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Logit mixed logit under asymmetry and
multimodality of WTP:

a Monte Carlo evaluation

Abstract
The logit-mixed logit (LML) model advances choice modelling by generalizing previous
parametric and semi-nonparametric specifications and allowing retrieval of flexible taste
distributions. Using standard operating conditions in the field, we report results from
Monte Carlo experiments designed to assess the finite sample bias-variance tradeoff for
the LML using as a benchmark conventional Mixed logit models (MXL) under asymmet-
ric and multi-modal taste distributions. The LML specification always outperforms the
MXL in terms of bias, but when the variance around modes is high the mean squared
error (MSE) is lower than that of MXL only at sample sizes larger than usual and with
some nuances. D-error minimizing experimental design predicated on multinomial logit
significantly reduces MSE, but no clear winner is found between polynomial, step, and
spline functions for the multidimensional grid function. Analysis of empirical data from a
choice experiment on tap water shows that multimodality emerges only if higher number

of node parameters are used in the LML.
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The modelling of how taste differs across people dominates the field of contemporary
choice analysis. For the most part, to model such diversity, empirical studies rely on con-
tinuous taste distributions with a single modal value (normal, log-normal, triangular, etc.).
Few applications account for the effects of multiple modal values (i.e. multimodality). Yet,
accurately identifying high frequencies of taste over specific ranges can be of great practi-
cal importance in policy design. For example, when developing policies relies on sorting or
price-discrimination (Chen and Iyer 2002; Belleflamme, Lam, and Vergote 2017) one can
identify willingness to pay ranges with high frequency of people. Some degree of approxi-
mation to multimodal preferences can be achieved by using discrete, rather than continuous
distributions, as implemented in latent class models. But this comes at the cost of ‘lumpy’
rather than ‘smooth’ distributions, which might be counter-intuitive in other respects. Real
taste distributions not only are likely to be continuous and to display more than one modal
value, but they are also often asymmetric around these modal values. This is corroborated
by the few empirical studies that addressed this issue in transport choice (Fosgerau and
Hess 2007), choice of video streaming services (Train 2016) and in food choice (Scarpa,
Thiene, and Marangon 2008; Caputo et al. 2018; Bazzani, Palma, and Nayga 2018). In this
study we first report the results of a large scale Monte Carlo (MC) esperiment to explore the
properties of a recently introduced semi-parametric estimator capable of uncovering mul-
timodality and asymmetry of continuous taste distributions: the logit mixed logit model
Train (2016). Secondly, we provide an empirical application on choice experiment data

whose results demonstrate the practical effectiveness of the proposed specification.

Specifically, we explore the properties of the logit mixed logit (LML) specification using as
a benchmark the conventional mixed logit with normal random coefficients (MXL), which
has emerged as the default choice in most published applications. In our literature review
of five top journals in environmental economics we find that in the period 2012-2019 as

many as 89 papers used MXL specifications with normal distributions for the random taste



parameters. Both MXL and LML estimators are asymptotically consistent under the correct
specification. So, our MC design is geared towards increasing our understanding of their
bias-variance tradeoff in finite sample sizes. This knowledge is of practical importance to

assess the conditions for asymmetry and multimodality to be effectively addressed.

As the name suggests, the LML contains two logit formulations: one for the decision
maker’s probability to choose an alternative, the other for her/his probability of having
given taste parameter values from a specific interval. The exponential terms in the latter
logit formulation ensure a positive probability, while the denominator ensures normaliza-
tion (i.e. that all probabilities sum to one). The shape of the logarithm of the mixing dis-
tribution can be defined by different type of functions such as polynomials, step functions,
and splines, among many others. This estimator has been supplied with general purpose
code in MatLab and presents very desirable computational features (see Bansal, Daziano,
and Achtnicht 2018b, for further refinements). Early applications of the LML involved a
favourable comparison between stated and revealed preference choice data in an experi-
mental setting using induced value (Bazzani, Palma, and Nayga 2018), and an exploration
of the consequences of range size, asymmetry and multimodality when the assumption of

taste distribution is normal in a stated food choice (steak) setting (Caputo et al. 2018).

Mixed logit model estimators, such as MXL and LML, are consistent only asymptotically
and under the correct specification. When the true taste distribution is multimodal and
asymmetric, if these features are ignored—as it happens with MXL based on continuous
unimodal distributions—consistency is lost. This is not the case for the LML estimator,
for which—as the sample size increases—we obtain convergence in probability to the true
parameter values. At finite sample sizes, however, both are biased, albeit with different
variances. One contribution of this study is to characterize the bias-variance tradeoff within
a practical range of sample sizes, under the specific conditions of multimodality and asym-

metry assumed for the data generating processes (DGPs). To explore such tradeoff we use



the mean squared error decomposition:
(1) MSE(6)=BIAS(8)*+Var(6),

derived from a specifically designed set of MC experiments, based on 2 DGPs each re-
peated at 5 sample sizes, 3 separate experimental designs, and 2 lengths of choice se-
quences (60 experiments in total) each generating 1,000 synthetic datasets, which in turn
were estimated using 14 specifications (see the original working paper by Scarpa, Frances-
chinis, and Thiene 2017, for additional details). The total number of estimates obtained are

840,000, for a total of 840 empirical measures of MSE (é)

With these experiments we also explore the effects of other practically salient determinants
of MSE, such as experimental design criteria, type of function for the grid of probability
weights and length of the sequence of choices. While working at this project we came
across the study by Bansal, Daziano, and Achtnicht (2018a), who conducted a similar MC
study, albeit at a much smaller scale of resolution than ours,! and studied the conditions
that determine the ability of LML to retrieve random coefficient distributions based on
frequently employed parametric distributions (normal, log-normal, uniform, symmetric bi-
modal normal, uniform, discrete and discrete log-normal) using specifications with utility
in WTP-space. One limitation of their choice of DGPs is that they only explored symmet-
ric bimodal distributions with identical and rather small variances around the modal values
(e.g. bimodal normal with same variance and means —1 and 1; discrete with probability
1/3 and mass at —2,0, and 2). In real life multimodal distributions are more likely to be
asymmetric, and there is often evidence of more than two modal values each with a di-
verse and possibly large variance. Asymmetry implies differences in variances around the
modal values. When variance is large around one of the modal values and these values are
close, there is an obvious issue of identification of modal values, and consequently accurate

estimation is complicated.



While we contribute to the literature by studying the complementary issue of asymmetry of
distributions, our study is also an extension of their work, which did not place any specific
focus on issues such as the bias-efficiency tradeoff at practical sample sizes, the presence of
a third modal value in the data generatig process, and on the role of efficient experimental
design, which are all additional contributions of this study. Together the two studies will
provide a rather complete characterization of the finite sample size properties of the logit-

mixed logit model.

The correct retrieval of modes in preference distribution is salient in applied welfare analy-
sis for public goods for their relation to median voter behaviour, and hence political markets
for public good provision (e.g. see the discussion in Mitchell and Carson 1989). Finally,
in this study we endeavour to refer to the common operating conditions prevailing in the
agricultural, food and environmental economics literature, which are quite different from
those prevailing in transport choice analysis, which instead inspired Bansal, Daziano, and

Achtnicht (2018a).

In addition to the MC experiment results, we provide empirical saliency by illustrating
a case study in which standard parametric approaches lead to overlooking some features
that instead emerge as important once the LML estimator is employed. We analyze the
preferences of 832 households in a part of the province of Vicenza (North Italy) for tap
water attributes. Residential water supply is a complex quasi-public good jointly managed
by water utilities and regulatory bodies (Willis and Scarpa 2002; Willis, Scarpa, and Acutt
2005; Hensher, Shore, and Train 2005; Scarpa, Willis, and Acutt 2007; Rungie, Scarpa, and
Thiene 2014; Thiene, Scarpa, and Louviere 2015) as natural monopolies. Gathering infor-
mation about customer preference is important in order to strategically define investment in
infrastructure to improve factor services, such as water delivery, quality of water treatment

and sewer services. If a water factor service produces benefits to utility costumers, this is



deemed worth of further investment by improving infrastructure and it may strengthen the

case for increasing water tariffs in the eyes of regulators.

Exploring the benefits of semi-parametric LML specifications over standard parametric
ones in this empirical context is worthwhile. Although there is insufficient space to delve
deep into this here, knowing the distribution features of the benefits can be important to
calibrate infrastructure investment. For example, knowing if the high benefit mean of the
entire distribution is underpinned by two modes, with one at a relatively low benefit value
and a second at a high level of benefits, has dramatically different implications from a
situation in which the population displays a single mode perhaps centred on the mean,
as it would induce different strategies in investments and funding. The objective of this
empirical application is to explore the implications of alternative LML specifications with
varying number of parameters on the estimates of the distributions of WTP values for the
improvement of tap water services. Since the true distribution of WTP is unknown, we
compare the distributions of WTP estimates of LML with MXL and assess the benefits of
using LML over parametric specifications. Asymmetry and multimodality emerge as key

features.

The remaining paper is organized as follows: the next section illustrates MXL and LML
models, the subsequent section describes the MC experiment design and discusses simula-
tion results. The empirical study and its results are described in the section preceding the

conclusions of the paper.

Econometric modeling

The repeated choice Mixed Logit Model with normals (MXL)

We start with the illustration of the most commonly used mixed logit specification to date.

The repeated choice MXL model represents random taste heterogeneity by allowing for



different preference parameters for each decision-maker (Revelt and Train 1998). Con-
ditional on the individual’s taste coefficients B,, the utility derived by individual n from

choosing alternative i in choice occasion ¢ is logit:
(2)  Unir = B/ Xnis + &nis, wheren=1,...N;ic J;t=1,...,T.

B, is a vector of parameters that varies across individuals with an assumed continuous
mixing distribution in the population; X, j; is a conformable column vector of observed
attributes of alternative i; &, is the independent error term assumed to follow a Gumbel
distribution. The conditional probability P, (if|B,,) of individual n choosing alternative i in

choice occasion ¢ is logit:

. eXP(B;Xnit)
3)  BitlB,) = it)
B = 57 exp B

Many variants of the MXL models can be obtained by assuming different mixing distri-
butions of the random parameters. The most commonly used is the MXL that imposes a
multivariate normal mixing distribution, i.e., B, ~ 4 (1,X). Let y,; = 1 if individual i
chooses alternative i in choice situation ¢, and O otherwise. For a panel of T choices, the
unconditional probability of the sequence of T preferred alternatives when individual 7 is
facing J alternatives in each choice task is:

J ex /X't Ynit
H[ P(B,xi) )] }¢<ﬁnru,2>dﬂ”,

j=1 Z§:1 eXP(B;ant

T

@ RGTIBE) = [ {H
=1
where ¢(B,|1,X) is the multivariate normal density function with mean hyperparameter
vector p and variance-covariance matrix X for the random taste parameters B,. Hyper-

parameters in the MXL model are typically estimated via maximum simulated likelihood

(Gourieroux and Monfont 1996).



The repeated choice Logit Mixed Logit model (LML)

In LML models (Train 2016), the joint mixing distribution of the random parameters B,
is assumed to be discrete over a finite support set S. Discretization is not a constraint
because the support set is essentially a multidimensional grid. The analyst can choose this
to be made larger and denser by considering a broader domain of parameters and a higher
number of grid points. The joint probability mass function of random parameters in LML

is specified by the following logit formula:

exp (@'z(B,))
Ysesexp(@'z(B,))’

where @ is a vector of parameters, z(B,) defines the shape of the mixing distribution, and

(5)  wa(B,|let) =Pr(B,=B,) =

r denotes the point in the grid for the evaluation of B. The unconditional probability of the

sequence of choices of individual # is the following weighted sum:

T x IXt Ynit
6) PF(jT|a)= Z{HH[ ULAT )] }wnwr!a)-

reS \r=1j k ICXp(ﬁ Xn jt

In LML models, the vector & is estimated using the (simulated) maximum likelihood esti-
mation procedure. This obviates the frequent problem of a lengthy convergence time and
testing of stability of posterior, typical of Bayesian approaches, which is often a hindrance
in panel choice models.? Inclusion of all the points of the support set in the estimation of
LML is unnecessary and computationally expensive, so a subset of points is drawn from S.
Using the logit formula in equation 5 to compute probability mass of random parameters re-
sults into an efficient computation of the gradient of the sample log-likelihood, facilitating

the use of gradient-based methods in estimation.



The z functions in LML models

A critical issue in LML model is the specification of the § variables that describe the mix-
ing distribution and its grid points. Following Train (2016), we adopt three different func-
tions: i) polynomials (LML-Poly), ii) step function (LML-Step function), iii) spline (LML-

Spline).

An important feature of LML-Poly is that many commonly employed distributions can be
approximated by varying the order of the polynomial. For example, Train (2016) shows
that the normal distribution can be introduced in LML framework by considering z(B,)
to be a second order polynomial of a special form. The polynomial can be extended to
higher orders to gain greater flexibility of the mixing distribution, bearing in mind that
the number of inflection points is equal to the polynomial order minus one. Among the
various categories of polynomials, orthogonal polynomials (e.g. Legendre, Hermite, Jacobi,
Chebyshev, Bernstein etc.) have the advantage of having uncorrelated terms. Dependence
among the elements of multidimensional B can still be captured by cross-products of the

terms of each element’s polynomial.

A second alternative consists of defining z(B,) as a step function based on a grid over the
parameter ranges (i.e. the support set S). Suppose S is partitioned into M subsets, labelled
as T,, where m = {1,2,....M}. Let the probability mass function W () be the same for
all points within each subset, but different among subsets. Then, the logit formula for the

probability masses is:

w =Pr — _ exp (Zﬁm/lzl OCmI(ﬁr € Tm))
@ wnlBrlo) =PriBy = By) = (X (B € T))

The z variables are the M indicators which identify the subset containing B,. If the subsets

do not overlap, then one of the coefficients is normalized to zero. With overlapping subsets,

instead, one coefficient is normalized to zero for each possible way of covering the set S.



In LML-Step function the number of estimated parameters is equal to the number of grid

points.

Finally, a linear spline can be used to define z(f3), once defined over & knots. Spline
functions connect piece-wise polynomial functions at a high degree of smoothness and in
a linear setting they can be written in the form @'z(f3), as needed in the LML specification.
Consider a simple example of spline with 2 = 2 and with starting point at 3, ending point
in B4, and place the two knots at 8, and B3, with B; < B> < B3 < Bs4. Let the corresponding

elements of the vector @ define the spline heights. The elements of vector z(3) in this case

are:
a(B) = (1-45) 18 < Bo)
2(B) = (BB ) 1B < Bo)+ (1 £ ) 1(B2 < B < By)

(®) - a ;
5(B) = (8L ) 1B < B < By + (1- 2B ) 1(Bs < )

N

N
—
=
N—

I
A~
= =
!
i
N—

~
—~
=
(98]

A
=
N—

where I(+) is an indicator function.

Monte Carlo experiment

To assess the performance of different model specifications, we conducted a Monte Carlo
(MC) study based on a utility function with three attributes with random coefficients. The
first and the second attribute are assumed to be non-monetary, whereas the third is the
price attribute. Because the use of dummy-coding is prevalent in this literature, the two
non-monetary attributes were coded as dummy variables, taking the values of 0 and 1, in-
dicating their presence or absence in the alternative they describe. The price attribute was

continuous and also with two levels, with values of 1 and 2. The true data generation pro-



cesses (DGPs) were based on asymmetric and bi- and tri-modal distributions, with utility

specified in WTP-space, so that coefficients are interpretable as marginal WTPs (mW T P).

Random utility specification

Consistently with random utility theory, it was assumed that respondent select the alterna-
tive with maximum utility out of two available alternatives. The utility of respondent n for
alternative i in choice occasion ¢ was specified in the WTP-space (Train and Weeks 2005)

as.
) Upnie(By) = A5 (0lx) + 02x%, — puir) + Enit,

where A is the price/scale coefficient and @, and @2 are the mW TP for attribute 1 and

attribute 2, while &,;; 1s distributed i1.i.d. Gumbel.

Data generating processes

To compare performance between MXL and LML models at increasing levels of complex-
ity of mW TP distributions, we generate two DGPs. In DGP 1, a)j and a),% are generated
following a bimodal distribution, obtained by mixing two normals, whereas the price/scale
coefficient A, is assumed to follow a mixture of two log-normals, to ensure a positive sign.
The price coefficient p; was assumed to be fixed to —1. The random utility component
€, follows a standard Gumbel distribution, so as to have a logit choice probability. The

distribution parameters in DGP 1 are asymmetric and bimodal, as follows:

1 Ce ol os| o, Joos 0| 03
(10) @, ~ A (u X)) withpu' = Y= with Pr = :

1.2 0 0.04 0.7
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—1.5 025 O 0.6

(11) @? ~ A (u? %) with p? = ¥2 = with Pr = ,
1.5 0 025 0.4
0.5 025 0 0.5
(12) A, =exp(0),0 ~ A (u,X) with p = Y= with Pr =
1 0 1.0 0.5

The shape of the distributions for both random mW T Ps for attributes used in DGP 1, '
and @?, are shown in the upper panel of Figure 1. Note that the distribution for @' has two
different modes, one at high benefits, the second at low benefits. The density for the latter
is much higher than the density for higher benefits. This represents a situation with a small
group of high beneficiaries and a much larger group of low beneficiaries, not uncommon in

practice.

Also note that in the distribution for > one mode is negative and has higher density than its
positive counterpart. This is to denote asymmetric distributions of winners and losers linked
to the supply of that binary level attribute. This is often the case for attribute controversially
valued by the population. In the real world, these two forms of asymmetric bimodality in
the distribution of benefits are common (e.g. from a public good provision). If they were
incorrectly assumed to have a single mode with intermediate modal value then severely

erroneous policy prescriptions would follow.

11



In DGP 2, both mW T Ps have asymmetric and trimodal distributions, obtained as a mixture

of three normals (Figure 1, lower panel). The DGP 2 parameters have the following values:

1.5 004 0 0 0.3

(13) @, ~A (' ) withp'=| 35/Z'=| 0 025 o0 | withP= 03],
~12 0 0 004 0.4
5.5 025 0 0 0.3

(14) o ~ N (W22 withp?>=|30[Z*=| 0 025 o | withP= 03],

1.2 0 0 0.09 0.4
0.1 0.01 O 0.4
(15) A, =exp(0),0 ~ A (u,X) with p = rX= with P =
1.2 0 0.02 0.6

In this case, in the distribution for @', the two positive modal densities (y-axis) differ by
less than in DGP 1 and are contrasted by the highest modal density in the negative x-axis.
For the value distribution of attribute 1 this denotes strong clustering of losers, and bimodal

winners, but with small variance around the modal values.

The distribution for @? has only positive modal values, but with three different modal
densities, the highest of which is at low level of benefits, accompanied by two similar level
densities at higher benefit levels. As for DGP 1, it is intuitive to conclude that these forms of
asymmetric trimodality in the benefits distribution, in case they were erroneously assumed

to be unimodal, will also lead to seriously sub-optimal policy actions.

Note also that in both DGPs @! has much smaller variance values around the modes than

?. Larger variance around modal values of random coefficients is expected to require

12



larger sample sizes to accurately disentangle the location of the respective modes. How

much larger is a further question we investigate here.

Experiment features and error measures

We denote with /4 the generic synthetic dataset h = 1,...,H = 1,000 generated in each of
the 60 MC experiments, which are then used to estimate 14 model specifications, for a total
of R =60 x 14 = 840 sets of estimation error measures denoted by r = 1,...,R = 840. The

14 specifications consist of:

e one MXL in preference space with normal distributions for each non-price attribute,

one MXL in WTP space with normal coefficients for all non-price attributes,

four LML-Poly with varying number of parameters (12, 24, 36, 48),

four LML-Step with varying number of steps (12, 24, 36, 48),

and four LML-Spline with varying number of knots (12, 24, 36, 48).

All LML models are with utility in WTP-space and all price/scale A* coefficients are log-
normal or mixture of log-normals. Data generation and all estimations were performed in
MatLab using Train’s code modified to fit our purpose. Choice probabilities are simulated
in the sample log-likelihood with 250 Halton draws. To simulate the sampling distributions
properties of mW T P values from the MXL in preference space, 10,000 draws were taken
from the estimated distribution of each non-monetary attribute coefficient. Each draw is
then divided by a draw from the estimated distribution of the cost coefficient. Standard
statistics for the distribution of these WTPs were then calculated for these draws (but see

the caveats in Daly, Hess, and Train (2012)). So, we evaluate the performance of each of

13



the 14 specifications by computing the MSE and the BIAS over the h...H = 1,000 synthetic

samples in each of the 840 MC experiments:

lH
16) MSE(®)=— Y (&, —0)>,h=1,...,H;
(16) MSE(®) th h— ©)

lH
17) BIAS(®)=—Y &p—w,h=1,....H;
(17) (@) =7 ) —o,h=1,..,

>
Il

From the above, by using equation (1), we can derive the finite sample variance of each
estimator as VAR(®) = MSE(®) — [BIAS(®)]?. This allows us to identify the empirical

bias-variance tradeoff under different MC experimental factors.

In the case of welfare estimates the sign of the bias is not immaterial as one might not
worry about over-estimation (positive bias) and instead be concerned by under-estimation
(negative bias). To gain insight and evaluate the relative departure from the true population
values, in each experiment r we also compute the means of (a) relative absolute error
(MRAE), (b) relative negative error (MRNE) and (c) relative positive error (MRPE) of the
estimates. Hence we compute:

| H

18) MRAE =7 = —
(18) Hh;l

d)h—a) .
a) b

-1

H A
(19) MRNE =1~ — [Z 1, (w”_w <0>]
h=1 @
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H Oy — 0 et
(20) MRPE =n"= [Z 1,,( " >0>] )
r=1

h=1

wh—a)'xlh(wh—a) >O>;
® ®

where 1(+) is an indicator function, @ is the mW T P value used in the DGP and @, is the

value estimated from the 4" synthetic dataset, h =1,...,H.

In revealed preference data studies researchers do not exercise control over the allocation
of attribute values across alternatives, but in most stated choice applications this is the
outcome of an error-optimized experimental design (Sandor and Wedel 2001; Ferrini and
Scarpa 2007; Rose and Bliemer 2009), and an adequate choice of design might afford
significant efficiency gains in mW T P estimation. It is unclear if efficient design can also
reduce estimation error for the LML model. We investigate this here. In both DGPs we
use three experimental designs: i) D-error minimizing design (we call this D-efficient), ii)

random design, iii) full factorial design.

In order to evaluate the effect of the length of choice sequence on models performance, we
generate two different sets of data: the first is built assuming that each respondent faces four
choice tasks, the second assuming eight choice tasks. These panel lengths are common, for

examples, in food and environment stated choice experiments.

Similarly, to investigate the effect of the sample size, we generate five panel datasets with
increasing number of simulated panels (N): 70, 210, 490, 980, 1960. This allows us to

investigate the role of sample size on performance of the LML model. Sample sizes are

15



defined so as to have the same number of respondents for each block of the full fractional

design.

Bias versus efficiency tradeoffs

Figure 2 illustrates the relative contributions of BIAS? and variance to the MSE at different
sample sizes for the three estimators: MXL-P with utility in preference space (fixed price
coefficient), MXL-W with utility in WTP space, and LML. Note that at each sample size,
the bias is always smaller for the LML, but its variance is much higher than the MXL at
small sample sizes (N = 210). This suggests that to reap the benefits of the LML practition-
ers need to employ large sample sizes. However for @'—the coefficient with low variance
around modal values in both DGPs—, already at a sample size of N =490 LML has a
variance component of the MSE, which is low enough to outperform (or do as well as) the

MXL models. This happens both in the bimodal and the trimodal case for '.

When the DGP has a high variance around modal values, (as for ? ), the LML outperforms
the MXL at a sample size in excess of about N = 1000 respondents when its distribution is
trimodal. However, when its distribution is bimodal, already at N = 490 the LML outper-

forms the MXL-P, but not the MXL-W.

This suggests that some prior knowledge of the variance around modal values, and of the
number of modes may inform practitioners of the type of estimator to use: if such variance

is small and modal values are few, then the LML can be effective at relatively smaller

16



sample sizes than in opposite situations. This result will need to be confirmed with further

investigations, but it appears reasonable.

Response surface models

Focussing on the subsets of 720 error estimates involving the LML estimator, we are inter-
ested in how the error indicators of each experiment in equations (1-20) depend on the g
factors in the MC experiment, which are:

i) sample size (N),

ii) number of parameters (K),

iii) type of z(-) function (we used step function as the baseline),

iv) type of experimental design (full factorial and random designs were used as baseline),
v) number of choice tasks per respondent 7, and

vi) DGP (trimodal was used as baseline).

We also examine interaction terms between each of the above factors, with the exception

of those terms involving the z(-) function, as they are statistically insignificant.

Let the g factors determining the error determinants for error estimate r be denoted by
sr. In order to succinctly report and discuss such effects we use two types of response
surface models, (i) an OLS regression for when the dependent variable y; is continuous
(i.e. for MSE), and (ii) a fractional response logit (FRLGT), both reporting standard errors
clustered by MC experiment (Papke and Wooldridge 1996; Wooldridge 2011) when the

dependent variable is a fraction 7, (i.e. for MARE = &, MNRE = &, and MPRE = =,").

17



The two models give rise to two different marginal effects on the outcome of each error

estimate r:

*

*x _ Qf ayr_
(21) yr_8s,+£,—>asg_5g

(22) 7w =A(8's,) — gf’ = §A(8's,)(1—-A(8's))),
3

where A(8's,) = [1+exp(—8's,)] ! The full set of results (some of which are in the
online appendix) is available from the authors upon request. However, Williams (2009)
showed that the use of interaction terms is potentially problematic with nonlinear models
such as logit and probit. So, for the FRGLT model we report only the main marginal effects

and ignore interactions.

Determinants of MSE and MRAE

Table 1 reports marginal effects of determinants from both OLS and FRLGT models for
the MSE (left part of the table) and the MRAE (right part). The table reports results for o',

but similar results were obtained for @? and are available from the authors.

In the OLS model the only insignificant variables are the types of z(-) functions. We con-
clude that polynomial, spline or step functions are equivalent in estimation error for LML.
All other variables display the expected negative signs and are significant in their main

effects. The magnitudes of the marginal effects on the MSE demonstrate that one extra

18



parameter in Kk has the same effect as using a D-error minimizing efficient design, while

doubling the choice tasks from 4 to 8 increases accuracy by little less.

The significance and signs of interaction effects tell us that (i) the effect of larger N
increases with an extra «, (if) but is diminishes for bimodal DGPs, and (iii) that an extra kK

also has a smaller effect for bimodal DGPs.

In the FRLGT model we basically obtain the same results for the MRAE. The marginal
effects (timed by 100) have a more intuitive explanation in this case. The strongest effect
is shown for the D-error minimizing design, followed by a longer choice tasks sequence,
while one unit increase in v/N has the same effect as having an underlying bimodal, rather
than trimodal DGP. Note that using an efficient design produces nearly twice the efficiency
impact of a one unit of /N, even though this is derived under parametric logit assumptions.
This is also potentially valuable to researchers that can focus on good design and longer

sequences, rather than increase sample size.

Figure 3 illustrate the effects of MC factors on the MRAE by means of kernel densi-
ties across all experiments (unconditional). While sample size effects are obviously the
strongest, it is worth noting that the D-error minimizing design predicated on the MNL
model, in this context has an effect that clearly trades off error with efficiency: if one is
happy to accept an expected error in the 10-15 percent range, the random or full facto-
rial designs deliver this with good likelihood. The D-error minimizing design affords both
higher likelihood values of MRAE lower than 8 percent, but also at values higher than 15

percent, where other designs are have low desnities.
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Determinants of negative and positive error in '

In table 2 we report OLS and FRLGT regressions that explore the differential effect for
positive and negative errors in estimation. The left most column reports the OLS estimates
for the linear probability model explaining the variation in the pooled (stacked) sample of
MNRE (under-predictions) and M PRE (over-predictions), or 7. The OLS regression in the
second column, in which the dummy variable for under prediction and its interaction terms
with /N are dropped, has a markedly lower R?, showing that over- and under-estimates
have different linear projections. A formal Chow test shows that only the coefficients for

V/N and for the dummy for negative errors significantly differ across the two sub-samples.

The third and fourth columns report OLS estimates of different linear probability models to
the two sub-samples and show how the marginal effects differ across. These effects are also
reported for the FRLGT in the right most columns, for comparison. We note that negative
relative errors are lower on average (as demonstrated by the significant dummy coefficient)
and that sample size increases are more effective in reducing the positive relative errors
than the negative ones. The magnitude of marginal effects of other significant determinants
are also stronger for other factors (e.g. D-efficient, T = 8) in reducing positive errors, but
the difference is insignificant at this sample size. However, this might be a consequence of

our specific choice of DGPs.

Considering that this model is estimated with a random utility specification in the WTP

space, these results are particularly instructive in those applied contexts in which over es-
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timates of mW T Ps are likely to occur. The following empirical case study provides an

example in such a respect.

An empirical application: WT P for tap water

To add saliency to the Monte Carlo results, we apply the LML estimator to data from
an empirical application based on a discrete choice experiment (DCE) developed to elicit
households’ preferences for tap water attributes in the province of Vicenza (northern Italy).
The area under investigation is known as a tannery district. In fact, it is the most important
district of that type in Italy and one of the most important in Europe, as it accounts for

nearly one third of fine European leather production (UNIC 2010).

The leather industry is a potential big polluter, due to the large amount of water required
to treat hides, which are preserved using salt during their transport from South America
or other far away origins. Consequently, wastewater from hides treatment plant, when

improperly treated may affect freshwater quality in the area.

Historically this industry was located at the foothills of the Alps and it prospered here
because of the several artesian springs providing a regular flow of one of the most pristine
water sources in Italy, which was immediately put to a very polluting use. Water pollutants
are present in low concentrations in hides, but may have high toxicity as tanning processes
make use of toxic heavy metals like chrome and other chemical pollutants (e.g., sulphate

and sodium chloride).
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The current water charging system for public waste water processing is based on threshold
concentrations of contaminants per unit of volume of water used, rather than on total dis-
charged load of contaminants. Hence, large amounts of pristine water from local springs
are used to dilute concentrations of industrial pollutants. To give a sense of proportion, the
capacity of the local sewage plant is sufficient for a population of 1.5 million, while the
local population is only about 115,000 residents. Thus, information about householders’
preferences for tap water attributes is crucial for local authorities in order to strategically

set water tariffs and plan investments in infrastructure.

Much of the necessary infrastructure for industrial water treatment would otherwise benefit
tanneries, which would then be heavily subsidized by residential water users, causing a

major misallocation of resources.

The DCE was based on five water quality attributes, namely:

i) the frequency with which chlorine odor can be smelled in water use (daily, once a week,

once a month, never or always),

ii) the frequency with which chlorine taste could be tasted in the water (same frequencies

as for odor),

iii) turbidity due to fine air bubbles (absent, low, medium or high turbidity),

iv) calcium carbonate staining in pipes (presence/absence of staining), and
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v) the cost attribute, which was described as the additional yearly amount of money that a

household would pay (in water bills) at current consumption levels.

The experimental design adopted in the study was based on the criterion of Bayesian D-
error minimization where the error was computed at parameter estimates obtained from
a preliminary prior study of 80 households based on an initial design orthogonal on the
differences. The point estimates from the pilot study informed the prior distribution for the
Bayesian design, and the standard errors defined the variances of the prior distributions,
which were assumed normal. Probabilities were derived from a simulation based on 200
Halton draws, and used to construct a final design using Ngene (ChoiceMetrics 2009). The
design resulted in 36 choice tasks, and was blocked into four orthogonal blocks of nine

choice tasks each.

Using the datasets obtained with the CE survey from a sample of 832 respondents (Thiene,
Scarpa, and Louviere 2015), we estimated the 14 model specifications previously listed and
we added two latent class models with respectively two and three classes. These capture

perfectly correlated multimodality, but ignore variance around modal values.

To compare performance across models with different number of parameters we report in
table 3 the simulated log-likelihood at convergence (.£*), along with the Akaike informa-
tion criteria (AIC) and the Bayesian information criteria (BIC). Given the importance of
multimodality in this context, we also report the number of modal values of the estimated

distributions of random coefficients (mW T P).
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Based on the Monte Carlo results and the large number of observations in our water pref-
erence dataset, we expect the LML models to outperform the MXL ones in terms of fit to
the data. We also expect that LML specifications with large number of parameters x out-
perform those with fewer parameters. Finally, we expect LML specifications (especially
those with large number of parameters) to be able to retrieve the features of real underlying

distributions, even when these are asymmetric and multimodal.

Model fit and estimated modes

All the information criteria in table 3 favor LML specifications, as compared to the MXL
and LC specifications. The results also support the MC experiment finding of an increase

of model performance at large x at this sample size of N = §832.

In terms of performance across different z functions within LML, the LML-Spline specifi-
cation emerges as the best when based on k¥ = 55, according to the AIC, but when based
on K = 44 according to the BIC, which is unsurprising as this criterion applies a heavier
penalty on over-parameterization. A close second in fit is the LML-Step, which is also best
at Kk = 55, according to the AIC, but at k = 44 according to the BIC. In third position we
find LML-Poly, and in this case both AIC and BIC converge in indicating Kk = 55 as the
model with best fit. So, despite in terms of estimation error the various z functions appeared

to perform similarly, they do not do so in terms of information criteria.

For the sake of space we only report and discuss the multimodal aspect of the results. Table

4 reports the number of estimated modes of mW TP distributions. Obviously, MXL (bi-
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ased and apparently inconsistent) could only retrieve unimodal distributions in all random
coefficients. LML models with k¥ = 22 and x = 33, instead, retrieved bimodal distribu-
tions for most of the coefficients. In particular, LML-Poly with k¥ = 22 retrieved bimodal
distributions for seven coefficients and with k¥ = 33 did so for eight mW T P distributions.
LML-Step x = 22 retrieved bimodal distributions for seven parameters and LML-Step with
K = 33 for nine mW TP distributions. Similar number of bimodal distributions for ran-
dom taste coefficients are found in the estimates from LML-spline. Altogether the LML
provides a very different characterization of taste distributions, where multimodality and

asymmetry emerge as common features.

The histograms reported in the first and second rows of figure 4 are a good illustration of
the effect of increasing k on the number of modes retrieved for the random mWTP for
Taste Weekly and Odor Never: with k = 22 the mW T P for the two attribute levels appear

to have unimodal distributions, with k¥ = 44 they appear bimodal.

With respect to the size of Kk, we note that distributions with three modal values were
retrieved only by LML models with k¥ =44 and k = 55 (e.g. see the bottom histograms
in figure 4 for mild and extreme turbidity). In particular, all the specifications with such
number of parameters retrieved tri-modal distributions for chlorine odor once per month,
chlorine taste once per month, medium and extra degrees of turbidity. All this information
would be lost in MXL specifications, and possibly in most other conventional parametric

distributions. We note that some multimodality can be captured in means of individual-
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specific distributions, but those statistics are of difficult interpretation at the population

level (see chapter 11 in Train 2009, for a discussion).

Discussion and conclusions

This paper provides results from a large-scale Monte Carlo experiment and an empirical
application conducted to investigate the finite sample performance of the recently proposed
Logit Mixed Logit (LML) model. We focused on retrieving the underlying heterogeneity
distributions of random marginal willingness to pay estimates, with a focus on asymmetric

and multimodal data generating processes.

The context is framed around the standard operating conditions for practitioners in agricul-
ture, food and environmental economics. This means that we used a range of sample sizes,
experimental designs and panel lengths which are of common use in the published litera-
ture on choice analysis for nonmarket valuation, and hence we also focussed on WTP-space

utility specifications.

Semiparametric estimators, such as LML, have smaller bias and larger sampling variance at
low sample sizes than their more common parametric MXL counterparts, and we measure
both. Our result show that the sample size at which bias-efficiency tradeoffs move in LML
favour vary depending on the variance around modal values, but at sizes around 500 re-
spondents the overall mean squared error are either comparable to those of MXL or lower.
Obviously, these sample sizes need upward adjustments in the presence of more attributes

with random coefficients.
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Another objective is to identify the optimal number of parameters k to be adopted in LML
model specification for the grid points of probability weights. Our hypothesis, based on
previous findings of studies on flexible choice models (Fosgerau and Hess 2007), was that
increasing such number increases flexibility and yields better approximations to the true
distributions. However, a Monte Carlo study complementary to ours, but with fewer syn-
thetic samples and different focus on DGPs (Bansal, Daziano, and Achtnicht 2018a), drew
different conclusions based on information criteria. Using the estimation error as a crite-
rion, our MC results align with those by Fosgerau and Hess (2007), but using as model se-
lection criteria the AIC and BIC our empirical results align with those by Bansal, Daziano,
and Achtnicht (2018a). Nevertheless, in the empirical results, trimodal distributions are

captured only by LML with high number of parameters x.

The bias-efficiency tradeoff for LML versus MXL suggests that prior knowledge of the taste
distributions with regards to the variance around modal values (i.e. its degree of asymme-
try), and to the number of modes one expects, is useful. Specifically, it may inform practi-
tioners on the type of estimator to use: if such variance is small and modal values are few,

then the LML can be effective at relatively smaller sample sizes than otherwise.

Importantly, the conditional distributions of MRAE show a clear bias versus efficiency
tradeoff on the use of efficient experimental design, confirming the caution one must ex-
ercise in adopting this design criteria in mis-specified contexts. They also confirm the
necessity of relatively large sample sizes and that—at least in our case—the minimum bias

one can expect is around 7%, with a maximum of 20% and a median of 12%. Finally, we
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find that positive relative errors benefit more than negative relative errors from increases in
sample sizes and possibly also from other bias-reduction measures. However, this result

may be a construct of our choice of DGP, and hence it is not easily generalised.

In our empirical tap water preference study, the LML results suggest a pattern of asymmet-
ric bimodality for tap water quality attributes, such as taste weekly and odor never. They
also show asymmetric trimodality for mild turbitidty and extreme turbidity. Both features
would be missed by the MNL with normal or other unimodal parametric distributions. Ad-
dressing such patterns with latent class models would appear not completely satisfactory
as these ignore variance around modal values and impose perfect correlation of random
coefficients within classes—a restriction that the LML does not impose and for which we

find no empirical evidence in our data.

Regulators intending to achieve economically and politically efficient outcomes should be
made aware of the multimodal nature of preference for tap water in the tannery district
of the Province of Vicenza. The tariff thresholds necessary to trigger majority voting in
support of infrastructure investments that deliver only monthly chlorine smell in water and
mild turbidity might be lower than those suggested by model estimates obtained with MXL

models. This is valuable information to politicians.

Overall, the results of our study do not support the blind use of very flexible mixing distri-
butions: at small sample sizes LML models with a large number of parameters performed
worse compared to both LML specifications with low number of parameters and MXL

models. Thus, as a general guideline, we suggest to adopt the LML estimator only when
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a sufficiently large number of observations is available, or when the variance around the
possible modes is low. In the presence of poor priors for efficient design and when a 10%
bias in marginal WT P estimates is deemed an acceptable cost, our results suggest the use
of random or full factorial experimental designs so as to capture the available efficiency
gains while expecting some bias. Interestingly, the use of efficient designs based on MNL
assumptions and adeaute priors are associated with significantly lower errors also in LML

estimates.

While this study provides some insight about LML performance, additional simulation ex-
periments are needed to evaluate the fine-tuning and validate the robustness of our conclu-
sions. For example, we ignored covariance across random coefficients. Future experiments
can address that and extend the number of alternatives, of choice situations in the sequence,

and of explanatory variables in the utility equation.

Importantly, on the practical side, when asymmetry and multimodality of preference are
suspected, analysts can no longer be excused to automatically default on parametric spec-
ifications without providing robust theoretical justifications corroborated by empirical ev-
idence. The LML approach is sufficiently practical, general purpose software has been
made available for all to use (Train 2016) and it has been recently extended to allow fixed

parameters in the specification (Bansal, Daziano, and Achtnicht 2018b).
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Notes

IThey used 6 DGPs, each generating 100 synthetic datasets, which in turn were esti-

mated using 16 specifications, for a total of 9,600 estimates.

%For the reader interested in faster estimation algorithms for these category of semi-

parametric choice model we refer to Bansal, Daziano, and Guerra (2018).
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Figure 1. Kernel smoothing plots of mW TP in the 2 DGPs.
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Tables

Table 1. Surface response model estimates for @'

OLS on MSE =y}

FRLGT MRAE = &,

Variable Coeff. It Coeff. lt] % x 100 lt|
Constant 0.3290 19.22 —1.2657  75.99 — —
VN —0.0320 3.29 -0.0211  51.77 —0.2292  48.70
dimension of k —0.0190 2.61 —-0.0056 12.42 —-0.0607 12.31
z(+) is polynomial —0.0015 0.66 0.0093 1.11 0.1013 0.11
z(+) is spline 0.0071 1.56 0.0189 1.45 0.2055 1.45
D-efficient design —0.0220 2.71 —0.0395 3.21 —0.4306 3.20
choice tasks T = 8 —0.0160 3.99 —0.0301 2.66 —0.3271 2.66
DGP is bimodal —0.0083 3.57 —0.0213 1.98 —0.2315 1.98
V/N x dimension of k —0.0072 4.12 — — — —
V/N x D-efficient design 0.0013 0.81 — — — —
/N x choice tasks 0.0110 0.88 — — — —
v/Nx DGP is bimodal 0.0087 6.61 — — — —
dim. of k¥ x D-efficient des. 0.0017 1.33 — — — —
dim. of k¥ x choice tasks 7 = 8 —0.0005 0.48 — — — —
dim. of k¥ x DGP is bimodal 0.0019 2.52 — — — —
D-efficient des. x choice tasks 7 =8 0.0042 1.50 — — — —
D-efficient des. x DGP is bimodal 0.0028 0.66 — — — —
choice tasks 7' = 8 x DGP is bimodal 0.0435 0.79 — — — —

N =720

R?2=0.89 F-stat. =87.45 Pseudo-.Z* —268.91 Wald y*> =7,595.54

38



Table 2. Surface response model estimates for MARE for @'

OLS FRLGT
Pooled sample MNRE sample MPRE sample MNRE sample MPRE sample
k100 W Ex100 W LEx100 W FEx100 47 % 100 In X100 1
Constant 19.54 7340 1826  48.13 1693  49.66 1959  48.89
VN —0.1873 2431  —0.1715 1452  —0.1598 16.79  —0.1831 16.38 —0.1383 15.93 —0.1585 15.57
Dimension of k —0.0258 3.10  —0.0258 225 —0.0250 234  —0.0265 2.13 —0.0048 0.51 —0.0037 033
z(+) = Polynomial 0.0915  1.49 0.0915  1.46 0.0950 1.13  —0.0868 0.92 0.0953 1.15 0.0871  0.93
z(+) = Spline 0.1945  1.75 0.1945 176 0.1827 144  —0.2063 1.40 0.1826 1.45 02062  1.41
D-efficient —0.4076 420  —0.4076 424 03864 342 04301 3.38 —0.3884 3.56 —0.4322 342
choice tasks (7 = 8) -0.3063 259 -03063 336 —0.2871 272 —0.3256 2.49 —0.2877 2.72 —0.3262  2.80
Bimodal —0.2467 355 —0.2467 2.65 —0.2287 243  —0.2658 2.4l -0.2170 2.16 —-0.2522  2.15
Dimension of k x vN —-0.0013 537  —0.0013 370 —0.0012 3.87 —0.0015 4.10 —0.0023 7.84 —0.0027  8.01
Dummy for MNRE —2.5664 17.71
Dummy for MNRE xN ~ —0.0031  7.18
R? 0.797 0.719 0.781 0.781 Pseudo-#*  —249.30 —274.61
R 0.795 0.718 0.779 0.779
N 1,440 720

Note: MNRE mean of negative relative errors, M PRE mean of positive relative errors.
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Table 3. Information criteria for tap water models.

Model k InZ* AIC BIC

MXL Pref. 11 —-2932 5,821 5,823
MXL WTP 11 -2,908 5,794 5,771
"LC2classes 23 —2,896 5,741 5,753
LC3classes 35 —2,877 15,724 5,745
"LML-Poly 22 —2,818 5,614 5,637
LML-Poly 33 —2774 5,526 5,549
LML-Poly 44 —-2732 5442 5,465
LML-Poly 55 2,718 5,414 5,437
"LML-Step 22 —2,802 5,582 5,605
LML-Step 33 —2,758 5,494 5,517
LML-Step 44 2,716 5,410 5,503
LML-Step 55 —-2,702 5,382 5,505
"LML-Spline 22 —2,786 5,550 5,573
LML-Spline 33 —2,742 5,462 5,485
LML-Spline 44 —2,700 5,378 5,401

LML-Spline 55 -—2,686 5,350 5,412
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Table 4. Modal values of distributions of attributes’ coefficients (Empirical

application)
Odor Taste Turbidity Stain
Model/Attribute x Weekly Monthly Never Weekly Monthly Never Mild Medium Extra Present
MXL Pref. 11 1 1 1 1 1 1 1 1 1 1
MXL WTP 11 1 1 1 1 1 1 1 1 1 1
"LML-Poly 22 2 2 2 2 1] | P 2
LML-Poly 33 1 2 2 1 2 2 2 2 1 2
LML-Poly 44 2 3 2 2 3 2 3 2 3 2
LML-Poly 55 2 3 2 2 3 2 3 2 3 2
"LML-Step 22 1 2 [ 1 22 2 I 2
LML-Step 33 2 2 2 2 2 1 1 2 1 2
LML-Step 44 2 3 3 2 2 2 3 2 3 2
LML-Step 55 2 2 3 2 3 2 3 2 3 2
"LML-Spline 22 2 2 [ 12 1] | I 2
LML-Spline 33 2 2 2 2 2 1 2 2 2 2
LML-Spline 44 2 3 2 2 2 2 3 2 3 2
LML-Spline 55 2 3 2 2 2 2 3 3 3 2
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Appendix to:
Logit mixed logit under asymmetry and
multimodality of WTP:

a Monte Carlo evaluation

Results from the Monte Carlo experiment

In what follows we describe the results with focus on those obtained from datasets gener-
ated with the D-error minimizing design. Similar results were also obtained with regards
to the accuracy measures MSE and MRAE and for this reason we limit our appendix to the
MSE values across different models and DGPs. All omitted results are available from the

authors upon request.

Model fit

Table A3 reports the information criteria for models estimated on datasets with bimodal
DGP and D-efficient experimental design with four choice tasks per simulated respodent
(T =4). Model fit statistics suggest that the increase in the number of parameters in all
LML variants improves the loglikelihood value at convergence at every sample size, but
it does not necessarily improve the model fit in terms of AIC and BIC. At small sample
sizes (from 70 to 490 respondents) MXL-N models outperform LML models in terms of
both AIC and BIC. As it concerns the performance of LML variants, at small sample sizes
the specifications with kK = 24are consistently the best performing ones in terms of AIC
and BIC. This suggests that at small sample sizes, more flexible LML mixing distributions
(which require more parameters) do not necessarily yield a large enough gain in the likeli-

hood values to make these models preferable in terms of AIC and BIC to both LML models



with fewer parameters and MXL-N models. At large sample sizes, instead, the more flex-
ible specifications (k = 36,48) seem to fit the data better than the less flexible ones. At
N =980 the LML-Spline with k¥ = 48 is the best performing LML variant in terms of AIC,
and the LML-Step with k¥ = 36 parameters according to BIC. At the largest sample size
(N = 1980), the LML-Spline with 48 parameters is the best performing model according
to both AIC and BIC. It is also interesting to note that at the largest sample size all LML
variants outperform the MXL-N models according to all the information criteria. Similar
results were retrieved for model estimated from dataset generated with trimodal DGP (Ta-
ble A4) and for datasets with eight choice tasks per simulated respondent, which we omit

for the sake of brevity.

Mean squared errors

Short panel results, 7 = 4, bimodal distributions

Table AS reports MSE values for estimates of the mean mWTP for attribute 1 and at-
tribute 2 as retrieved from datasets with four choice tasks per respondent, with DGP 1 that
implemented asymmetric bimodal distributions of the real parameters. It is immediately
noticeable that, given ®, the value of MSE decreases as N increases: accuracy is increased
by larger samples. For small samples (simulated respondents N = 70 and N = 210) the
best performing model—that is, the one with the lowest MSE (and MRAE)—is the MXL-
N WTP space, which outperforms all LML models. A bias variance tradeoff seems to take
place at this level. At intermediate sample sizes (N = 490 and N = 980 simulated respon-
dents) some of the LML specifications outperformed the MXL in WTP-space (e.g. LML-
poly with k = 36 for @' and LML-Spline with k = 48 and k = 24 for @), but it is only at
large sample sizes (N = 1,960) that LML models consistently outperformed the MNL-N

WTP for some value of k. At N = 1,960 there is also a clear improvement in performance



by LML models with higher dimensions of k. Among LML models based on step func-
tions and splines the best model specifications were those with Kk = 48, whereas the best
model specification among LML-Poly models was the one with k¥ = 36 according to both

MSE and MRAE.

In terms of identification of the optimal number of parameters k to be adopted in LML
models for both bimodal coefficients, we obtain no clear indication at such sample sizes.
According to the MSE values for @', for the LML-Poly the best specification is the one
with k¥ = 24, followed by k¥ = 48 and then k¥ = 36. Moving to the results for LML-Step,
the best performing models are those with high number of k (36 and 48). Finally, among
LML-Spline, the best performing model specification is the one with k¥ = 24, followed by
the one with k¥ = 36. For to the MSE for the second coefficient @,, the best performing
LML-Poly has k¥ = 24 and 48; for the LML-Step x = 48, while for the LML-Spline is the

one with k¥ = 36.

The second important distribution feature is its spread, often measured by the standard
deviation. The MSE for these statistics of the Monte Carlo results are reported in Table A6.
As for the means, at the smallest sample size the MXL-N WTP outperforms all models
(and it always outperforms the MXL-N in preference space), but already at N = 210 we
have LML-Step with Kk = 36 that does better and at higher sample sizes LML models do

better both more frequently and more consistently, especially at high values of k.

Long panel results, T = 8, bimodal distributions

Tables A7 and A8 reports the same statistics as above, but for the longer panel with eight
choice tasks per respondent (7" = 8). So, the number of choices are doubled at each sample
size. Doubling the number of responses collected from each respondent obviously sharpens

the estimation of the distributions of taste, as it allows for both better panel designs and



more information from more numerous choices. Whether and at what sample size this
difference becomes apparent with respect to 7 = 4 is an empirical question we try to answer
here. The results from datasets with small sample size (N = 70 and N = 210) are similar
to those retrieved from datasets with four choice scenarios per respondent, in that the MXL
model outperforms the LML specifications and there are no clear indications about the

effect of increasing the number of parameters of LML specifications.

However, MSE for both means and standard deviations show that flexible LML specifi-
cations consistently surpass the MXL model at both intermediate and large sample sizes.
Similarly to the short panel results, for N = 980 respondents, each LML specification out-
performed the MXL model for some value of a k. This suggests that increasing the number
of observations per respondent (a longer panel) does not seem to allow analysts to retrieve
substantively more accurate estimates with LML models at smaller sample sizes. At both
N =980 and N = 1,960, it is also apparent that model specifications with large K outper-

form the others.

Short panel results, 7 = 4, trimodal distributions

We now move to the results for the choice data generated under the DGP 2 with asymmetric
trimodal distributions for ®! and @? reported in Tables A9 and A10 for the case with short
panel. Results are similar to those retrieved for the first set of coefficients in that the MXL.-
N WTP model always outperforms the MNL-N Pref. and does so for LML models at small
sample sizes. The main difference is that in this case, already a N = 490, so at intermediate
sample sizes, the MSE for LML are frequently smaller than those for the MXL-N WTP.
It seems to be the case that with a trimodal distribution DGP flexible distribution models
are more accurate than MXL-N at lower sample sizes, even with short panel, especially the

LML-Step and LML-Spline.



Long panel results, T = 8, trimodal distributions

Tables A13 and A 14 report the same statistics for the long panel. No noticeable difference
is found from the results obtained for the short panel, indicating that doubling the number of
choices per respondent does not substantially change the tradeoff between bias and sample

size.

Bimodality

Tables A13-A16 report the means and standard deviations of modal estimates of distribu-
tions of a),l and w,% from the various model specifications in both the short panels and long

panels. They all have in common the bimodal DGP 1 as true process.

The first important observation concerns the number of modal values retrieved from differ-
ent model specification. Naturally, MXL-N models (both in preference and WTP space) are
inherently unimodal and cannot, by their very nature, imply bimodal distributions, but they
are expected to retrieve a mean/mode/median at an intermediate value between the modes
of the underlying DGPs. Indeed the results confirm this. Instead, LML models can retrieve
bimodal distributions and do so in our experiment, with a degree of accuracy that increases
with the sample size. This confirms that LML models are able to approximate better the
shape of the true underlying distributions of random coefficients, and should always be

considered when unimodality is not well supported a-priori, as it is often the case.

The second objective of the analysis was to identify how close the local maxima and min-
ima retrieved from different LML specification were to the true ones. In this sense, it
appears that increasing both the sample size and Kk increases the accuracy of the estimates.
In fact, the values that are closer to the real ones were obtained from LML specifications

with k¥ = 48 estimated using datasets with N = 1,980. Of course, one can also compute



MSE and MRAE values for modal estimates and compare them across LML models. We

have those results, but chose not to discuss them here.

Trimodality

Tables A18-A20 report the number of modal values from model estimated on data from
DGP 2 (trimodal real distributions of mWTPs). As for the bimodal case, MXL model can-
not retrieve the complex form of the real distributions, and deliver unimodal distributions at
intermediate values of the modes in the real data. LML specifications with k¥ = 12, instead,
always retrieve distributions with two modal values, instead of three. On the other hand,
LML specifications with k¥ = 48 always correctly retrieve distribution with three modal
values. Finally, LML specifications with intermediate k¥ = 24 — 36 retrieve distributions
with three modal values at intermediate and large sample sizes, but bimodal distributions
at lower N. As in previous cases, it is apparent that increasing sample sizes and K increases
the accuracy of estimates. In fact, modal values of distributions retrieved from model esti-

mated from large datasets are closer to the DGP values.

Overall the results suggest that LML models may outperform the standard MXL-N speci-
fications and represent more accurately complex distributions, but do so especially at large
N. With regards to the optimal k to be used in LML models, it seems that high x values

should be considered, but unsurprisingly they work better at large N.
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Tables

Table A2. Descriptive statistics for variables used in surface response models

Dependent variables Mean Median Max Min
MSE 0.188 0.184 0.361 0.004
MRAE 0.123 0.125  0.197 0.068
MNRE 0.111 0.109 0.176 0.061
MPRE 0.129 0.127  0.203 0.069
Continuous indipendent variables Mean Median Max Min
N 742 490 1960 70
Dimensions of k 30 30 12 48
Binary indipendent variables Frequency of value = 1

z(+) is Polynomial 0.333

z(+) is Spline 0.333

D-efficient design 0.333

Choice tasks T =8 0.500

DGP is bimodal 0.500




Table A3. Information criteria (bimodal, 7 = 4)

Model N=170 N =210 N =490 N =980 N =1,960
Model K | Ing* AIC BIC ., In.Z* AIC BIC . In.¥* AIC BIC ., In.¥* AIC BIC ., In.g* AIC BIC
MXL-NPref. 6 [-10032 20184 2031917757 35633 35834 | 2548.1 51083 51334 | 36656 73432 73725 | -53824_ 111769 112104
LCI77997 3571833919 25643 SI406_ 51657 | 36771 73662 7395555654 111428 111764
‘

21184 1 -1820.7 3665.4 3705.6 1 -2569.7 5163.4 5213.8 1-3635.9 72958 73544 -53949 10813.7 10880.8
241 -1006.2 2060.3 2114.3 | -1785.9 3619.8 3700.1 | -2530.6 5109.2 5209.9 | -3562.2 7172.4 7289.7 | -5351.7 10751.4 10885.6
36 | -1001.8 2075.5 2156.4 |-1778.1 3628.2 3748.7 | -2519.5 51109 5261.9 | -3541.5 71549 7330.9 | -5318.2 10708.3 10909.6

I
48 1-1000.3 2096.5 22044 | -17754 36469 3807.5 | -2515.6 5127.3 5328.6 | -3517.0 7130.0 7364.6 | -5283.0 10662.0 10930.4

I I
"LML-Step 12 ;L 10294 30828 2100.8 7 -1816.6 36573 36974 1 25919 52078 52580 | 36277 72794 733801 -53943 108125 108796

24110007 20493 21033 1 -1781.2 36103 3690.6 1 -2571.7 51913 5292.0 | -3566.5 7181.0 7298.3 | -5353.1 10754.2 10888.4

36 | -1000.3 2072.6 21535, -1775.5 3623.1 3743.6,-2520.8 51135 5264.5,-35142 71004 72764 | -5306.0 10684.0 10885.3
48 | -998.0 2091.9 2199.8 | -1771.4 36387 37994 | -2509.8 5115.6 53169 | -3506.8 7109.6 73442 }-5281.0 10658.0 10926.4
"LML-Spline 12 -1022.8 2069.6 2096.6 | -1820.8 3665.6 3705.7 | -2572.6 51693 5219.6 | -3643.7 73114 7370.1 | -5401.5 10827.0 10894.1
24 1-1010.8 2069.5 212351 -1789.0 3626.1 3706.4 1 25273 5102.6 52033 1-3582.4 72128 7330.1 ' 53632 10774.5 10908.7
36 1 -1007.2 2086.3 2167.2 1 -1782.7 3637.5 3757.9 1-2513.3 5098.6 5249.6 1 -3538.2 71484 73243 -5317.0 10706.1 10907.4
481 -1005.3 21065 2214.4 | -1779.3 3654.6 3815.2|-2508.3 51127 5314.0 | -3489.2 70743 7308.9 | -5255.8 10607.5 10875.9
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Table A4. Information criteria (trimodal, 7 = 4)

N=70 N =210 N =490 N =980 N =1,960
Model x| Ing® AIC BIC , Ing* AIC BIC , ng® AIC BIC ., ng* AIC BIC . n* AIC  BIC
CMXL-NPref. 6 |-10925 21970 22105 ) -18652 37425 37626 | -26380 52880 53132 -40228 80577 80870 |-6079.1 121701 122037
CMXL-NWITP 6, -1095.1 22022 22157 -1869.5 3751.0 3771.1-26545 53210 5346.1-4024.9 80618 80912 -6094.6 12201.2 122348
LML-Poly 12| -1132.0 22883 231531 -19213 38665 3906.7 1 -2660.7 53453 5395.7 1 -4096.9 8217.8 827651 -58998 118236 11890.7

241 -1092.6 2233.2 2287.2 | -1875.8 3799.7 3880.0 | -2650.6 5349.1 5449.8 | -4053.9 81557 8273.0 | -5855.6 11759.1 11893.3
36 | -1091.2 22544 23354 | -1868.1 3808.1 3928.6 , -2649.5 5371.0 5522.0 , -4013.0 8097.9 8273.9 | -5808.9 11689.9 11891.2

I
48 1-1089.3 22745 23825 ' -1864.5 38249 3985.6 ' -2635.1 5366.1 5567.4 '-4001.7 8099.5 8334.1 ' -5760.1 11616.2 11884.6

I
"LML-Step 12 ;L 711967 33639 3290.971 -1917.0° 3858.0 3898.1 1 2654.1 53322 53806 1 40083 82206 $27927 58895 11803.1 118702

24110907 22294 22834 1-1870.3 3788.6 3868.9 | 2641.1 53302 5430.9 | -4062.7 81734 8290.7 | -5848.4 117447 11878.9

36| -1090.0 2252.1 2333.0, -1865.5 38029 39234 ,-2635.6 53432 5494.2 | -4002.7 8077.5 8253.4,-5797.5 11667.1 11868.3
48 | -1087.4 22707 23787 | -1860.4 3816.8 39774 | -2629.4 53548 5556.1 | -3960.5 8017.0 8251.6;-5762.5 11621.0 118894
"LML-Spline 12 -1124.0 22719 22989 -1913.7 38515 3891.6 | -2663.7 53514 5401.7 | -4103.5 8231.1 8289.7 | -5900.6 11825.1 11892.2"
241 -1101.1 22502 230421 -1879.2 38064 38867 1 -2657.4 53627 54634 1-4054.8 8157.6 8274.91-5849.4 117468 11881.0
36 1 -1097.4 2266.8 2347.71-1872.9 3817.7 39382 1-2653.9 5379.9 5530.9 1 -4025.7 81235 8299.4 -5818.6 11709.2 119104
481 -1095.2 22864 2394.4 | -1868.8 38335 3994.2 | -2643.8 5383.6 5584.9 | -4005.9 8107.7 8342.3 | -5755.0 11606.1 11874.4
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Table A5. MSE for means of random coefficients in DGP 1 (bimodal, T = 4)

Model N =70 N =210 N =490 N =980 N =1,960
2 1

() ()

K | ‘ ‘
MXL-NPref. 6 '0276 04360234 03830142 0299 '0.108 0.200
MXL-NWTP 6 1 0.165 0301 10.095 028110038 0208 0013 0.128

()

0.055 0.135

24 1 0.268 0.404 | 0.104 0.359 | 0.064 0.225, 0.022 0.125

36 ' 0.361 0.554 | 0.215 0.379 | 0.036 0.301 | 0.019 0.095

"LML-Step 12 1 0.245 040710237 0312 10.039 0.231 10.054 0.248

24,0209 0.405 1 0.149 0.384 1 0.072 0.201 1 0.061 0.132

36,0212 0326, 0.174 0.304 | 0.094 0.225 , 0.026 0.101

48 ' 0.261 0.365 ' 0.141 0.315!0.115 0.271 | 0.013 0.093

"LML-Spline 121 0.288 0.485 ' 0.243 0.322 | 0.069 0.235 ' 0.089 0.219 ' 0.021 0.084
2410197 042310139 0332 10.089 0.191 ' 0.008 0.148 |

3610263 045610201 04631 0.126 0.231 10022 0.128 1 0.006 0.049
|

48 1 0.309 0.445 ;0.282 0.312, 0.044 0.188 | 0.008 0.105

12



Table A6. MSE for st. dev. of random coefficients in DGP 1 (bimodal, T = 4)

Model N =70 N =210 N =490 N =980 N =1,960

O] o2 . O] o2 . O] oy . O] o, . O] (o2}

463 0.693 ' 0.420 0.62910.360 0.51610.322 0.401 ' 0.283 0.359
0.319 0.516 1 0.293 0.475 1 0.286 0.376

K|
MXL-N Pref. 6 ;
MXL-NWTP 6 10370 054210319 0516 10293 047510286 0.376 1 0.246 0.346
0341 05510351 0487 ' 0265 0.329
0419 0714 ' 0.305 0.614 ' 0261 0317

0421 0554 1 0.341  0.579 1 0.363 0.469
0.492 0.638 1 0362 0.516 1 0.295 0.360
0425 0.505 , 0.330 0.440 | 0.255 0.333
0.367 0.551 |} 0.299 0.489 | 0.245 0.313
LML-Spline 121 0.421 0.591 ' 0.775 0.649 | 0312 0.421 | 0.305 0.449
0324 0.560 ' 0.269 041310279 0.352
0.449 0.624 1 0334 0.582 1 0.262 0.342

0.489 0.665 , 0.426 0.412 | 0.253 0.345

24 1 0.401 0.644
36 | 0.424 0.553

36 1 0.467 0.718
48 ' 0.488 0.681
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Table A7. MSE for means of random coefficients in DGP 1 (bimodal, 7 = 8)

Model N =70 N =210 N =490 N =980 N =1,960
2 1

() ()

K ‘ ‘ ‘
MXL-NPref. 6 '0.185 0277 '0.168 0252'0.144 0207 '0.129 0.161'0.113 0.144
MXL-NWTP 6 10148 0217 1 0.128 0207 10117 0.190 1 0.115 0.151 1 0.099 0.139

()

24 10.194 0251 ,0.137 0221 ,0.141 0.195, 0.106 0.132 , 0.098 0.119
36 ' 0.180 0.306 | 0.168 0.286 | 0.122 0.246 | 0.105 0.127 | 0.088 0.111
"LML-Step 12 1 0.157 02391 °0.169 0222 10137 0.232 10.145 0.188 1 0.101  0.149
24, 0.161 0.258 1 0.197 0.255 1 0.145 0.207 1 0.118 0.144 1 0.085 0.139
36, 0.170 0221 ,0.170 0.202 , 0.132 0.176 , 0.102 0.133 , 0.089 0.116
48 '0.163 0.223 ! 0.147 0.221 ! 0.120 0.196 | 0.098 0.125 | 0.083 0.110
"LML-Spline 121 0.169 0.237 ' 0.210 0.260 | 0.125 0.169 ' 0.122 0.180 ' 0.113 0.151
2410170 0261 1 0.130 0.224 1 0.108 0.165 ' 0.112 0.141 1 0.097 0.105
36 1 0.187 0.287 1 0.180 0.250 1 0.134 0.233 1 0.105 0.137 1 0.093 0.115
48 1 0.195 0273 1 0.196 0.266 , 0.171 0.165 ; 0.101 0.138 | 0.087 0.099
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Table A8. MSE for st. dev. of random coefficients in DGP 1 (bimodal, 7 = 8)

Model N =70 N =210 N =490 N =980 N =1,960

O] o2 . O] o2 . O] oy . O] o, . O] (o2}

204 03051 0.185 0277 ' 0.158 0.228 1 0.142 0.177 | 0.124 0.158
163 0239 10141 0228 10129 0209 10127 01661 0.109 0.153

K|
MXL-N Pref. 6 ;
MXL-NWTP 6 |

240213 0276 | 0.151 0.243 | 0.155 0215, 0.117 0.145 | 0.108 0.131
36 10.198 0337 ' 0.185 0315 ' 0.134 0271 ' 0.116 0.140 ' 0.097 0.122
,,,,,,,,,,, 48 1 0.182  0.284 | 0.145 0248 | 0.118 0.218 | 0.109 0.129 | 0.095 0.118
LML-Step 12 70.173 0.26371°0.186 0244 1 0.151 0.255 1 0.160 0.207 1 0.111 0.164
2410177 028410217 0281 10.160 0228 1 0.130 0.158 | 0.094 0.153
36 1 0.187 0243 | 0.187 0.222 | 0.145 0.194 | 0.112 0.146 | 0.098 0.128
48 10.179 0.245 ' 0.162 0.243 ' 0.132 0.216 ' 0.108 0.138 ' 0.091 0.121
"LML-Spline 12 fﬁ.iéé 10261 ' 0.231 0.286 T 0.138 0.186 ' 0.134 0.198 ' 0.124 0.166
2410187 0.287 10.143 02461 0.119 01821 0123 0.155 1 0.107 0.116
3610206 03161 0.198 02751 0.147 0256 1 0.116 0.151 1 0.102 0.127

48 1 0215 0.300 ; 0216 0.293 ; 0.188 0.182 , 0.111 0.152 | 0.096 0.109
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Table A9. MSE for means of random coefficients in DGP 2 (trimodal, 7 = 4)

Model

N =

70

N =210

N =490

N =980

N = 1,960

2 1

() ()

()

MXL-N Pref.

MXL-N WTP

LML-Spline

36 |

48

0.345 1 0.128
0.253 1 0.074

0.323 | 0.058
0.341 ' 0.032

0.281 1 0.035
0.346 1 0.065
0.274 | 0.085
0.284 ! 0.104
0.290 1 0.062
0.299 1 0.080
0.417 1 0.113
0.281 | 0.040

0.269 '

0.050

0.122
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Table A10. MSE for standard deviations of random coefficients in DGP 2 (trimodal,

T = 4)

Model

N =

70

N =210

N =490 N =980 N =1,960

K, O

(o)

O]

(¢3) O] (¢3) (¢3) (5}

MXL-N Pref.
MXL-N WTP

LML-Spline

6 ; 0.426
6 10371

36 |
48 | 0.453

0.633

0.392

0.581 1 0.341 0477 | 0.368 0.342

0.479 1+ 0.281

0.510 | 0.329 0.447

0.654 | 0.288

0.511 1 0.318
0.584 1 0.337
0.470 | 0.315
0.506 | 0.282
0.600 ' 0.293 0391 10.339 0.452' 0.289 0.281
0.517 1 0.252
0.576 1 0.312

0.610 | 0.401
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Table A11. MSE for means of random coefficients in DGP 2 (trimodal, 7 = 8)

Model N =70 N =210 N =490 N =980 N =1,960
2

! ®

K ‘ ‘ ‘
MXL-NPref. 6 '0.167 0249 '0.151 0227 '0.130 0.186 ' 0.116 0.145'0.102 0.130
MXL-NWTP 6 10133 0195 ' 0.115 08610105 0.17110.104 0.136 ' 0.089 0.125

()

241 0.175 0226, 0.123 0.199 , 0.127 0.176 , 0.095 0.119 ; 0.088 0.107
36 ' 0.162 0275 ! 0.151 0.257 | 0.110 0.221 | 0.095 0.114 | 0.079 0.100
"LML-Step 12 1 0.141 02151 0.152 0.200 10123 0.209 1 0.131 0.169 1 0.091 0.134
24, 0.145 02321 0.177 0.230 1 0.131 0.186 1 0.106 0.130 1 0.077 0.125
36, 0.153 0.199 ; 0.153 0.182, 0.119 0.158 ; 0.092 0.120 , 0.080 0.104
48 ' 0.147 0.201 ' 0.132 0.199 ! 0.108 0.176 | 0.088 0.113 | 0.075 0.099
"LML-Spline 121 0.152 0.213 ' 0.189 0.234 | 0.113 0.152 1 0.110 0.162 ' 0.102 0.136
2410153 02351 0.117 02021 0.097 0.149 1 0.101 0.127 1 0.087 0.095
361 0.168 0.258 1 0.162 0.225 1 0.121 0.210 1 0.095 0.123 1 0.084 0.104
48 1 0.176 0.246 | 0.176 0.239 | 0.154 0.149 | 0.091 0.124 | 0.078 0.089
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Table A12. MSE for standard deviations of random coefficients in DGP 2 (trimodal,

T = 4)

Model

N =

70

N =210

N =490

N =980

N = 1,960

K, O

(o)

O]

0y . O]

(¢3)

0oy . O]

(5}

MXL-N Pref.
MXL-N WTP

LML-Spline

6 30.184
6 1 0.147
12 70.185
241 0.192
36 1 0.178

12 10.156
241 0.159
36 | 0.168

1210.167
241 0.168
36 1 0.185
48 | 0.194

0.275

1270185 0.254

10.167

—- — e - - - - - - — = - - - - _
|

0.249 1 0.142
0.205 1 0.116

0.219 | 0.140
0.284 ! 0.121
0.223 1 0.106
0.220 1 0.136
0.253 1 0.144
0.200 | 0.131
0.219 ' 0.119
0.257 1 0.124
0.221 1 0.107
0.248 1 0.132
0.264 | 0.169

0.205

0.159 1 0.112

0.131

0.131

0.142
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Table A13. Means and st. dev. of modal estimates of a),l in DGP 1 (bimodal, T = 4)

Model N =170 N =210 N =490 N =980 N = 1,960
K : Max1l Max2 , Maxl Max2 , Maxl Max2 A Maxl Max2  Maxl Max2
Real — 1 055 126 1 055 126 | 055 126 | 055 126 | 0.55 126
MXL—NPref. 6 ~ 0.89 — 1084 - 1075 - 108 - 1080 -
0.11) — (.14 — (0100 — (.15 — .(©0.16) —
"MXL-NWTP 6 099 — 102 — | LIl = 709 — |08 —
(014 — 1018 — (019 — ©021) - '©17) -
"LML-Poly 12! 068 206 | 071 1.99 ' 074 177 | 065 156 | 042 136
1(0.07) (0.24) 1 (0.06) (0.21) ' (0.08) (0.16) ' (0.05) (0.15) ' (0.03) (0.12)
24, 071 211 + 068 208 + 074 1.63 1 063 144 1 060 134
1 (0.07) (0.31) 1 (0.06) (0.22) 1 (0.06) (0.15)  (0.06) (0.20) | (0.03) (0.10)
36 069 207 | 061 199 ! 061 1.69 | 047 149 ! 055 125
1 (0.05) (0.20) ' (0.06) (0.19) ! (0.04) (0.18) ' (0.04) (0.17) ! (0.03) (0.11)
481 074 208 | 066 202 ' 062 166 ' 049 145 1 052 122
L (0.06)  (0.22) 1 (0.05) (0.21) 1 (0.07) (0.14) 1 (0.04) (0.14) 1 (0.02) (0.09)
"LML-Step 12, 077 205 . 074 203 1 075 1.80 | 067 145 | 044 135
1 0.07) (0.22) | (0.06) (0.21) | (0.09) (0.19) | (0.05) (0.18) | (0.05) (0.14)
241079 209 ! 072 205 ' 071 167 ! 062 140 ' 049 139
1 (0.07) (0.26) 1 (0.05) (0.27) 1 (0.08) (0.16) | (0.03) (0.16) ' (0.03) (0.11)
361 076 201 + 061 192 + 061 150 049 137 + 053 122
1 (0.07) (0.25) | (0.09) (0.21) , (0.07) (0.18) | (0.04) (0.18) | (0.04) (0.09)
48' 071 206 | 064 193 ' 060 153 | 048 132 | 054 1.9
,,,,,,,,,,,,,,  (0.06)  (0.19) | (0.06) (0.22) | (0.06) (0.16) | (0.06) (0.14) | (0.03) (0.08)
LML-Spline 1277 0.78 213 ' 063 210 ' 066 152 ' 068 144 1 053 132
:(0.09)  (0.26) 1 (0.07) (0.20) 1 (0.08) (0.21) 1 (0.06) (0.18) 1 (0.05) (0.11)
24, 076 219 | 065 206 . 072 156 , 0.67 139 , 054 131
1 (0.08) (0.21) | (0.08) (0.23) | (0.08) (0.20) ! (0.06) (0.19) ' (0.05) (0.12)
361 076 213 1 067 208 ' 065 149 ! 048 134 ' 058 124
1 (0.07) (0.32) 1 (0.08) (0.24) 1 (0.08) (0.19) 1 (0.06) (0.20) ' (0.05) (0.08)
48 1 075 218 1+ 071 208 1 062 144 . 046 131 « 053 121
1 (0.07) (0.24) | (0.05) (0.21) , (0.08) (0.19) | (0.06) (0.17) | (0.05) (0.08)
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Table A14. Means and st. dev. of modal estimates of a),l in DGP 1 (bimodal, 7 = 8)

Model N =70 N =210 N =490 N =980 N = 1,960
K : Max1l Max2 , Maxl Max2 , Maxl Max2 A Maxl Max2  Maxl Max2
Real — 1055 126 ' 055 126 ' 055 126 ' 055 126 ' 055 126
,,,,,,,,,,,,,,,,,,,,,,,, )
MXL-N Pref. 6 '~ 0.88 ~ 1080 - 1077 — 1074 —ron -
o O14) = 1012 = 101) - 018 - 1015 -~
MXL-NWTP 6 ~ 095 — 1093 — 1091 1 0.94 — 1088 =
o (0200 - (015 - (012 - 018 - 014 -
LML-Poly 127071 214 7074 207 | 067 1.65 ' 067 148 | 064 143
' (0.06)  (0.22) 1 (0.06) (0.15) ' (0.07) (0.18) ' (0.05) (0.14) ' (0.04) (0.11)
| | | | |
24, 074 219 1+ 071 216 1 066 151 1+ 065 147 1+ 062 141
1 (0.06) (0.21) 1 (0.07) (0.19) | (0.05) (0.18) | (0.06) (0.17) ) (0.06) (0.12)
36! 072 215 | 073 207 | 073 157 | 069 142 | 056 1.32
1 (0.07) (0.19) ' (0.05) (0.17) ! (0.06) (0.17) ' (0.04) (0.15) ! (0.05) (0.09)
481077 216 | 069 210 ' 064 154 1 061 139 1 054 129
,,,,,,,,,,,,,, L(0.05) (0.18) | (0.06) (0.16) 1 (005) (0.15) 1 (0.04) (0.13) | 0.04) (0.08)
LML-Step 12,070 213 1 077 211 1 077 178 . 069 142 | 066 142
1(0.11)  (0.22) | (0.14) (0.22) | (0.12) (0.19) | (0.09) (0.12) | (0.05) (0.12)
24 072 217 ' 075 213 ' 073 175 ' 064 137 ' 051 137
| | | | |
1(0.10) (024) 1 (0.09) (0.22) ' (0.08) (0.15) ! (0.09) (0.11) ' (0.06) (0.10)
36 069 208 + 073 200 + 063 178 « 061 139 + 055 1.29
1 (0.12)  (0.22) | (0.09) (0.21) , (0.08) (0.14) | (0.08) (0.12) | (0.05) (0.09)
48 ' 073 214 | 067 201 | 064 171 | 060 136 | 054 126
,,,,,,,,,,,,,, 1 (0.09)  (0.19) | (0.06) (0.22) | (0.07) (0.15) | (0.06) (0.11) | (0.04) (0.08)
LML-Spline 27071 2221066 218 1 068 180 ' 0.60 144 ' 063 144
1(0.09) (0.22) 1 (0.08) (0.20) 1 (0.08) (0:21) 1 (0.05) (0.20) 1 (0.05) (0.15)
24, 069 228 , 077 214 , 074 184 , 069 148 |, 059 1.48
1 (0.08) (0.24) | (0.09) (0.19) ! (0.08) (0.20) | (0.06) (0.18) ! (0.06) (0.11)
361 069 222 ' 072 216 ' 067 170 ! 0.60 133 ' 057 131
1 (0.06) (0.29) 1 (0.10) (0.24) 1 (0.09) (0.17) 1 (0.06) (0.21) 1 (0.05) (0.08)
481 062 227 1 074 2116 . 064 175 . 058 138 + 055 128
1 (0.05) (0.16) | (0.07) (0.21) | (0.06) (0.15) , (0.04) (0.10) , (0.03) (0.07)
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Table A15. Means and st. dev. of modal estimates of a),% in DGP 1 (bimodal, T = 4)

Model N=170 N =210 N =490 N =980 N =1,960
Kk  Maxl Max2 , Maxl Max2  Maxl Max2 6K Maxl Max2 , Maxl Max2
Real - —L78 169 [ —178 169 | —178 169 | —1.78 169 | —178 1.69
MXL—NPref. 6 078 — 1076 — 1065 — 17056 — 1046 -
016) — (015 — 1 ©11) — 1(0.12) — (009 —
"MXL-NWTP 6 055 — | 043 = 038 17029 - 018 -
0.18) — 1 (0.11) — (100 — |©08 — 004 —
"LML-Poly 12 —L14 122 | —1.19 118 '—1I8 141 | —122 143 '—123 150
1 (0.16)  (0.25) ' (0.14) (0.22) ' (0.14) (0.16) ' (0.15) (0.19) ' (0.13) (0.15)
24" —1.19 135 1 =120 126 ' —134 131 1 =137 137 1 —149 140
1(0.18)  (0.24) 1 (0.12) (0.21) 1 (0.12) (0.17) 1 (0.12) (0.16) , (0.12) (0.12)
36 —129 142 | —128 145 | —140 144 | —141 154 | —151 155
(0.11)  (0.20) ' (0.12) (0.18) ! (0.11) (0.12) ! (0.17) (0.16) ! (0.15) (0.16)
48 —138 143 ' —145 151 1 —153 152 1 —149 154 ' —164 162
C(0.11)  (0.14) 1 (0.11) (0.14) 1 (0.09) (0.11) 1 (0.08) (0.11) 1 (0.08) (0.07)
"LML-Step 12 =120 149 | —1.16 146 | —126 1.12 | —133 115 [ —143 120
1 (0.14)  (0.25) | (0.15) (0.20) | (0.14) (0.19) | (0.15) (0.15) | (0.14) (0.16)
24 —137 149 ' —143 157 | —137 134 ' —146 144 ' —1.50 142
(0.16) (0.21) 1 (0.13) (0.13) ' (0.17) (0.18) ' (0.14) (0.12) ' (0.13) (0.14)
36 —1.40 136 + —146 140 + —1.50 145  —159 146 1 —1.67 1.51
C(0.14)  (0.17) 1 (0.12) (0.12) 1 (0.16) (0.13) | (0.17) (0.09) | (0.12) (0.11)
48 —126 111 | —132 1.14 ' —135 149 | —142 161 | —1.66 173
,,,,,,,,,,,,,,, 0.15) (.15 | 0.16) (0.15) | (0.13) (0.12) | (0.09) (0.09) | (0.08) (0.06)
LML-Spline 2°7-128 119 ' —123 112 '—139 121 '—142 133 '—146 141
1 (0.15)  (0.22) 1 (0.17) (0.18) 1 (0.15) (0.16) 1 (0.15) (0.19) 1 (0.12) (0.14)
24 —128 1.19 | —123 1.17 ; —151 122 | —1.60 138 | —1.54 1.40
©(0.15)  (0.18) | (0.15) (0.21) ! (0.12) (0.16) | (0.14) (0.16) | (0.13) (0.16)
36 —136 1.03 ' —142 1.16 ' —133 155 ! —140 159 ' —1.54 1.66
1 (0.16) (020) ' (0.18) (0.19) ' (0.1) (0.16) ! (0.12) (0.11) ' (0.10) (0.12)
48 ' —132 112 =131 1.17 + =143 159 + —155 153 | —1.66 1.70
(0.16) (0.16) | (0.14) (0.15) | (0.09) (0.10) ; (0.08) (0.12) , (0.07) (0.09)

22



Table A16. Means and st. dev. of modal estimates of a),% in DGP 1 (bimodal, 7 = 8)

Model N =70 N =210 N = 490 N =980 N =1,960
Kk  Maxl Max2 , Maxl Max2  Maxl Max2 6K Maxl Max2 , Maxl Max2
(Real - —L78 169 | —-178 169 | —178 169 | —178 169 | —1.78 1.69
MXL—N Pref. 6 0.22 — 1034 — 1027 — 77049 — 1045 =
0.04) — (005 — (002 — (008 — (.05 —
"MXL-NWTP 6 012 — | 012 - 017 1027 = 008 —
C0.03)  — (05 — @004 — (006 — 003 -
"LML-Poly 12" —1.19 127 ! —-124 123 '—123 147 | -127 149 '—-128 156
1 (0.19) (0.25) 1 (0.16) (0.20) ! (0.15) (0.18) ' (0.16) (0.15) ! (0.12) (0.14)
24 —124 140 1 —125 131 1 —139 136 1 —1.42 142 1 —1.55 146
1(0.16)  (0.22) 1 (0.11) (0.18) 1 (0.14) (0.15) | (0.14) (0.14) | (0.11) (0.12)
36 —134 148 ! —133 151 ! —146 150 | —147 160 ' —1.57 1.6l
C(0.11) (0.21) ' (0.14) (0.15) ' (0.12) (0.13) ! (0.15) (0.13) ! (0.10) (0.13)
48" —144 149 ' —151 157 1 —159 158 1 —155 160 ' —171 168
C(0.13)  (0.12) 1 (0.10) (0.13) 1 (0.09) (0.10) 1 (0.09) (0.10) i (0.06) (0.08)
"LML-Step 12 =125 155 | —121 152 ,—131 1.16 | —138 120  —149 125
1 (0.20) (0.25) ! (0.13) (0.12) ' (0.14) (0.19) | (0.14) (0.12) ' (0.14) (0.16)
24" —142 155 ' —149 163 ' —142 139 ' —1.52 150 | —1.56 1.48
C0.11) (021) 1 (0.13) (0.13) 1 (0.17)  (0.18) 1 (0.14) (0.12) ! (0.12) (0.16)
36 —1.46 141 1 —152 146 1 —156 151 + —1.65 152 1 —1.74 157
1(0.13)  (0.17) | (0.12) (0.12) | (0.18) (0.13) | (0.17) (0.09) | (0.12) (0.14)
48 —131 115 ! =137 1.9 ' —140 155 '—148 167 ' —173 1.80
,,,,,,,,,,,,,,, (0.12) (0.13) | (0.15)  (0.15) | (0.11) (0.10) | (0.09) (0.11) | (0.06) (0.10)
LML-Spline 12 "—133 124 ' —128 116 ' —145 126 ' —148 138 ' —152 147
(0.18)  (0.22) 1 (0.19) (0.18) 1 (0.15) (0.16) 1 (0.15) (0.19) 1 (0.12) (0.14)
24" —137 128 | —124 122 | —157 127 | —-166 144 | —-1.60 1.46
(0.15)  (0.18) ! (0.15) (0.18) ! (0.12) (0.16) ' (0.14) (0.16) ' (0.13) (0.16)
36 —141 107 ' —148 121 ' —138 161 '—146 165 ' —1.60 1.73
(0.16) (0.17) 1 (0.11)  (0.19) 1 (0.1) (0.19) ' (0.12) (0.11) 1 (0.10) (0.12)
48 —137 116 1 —136 122  —149 1.65 | —161 159 + —1.73 1.77
(0.14) (0.11) , (0.12) (0.11) | (0.09) (0.09) | (0.07) (0.12) , (0.07) (0.06)
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Table A17. Means and st. dev. of modal estimates of a),,l, in DGP 2 (trimodal, T = 4)

Model N=170 N =210 N =490 N =980 N =1,960
Kk « Maxl Max2 Max3 K Maxl Max2 Max3 , Maxl Max2 Max3 K Maxl Max2 Max3 K Maxl Max2 Max3
Real SLI2 177 361 0102 177 361 | 112 177 361 | -L12 L7736l | L1217 361
MXL-NPref. 6 ' 113 - S R R A =R TS SIS -
,,,,,,,,,,,,,, 0200 o p29 02 102y 02
MXL-NWTP 6 1.15 = = I = 118 = - 127 T = z 138 = -
,,,,,,,,,,,,,, T (X S 0 N 1 S = N
LML-Poly 27-189 310 — 1-180 316 ~— o076 323 Z U172 329 - o138 336 -
021) (0.35) 1(0.22) (0.18) 1(0.19) (0.29) 1(0.15) (0.26) 1(0.13) (0.25)
24' —191 319 — 1 —181 325 — 1 —178 332 — 1 —174 222 404 1 —139 200 3386
0.22) (0.37) 1 (024)  (0.19) 1 (022)  (0.25) 1 (0.14) (0.28) (0.39) 1 (0.15) (0.25) (0.32)
36 —1.86 332  — | —177 224 437 ' —173 220 428 ' —170 215 420 | —136 194 372
0.19) (0.32) 1021) (025) (0.41)! (024) (0.24) (0.38) ' (0.13) (021) (0.35) ' (0.16) (0.22) (0.34)
48 —177 233 439 1168 221 417 ' —179 217 409 1 —161 213 401 1129 191 368
,,,,,,,,,,,,,,, (0.18) (0.28) (046) 1 (0.19) (020) (0.38) 1 (0.22) (021) (0.36) 1 (0.10) (020) (0.33) 1 (0.12) (0.18) (0.29)
LML-Step 277198 326 — | —18 332 — | —i84 339 = =181 345 - | -145 352 =
0.24) (0.31) 1 (0.21)  (0.22) 1 (0.22)  (0.19) 1 (0.12)  (0.29) 1 (0.12)  (0.17)
24' —190 335 — ' —180 342 - ' -176 348 - ! —173 219 415 '-138 197 382
023) (0.27) 1(020) (022) 1(023) (0.18) (0.15) (031) (0.46) ! (0.13) (0.16) (0.33)
36 —1.83 349  — 1 —174 226 420 1 —170 222 437 | —1.67 217 403 1 —134 195 371
0.25) (0.26) 1 (0.24) (0.25) (0.42) | (0.27) (0.16) (0.39), (0.14) (0.26) (0.44) , (0.15) (0.14) (0.36)
48" —1.76 242 446 | —1.67 230 424 | —177 225 424 ' —161 221 407 ' —128 189 3.68
,,,,,,,,,,,,,,, (021 (0.22) (0.51) | (021) (0.23) (040) | (0.19) (0.20) (0.37) | (0.14) (0.20) (0.39) | (0.09) (0.15) (0.34)
LML-Spline ~~ 127 =201 318 — 1—191 324 = 1187 33l U183 337 ST TTI147 344 ©
0.14)  (0.27) L021) (0.19) 1 (0.22) (0.21) 1 (0.19) (0.15) 1 (0.16)  (0.25)
24" —189 327 — 1 -190 334 — | -176 340 — | -175 215 411 ,—138 201 379
0.15)  (0.29) 1 (0.19) (0.24) ' (022) (0.23) ' (0.18) (0.25) (0.49) ! (0.14) (0.29) (0.40)
36 —1.89 340 - ! —180 319 - ! -179 315 - ! -172 211 409 !-135 193 376
0.12) (0.32) 1(024) (0.15) 1(022) (024) 1O0.17) (026) (042)1 (0.16) (0.28) (0.42)
48 ' —1.83 239 440 | —174 227 418 | —1.70 223 410 | —1.71 218 401 1 —134 192  3.69
0.16) (0.24) (0.44) | (0.20) (0.13) (0.41) | (0.22) (0.17) (0.22) ; (0.11) (0.23) (0.38) | (0.11) (0.24) (0.36)
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Table A18. Means and st. dev. of modal estimates of a),,l, in DGP 2 (trimodal, T = 8)

Model N =70 N =210 N =490 N =980 N =1,960
K : Maxl Max2 Max3  Maxl Max2 Max3 , Maxl Max2 Max3 , Maxl Max2 Max3 A Maxl Max2 Max3
Real (-L12 177 361 I -112 177 361 | 112 177 361 | -112 177 36l | -112 177 36l
MXL-NPref. 6 ' 124 - - 1128 = - 1135 = - L3 = - 8 - -
0.22) 1 (0.23) 1 (0.25) 1(0.23) 1 (0.28)
MXL-NWTP 6 ' 1.26 - - 1 133 - - 1138 - - 1157 - - 1 149 - -
0.27) ' (0.30) ' (0.25) ' (0.26) ' (0.22)
"LML-Poly ~~ I2-180 295 =171 300 - o067 306 - -164 313 -7 S030 309 =
0.23)  (0.33) 1(021) (0.19) 1(0.20) (0.31) 1(0.13) (0.26) 1(0.14) (0.22)
24" —181 3.03 - =172 3.09 — 1 —169 315 418 1 —166 211 384 1 —132 190 3.67
0.25) (0.35) 1 (0.24)  (0.21) 1(0.23) (0.23) (0.41), (0.12) (0.28) (0.37) | (0.13) (0.26) (0.35)
36 —1.77  3.15 — 1 —168 213 415 | —165 209 407 | —-1.61 205 399 | —-129 184 3.53
0.20)  (0.30) 1021) (024) (042) ! (022) (022) (0.36) ! (0.12) (021) (0.36) ! (0.14) (0.24) (0.33)
48' —168 221 417 1—160 210 396 ' —1.57 206 388 ' —153 202 381 ' -123 18 350
0.16)  (0.22) (0.44) 1 (0.20) (0.24) (0.37) 1 (021) (0.19) (0.38) + (0.12) (0.20) (0.32) 1 (0.11) (0.15) (0.28)
"LML-Step 12188 309 = =179 315 - 175 322 = 120 3280 2T o137 335 -
(0.25)  (0.30) 1 (0.20) (0.23) 1 (0.25)  (0.19) 1 (0.11)  (0.23) 1 (0.13)  (0.17)
24" —1.80 3.18 - =171 325 - 1 -168 331 421 ! -164 208 394 ' —131 187 3.3
0.24)  (0.24) 1(022) (0.24) 1(0.26) (0.17) (043) ! (0.15) (032) (048) 1 (0.13) (0.14) (037)
36 —1.74 331 — 1165 215 399 1 —162 210 416 1 —159 206 391 —127 186 3.58
0.22) (0.25) 1 (0.25) (0.22) (0.45), (0.23) (0.18) (0.37) | (0.14) (0.22) (0.43) | (0.14) (0.14) (0.38)
48 ' —1.67 230 424 ' —1.68 218 403 | —166 214 408 ' —153 202 387 '-122 181 35l
,,,,,,,,,,,,,,, (024 (024) (0.53) | (0.22) (0.25) (042) | (021) (0.22) (0.34) | (0.17) (0.19) (040) | (0.10) (0.16) (0.33)
LML-Spline ~~ 12 =191 3.02 - -181 308 27078 T 34 — T -174 7320 - 139 327 =
0.16) (0.27) 1 (0.21)  (0.19) 1(0.22) (0.21) 1 (0.19)  (0.15) 1 (0.16)  (0.25)
24" —1.80 3.11 - 1 -171 317 — 1 —1.67 323 432 | -164 205 391 ,—131 184 3.60
0.15)  (0.29) 1 (0.19) (0.24) 1(022) (0.23) (0.46) | (0.18) (0.25) (0.49) ! (0.14) (0.29) (0.40)
36 —1.88 3.23 - '—173 208 412 ! —1.67 204 404 ' —166 200 388 '-129 183 357
0.15)  (0.32) 1(024) (0.15) (048) 1 (0.22) (0.24) (044) 1 (0.17) (026) (0.42)! (0.16) (0.28) (042)
48 ' —1.74 227 418 1 —1.65 216 397 1 —162 211 396 1 —159 198 381 1 —127 179 351
0.15)  (0.24) (0.44) , (0.20) (0.13) (0.41) , (0.22) (0.17) (0.22) | (0.11) (0.23) (0.38) | (0.11) (0.24) (0.36)
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Table A19. Means and st. dev. of modal estimates of a),f in DGP 2 (trimodal, T = 4)

Model N =170 N =210 N =490 N =980 N =1,960

K : Maxl Max2 Max3 , Maxl Max2 Max3 K Maxl Max2 Max3  Maxl Max2 Max3 K Maxl Max2 Max3
Real 136 368 582 | 136 368 582 | 136 368 582 | 136 368 582 | 136 368 582
MXL-NPref.” 6 392 = — 1401 = - T4 = — 1405 = — 1401 = =
1 (0.47) 1 (0.51) 1 (0.48) 1 (0.46) 1 (0.42)
MXL-NWTP 6 ' 4.10 - — 1 404 - — 1399 - — | 408 - - 412 - -
(0.58) 1 (0.49) L (0.47) 1 (0.39) ' (0.36)
"LML-Poly 12 026 324 — ' 041 321 - 074 346 - 1080 353 - 087 360 —
0.04) (0.41) 1(0.05) (0.28) 1(0.13) (0.29) 1(0.08) (0.30) 1(0.12) (0.29)
24" 025 321 — 1024 360 — 1029 368 — 1031 328 525 1 034 338 534
1 (0.04) (0.36) 1 (0.06) (0.31) 1 (0.09) (0.32) 1 (0.05) (0.29) (0.48) | (0.03) (0.28) (0.45)
36" 029  3.29 — 1050 308 514 ! 067 331 521 ! 072 338 531 | 079 345 543
1 (0.03) (0.37) LI (030) (0.55) ! (0.16) (0.26) (0.51) ! (0.11) (0.28) (0.49) ' (0.10) (0.28) (0.42)
48' 068 301 5151 079 332 521 ' 087 334 527 1 094 341 534 102 350 555
©(0.13)  (0.35) (0.53) 1 (0.12) (0.29) (0.48) 1 (0.19) (0.28) (0.46) 1 (0.08) (0.25) (0.44) 1 (0.08) (0.25) (0.39)
TLML-Step 127033 331 — 17038 350 - 048 363 - 1051 370 =056 375 -
(0.05) (0.40) 1 (0.06)  (0.30) 1(0.07) (0.32) 1 (0.06) (0.26) 1 (0.08) (0.26)
24' 015 332 - ' 017 328 - 1017 324 - 019 325 516 ' 021 327 529
1(0.02) (038) 1(0.03) (0.31) 1(0.01) (0.29) 1(0.02) (0.25) (0.46) ! (0.05) (0.30) (0.44)
36 022 338 — 1043 312 518 1 069 319 520 075 330 522 . 081 337 525
1 (0.02) (0.35) 1 (0.08) (0.28) (0.43) | (0.10) (0.28) (0.47) | (0.12) (0.27) (0.42) | (0.10) (0.28) (0.45)
48 078 304 522 ! 082 322 525 ! 085 329 523! 092 336 531 | 100 345 549
,,,,,,,,,,,,,,, 0.10) 032) (049) ] 0.11)_(029) (045} (012) (025) (041) ] (0.15) (024) (040) | 013) (0.22) (038)
LML-Spline 12040 336 — | 061 347 - 7091 369 - 1098 377 - 7107 38 -
0.06) (0.34) 1(0.25)  (0.20) 1(0.24)  (0.35) 1 (0.16)  (0.21) 1(0.13)  (0.31)
24" 009 341 - 1017 36l -~ 1019 336 — 021 321 513,023 323 529
1 (0.01) (0.41) ' (0.26) (0.23) ' (0.03) (0.32) L(0.18) (0.22) (0.27) | (0.17) (0.24) (0.25)
36" 025 335 - 1038 343 - 1043 353 — 1046 326 523! 050 331 536
1 (0.04) (0.39) 1(0.20) (0.21) 1 (0.06) (0.31) 1(0.15) (0.25) (0.28) 1 (0.16) (028) (0.27)

48" 085 302 518 1 075 325 523 1 093 328 531 1 100 334 5331 109 344 560
T(021) (0.33) (0.35) 1 (0.22) (0.18) (0.35) 1 (0.19) (0.29) (0.35) | (0.15) (0.24) (0.23) | (0.12) (0.24) (0.25)
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Table A20. Means and st. dev. of modal estimates of a),f in DGP 2 (trimodal, T = 8)

Model N =170 N =210 N =490 N =980 N =1,960

K : Maxl Max2 Max3 , Maxl Max2 Max3 K Maxl Max2 Max3  Maxl Max2 Max3 K Maxl Max2 Max3
Real 136 368 582 | 136 368 582 | 136 368 582 | 136 368 582 | 136 368 582
MXL-NPref. 6 386  — - 1397 = - A - — 1408 = - 415 - —
' (0.45) 1 (0.46) 1 (0.44) 1 (0.43) 1 (0.44)
MXL-NWTP 6 ' 3.98 - — 1395 - - | 414 - - 412 - — 1420 - -
(0.50) 1 (0.48) ' (0.42) L (0.47) ' (0.42)
"LML-Poly 127031 333 - ' 043 331 - 1076 356 - 08 360 — 091 368 —
0.06) (0.40) 1(0.05) (0.28) 1(0.13) (0.29) 1(0.08) (0.30) 1(0.14) (0.23)
24" 028 330 — 1025 371 — 1030 381 — 1032 339 531 1 035 340 535
' (0.05) (0.35) 1 (0.06) (0.31) 1 (0.09) (0.32) 1 (0.05) (0.26) (0.46) | (0.09) (0.23) (0.44)
36" 029 333 — 1067 320 528 ! 070 340 543 ! 074 347 532 | 083 351 544
1 (0.05) (0.36) LI (030) (0.55) ! (0.16) (0.26) (0.51) ! (0.11) (0.24) (0.52) ' (0.11) (0.25) (0.40)
48' 071 312 516 1 084 345 540 1 090 339 536 1 095 351 552 0 107 355 566
©(0.13)  (0.35) (0.53) 1 (0.12) (0.29) (0.48) 1 (0.19) (0.28) (0.46) 1 (0.09) (0.27) (0.45) 1 (0.09) (0.24) (0.37)
TLML-Step 127038 343 = 77039 350 - 7049 371 T Z 77052 379 - 058 394
(0.05) (0.38) 1 (0.06)  (0.30) 1(0.05) (0.32) 1 (0.05) (0.26) 1 (0.08) (0.25)
24" 0.18 348 - 018 336 - 018 332 - 019 326 519! 021 330 536
L (0.04) (036) 1(0.07) (0.30) 1(0.06) (0.29) 1(0.04) (0.25) (0.46) 1 (0.03) (0.30) (0.44)
36 029 353 — 1066 321 527 1 071 331 545 . 078 339 529 . 082 349 543
1 (0.05) (0.35) 1 (0.11) (0.26) (0.43) | (0.12) (0.28) (0.45) | (0.13) (0.27) (0.42) | (0.10) (0.26) (0.45)
48 082 317 531 | 082 324 546 | 086 333 535! 093 339 536 | 1.04 359 569
,,,,,,,,,,,,,,, 0.12) 029) (049) ] 014) (0.26) (045} (0.14) (025) (040) } (0.16) (024) (040) | 013) (0.22) (038)
LML-Spline 12 041 346 — 1062 348 — 7094 370 - 10l 380 — 1108 405 =
0.07)  (0.40) 1 (0.15)  (0.24) 1(0.13)  (0.32) 1(0.16)  (0.26) 1(0.18)  (0.34)
24°' 009 343 — 017 378 — 020 340 — 021 330 520, 024 335 548
1 (0.03) (0.34) ' (0.04) (0.28) ' (0.09) (0.32) 1 (0.05) (0.26) (0.25) ! (0.05) (0.27) (0.32)
36" 034 351 — 1071 331 538 ! 044 332 540 ! 047 327 545 ' 052 341 546
1 (0.07) (0.33) 1(0.12) (0.26) (041) 1 (0.10) (030) (038) 1 (0.07) (0.26) (0.25) ' (0.14) (028) (0.35)

48" 085 3.4 541 1 092 334 532 1 093 341 543 1 102 342 559 1 115 360 563
"(0.14)  (0.36) (0.35) 1 (0.14) (0.28) (0.35) | (0.12) (0.32) (0.35) | (0.13) (0.28) (0.31) | (0.16) (0.28) (0.30)
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