover all kinds of possible scenarios, in order to ensure the data 

completeness of behavior learning in MG, effective data 

enhancement is necessary. 

Data enhancement can be achieved by sampling with the 

probability characteristics of the acquired data, however the 

traditional random sampling method usually needs a large 

number of repeated sampling, and it is difficult to cover the 

whole sampling space. On this base, an effectively Latin 

Hypercube Sampling (LHS) method with good uniformity and 

orthogonally is proposed. As shown in Fig. 7. 

 

FIGURE 7.  Principle of Latin Hypercube Sampling (LHS) Method. 

 

Its basic principle is to discretize the range of cumulative 

probability distribution into several equal intervals, and then 

stratified sampling is carried out among each interval [17], 

thus to ensure the integrity and accuracy of sampling data as 

calculated by (4). 

𝑿𝑘𝑛 = 𝐹𝑘
−1 (

𝑛 − 0.5

𝑁
)    𝑛 = 1,2,⋯ , 𝑁 

         (4) 

If the number of random variables is K, then the sampling 

matrix can be formed by (5). 

𝑿𝐾𝑁 = [

𝑋11 𝑋12 ⋯ 𝑋1𝑁
𝑋21 𝑋22 ⋯ 𝑋2𝑁
⋮ ⋮ ⋮
𝑋𝐾1 𝑋𝑁2 ⋯ 𝑋𝐾𝑁

] 

               (5) 

For the directly sampled matrix𝑿𝐾𝑁 , there are usually 

strong correlation among its rows [18], which is not suitable 

for the generation of diversified samples. To address this 

problem, cholesky decomposition algorithm is introduced in 

this paper to reduce the correlation of samples and improve the 

diversity of samples [19]. The main procedures are shown in 

Fig. 8. 

 

FIGURE 8.  Procedures of proposed algorithm to reduce the correlation 
of sample scenarios. 

The detailed calculation steps are described as follows: 

1) Initialize the ranking matrix 𝐿𝐾𝑁, each row consisting of 

random permutations of integer l, 2, 3... N. 

2) Calculate the correlation between the rows of 𝐿𝐾𝑁, and 

obtain the correlation matrix DL as shown below. 

𝜌𝑖𝑗 =
∑ (𝑉𝑖𝑘 − 𝑉𝑖̅)(𝑉𝑗𝑘 − 𝑉𝑗̅)
𝐾
𝑘=1

√∑ (𝑉𝑖𝑘 −𝑉𝑖̅)2
𝐾
𝑘=1 ∑ (𝑉𝑗𝑘 − 𝑉𝑗̅)

2𝐾
𝑘=1

 

(6) 

3) Use Cholesky decomposition method to calculate the 

nonsingular lower triangular matrix D for the correlation 

coefficient matrix𝐷𝐿, which satisfied 𝐷𝐷−1 = 𝐷𝐿 
4) Constructing matrix with less correlation 𝐺𝐾𝑁 =

𝐷−1𝐿𝐾𝑁 

5) Reorder elements in matrix 𝐿𝐾𝑁  based on the size and 

position of elements in 𝐺𝐾𝑁 

6) Judge whether the relativity of ranking matrix 𝐿𝐾𝑁 meets 

the requirements. 

7) If it does not meet the requirement, go back to step 2) to 

recalculate. Otherwise, updating the position of each element 

in the original sampling matrix based on matrix 𝐿𝐾𝑁. 

Based on the PDF and CDF of wind speed and solar 

irradiance obtained, 500 new scenarios are generated with the 

proposed LHS and cholesky decomposition algorithm, as 

shown in Fig. 9 and Fig. 10. The iterative convergence process 

of cholesky decomposition method to reduce the correlation 

of sampling scenarios is shown in Fig. 11. 
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FIGURE 9.  500 new solar irradiance scenarios generated by the 
proposed LHS and cholesky decomposition algorithm. 

 

 

FIGURE 10.  500 new wind speed scenarios generated by the proposed 

LHS and cholesky decomposition algorithm. 

 

FIGURE 11.  Convergence process of cholesky decomposition 
algorithm. 

It can be seen from Fig. 9 and Fig. 10 that the enhancement 

scenarios of solar irradiance and wind speed are diverse 

enough, and basically fill the whole sampling space. From Fig 

11 we can find that the cholesky decomposition algorithm has 

a very good convergence property, the correlation converges 

after approximately 5 iterations, proved to be effective. 

D.  SCENARIO CLUSTERING WITH PSO ASSISTED K-
MEANS METHOD 

Repetitive learning of similar scenarios may be existed by 

directly using the above generated scenarios for learning, in 

order to improve the learning efficiency, the typical categories 

should be further determined for the generated scenarios in 

section C. 

Common used classification methods include fuzzy 

clustering, K-means clustering and so on [20], but these 

methods all have difficulties in determining the number of 

clusters. To address this issue, this paper introduced a novel 

particle swarm optimization assisted k-means method (PSO-

K-Means) to support quickly determination of optimal number 

of clusters. The flow chart of proposed PSO-K-Means 

algorithm is shown in Fig. 12, the PSO's fast global search 

capability is fully utilized to help in finding the optimal 

number of cluster centers, through continuous iterative 

evaluation, ensure to find the best cluster center. 

 

FIGURE 12.  Procedures of proposed novel particle swarm optimization 
assisted k-means clustering algorithm (PSO-K-Means). 

 

With the PSO-assisted K-means clustering algorithm, 500 

wind speed and solar irradiance scenarios are clustered, the 

optimal clustering number determined by PSO-assisted K-

means is 8. The clustering results for wind speed and solar 

irradiance are shown in Fig. 13 and Fig. 14 respectively. It can 

be seen from Fig. 13 and Fig. 14 that the proposed PSO-

assisted K-means algorithm has good effect on scenario 

classification, and it can effectively identify cluster centers, 

providing guarantee for improving training and learning 
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FIGURE 13.  The clustering results for solar irradiance with PSO-

assisted K-means clustering algorithm. 

 
FIGURE 14.  The clustering results for wind speed with PSO-assisted K-
means clustering algorithm. 

 

III.  BEHAVIOR LEARNING OF MICROGRIDS USING 
DATA-DRIVEN METHODS 

A.  SURROGATED MODEL BASED BEHAVIOR 

LEARNING 

Surrogated model, also known as meta-model, refers to the use 

of a large number of sampling points generated by 

experimental design to construct approximate simplified 

models by interpolation or fitting to replace complex 

simulation models for agents that are difficult to model or 

obtain model parameters. Common used Surrogated include 

Response Surface Method (RSM), Radial Basis Functions 

(RBF) model, Kriging model and so on. Each meta-model has 

its own applicable scope. 

• Response surface method 

Response surface methods (RSM) approximates functions 

by using the least squares method on a series of points in the 

design variable space [21]. Low order polynomials, such as 

the second order polynomials in (7) is widely used as the 

response surface approximating functions 

𝑦̂(𝑥) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑗𝑖

 

(7) 
where, 𝛽0,  𝛽𝑖 , 𝛽𝑖𝑖 , 𝛽𝑖𝑗 are parameters computed using least 

squares regression by minimizing the sum of the squares of the 

deviations of predicted function values, 𝑦̃  is the predictive 

function values. 

RSM can be easily constructed, and its smoothing 

capability allows quick convergence of noisy functions in the 

optimization. However, this over-simplification may be 

troublesome for modelling highly non-linear or irregular 

behavior 

• Kriging meta-models 

Kriging is a type of meta-model based on spatial correlation 

functions. It is a stochastic model used to treat the 

deterministic computer response as a realization of a random 

function, with respect to the actual system response [22]. A 

Kriging model postulates a combination of a polynomial 

model and the minor departure of the form: 

 𝑦̂(𝑥) = 𝑓(𝑥)𝑇𝜷 + 𝑍(𝑥) 
                 (8) 

Where, 𝑦̂(𝑥) is the unknown function of interest, 𝑓(𝑥) is a 

known polynomial function often taken as constant, and 𝑍(𝑥) 
is the correlation function which represents a stochastic 

process with mean at 0, variance σ2, and nonzero covariance. 

Due to the wide range of correlation functions available, 

Kriging methods can provide accurate predictions of highly 

non-linear or irregular behavior. 

• Radial basis functions 

Radial basis function (RBF) meta-model is another 

surrogated model formed by linear combinations of a radially 

symmetric function based on the Euclidean distance between 

the sampled data point and the point to be predicted [23]. RBF 

was presented as an effective analytical method for 

representing irregular surfaces, the model can be expressed as 

in (9) and (10). 

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 +∑ 𝜆𝑖𝜑(|𝑥 − 𝑥𝑖|)
𝑛

𝑖=1
 

(9) 

𝜑(𝑥) = 𝑒𝑥𝑝 (−
𝑥2

2𝜎2
)    𝜑(𝑥) = √1+

𝑥2

𝜎2
 

(10) 

Where, 𝑐0 , 𝑐1  and 𝜆𝑖  are the parameters for radially 

symmetric function computed by minimizing the Euclidean 

distance between the sampled data point and the point to be 

predicted. 𝜑(𝑥) is the radially symmetric function. RBF prove 

to have good fits to arbitrary contours of both deterministic 

and stochastic response functions. It has been used 
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successfully in many engineering applications, including 

ocean depth measurement, altitude measurement, rainfall 

interpolation, surveying, mapping, geographic and geology, 

image warping, and medical imaging [24]. 

B.  ARTIFICIAL INTELLIGENCE BASED BEHAVIOR 
LEARNING 

• Deep Neural Network 

Deep neural network (DNN) is a data-driven method that 

does not rely on any analytical equations, but it utilizes 

voluminous existing data to formulate the mathematical 

problem and to approximate the solutions. DNN proved to 

have strong non-linear fitting ability. The recent years have 

witnessed the rapid advancement of deep neural network in a 

variety of applications, e.g., computer vision, machine 

translation, and remote sensing [25]. Fig. 15 shows a basic 

DNN model. The multiple hidden layers and the large number 

of neurons within the DNN can automatically extract features 

for data analysis to achieve an accurate model regression or 

classification. Once the DNN is well trained, it will develop 

high generalization and can be directly applied to new 

instances without costly numerical computation. Compared to 

the conventional model-based method, the DNN is highly 

computational efficient while maintaining considerable 

accuracy. 

 

 

FIGURE 15.  Basic Deep Neural Network (DNN) Model. 

 

• Reinforcement learning 

Reinforcement learning (RL) algorithm is another well-

known model-free method for solving problems with hidden 

information. RL can obtain the optimal decisions within an 

unknown environment through continuous interactions 

between the agent and the environment. For the model-free RL 

algorithm, the principle evaluates possible actions in terms of 

the current state at time t, then finds the optimal action with 

max reward value by ε-greedy strategy to strike a balance 

between exploration and exploitation of decision space, and 

finally updates the action-value 𝑄(𝑠𝑡 , 𝑎𝑡)  at each iteration 

based on the Bellman optimality equation [26], as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡)

+ 𝛼(𝑟(𝑠𝑡 , 𝑎𝑡) + γmax𝑄(𝑠𝑡+1, 𝑎𝑡+1)

− 𝑄(𝑠𝑡 , 𝑎𝑡)) 

(11) 

Based on the latest expected state-action value, the optimal 

policy can be estimated to maximize the agent’s accumulated 

reward, as follows: 

𝑎𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑄(𝑠𝑡 , 𝑎𝑡)                   (12) 

RL does not require any prior knowledge, the algorithm is 

versatile, and it can protect data privacy. The accuracy of 

action-state function for RL depends on learning experience, 

thus RL usually requires a lot of evaluation and iterations, and 

the calculation time is relatively long. 

C.  PROCEDURE OF PREDICTING BEHAVIOR FOR 

MICROGRIDS 

Based on the proposed architecture, data preprocessing 

method and behavior prediction algorithm above, the overall 

procedure of predicting behavior for micro-grids is presented 

as algorithm 1, which is specifically described as follows: 

1) Utilize KDE to analyze the probabilistic characteristics 

of local solar irradiance (Psi), wind speed (Pws), temperature 

(PT) and electricity price (λp) data. 

2) Generate incremental sample data using LHS and 

Cholesky decomposition algorithm. 

3) Cluster all sample data by PSO assisted K-means 

algorithm to find out typical scenario categories. 

4) Take one scenario from each category in order, reorder 

all the sample scenarios. 

5) Initialize the training data with previous (i-1)th days 

data set: input data: SI→SI+(i-1)th [Psi, Pws, PT, λP], output 

data: SU→SU+(i-1)th Ppcc. 

6) Construct Meta-models and DNN network or 

determine the optimal policy by RL using the training data. 

7) Predict tie-line power of the next ith scenario with 

constructed Meta-models and DNN as well as RL algorithm. 

8) Calculate actual tie-line power of MG in the ith 

scenario using the model based algorithm. 

9) Calculate the mean square error (βE) for Meta-models 

and DNN as well as RL algorithm. 

10) Determine whether βE is less than the preset value ε. 

If it is satisfied, the calculation ends and output the 

corresponding predicted power. Otherwise, go to step 5 and 

enter the next iteration. 

 
Algorithm 1: Procedure of predicting behavior for Microgrids 

1: Utilize KDE to analyze the probabilistic characteristics of local solar 
irradiance (Psi), wind speed (Pws), temperature (PT) and electricity 

price (λp) data 

2: Generate incremental sample data using LHS and Cholesky 

decomposition algorithm 

3: Cluster all sample data by PSO assisted K-means algorithm to find 
out typical scenario categories 

4:  Take one scenario from each category in order, reorder all the 

sample scenarios, complete data preprocessing process 

5: for i in 1 to ND do 
6:     Initialize the training data with previous (i-1)th days data set:, 

input data: SI→SI+(i-1)th scenarios data 

output data: SU→SU+(i-1)th Ppcc 

7:     Construct the Meta-models and DNN or determine the optimal 

policy by RL using the training data 
8:     Predicting behavior of the next ith scenario with constructed Meta-

models and DNN as well as RL algorithm 
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9:     Calculate actual ith scenario behavior of MG (Ppcc) using the model 

based algorithm 
10:   Calculate the mean square error (βE) for Meta-models and DNN as 

well as RL algorithm 

11:   if βE <ε 

12:         do Break; 

13:   end if 

14: End for 

IV.  TEST CASE 

A.  CASE Ⅰ--MICROGRID WITHOUT ENERGY STORAGE 

SYSTEM 

The first test case is a gird-connected MG without energy 

storage system, the one-line diagram is shown in Fig. 16, and 

it composes by three types of DGs: solar PV, wind turbine, and 

Micro-turbine. We intend to train an interactive behavior 

model of this MG by using the active power measurements at 

the PCCs and the public historical data information outside of 

MG. we assume the spot price data are taken from American 

electricity price [27], the local solar irradiance, wind speed, 

temperature and electricity price in previous Nth days are 

selected as the input of the training set, and the tie-line power 

of MG in previous Nth days are taken as the expected output of 

the training set. Data-driven based methods proposed above 

are utilized for network training, and the trained networks are 

tested on the next (N+1) th day to verify their accuracy and 

applicability. 

 

 

FIGURE 16.  Test Micro-grid without energy storage system. 

 

Since the energy storage is not included in MG, the 

operation periods of the MG can be decoupled from each 

other, thus the MG can be controlled independently in 

different time slots. Thereby, the input dimension and output 

dimension of the training network are selected as 4 and 1 

respectively. The training parameters for DNN are shown in 

the Table I. For RL, since we don't know the internal 

parameters of MG, so we make full use of DNN to predict its 

action-reward value, and then form a deep Q-network (DQN) 

to learn the tie-line power of MG. The training parameters of 

RL algorithm are shown in the Table II. 

 
 

TABLE I TRAINING PARAMETERS FOR DNN 

Parameters Value 

No. of hidden layers 2 

No. of neurons in hidden layer [20 5] 

Activation function Tansig function 

Loss function Mean square error 

Learning rate 0.01 

No. of training samples previous N th days plus 24 hours 

No. of test samples 24 hours for (N+1)th day 

Data preprocessing Min max scaler 

Optimizer Gradient descent 

 

TABLE II TRAINING PARAMETERS FOR RL 

Parameters Value 

Learning rate 0.0005 

Discount factor 0.95 

Batch size 24 

Max epochs 1000 

 

Firstly, the predictive results of DNN is compared with that 

of meta-model method and model-based method (regard as 

theoretical results). Among them, the predictive value of meta-

model method is calculated by weighting sum of RSM, RBF 

and Kriging surrogated models. The calculation is shown in 

(13) 

 

{
 
 
 
 

 
 
 
 
𝑃𝑚𝑒𝑡𝑎
𝑘 = 𝜔𝑃

𝑘 ∗ 𝑀𝑅𝑆𝑀
𝑘 + 𝜔𝑅

𝑘 ∗ 𝑀𝑅𝐵𝐹
𝑘 +𝜔𝐾

𝑘 ∗ 𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘

𝜔𝑃
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𝑀𝑅𝑆𝑀
𝑘

𝑀𝑅𝑆𝑀
𝑘 +𝑀𝑅𝐵𝐹

𝑘 +𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘

𝜔𝑅
𝑘 =

𝑀𝑅𝐵𝐹
𝑘

𝑀𝑅𝑆𝑀
𝑘 +𝑀𝑅𝐵𝐹

𝑘 +𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘

𝜔𝐾
𝑘 =

𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘

𝑀𝑅𝑆𝑀
𝑘 +𝑀𝑅𝐵𝐹

𝑘 +𝑀𝐾𝑟𝑖𝑔𝑖𝑛𝑔
𝑘

  

(13) 

The prediction results of DNN, surrogated model and 

conventional model-based method regarding with training 

days are shown in Fig. 17. For dimension reasons, only three-

dimensional maps are given out, the electricity price and solar 

irradiance are selected as input variables and PCC power is 

selected as output variable. The predicted value of PCC output 

power by DNN is compared with that of theoretical results 

through model-based optimal method as shown in Fig. 18, We 

can find from Fig. 17 that with the training data gradually 

enriched, the PCC power prediction value of DNN, basically 

coincides with the theoretical calculation value driven by the 

model, which shows the strong fitting ability of DNN. 

Although meta-model method has aggregated advantages of 

RSM, RBF and Kriging, the overall prediction effect is still 

unsatisfactory as compared with DNN.
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FIGURE 17.  Prediction results of DNN, Meta-model and conventional model-based method (theoretical results) regarding with training days. 

 

FIGURE 18.  Comparison of DNN prediction results of tie-line power with theoretical values. 

We can also see from Fig. 18 that the predicted accuracy of 

DNN is better and better with the abundance of samples. After 

80 days of data learning, PCC power prediction results 

basically coincides with the model-based theoretical value, 

reflecting good learning and prediction ability. 

Furthermore, the root mean squared error (RMSE) as shown 

in (14) is utilized as the evaluation criterion to test power 

prediction errors of various methods. The RMSE comparison 

of RSM, RBF and Kriging models and their combination 

models is shown in Fig. 19. The RMSE comparison of RSM 

(the surrogated technique with best performance) and DNN as 

well as the RL is shown in Fig. 20 and Table III. Fig 21 

presents the reward convergence process of the RL algorithm. 
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𝑅𝑀𝑆𝐸 = √
1

𝑀
∑(𝑃𝑃𝐶𝐶,𝑖 − 𝑃̃𝑃𝐶𝐶,𝑖)

2
𝑀

𝑖=1

 

(14) 

 

FIGURE 19.  RMSE comparison of RSM, RBF and Kriging surrogated 
techniques. 

 

FIGURE 20.  RMSE comparison of RSM (the best performance 
surrogated technique) with DNN and RL 

 

TABLE III COMPARISON OF SEVERAL META-MODEL TECHNOLOGIES AND 

ARTIFICIAL INTELLIGENCE METHODS 

Method 
RMSE 

error 

Training 

time(s) 

Test  

time (s) 

Accuracy 

(%) 

Kriging 2.258 34.93 0.266 71.58 

RBF 1.135 2.20 0.067 75.21 

RSM 0.554 4.27 0.124 80.23 

RL 0.236 109.21 0.016 85.25 

DNN 0.219 15.19 0.147 86.38 

 

 
FIGURE 21.  Reward convergence process of the RL algorithm 

 

As can be seen from the Fig. 19, with the increase of days 

and training data, the three surrogated techniques, RSM, RBF, 

and Kriging show a downward trend in prediction errors. 

When there are insufficient samples in the early stage, the 

covariance function calculated from these few points result in 

large errors for Kriging, so the fitting effect of Kriging 

technique is not good and the prediction error is large. 

However, with the accumulation of samples, the fitting error 

between the covariance function and the actual model 

decreases gradually, thus the prediction error of Kriging 

decreases rapidly. The same phenomenon occurs in RBF, 

since the parameters of its basis function are difficult to match, 

so the RMSE error is large in the early stage, with the sample 

becomes more abundant, the basis function parameters are 

constantly modified, and the fitting accuracy is gradually 

improved. As for RSM, it uses low-order surface response 

function to fit the sample space, so it presents a better fitting 

effect in the early stage. However, because its basis function 

order is fixed in training process, the fitting improvement is 

hard to improve even in the later stage with high-dimensional 

samples, thereby the prediction error of RSM maintains a 

certain level, which also indicated that low-order basis 

function and surface fitting is relatively stable, but they are not 

suitable for accurate behavior prediction. 

From the RMSE comparison of DNN, RSM, and RL in Fig. 

20, we can find that the prediction error of DNN is large when 

there are insufficient samples in the early stage, this is because 

the scenarios learned at the beginning of training stage are 

difficult to cover all the various scenarios in wind speed, solar 

irradiance, temperature and electricity prices, however with 

the abundance of samples and more learning scenarios, the 

number of scenarios covered by DNN gradually increases, 

thus the accuracy of DNN increases continuously, and the 

accuracy of DNN is much higher than that of RSM in the later 

stage. On the other hand, from the comparison between DNN 

and RL, for the DQN reinforcement learning algorithm 

utilized in this paper relies heavily on the predictive ability of 

DNN to update its reward value, its overall accuracy is slightly 
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lower than that of DNN, but it can constantly learn and 

approximate the DNN prediction model, so the overall 

prediction and decision-making effect is also high enough.  

From the statistical results of the training time and accuracy 

of the various methods in Table III, it can be further seen that 

DNN and RL do have better prediction accuracy, and their 

results are better than the meta-model method. From the 

convergence process of the RL algorithm in Fig. 21, it can 

roughly converge to the optimal results in about 200 epochs, 

however, the training time is the longest as seen from Table III 

for the number of policy evaluations required by RL is large. 

In summary, the above results indicated that DNN has best 

fitting ability of complex MG energy management functions 

and it is more suitable for the behavior learning of MGs. 

B.  CASE Ⅱ-MICROGRID WITH ENERGY STORAGE 

SYSTEM 

The second test case is a gird-connected MG equipped with 

battery energy storage system (BESS), the grid structure is 

shown in Fig. 22. After BESS is connected to MG, the 

operation periods of the MG are strongly coupled with each 

other, therefore, the input data and output data for training are 

4*24 sequential sample and 1*24 sequential sample 

respectively. For this reason, the long short-term memory 

(LSTM) deep network that can effectively deal with sequential 

data [28] is adopted here for behavior learning of MGs 

equipped with BESS, the training parameters of LSTM are 

shown in Table IV. 

 

 

FIGURE 22.  Test Micro-grid with battery energy storage system. 

 

 

TABLE IV TRAINING PARAMETERS OF LSTM 

Parameters Value 

Dim of LSTM layer 100 

Max Epochs 100 

Mini Batch Size 200 

Loss function Mean square error 

Initial Learning rate 0.005 

Gradient Threshold 1 

No. of training samples Previous 10000 days sequential data 

No. of test samples Next 1000 days sequential data 

Learning Rate Drop Period 50 

Learning Rate Drop Factor 0.2 

Optimizer Adam 

 

Based on 10000 sample data accumulated by model-based 

optimization, 9000 training samples and 1000 test samples are 

selected respectively, the behavior learning results of LSTM 

is comprehensively compared with that of meta-model 

technologies as well as the RL algorithm, the statistical results 

are presents in Table V. 
 

TABLE V STATISTICAL RESULTS OF LSTM AND META-MODEL 

TECHNOLOGIES 

Method 
RMSE 
error 

Training 
time(s) 

Test  
time (s) 

Accuracy 
(%) 

Kriging 2.3626 326.87 1.0897 70.18 

RBF 0.4218 276.72 0.1393 81.86 

RSM 2.4380 274.48. 0.0543 65.77 

RL 0.0826 2112.24 0.8385 93.45 

LSTM 0.0501 371.11 0.4052 96.20 

 

It can be seen from Table V that the surrogated techniques 

obtain large fitting errors for time-coupled and high-

dimensional sequential data. The accuracy of the best 

performing RBF technique is only about 81.86%, this 

indicates that the low-order surface response function based 

RSM and basis function based RBF are powerless in fitting 

higher-dimensional and temporally coupled spatial variables, 

thus the fitting error is larger. From the comparison between 

RL and LSTM, we can find that the predicting accuracy of RL 

is slightly lower than that of LSTM, this is because that the 

calculation of the RL algorithm’s reward relies heavily on the 

predictive value of LSTM deep neural network, therefore, its 

predicted value approaches the LSTM infinitely, but is still 

slightly lower than that of LSTM. In addition, due to the need 

for a large number of evaluations and feedback to modify 

network parameters, training time of RL is usually long The 

LSTM method shows the best prediction effect by processing 

the time sequential power data with memory gate, it is more 

suitable for predicting the sequential tie-line power of MG that 

contains timing coupling characteristics brought by energy 

storage, the prediction accuracy of it reaches 96.20%. 

The predicted tie-line power by LSTM is further compared 

with the theoretical results on typical days, as shown in Fig. 

23. The convergence process of the training RMSE and loss 

function of LSTM is shown in Fig. 24 and Fig. 25 respectively.  
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FIGURE 23.  Comparison of LSTM prediction results of tie-line power 
with theoretical values for MG with BESS. 

 

FIGURE 24.  Convergence process of the training RMSE of LSTM. 

 

FIGURE 25.  Convergence process of the loss function of LSTM. 

 

We can find that the convergence speed of the LSTM is fast, 

the convergence is achieved after about 300 iterations. At the 

same time, the prediction accuracy of the LSTM is relatively 

high, the power prediction values by LSTM are basically 

consistent with the theoretical results, which shows the 

effectiveness of LSTM deep network especially in behavior 

learning of MG equipped with BESS. 

C.  COMPARISON OF META-MODEL TECHNIQUES AND 
ARTIFICIAL INTELLIGENCE METHODS 

Based on the analysis results of the above test cases, we can 

further summarize the advantages and disadvantages of the 

meta-model techniques and the artificial intelligence methods 

in MG behavior learning problem as shown in Table VI.  

 
TABLE VI COMPARISON OF META-MODEL TECHNIQUES AND ARTIFICIAL 

INTELLIGENCE METHODS 

Method Advantage Disadvantage 

RSM 

• Better for fitting low-
order non-linear 

predicting problems. 

• Easy to unstable when 
applied to high order 

problems. 

RBF 

• Suitable for fitting 

both low-order and 

high-order problems. 

• Difficult to determine 

parameters of its basis 

function. 

Kriging 

• Adaptability is good, 
more suitable for 

fitting low order 

problems. 

• Need long time to 

build meta-model for 

complex problem. 

RL 

• Highly scalable and 

has good versatility 
for various decision-

making and prediction 

problems. 

• Action-value function 

is difficult to model. 

• Policy training time is 

long. 

DNN 

• Fitting ability with 

arbitrarily complex 

multidimensional 
functions. 

• Flexible network 

structure and easy to 

expand. 

• Determine of the 

number of network 

neurons is usually 

difficult.  

 

We can draw the conclusion from Table I that RSM and 

Kriging methods are more suitable for the fitting and 

prediction of low-order and low dimensional MG behavior 

learning problems. While RBF and DNN are more suitable for 

high-dimensional and large-scale variable fitting problems 

because of their network depths and free radicals combination 

features. Although RL is highly scalable and has good 

versatility for various decision-making and prediction 

problems, but the action-value function of it is difficult to 

model. Meanwhile, the policy training time of RL is long for 

its need for a large number of policy evaluations. 

In summary, the predicting process for most meta-model 

techniques are fast, but the accuracy of them are not high, so 

they are more suitable for computational expensive design 

problems. The training time of DNN network and RL 

algorithm are relatively long, but the accuracy is much higher, 

so there are more suitable for behavior learning and decision-

making problems in MG. 

D.  CONVERGENCE AND SENSITIVITY ANALYSIS 

The sensitivity analysis of DNN (the best performance 

method) in behavior predicting is further carried out for test 

case I. The training process with three different hidden layer 

number are tested: {20 10}, {30 20}, {30 10} respectively, the 
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convergence curves of three different cases are shown in Fig. 

26. 

 
Hidden layers=6 

 
Hidden layers=10 

 
Hidden layers=20 

FIGURE 26.  The convergence curves of DNN in three cases with 
different hidden layer numbers. 

 

It can be seen from Fig. 26 that the hidden layer number has 

great influence on the training convergence of DNN. Too few 

or too many hidden layers cannot achieve satisfactory learning 

fitting effect and are prone to over-fitting or under-fitting. In 

practical application, the number of hidden layer should be 

decided by considering dimension of input variables, 

calculation time requirement, fitting effect and so on. 

V.  CONCLUSION 

A comparative study of several recently introduced model-

free data-driven methods, including DNN, RL, RBF, RSM, 

and Kriging in predicting the real-time behavior of MGs under 

incomplete information is carried out in this paper. The 

validity of the proposed method is verified in numerical 

experiments by comprehensively compared with conventional 

model-based optimal methods. We can draw the conclusions 

that: 

1) The proposed model-free behavior prediction methods 

can effectively protect the privacy requirements of the MG for 

they do not need to access the internal parameters of the MG. 

2) The surrogated techniques is more suitable for the low-

dimensional, temporally decoupled behavior prediction 

problem, and it is not suitable for behavior prediction 

problems with high-dimensional variables. While the DNN 

and RL has good adaptability to various MG behavior 

prediction problems such as high-dimensional, low-

dimensional, and time-coupling problems. 
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