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ABSTRACT

Studies investigating the relationship between AGN power and the star formation rates (SFRs) of
their host galaxies often rely on averaging techniques — such as stacking — to incorporate information
from non-detections. However, averages, and especially means, can be strongly affected by outliers
and can therefore give a misleading indication of the “typical” case. Recently, a number of studies
have taken a step further by binning their sample in terms of AGN power (approximated by the
2-10keV luminosity of the AGN), and investigating how the SFR distribution differs between these
bins. These bin thresholds are often weakly motivated, and binning implicitly assumes that sources
within the same bin have similar (or even identical) properties. In this paper, we investigate whether
the distribution of host SFRs — relative to the locus of the star-forming main sequence (i.e., Rvs) —
changes continuously as a function of AGN power. We achieve this by using a hierarchical Bayesian
model that completely removes the need to bin in AGN power. In doing so, we find strong evidence
that the Rys distribution changes with 2-10keV X-ray luminosity. The results suggest that higher
X-ray luminosity AGNs have a tighter physical connection to the star-forming process than lower

X-ray luminosity AGNs, at least within the 0.8 < z < 1.2 redshift range considered here.
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1 INTRODUCTION

The proportion of galaxies that show evidence of Active
Galactic Nuclei (i.e., AGN) ranges from a few percent to a
few tens of percent, depending on galaxy mass (e.g., 7777).
What this implies is that an individual supermassive black
hole (SMBH) spends most of cosmic time in a AAIJdorman-
taAl state during which it accretes at such a low rate as to
make it unidentifiable as an AGN (e.g. 7). What is clear from
their high masses, however, is that all SMBHs éAS irrespec-
tive of their current accretion rate éAS must have undergone
periods of rapid growth at earlier times (e.g. 7). Since BH
growth is not a constant, it raises the question of what ex-
ternal factors cause a SMBH to transition from a dormant
state to an active state (and vice versa). Or, more succinctly,
what galaxy properties, if any, dictate AGN power?

Recent observations of the inner few (tens of) parsecs
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of galaxies hosting AGNs have revealed evidence of bars and
spiral structures that may be funnelling material toward the
central SMBH (e.g. ??7?77). While such studies are impor-
tant for revealing how gas and dust are transferred from
the host galaxy, they do not address the question of what
“macroscopic” galaxy properties help to trigger black hole
growth. This is important because, since the energy released
by AGNs is thought to impact on galaxy scales, it is crucial
that we understand what large-scale galaxy properties make
them susceptible to triggering SMBH growth.

A key means of investigating what galaxy-scale factors
govern SMBH growth rates is by quantifying the properties
of AGN-hosting galaxies and attempting to identify correla-
tions between these host properties and AGN power. How-
ever, this is hampered by the fact that, compared to most
other galactic processes (e.g., star-forming events, mergers),
AGNs are extremely variable and short-lived. As demon-
strated by ?, this stochastic duty cycle tends to dilute
the underlying connections between AGN power and other
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galactic properties, such that plots of mean galaxy star for-
mation rate (SFR) vs. AGN power, for example, show a
flat (i.e., independent) relationship (e.g. ???7?777). Recently,
some studies have instead investigated the distribution of
star forming properties (as opposed to simple means) in
bins of AGN power (e.g. ??7). Specifically, ? compared the
distribution of specific SFR in two X-ray luminosity (Lx)
bins, but did not find any significant evidence of a differ-
ence between the two bins (43 < logjo(Lx/ergs s < 44
and 44 < logo(Lx/ergs sTh < 45). 7, B19 from hereon
in compared the distribution of the Ryg statistic (Rys
= SFR/SFRys, where SFRys is the expected SFR for a
galaxy of identical mass and redshift, should it lie on the
locus of the star-forming main sequence) in bins of low Lx
(i.e., 42.53 < logjo(Lx/erg s71) < 43.3) and high Lx (ie.,
43.3 < logo(Lx/erg sTh < 45.09), and only found “tenta-
tive” evidence of a dependency. Note that, the Ryg statistic
is often referred to as the “starburstiness” of a galaxy (?7?);
we shall also use this notation throughout the rest of the
paper.

So whilst the use of distributions has allowed us to in-
vestigate the star-forming properties of AGNs in more detail
than using simple averages, no study has demonstrated that
the distribution of star-forming properties is dependent on
Lx.! Of course, this may be because no intrinsic connection
exists. It could, however, be due to an often unaddressed lim-
itation in the analysis: the use of arbitrarily-constructed bins
of Lx. Beyond being somewhat arbitrary, weakly-motivated
and possibly impacting results (?), binning has several fur-
ther limitations. One problem is how to classify a source
which, when considering errors, could fall in two or more
bins (i.e., if there was a bin boundary at log;y Lx = 44, can
a source with log;o Lx = 43.8 0.3 be accurately classified?).
In an attempt to deal with sources that, within their errors,
cross a bin boundary, some studies choose to discard am-
biguous sources (e.g. ?), whereas other studies assign them
to a particular bin based only on their measured value (e.g.
?7?7). Both of these approaches have intrinsic problems. In-
formation is lost when sources are just discarded and by just
using the measured value, uncertainties in the binning axis
are not fully appreciated. A second limitation is the implied
assumption that all sources in the same bin have identical
properties, yet sources just either side of the bin boundaries
are different. Both of these limitations constitute a loss of
information from the data in hand.

In this study, to investigate the implications of bin-
ning on our investigations of the relationship between star-
forming properties and AGN power, we analyse the Rpyg
distribution as a continuous function of Lx. To do this,
we have developed a comprehensive Bayesian hierarchical
model which has two substantial benefits over binning.
Firstly, it allows us to eliminate the possibility of binning-
dependent results. Secondly, the model allows us to accu-
rately account for all uncertainties (including, where nec-
essary, upper limits) on the independent variable (i.e., in
our case Lx). 2 Specifically, this paper aims to quantify the

I Note, here we use “dependence” in the strict mathematical
sense, rather than suggesting that SFR physically depends on
AGN power.

2 Multiple dependent data sources can easily be adopted in to

dependence between the Rpg distribution and Ly, without
the need for binning or averaging. In doing so, we extract
all available information from our data and find strong evi-
dence of a relationship between the star-forming properties
of AGN-hosting galaxies and Lx.

The outline of the paper is as follows. In Section 2 we
briefly summarise how the dataset was constructed. In Sec-
tion 3 we summarise the hierarchical Bayesian model, ex-
plain how we eliminate the need for binning and briefly in-
troduce our MCMC model switching algorithm, which will
test whether the Rys distribution is dependent on Lyx. In
Section 4 we present the output of the analysis and discuss
the limitations and implications in Section 5. Where neces-
sary, we adopt a WMAP-7 year cosmology ? and assume a
? initial mass function. Finally, in Appendix A we give the
full details of the MCMC model switching algorithm.

2 DATA

So that we can compare the results of our new method with
previously found results, we decide to reuse the same dataset
as constructed in B19. This will ensure that any differences
are the direct result of the analysis method, rather than from
differences between two independent data sets. We provide
a summary of the sample derivation in this section, but refer
interested readers to B19 for a fuller explanation.

Briefly, we take the 541 X-ray detected sources with a
redshift between 0.8 < z < 1.2 from the COSMOS Legacy
Survey (?7). This small redshift range (~ 75 per cent have
spectroscopic redshifts) is chosen to minimise any poten-
tial redshift effects. These sources have rest-frame 2-10 keV,
absorption-corrected X-ray luminosities spanning the range
42.53 < logo(Lx/erg s71) < 45.09 (see ? for details on how
they calculated Ly, including how they corrected for ab-
sorption). We should note that in order to remain consis-
tent with B19 for the aforementioned purposes, we do not
include those sources with upper limits on Lx nor account
for redshift variation, although it would be straightforward
to do so as explained in Section 3.2.1. Uncertainties on Ly
values are derived by converting the percentage error on the
flux measurement presented in 7. On comparing these errors
to the upper and lower Ly bounds in 7, we find that our un-
certainties are generally more conservative. We then derive a
SFR for each source using the DECOMPIR code (see ? for
full details) on the super-deblended photometry presented
in the catalogue of ?which used the deblending technique of
?. The catalogue contains data from various sources such as
Spitzer and Herschel and covers the 24-1200um range.

In total, our sample contains 148 AGNs with measured
SFRs, and 393 with upper limits on their SFRs. Stellar
masses are calculated using the multi-wavelength spectral
energy distribution fitting code CIGALE (??77), using the
same parameter prescription as ?. The stellar mass parame-
ters were chosen to maximise the accuracy according to the
testing presented in ?. Next, we use the prescription of 7,
together with each galaxy’s redshift and mass, to predict
the SFR that it would have if it were on the star-forming

the framework, but for this study we choose only to model Ly as
a demonstration of the technique.
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main sequence (i.e., SFRyg). Finally, we calculate the “star-
burstiness” statistic, Ryg, of each galaxy in our sample via
Ryis = %. The Rys value of a galaxy aims to provide
an indication of the star-forming properties of a galaxy af-
ter taking into account the mass and redshift dependence of
the SFR of the dominant population of so-called main se-
quence galaxies (e.g. 7?7?7). While we appreciate that the
precise nature of the mass and redshift of the main sequence
is still the matter of some debate (e.g. ??77?), the main aim
of this study is to demonstrate a new analysis technique, so
we choose to the use the definition of ? to remain consistent
with B19. This again ensures that any differences in results
are a direct consequence of the analysis technique, as oppose
to differences in the sample.

3 THE CONTINUOUS MODEL, MODEL
SELECTION AND MCMC ALGORITHM

In this section we describe how we model the Ryg data, in
such a way to remove the need for binning, which enables us
to investigate whether (and, if so, how) the Ryg distribution
changes as a continuous function of Ly. In subsection 3.1, we
introduce the log-normal distribution we use to model the
Rys distribution and explain why we must use a “hierarchi-
cal” Bayesian approach to allow this to vary continuously
with Lx. Next, in subsection 3.2 we describe our Bayesian
priors and how these provide a mechanism to include all
uncertainties on each individual Lx value. Finally, in sub-
section 3.3, we introduce our bespoke MCMC sampler that
explores the posterior parameter space in a way that allows
us to test whether the Ryg distribution depends on Ly.

3.1 Rys distribution and likelihood function

In order to test the continuous relationship between the
Rys distribution and Ly we assume a functional paramet-
ric form for the Ryg distribution. In this work, we choose
to model the Rys distribution as a log-normal distribution
(i.e., that logo(Rms) is normally distributed). A log-normal
distribution is primarily chosen to remain consistent with
B19. Although recent studies have found the scatter around
the main sequence to be well modelled by a log-normal dis-

Ruvs end of the distribution caused by starburst galaxies.
Indeed, it is also true that there is likely an additional com-
ponent at lower Ryig values due to the population of quies-
cent galaxies. Therefore the accuracy of using a log-normal
distribution could be questioned. However, we leave devising
a more flexible model for a future work, where we intend to
include all three populations (i.e., quiescent, main sequence
and starburst galaxies) in our model (Grimmett et al., in
prep). Therefore we stress that this study is working under
the assumption that the deviation from the main sequence
of star formation is log-normally distributed, at least for
AGNs. In future studies, this model could be made more
flexible to account for an additional second component, but
the primary motivation of this work is to test the ability of
the method to remove the need for binning and therefore we
choose a log-normal Ryg distribution to remain consistent
with B19.

Binning-free continuous relationship 3

As we choose to use a Bayesian approach, we wish to de-
rive the posterior distribution, which is proportional to the
product of the data-driven likelihood function (assuming a
log-normal Ryg distribution) and the prior distributions. We
are then interested in sampling parameter values from this
posterior distribution. The prior distributions are essential
for including the uncertainty on Lx and are fully explained
in Section 3.2. The remainder of this section, therefore, de-
scribes how we derive the likelihood function.

The likelihood function is given by the product of the
probability density functions (PDFs) of all the detected Ryg
values, and the cumulative distribution functions (CDFs) of
all undetected sources. The PDF of a given detected Rys ;
value with parameters u (representing the mode) and o (rep-
resenting the width), is given by

_ (logyo(Rus,i) = 1)?

-1
f(logo(Rys Dl o) = Qro?) 72 eXP( 202

(1)

For upper limits (i.e., non-detected Rys values, which ulti-
mately comes from an upper limit on the infrared flux) the
PDF is replaced by the CDF. The CDF is the integral of the
PDF and can therefore be written as,

Rwms
F(logio(Rms)Im o) = / f(X|u, 0)dX
oo )
1 (1 +erf(10810(RMs)—ﬂ)) )
2 V2 ’

where f(X|u, o) is given by Equation 1.

In other words, for a given galaxy, F(log;o(Rms)) is close
to 1 if most of the Ry distribution with given p and o
values lies below the value of the upper limit. By contrast,
F(logo(Rms)) is close to 0 if most of the distribution lies
above the upper limit, meaning those y and o values are
incompatible with that limit.

By combining both our m detections, Rus, 1, ..., RMS,m>
and n — m non-detections, Rys m+1,---» RMs,n, the likelihood
function is given by the product of the PDFs (for the detec-
tions) and the CDF's (for the upper limits),

m

Llogyo(Ryis)l o) = [ | fUogio(Rus. )l o)

= 3)

n
[ ] FlogioRus.l o).
i=m+1
If we were going to assume no dependence of Ryg on
Lx, and no uncertainty on Ly, then at this stage we could
simply find the best-fitting values for u and o, as has been
used previously in “Bayesian”-style studies that use bins.
Such studies derive the likelihood function in different bins,
use parameter-maximisation techniques to find the best fit-
ting value for g and o within each bin, and then compare
how parameters change between different bins (e.g. ?777).
However, in order to analyse the Ry distribution as a con-
tinuous function of Ly, we must use a hierarchical model,
since this allows the parameters that control the shape of
the Ryis distribution (i.e., u, o) to vary as a function of Ly.
As the true relationship between the u and o parameters
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and the Ly values is unknown, the choice of relationship is
arbitrarily specified. However, in order to test the case of no
dependence (i.e., that Rys and Lx are independent of one
another), it is sufficient to show that a simple model that
allows dependence is preferable to one that imposes inde-
pendence. Therefore, we choose to use simple functions to
relate the parameters of the Ryg distribution and the Ly val-
ues (hereafter referred to as the “functional relationships”),
given by:

Lx,i 6:+0310g,0( 57 )

Wi =0 +0; IOgIO(]OW) and oj=e 10807 (4)
The rescaling of the Ly values ensures that the hyperparam-
eters are not orders of magnitude different, which could lead
to problems in the analysis. Note that, throughout this pa-
per, we are only considering the effect of Lx on the Ry dis-
tribution and hence our functional relationships only factor-
in Lyx. If other parameters, such as redshift or stellar mass
were also to be considered, they could be added to the func-
tional relationships as described in Equation 4. Such an ex-
pansion of the model is, however, beyond the scope of the
current study, but would remove the need for binning in
both redshift and stellar mass.

By introducing these functional relationships, we have
essentially related the mode and width of the Ryg distri-
bution to the Ly values. Additionally, we have changed the
parameters of interest from y and o to the parameters given
by 6 = {60,01,02,03} (hereafter, our hyperparameters); this
is what makes the approach “hierarchical”. Note that we
specify an exponential form for the functional relationship
between o; and Lx; as 0; cannot be negative. The focus of
this analysis is to now find the posterior distributions for 6.
By considering these posteriors, the functional relationships
allow us to test whether the Ryg distribution is dependent
upon Lyx. For example if ; = 63 = 0, the functional rela-
tionships are no longer a function of Lx and therefore imply
that the Ry distributions are independent of Lyx. Addition-
ally, relating the mode and width of the Ryg distribution
to the Lxvalues has completely removed the need to bin the
data in Lx. The question of independence now becomes how
likely is 81 = 63 = 0, given the data observed. More details
of which are contained in Section 3.2.2.

As a result of adapting the mode and width of the dis-
tribution so that binning is not required, the likelihood func-
tion changes slightly and is now given by,

L6, Lx|Ryis) = | | Flog;o(Rus. )16, Lx.1)
i=1
(®)

n

[] Flogio(RusI, Lx.).

i=m+1

3.2 Prior and posterior distributions
83.2.1 Prior distribution on Ly

‘We have now expressed the parameters as functions of the
independent data (in this case, Lx) and the hyperparame-
ters, @. The next step we must now consider is how to fully
account for uncertainties on Lx. In our hierarchical model,
we are able to treat the Lx values as parameters, and can
therefore place informative Bayesian priors on their values.

The prior distribution on each Ly ; can be constrained by the
measured value Ly j meas and uncertainty & and modelled as
a log-normal (here, we are assuming that our errors are sym-
metric in log space). This means that the prior distribution
on a specific log;o(Lx ;) is given by,

fogo(Lx, i)l 10g o(Lx i meas) &i) =

(10g10(LX,i) - 1OgIO(LX,i,meas))2

(&) exp | - e

(6)

where &; is derived by converting the percentage error on
the flux measurement presented in ?. This can be thought
of as the probability density of observing the true Lx given
we have observed a measurement, Lx jmeas and error &. It
should be noted that in this study we are working with only
detected X-ray luminosities to remain consistent with B19
and we assume all uncertainties are modelled with a log-
normal. One could, however, replace this prior distribution
with any probability distribution. Note that in this study,
we have not accounted for the uncertainties on the Ryg val-
ues. This is largely to remain consistent with the modelling
approach of B19. In future studies, uncertainties on the de-
pendent variable (in our case, Rys) can be included using a
similar method as the one applied to the uncertainties on Lx.
Whilst we do not believe that excluding these uncertainties
has a major impact on our results, it is a limitation of this
study. However, it is not a limitation of the methodology.

At this stage, we have specified our likelihood function
(Equation 5) and our priors on Lyx. The final terms we must
consider are the prior distributions on the hyperparameters,
which we discuss in the next subsection.

8.2.2  Prior distribution on hyperparameters

Because our primary scientific aim is to determine whether
the Rys distribution changes with Ly, we are most inter-
ested in the (posterior) probability that the hyperparame-
ters ) and 63 are equal to 0 or whether they are non-zero
(i.e., there is a dependence on Ly). We therefore choose the
prior distributions of these hyperparameters to be a “spike
and slab distribution”. This type of prior allows us to join
two distributions; one defined in discrete space (the spike)
and one in continuous space (the slab). This is necessary so
that we can ensure that there is a defined prior probabil-
ity that 6; = 0 and 63 = 0 (i.e., there is a prior probability
of independence between Ryis and Ly), as oppose to a just
a probability density. If we have a defined prior probabil-
ity then we can calculate a posterior probability, again as
opposed to just to a probability density. 3

3A probability density is a “relative” likelihood as opposed to an
absolute one. For a distribution over a continuous space, the ab-
solute probability of any one particular occurrence is 0, whilst the
probability density can be non-zero. For a distribution over a dis-
crete space, the probability mass function (the discrete equivalent
of the density) is an absolute probability.
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Our spike and slab prior distributions take the form,

f(01lw) = (1 = w)N(f1;mean = 0,S.D. = 1) + wdg, =0,

f(03|lw) = (1 — w)N(#3;mean = 0,S.D. = 1) + wdg,=o, ™

where w is the prior probability that 61,63 = 0 and dg,-¢
is the delta function. For our analysis, we choose w = 0.5
so that our prior probability favours neither the case of in-
dependence, p(6; = 0) = p(63 = 0) = 0.5, nor the case of
dependence p(6; # 0 = p(63 # 0) = 0.5. As we are not inter-
ested in the posterior probabilities that 6y, 6, = 0, the prior
distributions on these parameters are Gaussian distributions
with mean 0 and standard deviation 1.

This means that by using spike and slab prior distribu-
tions we have constructed four potential models:

e Model 1: 681 = 0,03 =0, no dependence on Lx at all

e Model 2: 6; # 0,03 = 0, mode depends on Lyx, width
does not

e Model 3: 61 = 0,03 # 0, width depends on Ly, mode
does not

e Model 4: 61 # 0,63 # 0, both mode and width depend
on Lx.

Note that as we have chosen w = 0.5 our prior dis-
tributions give no preferential weight to any of the model
scenarios (according to the prior, they all have a probability
of 0.25). Having now derived the likelihood function and all
needed prior distributions we can construct the final poste-
rior distribution,

£(8,10g19(Lix)|log19(Rms), loggo(Lix, meas)) =
L(log1o(Ryms )10, logyo(Lx))
x f(logyo(Lx)Ilogio(Lx,meas) &)
X f(0|w)

3.3 MCMC algorithm and model switching

As our posterior distributions cannot be derived analytically,
we have written a purpose-built MCMC sampler in order to
sample from the posterior distributions of each given hyper-
parameter (i.e., g, 01, 62, 63). However, in addition to sam-
pling from the posterior distributions to find the most likely
hyperparameter values, we also use our sampler to determine
the posterior probability of each of our four models (i.e., for
model comparison). The posterior probability of the mod-
els can be calculated analytically, however even advanced
sampling methods (e.g. Nested Sampling, see 7) struggle to
accurately calculate them due to the high dimensionality of
our parameter space (i.e., up to 545 dimensions as a result
of including the Lx values as parameters). Instead, we use
“model switching” to compute the posterior model probabil-
ities. In this subsection, we summarise our MCMC sampler,
including the model switching component; a full description
is, however, given in Appendix A.

For the most part, our MCMC sampler adopts a stan-
dard Metropolis-Hastings (MH) algorithm (??) to explore
the parameter space. On each iteration, the MH algorithm
proposes a new set of parameter values, which are then ac-
cepted or rejected. For efficiency, we propose new values for
two parameters at a time, and accept them based on their

Binning-free continuous relationship 5

“acceptance ratio” (see Equation 9). Our parameter vector
is given by 6 = (o, 61,62, 63,10g;0(Lx 1), ... 10g;o(Lx.1)) and
therefore we sample 6y, 6; together and 6,, 63 together. This
is important as the value of 6y is dependent on the value
of 6y; similarly, the value of 8, is dependent on 63. Propos-
ing the dependent hyperparameters together can allow us
to take into account the dependency and therefore propose
more sensible values.

If we were only considering one model, and simply
wished to sample the posterior distributions, then we would
simply iterate the above process. However, in our case we
wish to compare the relative probability of four different
models. As mentioned above, we do this using a technique
known as “model switching”, which we describe next. For the
purposes of this explanation, we will assume that the current
state of the MCMC algorithm is such that it is in Model 1
(i-e., 81 = 63 = 0; however, for simplicity we will ignore 65 for
the rest of this explanation). We then propose, with proba-
bility 0.5, that the new value of 6; remains at zero. If it does,
we remain within Model 1 and the MH algorithm progresses
as usual.

If, however, the new value of 6 is chosen to be non-zero,
then this implies that the MCMC algorithm has proposed
a switch to a different model (in this case, Model 2). If this
happens, we cannot retain the value for 6, since the value
of 6y in Model 1 is likely very different to the value of 6
in Model 2, as we are now including the 6; parameter. This
means that, when we propose a model switch, we cannot
simply keep 6y as before, as it is unlikely to be in a region
of high posterior probability. Therefore, we need to propose
“reasonable” values for both 6y and 6, given that we have
proposed Model 2.* Given the two new proposed values (i.e.,
0’ = (6}, 67)), the acceptance probability, « is given by,

@ = mi (n(@’)q(e’, 0) 1), 9)

"\ =@)q0, 07

where 7(6) is the full conditional of § and ¢(0,6’) is the pro-
posal density (i.e., the probability density of proposing 6’
given the current 6). Usually, the proposal density is a sym-
metric function (e.g. a Gaussian), so ¢(6,0”) = ¢(6’,6) and
the two ¢ values cancel in Equation. 9. However, as we ex-
plain in Appendix A, this is not the case when we propose a
switch between models (7). We also explain in Appendix A
how we calculate the values for ¢(6, 8") and ¢(#’, 6). The final
stage is the same whether we have proposed a model switch
or not: we accept the proposed values with probability equal
to the acceptance ratio, otherwise we re-accept the current
values (as is standard in an MH algorithm).

The above process is replicated for 6, and 63 (in this
case, a change from 63 = 0 to 63 # 0, or vice versa, repre-
sents a switch between models) and then the sampler works
through the rest of the parameter vector, individually. The
process is more straightforward for the Ly values as the pro-
posal distribution is centered on the current value and no
switching is required, so our process reverts to the standard
MH sampler. As we describe fully in our Appendix, by the
construction of our MCMC algorithm, the models that we

4 How we obtain a “reasonable” values is explained in full in Ap-
pendix A
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can switch to depends on the current model. For example,
if the chain is currently in Model 1 it cannot jump to Model
4, as that would require a change in the dependency on u
and o at the same time, whereas we only consider changes
in these dependencies one at a time. Again, by construction,
we have ensured that over the entire chain, all models are
proposed equally (i.e, with a probability of 0.25).

In one iteration we sample through the full parameter
vector and we run five chains in parallel for 25,000 itera-
tions.? Each chain has the first 5000 iterations removed as a
burn-in, then the remaining iterations from each chain are
combined to form the final sample of 100,000 posterior draws
for each parameter. The posterior probability of each of the
four models presented in Section 3.2.2 is then straightfor-
ward to calculate from the combined chain: all we need to
do is calculate the fraction of accepted samples from each
model in the combined chain.

4 RESULTS

Given that we now have 100,000 independent draws from
the posterior distribution from each parameter, we can be-
gin to investigate the relationship between the Ryg distribu-
tion and Lx. Recall that we modelled the Rys distribution
as a log-normal distribution and set a relationship between
the mode and width, and the Lx values as outlined in Equa-
tion 4. We proposed values such that our sample was forced
to consider #; = 0 and 63 = 0 respectively, effectively al-
lowing for the MCMC sampler to switch between models
of dependence or independence. In this Section, we present
the posterior distributions of the hyperparameters and the
posterior model probabilities.

4.1 Posterior distributions
4.1.1 Posterior model probabilities

As a result of implementing model switching in the MCMC
algorithm we can easily calculate the posterior model prob-
abilities by considering the fraction of samples of each chain
within each model. The posterior model probabilities along-
side the Bayes Factor comparison to the independent Model
1 are given in Table 1. The Bayes Factor, which can be ac-
curately used to compare two models (?), is given as the
ratio of the posterior model probability of the more com-
plex model to the posterior model probability more simple
one. Naturally, the Bayes Factor includes a “penalty” for the
number of parameters used. In our case, as a result of in-
cluding Ly values as a parameters our models have vastly
different numbers of parameters. Model 1, which ignores Ly
values only has 2, whereas Models 2, 3 and 4 have 544, 544
and 545 respectively. This can help explain the very small
posterior probabilities of Models 2 and 3, where the chain
either prefers the simple Model 1, or for the sake of 1 ex-
tra parameter Model 4, which comprehensively outperforms
them. The Bayes Factor comparing Model 4 to Model 1 gives
us a value of 15.285, which can be seen as “strong” evidence

5 The choice of five chains for 25,000 iterations is arbitrary, but
these values ensured that the combined chain contained a suffi-
ciently high number of samples from the posterior.

in favour of Model 4 (7). Using this model comparison model
technique, the posterior model probability is not equal to the
probability that the model is true, as the sum of all posterior
model probabilities in the analysis must be equal to 1. It is
therefore important to consider the Bayes Factor approach
for comparing the models, rather than using the posterior
model probabilities as they are.

4.1.2  Hyperparameters

In Figure 1 we present the posterior distributions for the hy-
perparameters as computed by the MCMC algorithm out-
lined in Section 3.3. The off-diagonal plots show the joint
posterior distributions. As described in Section 4.1.1, we
have strong evidence that a model of the Ryg distribution
with a dependence on Ly is preferred to the independent
model. The rest of this paper therefore, works with the as-
sumption that Model 4 is the most suitable model.

We present summary statistics for the posterior distri-
butions of the hyperparameters in Table 2. The coefficients
of Ly in the functional relationships (see Equation 4) are
given by 6; and 63, which from Table 2 and Figure 1 are
positive and negative respectively. This implies that as Lx
increases, the mode and width of the Ry distribution in-
crease and decrease respectively. The relationship between
the mode and width of the log-normal Ryg distribution and
Lx can be seen in Figure 2, where the posterior distributions
of the hyperparameters have been sampled 1000 times and
combined with Lx to provide samples of u and o .

4.2 Rys as a function of Ly

In this paper, we have used a hierarchical Bayesian frame-
work to remove the need for binning and stacking when mod-
elling the Rys distribution of galaxies hosting AGN of dif-
ferent Ly. In doing so, and in contrast to B19, we find strong
evidence that there is relationship between the Ry distri-
bution and Lx (i.e., AGN power) as oppose to just tentative
evidence.

In Figure 3 we show how the Ryg distribution, when
modelled as a log-normal distribution, changes as a function
of Lx in the range 42.53 < logy(Lx/ergs s71) < 45.09. As
Lx increases, the mode of the Rpg distribution increases,
whilst the width decreases. This is also shown in Figure 1,
as 0 takes positive values (i.e., u increases with increasing
Lx) and 03 takes negative values (i.e., o decreases with in-
creasing Lx). These results, albeit with more evidence, are
still consistent with the tentative findings of B19, which
showed that more luminous X-ray AGNs have Ryg distri-
butions closer to those of main sequence galaxies compared
to lower Ly AGNs. This is also consistent with the findings
of 7, who noticed no difference in the SFR distribution of
20 z ~ 2 quasars and the SFR distribution of main sequence
galaxies.

With our new analysis showing stronger evidence of a
dependence of Ryg on Ly, it is natural to ask whether this is
consistent with the observed flat relationship between SFR
and Ly reported by some other studies (e.g. 77). We are able
to explore this issue by generating synthetic SFRs using our
Lx-dependent Ryis model, together with the measured Ly,
redshifts, and stellar masses of our sample. To do this we:
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Model Value of u Value of o Posterior probability = Bayes Factor vs. Model 1
N e 0.06102 -
2 6y +0;log (lf)—gg) % 0.00477 0.0781
3 0 (o203 toeno( %) 0.00148 0.02425
4 e+oilogg () e ol ) 0.93273 15.285

Table 1. The posterior model probabilities given for each model. These are calculated by considering the amount of time the MCMC
chain spent in each of the models. Also shown is the Bayes Factor, which is used to judge, out of two models, the model considered to

be the most likely.
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Figure 1. The output from our MCMC algorithm. The on-
diagonal plots show the marginalised posterior distributions for
each parameter, with the joint posterior distributions shown by
the off-diagonal contour plots. The figures include results from
the entire MCMC chain, which means that different peaks (on-
diagonal) and contour regions (off-diagonal) illustrate when the
chain is in a particular model. For example, in the plot in the
second row, first column (from top left), the larger of the two
contour regions corresponds to 6; # 0, which is the case in both
Model 2 and Model 4. From this posterior plot alone, one cannot
distinguish whether the chain is in Model 2 or Model 4, as infor-
mation about the other parameters is needed (i.e., a 4-dimensional
plot would show four discrete model regions). Secondly, there is
a smaller region in the lower-right corner that corresponds to the
region where 6; = 0, which is the case for both Model 1 and Model
3. Again, one cannot distinguish between these two models from
this plot alone. However, given the negligible amount of time the
chain spends in Model 2 and Model 3, it can be assumed without
much loss of accuracy that the larger region represents the likeli-
hood for Model 4 and the smaller region represents the likelihood
for Model 1. This is analogous to the larger and smaller peaks in
the on-diagonal plot for 6.
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Figure 2. The evolution of the mode, u, and width, o, of the
Rys distribution as a function of Lx shown for 1000 bootstrapped
samples from the posterior distributions of the hyperparameters,
under the assumption of Model 4. Over-plotted are the results
from B19, with 1-0 errors. Also plotted is the main sequence
values from ? (solid black lines). The top plot is the histogram of
Ly values of the sample for reference.
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Figure 3. The evolution of the Rys distributions as a continuous
function of X-ray luminosity, plotted as thin curves. Over plot-
ted are the results from B19 and the R,,s distribution for main
sequence galaxies from ?. As the X-ray luminosity of a galaxy in-
creases, the probability density function for its Rys shifts slightly
to higher values and the distribution narrows, consistent with the
findings of B19.

(i) randomly generate a sample from the joint posterior
distribution of the hyperparameters, 63, 67,63,65. This in-
volves taking a random point from each of the off-diagonal
plots in Figure 1 (and therefore respecting any correlations
between parameters);

(ii) for each of the 541 sources in our sample we use their
detected Ly values, alongside the aforementioned randomly
sampled hyperparameters, to calculate the mode and width
of the predicted Ryg distribution. Recall, we reuse the func-
tional relationships we chose earlier so that we have a pre-
dicted mode, ppreq and predicted width, opreq:

Hpred = 0 + 07 log (L—Z(O) and
Fored = 89;+9§‘ loglo(lf}TXO).

(iii) we then sample an Ryg value from the log-normal
distribution with the parameters ppreq and opred;

(iv) we then repeat steps 1-3 10,000 times so that we have,
for each source in our sample, a set of 10,000 predicted Rys
values constrained by our hyperparameter posterior distri-
butions and the assumption of our functional relationships;

(v) we next multiply each of the sampled Ryg values by
the corresponding main sequence SFR, calculated by using
the stellar masses, redshifts and the prescription from ?.
This leaves us with a sample of 10,000 predicted SFRs for
each source calculated using our functional relationships and
posterior distributions.

Figure 4 shows the relationship between SFR and Ly
as predicted by our Lx-dependent Rys distribution. The red
stars show the mean predicted SFR in bins of Ly, using a
bin width of 0.25 dex (with error bars indicating the 3o
standard error). Over-plotted are the observed mean SFRs
(calculated using survival analysis), also in bins of Ly, from
?. The yellow circles represent the SFRs of the 148 AGNs
in our sample with measured fluxes, while the yellow trian-

Table 2. Posterior mean and standard deviations for the hyper-
parameters for Model 4.

Parameter Mode  Standard Deviation

) -1.191 0.119
01 0.276 0.033
6 0.540 0.128
63 -0.391 0.040

gles represent the upper-limits on SFRs for the remaining
393 AGNs. Despite our analysis providing strong evidence
of a relationship between the Ryg distribution and Ly, the
projected relationship between the average predicted SFRs
and Ly is comparable to the observed flat relationship of
? (i.e., while the means are offset, they are well within the
range of scatter given by the observed measurements). While
the incorporation of mass and redshift information to con-
vert our predicted Rys values to SFR may contribute to
some of the flattening, it is plausible that averaging over
a log-normal distribution within a particular Ly bin could
have significantly flattened the relationship also. This fur-
ther demonstrates that even if a strong underlying relation-
ship between star-forming properties and AGN power exists,
it is extremely difficult to extract using average (or even
individually-measured) SFRs in bins of Ly.

5 DISCUSSION
5.1 Limitations of our approach

Before discussing the implications of our results, in this Sec-
tion we aim to highlight limitations of our approach and dis-
cuss areas for potential improvement. Initially, as we reuse
the same dataset as B19, we have adopted the same set of
initial assumptions as that paper. Namely, the assumption
about the parametric form of the Ryg distribution and the
validity of the ? main sequence. However by removing the
need for binning, we have relaxed the unstated assumption
about sources in the same bins having similar properties.
The remainder of this Section, therefore aims to highlight
additional limitations and assumptions with our methodol-
ogy, as well as those of B19.

Firstly, the analysis is computationally expensive. This
is mostly due to the large number of sampled parameters.
In this case, there are four hyperparameters (6y,...03) plus,
as described in Section 3.2, 541 Ly parameters with a well-
defined (i.e., using by the measured value and its uncertain-
ties) prior distribution. The parameters are sampled pair-
wise throughout the MCMC algorithm, which reduces the
time, but the algorithm is still computationally expensive.
Despite having a large number of parameters, overparame-
terisation is not a concern since the priors tightly constrain
the Lx values.

Secondly, in this work, we have imposed simple rela-
tionships between the mode and width (g, o, respectively) of
the Ryg distribution and Ly. Whilst this relationship could
be made more flexible, the aim of this paper was to test
the framework and to determine if there is any dependence
on Lyx. We therefore chose simple relationships to assess
whether we could rule-out the independent case. In future
studies, more flexible forms of the functional relationships
could be tested and model comparison methods used to de-
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Figure 4. The predicted relationship between SFR and Lx using our functional relationships and hyperparameter posterior distributions.
The red stars show the predicted linear mean SFRs in arbitrarily-chosen bins of Ly, calculated using the functional relationships in
Equation 4, the main sequence prescription of ? and the stellar mass and redshift of our sources. Also plotted in yellow (circles or
triangles) are the SFRs from the raw data (detected and upper limits, respectively). The blue diamonds are the results from ? for the
redshift range 0.8 < z < 1.5, which extends to slightly higher redshifts than our sample. While our results are systematically offset from
those of 7, they are broadly consistent with their observed flat relationship. We include this plot purely to demonstrate that even after
including a significant underlying connection between Ryis and Ly, the we still obtain a flat relationship between average SFR in bins of

Lx.

termine whether any other functional forms provide a better
representation of the data. In addition to making the func-
tional relationships more flexible, other independent vari-
ables could be added (such as redshift and stellar mass). By
doing so, and allowing for more models to be compared, fu-
ture studies could use the techniques in this paper to probe
deeper into the connection between AGN power and host
galaxy properties. As a result of this paper only investigat-
ing how the Ry distribution changes as a function of Ly,
we were cautious that, if there was a significant, systematic
change of Lywith redshift, then a redshift evolution in both
Lx and Ryg may introduce a spurious positive trend. How-
ever, we see no evidence of a strong systematic change of Ly
with redshift. The median and standard deviation of Lx for
the lowest and highest redshift quartiles were (43.23, 0.40)
and (43.43, 0.44) respectively. Therefore we have no reason
to believe that our results are being affected by an underly-
ing redshift evolution in both Ly and Ryg across our redshift
bin. With regards to redshift and stellar mass effects, it may
be interesting to investigate whether assuming alternative
models for the redshift and mass evolution of the Main Se-
quence (e.g. 7777?) has a large effect on the results.

Thirdly, posterior model probabilities can be dependent
upon the choice of prior distribution chosen for individual
parameters. As the marginal likelihood is the integral of
the likelihood function over all the prior space (effectively
a weighted average of the likelihood function), an analysis
of this sort must make sure that the prior distributions are
reflective of current up to date knowledge. Our prior distri-

butions are influenced by the work of B19. By the construc-
tion of the marginal likelihood, however, overly vague prior
distributions can excessively “penalise” more complex mod-
els. Likewise, prior distributions that are too constrained can
favour more complex models. Therefore, prior distributions
should be carefully chosen and justified.

Finally, we stress again that we have worked under
the assumption that Ryg distribution is log-normal. This
is unlikely to be the case. Indeed, it is known that some
AGNs reside in quiescent and starburst galaxies whose com-
bined Rys values do not follow a log-normal distribution
(e.g. the main sequence/starburst population is believed to
follow a bi-modal log-normal distribution in Ryg). Having
said that, our focus here is to assess whether, after elimi-
nating the need for binning and averaging (and comparing
to the same dataset in B19), the Ryg distribution could be
Lx-dependent. It is not immediately clear why a truly Lx-
independent Ryg distribution would be better modelled by a
Lx-dependent log-normal, as opposed to a Lx-independent
one. Therefore, we stress we are not suggesting that our
model represents the true Ryg relationship, but instead that
an Ly-dependent model is strongly favoured when compared
to an Lx-independent one.

5.2 Implications of our analysis

The aim of this paper was to introduce a Bayesian hi-
erarchical framework that removes both the need to bin
data (particularly in distribution-style analyses) and the
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need to use averaging techniques (or other summary statis-
tics/parameters). To allow us to accurately demonstrate
that any new results were driven by the methodology, we
applied our hierarchical model on the same dataset as B19.
The process involves assuming a distributional form for one
variable (in this case the starburstiness of a galaxy) and
setting a direct dependence between the parameters of this
distribution and some independent variable (in this case,
Lx). Uncertainties on the independent variable are also fully
considered by treating them as a parameter and applying an
informative prior, which is derived from the measured values
and their uncertainties.

Our results show that, under the assumption that Ryg
is log-normally distributed, there is a strong evidence of a
relationship between Rys and Lxwithin the redshift range
0.8 < z < 1.2. This reaffirms, to a stronger degree of sig-
nificance, the result of B19, such that as Ly increases, the
Rys distribution is centered at a higher value and the di-
versity of Ry values decreases. What this implies is that,
within the constraints of our model, an Lx= 10* erg s
AGN is 21 per cent more likely to reside in a galaxy with
Ruvs> 2 than an Lyx= 10% erg s™! AGN. This is in agree-
ment with other studies that suggested there is a tighter
(i.e., more consistent) connection between more luminous
AGNs and star formation than for lower-luminosity AGNs
(e.g. ?7?7?777?): for example, it may be that any luminous
AGN activity occurs close in time to the star formation ac-
tivity while lower-luminosity AGN activity can occur when
the galaxy is more quiescent (and hence the broader Rys
distribution) in addition to occurring during the periods of
star-formation activity.

In this study, we have investigated the relationship be-
tween the Ryg distribution of AGN hosts and Ly, and found
strong evidence of a relationship between the two. Recently,
a number of studies have approached this problem from the
other direction; i.e., investigating how AGN power changes
as a function of the star-forming properties of their hosts.
For example, ? reported that, when binned in terms of SFR,
the mean Ly of star-forming galaxies increases with aver-
age SFR (see also ?, who also accounted for the effects of
galaxy stellar mass). Further, ? found that, when binning
according to stellar mass, the mean Ly of starburst galax-
ies is higher then that of main sequence galaxies which, in
turn, is higher than that of quiescent galaxies. Both these
results imply that average AGN power is higher in more
actively star-forming systems. More recently, ? and ? have
shown that the distribution of specific Lx (i.e., = Lx/Mx, a
proxy for Eddington ratio Agqq), changes as a function of the
star-forming activity of their hosts, with a higher fraction of
starbursts hosting AGNs with Aggq > 10% than their main
sequence counterparts. By exploring how the star-forming
properties of galaxies change as a function of Ly, this study
(and B19) take the opposite approach. While there are sig-
nificant differences between the properties being considered
in each study (not least the exploration of Eddington ratio
in ? and ?, whereas we only consider Lx here) all appear to
support the assertion that more powerful AGNs (whether
expressed in terms of Ly or Eddington ratio) are preferen-
tially found in more actively star-forming systems.

6 CONCLUSIONS

In this work we have introduced a hierarchical Bayesian
framework to assess whether the Ryg distribution of AGN-
hosting galaxies changes as a continuous function of an X-
ray luminosity (Lyx). Our approach removes the need for
both binning and averaging and also allows for full consid-
eration of the uncertainties on the independent variable.

By modelling the Ry distribution as a log-normal, and
proposing simple relationships between its parameters (i.e.,
mode and width) of that log-normal and X-ray luminosity,
we found strong evidence that an Ly-dependent model is
preferred over an Lx-independent one. By binning the same
data, B19 reported the same overall trend, but without such
strong evidence, thereby highlighting the importance of util-
ising all available information by removing the need for bin-
ning. By using the same dataset and pre-processing as B19,
we ensured that any differences found in contrast to that
paper are a direct result of the new analysis technique.

Despite finding a strong relationship between the Ryg
distribution and AGN power, when we convert our Lx-
dependent distributions back into the mean SFR - Lx plane,
we find that the dependent model can reproduce results con-
sistent with previously seen flat relationships (e.g. 7). This
further highlights the difficulty in extracting underlying re-
lationships between AGN power and host galaxy properties
when averaging in bins of AGN power.
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APPENDIX A: THE FULL MCMC SAMPLER

In this appendix we describe, in detail, one full step of the
MCMC sampler used to construct the posterior distributions
presented in Section 4, which were then used to compare our
various models. Interested readers should also refer to the
study of 7, from which our sampler is adapted.

A key component of our algorithm is that, when it pro-
poses a switch between models, it proposes “reasonable” pa-
rameters within the proposed model. Otherwise, we run the
risk of never switching models — not because the proposed
model is necessarily worse, but because we always propose
highly unlikely parameter values within that model. What
we mean by “reasonable”; therefore, is likely parameter val-
ues within each proposed model. As such, we need to have
some knowledge of the posterior probability distributions of
each model before we can start proposing switches between
models. One way of achieving this would be to force Model
1, for example, to converge, then force a switch to Model 2,
allow that to converge, and so on. Once all models have con-
verged, we would then allow our sampler to switch between
models by proposing reasonable parameter values (i.e., those
close to the posterior mode). In our case, however, as we
only have four models, we instead run a separate standard
MCMC sampler for each model (i.e., without model switch-
ing), which gives us an indication of the most suitable regions
of the posterior parameter space for each model. Mathemat-
ically, these two approaches are exactly analogous.

With an estimate of the posterior parameter space for
each model in-hand, we can propose reasonable regions of
the parameter space when switching between models. In
what follows, we describe how we switch between various
models. For ease of explanation, we will only consider 6
and 61, but same process is applied when sampling 6, and
03. Recalling that we step through the parameters in pairs,
we sample 6y and 6 at the same time. This leads to four
possible cases, which are summarised in Table A1, and dis-
cussed in detail below.

Case A: Here, the sampler is currently in the state
where 61 = 0, and is proposing 6; = 0 (ie., it is in a
p-independent model [Models 1 or 3] and proposes to re-
main within a g-independent model). However, because we
progress through the vector pairwise, the sampler must still
propose a 6y value. For this, we use a standard MH proposal
— a value randomly selected from a Gaussian distribution
centered on the current 6y value. Based on pilot runs, we
choose a value for the width of the Gaussian distribution
that results in good mixing (i.e., the acceptance rate is be-
tween 20-40 per cent). In this case, the ¢(6,0’) value is the
product of the likelihood of choosing 6] = 0 (i.e., 0.5) and
the proposed 6y value (i.e., 0 = f(6;160,51), where f is the
Gaussian density function). This product is symmetrical on
switching between 6 and 6’, meaning ¢(6,0’) = q(0’,6), so
the ¢ terms cancel in Equation 9.

Case B: In this case, the sampler is currently in the
state where 6 = 0, and is proposing 6 # 0 (i.e., it is in a
p-independent model [Models 1 or 3] and is proposing to
switch to a pu-dependent model [Models 2 or 4]). As a re-
sult of proposing a switch to a u-dependent model, we must
propose values for both 6y and 6. To do this, we use a bi-
variate Gaussian distribution, centered on the “reasonable”
values obtained using the process described above. Based
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on pilot runs, we choose a value for the widths of the bivari-
ate Gaussian distribution that results in good mixing (i.e.,
the acceptance rate is between 20-40 per cent). In addition
to the widths, the bivariate Gaussian distribution accounts
for the correlation between 6y and 6; by using the calcu-
lated covariance matrix. In this case, the (6, 8’) value is the
product of the likelihood of choosing 6] # 0 (i.e., 0.5) and
the proposed 6 values (i.e., 8’ = f,([6(, 6111 [60, 611, 1), where
f is the bivariate Gaussian density function, 6y, §; are the
estimates of the posterior mode from the original chains and
¥ is the covariance matrix. This product is not symmetri-
cal on switching between 6 and 6’, since the inverse process
involves sampling from a univariate Gaussian. This means
q(0,0”) # q(#’,0), so they must be accounted for in the ac-
ceptance ratio.

Case C: Here, the sampler is currently in the state
where 6; # 0, and is proposing 91 =0 (l.e, it is in a
p-dependent model [Models 2 or 4] and is proposing to
switch to a p-independent model [Models 1 or 3]). As a re-
sult of proposing a switch to a p-independent model, we
again must propose a “reasonable” value of 6y within the
proposed model. To do this, we use a distribution, centered
on the “reasonable” values obtained using the process de-
scribed above. Based on pilot runs, we choose a value for
the width of the Gaussian distribution that results in good
mixing (i.e., the acceptance rate is between 20-40 per cent).
In this case, the ¢(6, 8”) value is the product of the likelihood
of choosing 81 =0 (i.e., 0.5) and the proposed 6y value (i.e.,
6’(’) = f(96|(f0, 57), where f is the Gaussian density function,

6o, ) are the estimates of the posterior mode from the origi-
nal chains and % is the covariance matrix). This product is
not symmetrical on switching between 6 and 6’ for the same
reason as in Case B (i.e., the inverse process involves sam-
pling from a bivariate Gaussian distribution). This means
q(0,0”) # q(#’,0), so they must be accounted for in the ac-
ceptance ratio.

Case D: In this final case, the sampler is currently in
the state where 6y # 0, and is proposing 6] # 0 (i.e., it is
in a p-dependent model [Models 2 or 4] and is proposing to
remain in a u-dependent model). As a result we need to pro-
pose values for both 6y and 6. To do this, we use a bivariate
Gaussian distribution, centered on the current values. Based
on pilot runs, we choose a value for the width of the Gaussian
distribution that results in good mixing (i.e., the acceptance
rate is between 20-40 per cent) and calculate the appropri-
ate covariance matrix. In this case, the ¢(6,0") value is the
product of the likelihood of choosing 6] # 0 (i.e., 0.5) and
the proposed 6 value (i.e., 8’ = fo( [0(’), 611160, 61]. Z1), where
f> is the bivariate Gaussian density function, and X, is the
covariance matrix). This product is symmetrical on switch-
ing between 6 and 6’, meaning ¢(0,0’) = q(6’,0) and so the
terms cancel.

This process is then repeated for the next pair of hy-
perparameters (i.e., §; and 63) followed by one sampling
through the Lx values individually (i.e., not pair-wise), the
latter of which is done by using a standard MH algorithm.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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Case  Current §;  Proposed §; Model now  Model proposed q(0,0") q(0’,0)
’ 1 1 / ’
A 0 =0 01 =0 3 3 0.5 Xf(90|90,sl) 0.5 Xf(@ol@ ,Sl)
’ 1 2 /g’ 1. A o)
B 0, =0 0, #0 3 4 0.5x £([6y, 6111160, 611, Z1) 0.5 X (6160, 52)
, 2 1 . .
C 010 0,=0 4 3 0.5 x (60160, 52) 0.5x £([60, 61] | [60, 61, Z1)
2 2
D 0 #0 0] #0 4 4 0.5x (16, 0711160, 611.Z2) 0.5 x f2([60, 61] | [6;, 611, Z2)

Table Al. Summary of the possible model switches for 1 proposal of the u-related hyperparameters, 6y and 6;. There are four potential
cases depending on whether the model is currently in a u-dependent or a u-independent state and whether we propose to move to a
u-dependent or p-independent state. For the possible cases the value of the proposal density ¢(6, 8’) and the inverse g(€’, 8) are given.
The univariate Gaussian density is given by f and the bivariate Gaussian density is given by f. The tuned proposal widths are given by
s1 and s7, and the calculated covariance matrices by X; and X;. When a model switch is proposed, the “reasonable” values must be used
to sample a proposed parameter value and these are given by 6 and 6.
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