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Logit mixed logit under asymmetry and

multimodality of WTP:

a Monte Carlo evaluation

Abstract

The logit-mixed logit (LML) model advances choice modelling by generalizing previous

parametric and semi-nonparametric specifications and allowing retrieval of flexible taste

distributions. Using standard operating conditions in the field, we report results from

Monte Carlo experiments designed to assess the finite sample bias-variance tradeoff for

the LML using as a benchmark conventional Mixed logit models (MXL) under asymmet-

ric and multi-modal taste distributions. The LML specification always outperforms the

MXL in terms of bias, but when the variance around modes is high the mean squared

error (MSE) is lower than that of MXL only at sample sizes larger than usual and with

some nuances. D-error minimizing experimental design predicated on multinomial logit

significantly reduces MSE, but no clear winner is found between polynomial, step, and

spline functions for the multidimensional grid function. Analysis of empirical data from a

choice experiment on tap water shows that multimodality emerges only if higher number

of node parameters are used in the LML.

Key words: logit mixed logit, choice modelling, random utility, utility in WTP-space,

semi-parametric choice models

JEL classification: C14, C35, Q25



The modelling of how taste differs across people dominates the field of contemporary

choice analysis. For the most part, to model such diversity, empirical studies rely on con-

tinuous taste distributions with a single modal value (normal, log-normal, triangular, etc.).

Few applications account for the effects of multiple modal values (i.e. multimodality). Yet,

accurately identifying high frequencies of taste over specific ranges can be of great practi-

cal importance in policy design. For example, when developing policies relies on sorting or

price-discrimination (Chen and Iyer 2002; Belleflamme, Lam, and Vergote 2017) one can

identify willingness to pay ranges with high frequency of people. Some degree of approxi-

mation to multimodal preferences can be achieved by using discrete, rather than continuous

distributions, as implemented in latent class models. But this comes at the cost of ‘lumpy’

rather than ‘smooth’ distributions, which might be counter-intuitive in other respects. Real

taste distributions not only are likely to be continuous and to display more than one modal

value, but they are also often asymmetric around these modal values. This is corroborated

by the few empirical studies that addressed this issue in transport choice (Fosgerau and

Hess 2007), choice of video streaming services (Train 2016) and in food choice (Scarpa,

Thiene, and Marangon 2008; Caputo et al. 2018; Bazzani, Palma, and Nayga 2018). In this

study we first report the results of a large scale Monte Carlo (MC) esperiment to explore the

properties of a recently introduced semi-parametric estimator capable of uncovering mul-

timodality and asymmetry of continuous taste distributions: the logit mixed logit model

Train (2016). Secondly, we provide an empirical application on choice experiment data

whose results demonstrate the practical effectiveness of the proposed specification.

Specifically, we explore the properties of the logit mixed logit (LML) specification using as

a benchmark the conventional mixed logit with normal random coefficients (MXL), which

has emerged as the default choice in most published applications. In our literature review

of five top journals in environmental economics we find that in the period 2012-2019 as

many as 89 papers used MXL specifications with normal distributions for the random taste
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parameters. Both MXL and LML estimators are asymptotically consistent under the correct

specification. So, our MC design is geared towards increasing our understanding of their

bias-variance tradeoff in finite sample sizes. This knowledge is of practical importance to

assess the conditions for asymmetry and multimodality to be effectively addressed.

As the name suggests, the LML contains two logit formulations: one for the decision

maker’s probability to choose an alternative, the other for her/his probability of having

given taste parameter values from a specific interval. The exponential terms in the latter

logit formulation ensure a positive probability, while the denominator ensures normaliza-

tion (i.e. that all probabilities sum to one). The shape of the logarithm of the mixing dis-

tribution can be defined by different type of functions such as polynomials, step functions,

and splines, among many others. This estimator has been supplied with general purpose

code in MatLab and presents very desirable computational features (see Bansal, Daziano,

and Achtnicht 2018b, for further refinements). Early applications of the LML involved a

favourable comparison between stated and revealed preference choice data in an experi-

mental setting using induced value (Bazzani, Palma, and Nayga 2018), and an exploration

of the consequences of range size, asymmetry and multimodality when the assumption of

taste distribution is normal in a stated food choice (steak) setting (Caputo et al. 2018).

Mixed logit model estimators, such as MXL and LML, are consistent only asymptotically

and under the correct specification. When the true taste distribution is multimodal and

asymmetric, if these features are ignored—as it happens with MXL based on continuous

unimodal distributions—consistency is lost. This is not the case for the LML estimator,

for which—as the sample size increases—we obtain convergence in probability to the true

parameter values. At finite sample sizes, however, both are biased, albeit with different

variances. One contribution of this study is to characterize the bias-variance tradeoff within

a practical range of sample sizes, under the specific conditions of multimodality and asym-

metry assumed for the data generating processes (DGPs). To explore such tradeoff we use
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the mean squared error decomposition:

(1) MSE(q̂) = BIAS(q̂)2 +Var(q̂),

derived from a specifically designed set of MC experiments, based on 2 DGPs each re-

peated at 5 sample sizes, 3 separate experimental designs, and 2 lengths of choice se-

quences (60 experiments in total) each generating 1,000 synthetic datasets, which in turn

were estimated using 14 specifications (see the original working paper by Scarpa, Frances-

chinis, and Thiene 2017, for additional details). The total number of estimates obtained are

840,000, for a total of 840 empirical measures of MSE(q̂).

With these experiments we also explore the effects of other practically salient determinants

of MSE, such as experimental design criteria, type of function for the grid of probability

weights and length of the sequence of choices. While working at this project we came

across the study by Bansal, Daziano, and Achtnicht (2018a), who conducted a similar MC

study, albeit at a much smaller scale of resolution than ours,1 and studied the conditions

that determine the ability of LML to retrieve random coefficient distributions based on

frequently employed parametric distributions (normal, log-normal, uniform, symmetric bi-

modal normal, uniform, discrete and discrete log-normal) using specifications with utility

in WTP-space. One limitation of their choice of DGPs is that they only explored symmet-

ric bimodal distributions with identical and rather small variances around the modal values

(e.g. bimodal normal with same variance and means �1 and 1; discrete with probability

1/3 and mass at �2,0, and 2). In real life multimodal distributions are more likely to be

asymmetric, and there is often evidence of more than two modal values each with a di-

verse and possibly large variance. Asymmetry implies differences in variances around the

modal values. When variance is large around one of the modal values and these values are

close, there is an obvious issue of identification of modal values, and consequently accurate

estimation is complicated.
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While we contribute to the literature by studying the complementary issue of asymmetry of

distributions, our study is also an extension of their work, which did not place any specific

focus on issues such as the bias-efficiency tradeoff at practical sample sizes, the presence of

a third modal value in the data generatig process, and on the role of efficient experimental

design, which are all additional contributions of this study. Together the two studies will

provide a rather complete characterization of the finite sample size properties of the logit-

mixed logit model.

The correct retrieval of modes in preference distribution is salient in applied welfare analy-

sis for public goods for their relation to median voter behaviour, and hence political markets

for public good provision (e.g. see the discussion in Mitchell and Carson 1989). Finally,

in this study we endeavour to refer to the common operating conditions prevailing in the

agricultural, food and environmental economics literature, which are quite different from

those prevailing in transport choice analysis, which instead inspired Bansal, Daziano, and

Achtnicht (2018a).

In addition to the MC experiment results, we provide empirical saliency by illustrating

a case study in which standard parametric approaches lead to overlooking some features

that instead emerge as important once the LML estimator is employed. We analyze the

preferences of 832 households in a part of the province of Vicenza (North Italy) for tap

water attributes. Residential water supply is a complex quasi-public good jointly managed

by water utilities and regulatory bodies (Willis and Scarpa 2002; Willis, Scarpa, and Acutt

2005; Hensher, Shore, and Train 2005; Scarpa, Willis, and Acutt 2007; Rungie, Scarpa, and

Thiene 2014; Thiene, Scarpa, and Louviere 2015) as natural monopolies. Gathering infor-

mation about customer preference is important in order to strategically define investment in

infrastructure to improve factor services, such as water delivery, quality of water treatment

and sewer services. If a water factor service produces benefits to utility costumers, this is
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deemed worth of further investment by improving infrastructure and it may strengthen the

case for increasing water tariffs in the eyes of regulators.

Exploring the benefits of semi-parametric LML specifications over standard parametric

ones in this empirical context is worthwhile. Although there is insufficient space to delve

deep into this here, knowing the distribution features of the benefits can be important to

calibrate infrastructure investment. For example, knowing if the high benefit mean of the

entire distribution is underpinned by two modes, with one at a relatively low benefit value

and a second at a high level of benefits, has dramatically different implications from a

situation in which the population displays a single mode perhaps centred on the mean,

as it would induce different strategies in investments and funding. The objective of this

empirical application is to explore the implications of alternative LML specifications with

varying number of parameters on the estimates of the distributions of WTP values for the

improvement of tap water services. Since the true distribution of WTP is unknown, we

compare the distributions of WTP estimates of LML with MXL and assess the benefits of

using LML over parametric specifications. Asymmetry and multimodality emerge as key

features.

The remaining paper is organized as follows: the next section illustrates MXL and LML

models, the subsequent section describes the MC experiment design and discusses simula-

tion results. The empirical study and its results are described in the section preceding the

conclusions of the paper.

Econometric modeling

The repeated choice Mixed Logit Model with normals (MXL)

We start with the illustration of the most commonly used mixed logit specification to date.

The repeated choice MXL model represents random taste heterogeneity by allowing for
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different preference parameters for each decision-maker (Revelt and Train 1998). Con-

ditional on the individual’s taste coefficients bbb
n
, the utility derived by individual n from

choosing alternative i in choice occasion t is logit:

(2) Unit = bbb 0
n
xnit + enit , where n = 1, ...,N; i 2 J; t = 1, ...,T.

bbb
n

is a vector of parameters that varies across individuals with an assumed continuous

mixing distribution in the population; xn jt is a conformable column vector of observed

attributes of alternative i; en jt is the independent error term assumed to follow a Gumbel

distribution. The conditional probability Pn(it|bbb n
) of individual n choosing alternative i in

choice occasion t is logit:

(3) Pn(it|bbb n
) =

exp(bbb 0
n
xnit)

ÂJ

j=1 exp(bbb 0
n
xn jt)

.

Many variants of the MXL models can be obtained by assuming different mixing distri-

butions of the random parameters. The most commonly used is the MXL that imposes a

multivariate normal mixing distribution, i.e., bbb
n
⇠ N (µµµ,SSS). Let ynit = 1 if individual i

chooses alternative i in choice situation t, and 0 otherwise. For a panel of T choices, the

unconditional probability of the sequence of T preferred alternatives when individual n is

facing J alternatives in each choice task is:

(4) Pn(iT |bbb ,SSS) =
Z (

T

’
t=1

J

’
j=1

"
exp(bbb 0

n
xnit)

ÂJ

j=1 exp(bbb 0
n
xn jt)

#
ynit

)
f(bbb

n
|µµµ,SSS)dbbb

n
,

where f(bbb
n
|µµµ,SSS) is the multivariate normal density function with mean hyperparameter

vector µµµ and variance-covariance matrix SSS for the random taste parameters bbb
n
. Hyper-

parameters in the MXL model are typically estimated via maximum simulated likelihood

(Gouríeroux and Monfont 1996).
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The repeated choice Logit Mixed Logit model (LML)

In LML models (Train 2016), the joint mixing distribution of the random parameters bbb
n

is assumed to be discrete over a finite support set S. Discretization is not a constraint

because the support set is essentially a multidimensional grid. The analyst can choose this

to be made larger and denser by considering a broader domain of parameters and a higher

number of grid points. The joint probability mass function of random parameters in LML

is specified by the following logit formula:

(5) wn(bbb r
|aaa) = Pr(bbb

n
= bbb

r
) =

exp(aaa 0
z(bbb

r
))

Âs2S exp(aaa 0z(bbb
r
))
,

where aaa is a vector of parameters, z(bbb
r
) defines the shape of the mixing distribution, and

r denotes the point in the grid for the evaluation of bbb . The unconditional probability of the

sequence of choices of individual n is the following weighted sum:

(6) Pn( jT |aaa) = Â
r2S

(
T

’
t=1

J

’
j=1

"
exp(bbb 0

n
xnit)

ÂJ

k=1 exp(bbb 0
n
xn jt)

#
ynit

)
wn(bbb r

|aaa).

In LML models, the vector aaa is estimated using the (simulated) maximum likelihood esti-

mation procedure. This obviates the frequent problem of a lengthy convergence time and

testing of stability of posterior, typical of Bayesian approaches, which is often a hindrance

in panel choice models.2 Inclusion of all the points of the support set in the estimation of

LML is unnecessary and computationally expensive, so a subset of points is drawn from S.

Using the logit formula in equation 5 to compute probability mass of random parameters re-

sults into an efficient computation of the gradient of the sample log-likelihood, facilitating

the use of gradient-based methods in estimation.
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The z functions in LML models

A critical issue in LML model is the specification of the S variables that describe the mix-

ing distribution and its grid points. Following Train (2016), we adopt three different func-

tions: i) polynomials (LML-Poly), ii) step function (LML-Step function), iii) spline (LML-

Spline).

An important feature of LML-Poly is that many commonly employed distributions can be

approximated by varying the order of the polynomial. For example, Train (2016) shows

that the normal distribution can be introduced in LML framework by considering z(bbb
r
)

to be a second order polynomial of a special form. The polynomial can be extended to

higher orders to gain greater flexibility of the mixing distribution, bearing in mind that

the number of inflection points is equal to the polynomial order minus one. Among the

various categories of polynomials, orthogonal polynomials (e.g. Legendre, Hermite, Jacobi,

Chebyshev, Bernstein etc.) have the advantage of having uncorrelated terms. Dependence

among the elements of multidimensional bbb can still be captured by cross-products of the

terms of each element’s polynomial.

A second alternative consists of defining z(bbb
r
) as a step function based on a grid over the

parameter ranges (i.e. the support set S). Suppose S is partitioned into M subsets, labelled

as Tm where m = {1,2, ...,M}. Let the probability mass function W (bbb ) be the same for

all points within each subset, but different among subsets. Then, the logit formula for the

probability masses is:

(7) wn(bbb r
|aaa) = Pr(bbb

n
= bbb

r
) =

exp
�
ÂM

m=1 amI(bbb
r
2 Tm)

�

Âs2S exp
�
ÂM

m=1 amI(bbb
s
2 Tm)

� .

The z variables are the M indicators which identify the subset containing bbb
r
. If the subsets

do not overlap, then one of the coefficients is normalized to zero. With overlapping subsets,

instead, one coefficient is normalized to zero for each possible way of covering the set S.
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In LML-Step function the number of estimated parameters is equal to the number of grid

points.

Finally, a linear spline can be used to define z(b ), once defined over h knots. Spline

functions connect piece-wise polynomial functions at a high degree of smoothness and in

a linear setting they can be written in the form aaa 0
z(b ), as needed in the LML specification.

Consider a simple example of spline with h = 2 and with starting point at b1, ending point

in b4, and place the two knots at b2 and b3, with b1 < b2 < b3 < b4. Let the corresponding

elements of the vector aaa define the spline heights. The elements of vector z(b ) in this case

are:

(8)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

z1(b ) =
⇣

1� b�b̄1
b̄2�b̄1

⌘
I(b  b̄2)

z2(b ) =
⇣

b�b̄1
b̄2�b̄1

⌘
I(b  b̄2)+

⇣
1� b�b̄2

b̄3�b̄2

⌘
I(b̄2 < b  b̄3)

z3(b ) =
⇣

b�b̄2
b̄3�b̄2

⌘
I(b̄2 < b  b̄3)+

⇣
1� b�b̄3

b̄4�b̄3

⌘
I(b3 < b )

z4(b ) =
⇣

b�b̄3
b̄4�b̄3

⌘
I(b3 < b )

,

where I(·) is an indicator function.

Monte Carlo experiment

To assess the performance of different model specifications, we conducted a Monte Carlo

(MC) study based on a utility function with three attributes with random coefficients. The

first and the second attribute are assumed to be non-monetary, whereas the third is the

price attribute. Because the use of dummy-coding is prevalent in this literature, the two

non-monetary attributes were coded as dummy variables, taking the values of 0 and 1, in-

dicating their presence or absence in the alternative they describe. The price attribute was

continuous and also with two levels, with values of 1 and 2. The true data generation pro-
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cesses (DGPs) were based on asymmetric and bi- and tri-modal distributions, with utility

specified in WTP-space, so that coefficients are interpretable as marginal WTPs (mWT P).

Random utility specification

Consistently with random utility theory, it was assumed that respondent select the alterna-

tive with maximum utility out of two available alternatives. The utility of respondent n for

alternative i in choice occasion t was specified in the WTP-space (Train and Weeks 2005)

as:

(9) Unit(bn) = l ⇤
n
(w1

n
x

1
nit

+w2
n
x

2
nit

� pnit)+ enit ,

where l ⇤
n

is the price/scale coefficient and w1
n

and w2
n

are the mWT P for attribute 1 and

attribute 2, while enit is distributed i.i.d. Gumbel.

Data generating processes

To compare performance between MXL and LML models at increasing levels of complex-

ity of mWT P distributions, we generate two DGPs. In DGP 1, w1
n

and w2
n

are generated

following a bimodal distribution, obtained by mixing two normals, whereas the price/scale

coefficient l ⇤
n

is assumed to follow a mixture of two log-normals, to ensure a positive sign.

The price coefficient pi was assumed to be fixed to �1. The random utility component

en jt follows a standard Gumbel distribution, so as to have a logit choice probability. The

distribution parameters in DGP 1 are asymmetric and bimodal, as follows:

(10) w1
n
⇠ N (µµµ1,SSS1) with µµµ1 =

2

64
0.5

1.2

3

75SSS1 =

2

64
0.04 0

0 0.04

3

75 with Pr =

2

64
0.3

0.7

3

75 ,
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(11) w2
n
⇠ N (µµµ2,SSS2) with µµµ2 =

2

64
�1.5

1.5

3

75SSS222 =

2

64
0.25 0

0 0.25

3

75 with Pr =

2

64
0.6

0.4

3

75 ,

(12) l ⇤
n
= exp(q),q ⇠ N (µµµ,SSS) with µµµ =

2

64
0.5

1

3

75SSS =

2

64
0.25 0

0 1.0

3

75 with Pr =

2

64
0.5

0.5

3

75 .

The shape of the distributions for both random mWT Ps for attributes used in DGP 1, w1

and w2, are shown in the upper panel of Figure 1. Note that the distribution for w1 has two

different modes, one at high benefits, the second at low benefits. The density for the latter

is much higher than the density for higher benefits. This represents a situation with a small

group of high beneficiaries and a much larger group of low beneficiaries, not uncommon in

practice.

Also note that in the distribution for w2 one mode is negative and has higher density than its

positive counterpart. This is to denote asymmetric distributions of winners and losers linked

to the supply of that binary level attribute. This is often the case for attribute controversially

valued by the population. In the real world, these two forms of asymmetric bimodality in

the distribution of benefits are common (e.g. from a public good provision). If they were

incorrectly assumed to have a single mode with intermediate modal value then severely

erroneous policy prescriptions would follow.
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In DGP 2, both mWT Ps have asymmetric and trimodal distributions, obtained as a mixture

of three normals (Figure 1, lower panel). The DGP 2 parameters have the following values:

(13) w1
n
⇠ N (µµµ1,SSS1) with µµµ1 =

2

66664

1.5

3.5

�1.2

3

77775
SSS1 =

2

66664

0.04 0 0

0 0.25 0

0 0 0.04

3

77775
with P =

2

66664

0.3

0.3

0.4

3

77775
,

(14) w2
n
⇠ N (µµµ2,SSS2) with µµµ2 =

2

66664

5.5

3.0

1.2

3

77775
SSS2 =

2

66664

0.25 0 0

0 0.25 0

0 0 0.09

3

77775
with P =

2

66664

0.3

0.3

0.4

3

77775
,

(15) l ⇤
n
= exp(q),q ⇠ N (µµµ,SSS) with µµµ =

2

64
0.1

1.2

3

75SSS =

2

64
0.01 0

0 0.02

3

75 with P =

2

64
0.4

0.6

3

75 .

In this case, in the distribution for w1, the two positive modal densities (y-axis) differ by

less than in DGP 1 and are contrasted by the highest modal density in the negative x-axis.

For the value distribution of attribute 1 this denotes strong clustering of losers, and bimodal

winners, but with small variance around the modal values.

The distribution for w2 has only positive modal values, but with three different modal

densities, the highest of which is at low level of benefits, accompanied by two similar level

densities at higher benefit levels. As for DGP 1, it is intuitive to conclude that these forms of

asymmetric trimodality in the benefits distribution, in case they were erroneously assumed

to be unimodal, will also lead to seriously sub-optimal policy actions.

Note also that in both DGPs w1 has much smaller variance values around the modes than

w2. Larger variance around modal values of random coefficients is expected to require
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larger sample sizes to accurately disentangle the location of the respective modes. How

much larger is a further question we investigate here.

Experiment features and error measures

We denote with h the generic synthetic dataset h = 1, . . . ,H = 1,000 generated in each of

the 60 MC experiments, which are then used to estimate 14 model specifications, for a total

of R = 60⇥14 = 840 sets of estimation error measures denoted by r = 1, . . . ,R = 840. The

14 specifications consist of:

• one MXL in preference space with normal distributions for each non-price attribute,

• one MXL in WTP space with normal coefficients for all non-price attributes,

• four LML-Poly with varying number of parameters (12, 24, 36, 48),

• four LML-Step with varying number of steps (12, 24, 36, 48),

• and four LML-Spline with varying number of knots (12, 24, 36, 48).

All LML models are with utility in WTP-space and all price/scale l ⇤ coefficients are log-

normal or mixture of log-normals. Data generation and all estimations were performed in

MatLab using Train’s code modified to fit our purpose. Choice probabilities are simulated

in the sample log-likelihood with 250 Halton draws. To simulate the sampling distributions

properties of mWT P values from the MXL in preference space, 10,000 draws were taken

from the estimated distribution of each non-monetary attribute coefficient. Each draw is

then divided by a draw from the estimated distribution of the cost coefficient. Standard

statistics for the distribution of these WTPs were then calculated for these draws (but see

the caveats in Daly, Hess, and Train (2012)). So, we evaluate the performance of each of
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the 14 specifications by computing the MSE and the BIAS over the h...H = 1,000 synthetic

samples in each of the 840 MC experiments:

(16) MSE(ŵ) =
1
H

H

Â
h=1

(ŵh �w)2,h = 1, . . . ,H;

(17) BIAS(ŵ) =
1
H

H

Â
h=1

ŵh �w,h = 1, . . . ,H;

From the above, by using equation (1), we can derive the finite sample variance of each

estimator as VAR(ŵ) = MSE(ŵ)� [BIAS(ŵ)]2. This allows us to identify the empirical

bias-variance tradeoff under different MC experimental factors.

In the case of welfare estimates the sign of the bias is not immaterial as one might not

worry about over-estimation (positive bias) and instead be concerned by under-estimation

(negative bias). To gain insight and evaluate the relative departure from the true population

values, in each experiment r we also compute the means of (a) relative absolute error

(MRAE), (b) relative negative error (MRNE) and (c) relative positive error (MRPE) of the

estimates. Hence we compute:

(18) MRAE = p =
1
H

H

Â
h=1

����
ŵh �w

w

���� ;

(19) MRNE = p� =

"
H

Â
h=1

1h

✓
ŵh �w

w
< 0

◆#�1
H

Â
h=1

����
ŵh �w

w

����⇥1h

✓
ŵh �w

w
< 0

◆
;
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(20) MRPE = p+ =

"
H

Â
r=1

1h

✓
ŵh �w

w
> 0

◆#�1
H

Â
h=1

����
ŵh �w

w

����⇥1h

✓
ŵh �w

w
> 0

◆
;

where 1(·) is an indicator function, w is the mWT P value used in the DGP and ŵh is the

value estimated from the h
th synthetic dataset, h = 1, . . . ,H.

In revealed preference data studies researchers do not exercise control over the allocation

of attribute values across alternatives, but in most stated choice applications this is the

outcome of an error-optimized experimental design (Sándor and Wedel 2001; Ferrini and

Scarpa 2007; Rose and Bliemer 2009), and an adequate choice of design might afford

significant efficiency gains in mWT P estimation. It is unclear if efficient design can also

reduce estimation error for the LML model. We investigate this here. In both DGPs we

use three experimental designs: i) D-error minimizing design (we call this D-efficient), ii)

random design, iii) full factorial design.

In order to evaluate the effect of the length of choice sequence on models performance, we

generate two different sets of data: the first is built assuming that each respondent faces four

choice tasks, the second assuming eight choice tasks. These panel lengths are common, for

examples, in food and environment stated choice experiments.

Similarly, to investigate the effect of the sample size, we generate five panel datasets with

increasing number of simulated panels (N): 70, 210, 490, 980, 1960. This allows us to

investigate the role of sample size on performance of the LML model. Sample sizes are
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defined so as to have the same number of respondents for each block of the full fractional

design.

Bias versus efficiency tradeoffs

Figure 2 illustrates the relative contributions of BIAS
2 and variance to the MSE at different

sample sizes for the three estimators: MXL-P with utility in preference space (fixed price

coefficient), MXL-W with utility in WTP space, and LML. Note that at each sample size,

the bias is always smaller for the LML, but its variance is much higher than the MXL at

small sample sizes (N = 210). This suggests that to reap the benefits of the LML practition-

ers need to employ large sample sizes. However for w1—the coefficient with low variance

around modal values in both DGPs—, already at a sample size of N = 490 LML has a

variance component of the MSE, which is low enough to outperform (or do as well as) the

MXL models. This happens both in the bimodal and the trimodal case for w1.

When the DGP has a high variance around modal values, (as for w2 ), the LML outperforms

the MXL at a sample size in excess of about N = 1000 respondents when its distribution is

trimodal. However, when its distribution is bimodal, already at N = 490 the LML outper-

forms the MXL-P, but not the MXL-W.

This suggests that some prior knowledge of the variance around modal values, and of the

number of modes may inform practitioners of the type of estimator to use: if such variance

is small and modal values are few, then the LML can be effective at relatively smaller
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sample sizes than in opposite situations. This result will need to be confirmed with further

investigations, but it appears reasonable.

Response surface models

Focussing on the subsets of 720 error estimates involving the LML estimator, we are inter-

ested in how the error indicators of each experiment in equations (1-20) depend on the g

factors in the MC experiment, which are:

i) sample size (N),

ii) number of parameters (k),

iii) type of z(·) function (we used step function as the baseline),

iv) type of experimental design (full factorial and random designs were used as baseline),

v) number of choice tasks per respondent t, and

vi) DGP (trimodal was used as baseline).

We also examine interaction terms between each of the above factors, with the exception

of those terms involving the z(·) function, as they are statistically insignificant.

Let the g factors determining the error determinants for error estimate r be denoted by

sr. In order to succinctly report and discuss such effects we use two types of response

surface models, (i) an OLS regression for when the dependent variable y
⇤
r

is continuous

(i.e. for MSE), and (ii) a fractional response logit (FRLGT), both reporting standard errors

clustered by MC experiment (Papke and Wooldridge 1996; Wooldridge 2011) when the

dependent variable is a fraction pr (i.e. for MARE = p⇤
r
,MNRE = p�

r
and MPRE = p+

r
).
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The two models give rise to two different marginal effects on the outcome of each error

estimate r:

(21) y
⇤
r
= ddd 0

sr + er !
∂y

⇤
r

∂ sg

= dg

(22) p .
r
= L(ddd 0

sr)!
∂p .

r

∂ sg

= dgL(ddd 0
sr)(1�L(ddd 0

sr)),

where L(ddd 0
sr) =

⇥
1+ exp(�ddd 0

sr)
⇤�1. The full set of results (some of which are in the

online appendix) is available from the authors upon request. However, Williams (2009)

showed that the use of interaction terms is potentially problematic with nonlinear models

such as logit and probit. So, for the FRGLT model we report only the main marginal effects

and ignore interactions.

Determinants of MSE and MRAE

Table 1 reports marginal effects of determinants from both OLS and FRLGT models for

the MSE (left part of the table) and the MRAE (right part). The table reports results for w1,

but similar results were obtained for w2 and are available from the authors.

In the OLS model the only insignificant variables are the types of z(·) functions. We con-

clude that polynomial, spline or step functions are equivalent in estimation error for LML.

All other variables display the expected negative signs and are significant in their main

effects. The magnitudes of the marginal effects on the MSE demonstrate that one extra
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parameter in k has the same effect as using a D-error minimizing efficient design, while

doubling the choice tasks from 4 to 8 increases accuracy by little less.

The significance and signs of interaction effects tell us that (i) the effect of larger
p

N

increases with an extra k , (ii) but is diminishes for bimodal DGPs, and (iii) that an extra k

also has a smaller effect for bimodal DGPs.

In the FRLGT model we basically obtain the same results for the MRAE. The marginal

effects (timed by 100) have a more intuitive explanation in this case. The strongest effect

is shown for the D-error minimizing design, followed by a longer choice tasks sequence,

while one unit increase in
p

N has the same effect as having an underlying bimodal, rather

than trimodal DGP. Note that using an efficient design produces nearly twice the efficiency

impact of a one unit of
p

N, even though this is derived under parametric logit assumptions.

This is also potentially valuable to researchers that can focus on good design and longer

sequences, rather than increase sample size.

Figure 3 illustrate the effects of MC factors on the MRAE by means of kernel densi-

ties across all experiments (unconditional). While sample size effects are obviously the

strongest, it is worth noting that the D-error minimizing design predicated on the MNL

model, in this context has an effect that clearly trades off error with efficiency: if one is

happy to accept an expected error in the 10-15 percent range, the random or full facto-

rial designs deliver this with good likelihood. The D-error minimizing design affords both

higher likelihood values of MRAE lower than 8 percent, but also at values higher than 15

percent, where other designs are have low desnities.
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Determinants of negative and positive error in w1

In table 2 we report OLS and FRLGT regressions that explore the differential effect for

positive and negative errors in estimation. The left most column reports the OLS estimates

for the linear probability model explaining the variation in the pooled (stacked) sample of

MNRE (under-predictions) and MPRE (over-predictions), or pr. The OLS regression in the

second column, in which the dummy variable for under prediction and its interaction terms

with
p

N are dropped, has a markedly lower R̄
2, showing that over- and under-estimates

have different linear projections. A formal Chow test shows that only the coefficients for

p
N and for the dummy for negative errors significantly differ across the two sub-samples.

The third and fourth columns report OLS estimates of different linear probability models to

the two sub-samples and show how the marginal effects differ across. These effects are also

reported for the FRLGT in the right most columns, for comparison. We note that negative

relative errors are lower on average (as demonstrated by the significant dummy coefficient)

and that sample size increases are more effective in reducing the positive relative errors

than the negative ones. The magnitude of marginal effects of other significant determinants

are also stronger for other factors (e.g. D-efficient, T = 8) in reducing positive errors, but

the difference is insignificant at this sample size. However, this might be a consequence of

our specific choice of DGPs.

Considering that this model is estimated with a random utility specification in the WTP

space, these results are particularly instructive in those applied contexts in which over es-
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timates of mWT Ps are likely to occur. The following empirical case study provides an

example in such a respect.

An empirical application: WT P for tap water

To add saliency to the Monte Carlo results, we apply the LML estimator to data from

an empirical application based on a discrete choice experiment (DCE) developed to elicit

households’ preferences for tap water attributes in the province of Vicenza (northern Italy).

The area under investigation is known as a tannery district. In fact, it is the most important

district of that type in Italy and one of the most important in Europe, as it accounts for

nearly one third of fine European leather production (UNIC 2010).

The leather industry is a potential big polluter, due to the large amount of water required

to treat hides, which are preserved using salt during their transport from South America

or other far away origins. Consequently, wastewater from hides treatment plant, when

improperly treated may affect freshwater quality in the area.

Historically this industry was located at the foothills of the Alps and it prospered here

because of the several artesian springs providing a regular flow of one of the most pristine

water sources in Italy, which was immediately put to a very polluting use. Water pollutants

are present in low concentrations in hides, but may have high toxicity as tanning processes

make use of toxic heavy metals like chrome and other chemical pollutants (e.g., sulphate

and sodium chloride).
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The current water charging system for public waste water processing is based on threshold

concentrations of contaminants per unit of volume of water used, rather than on total dis-

charged load of contaminants. Hence, large amounts of pristine water from local springs

are used to dilute concentrations of industrial pollutants. To give a sense of proportion, the

capacity of the local sewage plant is sufficient for a population of 1.5 million, while the

local population is only about 115,000 residents. Thus, information about householders’

preferences for tap water attributes is crucial for local authorities in order to strategically

set water tariffs and plan investments in infrastructure.

Much of the necessary infrastructure for industrial water treatment would otherwise benefit

tanneries, which would then be heavily subsidized by residential water users, causing a

major misallocation of resources.

The DCE was based on five water quality attributes, namely:

i) the frequency with which chlorine odor can be smelled in water use (daily, once a week,

once a month, never or always),

ii) the frequency with which chlorine taste could be tasted in the water (same frequencies

as for odor),

iii) turbidity due to fine air bubbles (absent, low, medium or high turbidity),

iv) calcium carbonate staining in pipes (presence/absence of staining), and
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v) the cost attribute, which was described as the additional yearly amount of money that a

household would pay (in water bills) at current consumption levels.

The experimental design adopted in the study was based on the criterion of Bayesian D-

error minimization where the error was computed at parameter estimates obtained from

a preliminary prior study of 80 households based on an initial design orthogonal on the

differences. The point estimates from the pilot study informed the prior distribution for the

Bayesian design, and the standard errors defined the variances of the prior distributions,

which were assumed normal. Probabilities were derived from a simulation based on 200

Halton draws, and used to construct a final design using Ngene (ChoiceMetrics 2009). The

design resulted in 36 choice tasks, and was blocked into four orthogonal blocks of nine

choice tasks each.

Using the datasets obtained with the CE survey from a sample of 832 respondents (Thiene,

Scarpa, and Louviere 2015), we estimated the 14 model specifications previously listed and

we added two latent class models with respectively two and three classes. These capture

perfectly correlated multimodality, but ignore variance around modal values.

To compare performance across models with different number of parameters we report in

table 3 the simulated log-likelihood at convergence (L ⇤), along with the Akaike informa-

tion criteria (AIC) and the Bayesian information criteria (BIC). Given the importance of

multimodality in this context, we also report the number of modal values of the estimated

distributions of random coefficients (mWT P).
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Based on the Monte Carlo results and the large number of observations in our water pref-

erence dataset, we expect the LML models to outperform the MXL ones in terms of fit to

the data. We also expect that LML specifications with large number of parameters k out-

perform those with fewer parameters. Finally, we expect LML specifications (especially

those with large number of parameters) to be able to retrieve the features of real underlying

distributions, even when these are asymmetric and multimodal.

Model fit and estimated modes

All the information criteria in table 3 favor LML specifications, as compared to the MXL

and LC specifications. The results also support the MC experiment finding of an increase

of model performance at large k at this sample size of N = 832.

In terms of performance across different z functions within LML, the LML-Spline specifi-

cation emerges as the best when based on k = 55, according to the AIC, but when based

on k = 44 according to the BIC, which is unsurprising as this criterion applies a heavier

penalty on over-parameterization. A close second in fit is the LML-Step, which is also best

at k = 55, according to the AIC, but at k = 44 according to the BIC. In third position we

find LML-Poly, and in this case both AIC and BIC converge in indicating k = 55 as the

model with best fit. So, despite in terms of estimation error the various z functions appeared

to perform similarly, they do not do so in terms of information criteria.

For the sake of space we only report and discuss the multimodal aspect of the results. Table

4 reports the number of estimated modes of mWT P distributions. Obviously, MXL (bi-

24



ased and apparently inconsistent) could only retrieve unimodal distributions in all random

coefficients. LML models with k = 22 and k = 33, instead, retrieved bimodal distribu-

tions for most of the coefficients. In particular, LML-Poly with k = 22 retrieved bimodal

distributions for seven coefficients and with k = 33 did so for eight mWT P distributions.

LML-Step k = 22 retrieved bimodal distributions for seven parameters and LML-Step with

k = 33 for nine mWT P distributions. Similar number of bimodal distributions for ran-

dom taste coefficients are found in the estimates from LML-spline. Altogether the LML

provides a very different characterization of taste distributions, where multimodality and

asymmetry emerge as common features.

The histograms reported in the first and second rows of figure 4 are a good illustration of

the effect of increasing k on the number of modes retrieved for the random mWT P for

Taste Weekly and Odor Never: with k = 22 the mWT P for the two attribute levels appear

to have unimodal distributions, with k = 44 they appear bimodal.

With respect to the size of k , we note that distributions with three modal values were

retrieved only by LML models with k = 44 and k = 55 (e.g. see the bottom histograms

in figure 4 for mild and extreme turbidity). In particular, all the specifications with such

number of parameters retrieved tri-modal distributions for chlorine odor once per month,

chlorine taste once per month, medium and extra degrees of turbidity. All this information

would be lost in MXL specifications, and possibly in most other conventional parametric

distributions. We note that some multimodality can be captured in means of individual-
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specific distributions, but those statistics are of difficult interpretation at the population

level (see chapter 11 in Train 2009, for a discussion).

Discussion and conclusions

This paper provides results from a large-scale Monte Carlo experiment and an empirical

application conducted to investigate the finite sample performance of the recently proposed

Logit Mixed Logit (LML) model. We focused on retrieving the underlying heterogeneity

distributions of random marginal willingness to pay estimates, with a focus on asymmetric

and multimodal data generating processes.

The context is framed around the standard operating conditions for practitioners in agricul-

ture, food and environmental economics. This means that we used a range of sample sizes,

experimental designs and panel lengths which are of common use in the published litera-

ture on choice analysis for nonmarket valuation, and hence we also focussed on WTP-space

utility specifications.

Semiparametric estimators, such as LML, have smaller bias and larger sampling variance at

low sample sizes than their more common parametric MXL counterparts, and we measure

both. Our result show that the sample size at which bias-efficiency tradeoffs move in LML

favour vary depending on the variance around modal values, but at sizes around 500 re-

spondents the overall mean squared error are either comparable to those of MXL or lower.

Obviously, these sample sizes need upward adjustments in the presence of more attributes

with random coefficients.
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Another objective is to identify the optimal number of parameters k to be adopted in LML

model specification for the grid points of probability weights. Our hypothesis, based on

previous findings of studies on flexible choice models (Fosgerau and Hess 2007), was that

increasing such number increases flexibility and yields better approximations to the true

distributions. However, a Monte Carlo study complementary to ours, but with fewer syn-

thetic samples and different focus on DGPs (Bansal, Daziano, and Achtnicht 2018a), drew

different conclusions based on information criteria. Using the estimation error as a crite-

rion, our MC results align with those by Fosgerau and Hess (2007), but using as model se-

lection criteria the AIC and BIC our empirical results align with those by Bansal, Daziano,

and Achtnicht (2018a). Nevertheless, in the empirical results, trimodal distributions are

captured only by LML with high number of parameters k .

The bias-efficiency tradeoff for LML versus MXL suggests that prior knowledge of the taste

distributions with regards to the variance around modal values (i.e. its degree of asymme-

try), and to the number of modes one expects, is useful. Specifically, it may inform practi-

tioners on the type of estimator to use: if such variance is small and modal values are few,

then the LML can be effective at relatively smaller sample sizes than otherwise.

Importantly, the conditional distributions of MRAE show a clear bias versus efficiency

tradeoff on the use of efficient experimental design, confirming the caution one must ex-

ercise in adopting this design criteria in mis-specified contexts. They also confirm the

necessity of relatively large sample sizes and that—at least in our case—the minimum bias

one can expect is around 7%, with a maximum of 20% and a median of 12%. Finally, we
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find that positive relative errors benefit more than negative relative errors from increases in

sample sizes and possibly also from other bias-reduction measures. However, this result

may be a construct of our choice of DGP, and hence it is not easily generalised.

In our empirical tap water preference study, the LML results suggest a pattern of asymmet-

ric bimodality for tap water quality attributes, such as taste weekly and odor never. They

also show asymmetric trimodality for mild turbitidty and extreme turbidity. Both features

would be missed by the MNL with normal or other unimodal parametric distributions. Ad-

dressing such patterns with latent class models would appear not completely satisfactory

as these ignore variance around modal values and impose perfect correlation of random

coefficients within classes—a restriction that the LML does not impose and for which we

find no empirical evidence in our data.

Regulators intending to achieve economically and politically efficient outcomes should be

made aware of the multimodal nature of preference for tap water in the tannery district

of the Province of Vicenza. The tariff thresholds necessary to trigger majority voting in

support of infrastructure investments that deliver only monthly chlorine smell in water and

mild turbidity might be lower than those suggested by model estimates obtained with MXL

models. This is valuable information to politicians.

Overall, the results of our study do not support the blind use of very flexible mixing distri-

butions: at small sample sizes LML models with a large number of parameters performed

worse compared to both LML specifications with low number of parameters and MXL

models. Thus, as a general guideline, we suggest to adopt the LML estimator only when
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a sufficiently large number of observations is available, or when the variance around the

possible modes is low. In the presence of poor priors for efficient design and when a 10%

bias in marginal WT P estimates is deemed an acceptable cost, our results suggest the use

of random or full factorial experimental designs so as to capture the available efficiency

gains while expecting some bias. Interestingly, the use of efficient designs based on MNL

assumptions and adeaute priors are associated with significantly lower errors also in LML

estimates.

While this study provides some insight about LML performance, additional simulation ex-

periments are needed to evaluate the fine-tuning and validate the robustness of our conclu-

sions. For example, we ignored covariance across random coefficients. Future experiments

can address that and extend the number of alternatives, of choice situations in the sequence,

and of explanatory variables in the utility equation.

Importantly, on the practical side, when asymmetry and multimodality of preference are

suspected, analysts can no longer be excused to automatically default on parametric spec-

ifications without providing robust theoretical justifications corroborated by empirical ev-

idence. The LML approach is sufficiently practical, general purpose software has been

made available for all to use (Train 2016) and it has been recently extended to allow fixed

parameters in the specification (Bansal, Daziano, and Achtnicht 2018b).
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Notes

1They used 6 DGPs, each generating 100 synthetic datasets, which in turn were esti-

mated using 16 specifications, for a total of 9,600 estimates.

2For the reader interested in faster estimation algorithms for these category of semi-

parametric choice model we refer to Bansal, Daziano, and Guerra (2018).

References

Bansal, P., R.A. Daziano, and M. Achtnicht. 2018a. “Comparison of parametric and semi-

parametric representations of unobserved preference heterogeneity in logit models.”

Journal of Choice Modelling 27:97 – 113.

—. 2018b. “Extending the logit-mixed logit model for a combination of random and fixed

parameters.” Journal of Choice Modelling 27:88 – 96.

Bansal, P., R.A. Daziano, and E. Guerra. 2018. “Minorization-Maximization (MM) al-

gorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons.”

Transportation Research Part B: Methodological 115:17–40.

Bazzani, C., M.A. Palma, and R.M. Nayga. 2018. “On the use of flexible mixing dis-

tributions in WTP space: an induced value choice experiment.” Australian Journal of

Agricultural and Resource Economics 62:185–198.

Belleflamme, P., W.M.W. Lam, and W. Vergote. 2017. “Price Discrimination and Disper-

sion under Asymmetric Profiling of Consumers.” AMSE Working Papers No. 13, Aix-

Marseille School of Economics.

Caputo, V., R. Scarpa, R.M.N. Jr., and D.L. Ortega. 2018. “Are Preferences for Food Qual-

ity Attributes Really Normally Distributed? An Analysis using Flexible Mixing Distri-

butions.” Journal of Choice Modelling 28:10–27.

30



Chen, Y., and G. Iyer. 2002. “Consumer Addressability and Customized Pricing.” Market-

ing Science 21:197–208.

ChoiceMetrics. 2009. “Ngene 1.0 User Manual and Reference Guide.”

Daly, A., S. Hess, and K. Train. 2012. “Assuring finite moments for willingness to pay in

random coefficients models.” Transportation 39:19–31.

Ferrini, S., and R. Scarpa. 2007. “Designs with a-priori information for nonmarket valu-

ation with choice-experiments: a Monte Carlo study.” Journal of Environmental Eco-

nomics and Management 53(3):342–363.

Fosgerau, M., and S. Hess. 2007. “A comparison of methods for representing random taste

heterogeneity in discrete choice models.” European Transport 42:1–25.

Gouríeroux, C., and A. Monfont. 1996. Simulation-Based Econometric Methods. Oxford

University Press.

Hensher, D., N. Shore, and K. Train. 2005. “Households’ Willingness to Pay for Water

Service Attributes.” Environmental and Resource economics 32:509–531.

Mitchell, R., and R. Carson. 1989. Using surveys to value public goods : the contingent

valuation method. Washington, D.C.: Resources for the Future.

Papke, L.E., and J.M. Wooldridge. 1996. “Econometric Methods for Fractional Response

Variables With an Application to 401 (K) Plan Participation Rates.” Journal of Applied

Econometrics 11:619–632.

Revelt, D., and K. Train. 1998. “Mixed Logit with Repeated Choices: Households’ Choices

of Appliance Efficiency Level.” Review of Economics and Statistics 80:647–657.

Rose, J.M., and M.C.J. Bliemer. 2009. “Constructing Efficient Stated Choice Experimental

Designs.” Transport Reviews 29:587–617.

Rungie, C., R. Scarpa, and M. Thiene. 2014. “The influence of individuals in forming

collective household preferences for water quality.” Journal of Environmental Economics

and Management 68:161–174.

31



Sándor, Z., and M. Wedel. 2001. “Designing Conjoint Choice Experiments Using Man-

agers’ Prior Beliefs.” Journal of Marketing Research 38:430–444.

Scarpa, R., C. Franceschinis, and M. Thiene. 2017. “A Monte Carlo Evaluation of the

Logit-Mixed Logit under Asymmetry and Multimodality.” Working Papers in Economics

No. 17/23, University of Waikato.

Scarpa, R., M. Thiene, and F. Marangon. 2008. “Using Flexible Taste Distributions to

Value Collective Reputation for Environmentally Friendly Production Methods.” Cana-

dian Journal of Agricultural Economics 56:145–162.

Scarpa, R., K.G. Willis, and M. Acutt. 2007. “Valuing Externalities from Water Supply:

Status Quo, Choice Complexity and Individual Random Effects in Panel Kernel Logit

Analysis of Choice Experiments.” Journal of Environmental Planning and Management

50:449–466.

Thiene, M., R. Scarpa, and J. Louviere. 2015. “Addressing Preference Heterogeneity, Mul-

tiple Scales and Attribute Attendance with a Correlated Finite Mixing Model of Tap

Water Choice.” Environmental and Resource Economics 62:637–656.

Train, K. 2009. Discrete Choice Methods with Simulation, 2nd ed. New York: Cambridge

University Press.

—. 2016. “Mixed Logit with a Flexible Mixing Distribution.” Journal of Choice Modelling

19:40–53.

Train, K., and M. Weeks. 2005. “Discrete Choice Models in Preference Space and Willing-

to-pay Space.” In R. Scarpa and A. Alberini, eds. Applications of simulation methods in

environmental and resource economics. Dordrecht, The Netherlands: Springer Publisher,

chap. 1, pp. 1–16.

UNIC. 2010. “Dati strutturali industria conciaria veneta.” Working paper, UNCI Unione

Nazionale Industria Conciaria (National Tannery Industry Association).

Williams, R. 2009. “Using Heterogeneous Choice Models to Compare Logit and Probit

Coefficients across Groups.” Sociological Methods & Research 37:531–559.

32



Willis, K., and R. Scarpa. 2002. “Yorkshire Water Customers’ Utility and Willingness-To-

Pay For Changes In Water Service Factor Levels: A Stated Choice Analysis.” Unpub-

lished, Report to Yorkshire Waters.

Willis, K., R. Scarpa, and M. Acutt. 2005. “Assessing Water Company Customer Pref-

erences and Willingness-To-Pay for Service Improvements: a stated choice analysis.”

Water Resources Research 41:W02019.

Wooldridge, J. 2011. “Fractional response models with endogenous explanatory variables

and heterogeneity.” Presented at the Stata Conference, Chicago, July 2011.

33



Figures

−0.5 0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

N = 10000   Bandwidth = 0.05421

D
e

n
si

ty

w1 in DGP 1 (bimodal)

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

N = 10000   Bandwidth = 0.2213

D
e

n
si

ty

w2 in DGP 1 (bimodal)

−2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

N = 10000   Bandwidth = 0.2839

D
e

n
si

ty

w1 in DGP 2 (trimodal)

0 2 4 6 8

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

N = 10000   Bandwidth = 0.2555

D
e

n
si

ty

w2 in DGP 2 (trimodal)

Figure 1. Kernel smoothing plots of mWT P in the 2 DGPs.
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ŵ1 in DGP 1 (bimodal) ŵ2 in DGP 1 (bimodal)

ŵ1 in DGP 2 (trimodal) ŵ2 in DGP 2 (trimodal)

Figure 2. Bias (dark) vs variance (light) tradeoff from MSE decomposition
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Figure 3. Kernel smoothing of MRAE estimates from MC experiment.
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Taste weekly, LML-Spline k = 22 Odor never, LML-Spline k = 22

Taste weekly, LML-Spline k = 44 Odor never, LML-Spline k = 44

Mild turbidity, LML-Spline k = 44 Extreme turbidity, LML-Spline k = 44

Figure 4. Distributions of WTP value estimates from various LML models.
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Tables

Table 1. Surface response model estimates for ŵ1

OLS on MSE = y
⇤
r

FRLGT MRAE = pr

Variable Coeff. |t| Coeff. |t| dpr

dsg
⇥100 |t|

Constant 0.3290 19.22 �1.2657 75.99 — —p
N �0.0320 3.29 �0.0211 51.77 �0.2292 48.70

dimension of k �0.0190 2.61 �0.0056 12.42 �0.0607 12.31
z(·) is polynomial �0.0015 0.66 0.0093 1.11 0.1013 0.11
z(·) is spline 0.0071 1.56 0.0189 1.45 0.2055 1.45
D-efficient design �0.0220 2.71 �0.0395 3.21 �0.4306 3.20
choice tasks T = 8 �0.0160 3.99 �0.0301 2.66 �0.3271 2.66
DGP is bimodal �0.0083 3.57 �0.0213 1.98 �0.2315 1.98p

N⇥ dimension of k �0.0072 4.12 — — — —p
N⇥ D-efficient design 0.0013 0.81 — — — —p
N⇥ choice tasks 0.0110 0.88 — — — —p
N⇥ DGP is bimodal 0.0087 6.61 — — — —

dim. of k ⇥ D-efficient des. 0.0017 1.33 — — — —
dim. of k ⇥ choice tasks T = 8 �0.0005 0.48 — — — —
dim. of k ⇥ DGP is bimodal 0.0019 2.52 — — — —
D-efficient des. ⇥ choice tasks T = 8 0.0042 1.50 — — — —
D-efficient des. ⇥ DGP is bimodal 0.0028 0.66 — — — —
choice tasks T = 8⇥ DGP is bimodal 0.0435 0.79 — — — —

N = 720 R̄
2 = 0.89 F-stat. = 87.45 Pseudo-L ⇤ �268.91 Wald c2 = 7,595.54
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Table 2. Surface response model estimates for MARE for ŵ1

OLS FRLGT

Pooled sample MNRE sample MPRE sample MNRE sample MPRE sample
dpr

dsg
⇥100 |t | dpr

dsg
⇥100 |t | dp�

r

dsg
⇥100 |t | dp+

r

dsg
⇥100 |t | dp�

r

dsg
⇥100 |t | dp+

r

dsg
⇥100 |t |

Constant 19.54 73.40 18.26 48.13 16.93 49.66 19.59 48.89p
N �0.1873 24.31 �0.1715 14.52 �0.1598 16.79 �0.1831 16.38 �0.1383 15.93 �0.1585 15.57

Dimension of k �0.0258 3.10 �0.0258 2.25 �0.0250 2.34 �0.0265 2.13 �0.0048 0.51 �0.0037 0.33
z(·) = Polynomial 0.0915 1.49 0.0915 1.46 0.0950 1.13 �0.0868 0.92 0.0953 1.15 0.0871 0.93
z(·) = Spline 0.1945 1.75 0.1945 1.76 0.1827 1.44 �0.2063 1.40 0.1826 1.45 0.2062 1.41
D-efficient �0.4076 4.20 �0.4076 4.24 �0.3864 3.42 �0.4301 3.38 �0.3884 3.56 �0.4322 3.42
choice tasks (T = 8) �0.3063 2.59 �0.3063 3.36 �0.2871 2.72 �0.3256 2.49 �0.2877 2.72 �0.3262 2.80
Bimodal �0.2467 3.55 �0.2467 2.65 �0.2287 2.43 �0.2658 2.41 �0.2170 2.16 �0.2522 2.15
Dimension of k ⇥

p
N �0.0013 5.37 �0.0013 3.70 �0.0012 3.87 �0.0015 4.10 �0.0023 7.84 �0.0027 8.01

Dummy for MNRE �2.5664 17.71
Dummy for MNRE ⇥

p
N �0.0031 7.18

R
2 0.797 0.719 0.781 0.781 Pseudo-L ⇤ �249.30 �274.61

R̄
2 0.795 0.718 0.779 0.779

N 1,440 720

Note: MNRE mean of negative relative errors, MPRE mean of positive relative errors.
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Table 3. Information criteria for tap water models.

Model k lnL ⇤
AIC BIC

MXL Pref. 11 �2,932 5,821 5,823
MXL WTP 11 �2,908 5,794 5,771
LC 2 classes 23 �2,896 5,741 5,753
LC 3 classes 35 �2,877 5,724 5,745
LML-Poly 22 �2,818 5,614 5,637
LML-Poly 33 �2,774 5,526 5,549
LML-Poly 44 �2,732 5,442 5,465
LML-Poly 55 �2,718 5,414 5,437
LML-Step 22 �2,802 5,582 5,605
LML-Step 33 �2,758 5,494 5,517
LML-Step 44 �2,716 5,410 5,503
LML-Step 55 �2,702 5,382 5,505
LML-Spline 22 �2,786 5,550 5,573
LML-Spline 33 �2,742 5,462 5,485
LML-Spline 44 �2,700 5,378 5,401

LML-Spline 55 �2,686 5,350 5,412
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Table 4. Modal values of distributions of attributes’ coefficients (Empirical

application)

Odor Taste Turbidity Stain

Model/Attribute k Weekly Monthly Never Weekly Monthly Never Mild Medium Extra Present

MXL Pref. 11 1 1 1 1 1 1 1 1 1 1
MXL WTP 11 1 1 1 1 1 1 1 1 1 1
LML-Poly 22 2 2 2 1 2 1 1 2 1 2
LML-Poly 33 1 2 2 1 2 2 2 2 1 2
LML-Poly 44 2 3 2 2 3 2 3 2 3 2
LML-Poly 55 2 3 2 2 3 2 3 2 3 2
LML-Step 22 1 2 1 1 2 2 2 2 1 2
LML-Step 33 2 2 2 2 2 1 1 2 1 2
LML-Step 44 2 3 3 2 2 2 3 2 3 2
LML-Step 55 2 2 3 2 3 2 3 2 3 2
LML-Spline 22 2 2 1 1 2 1 1 2 1 2
LML-Spline 33 2 2 2 2 2 1 2 2 2 2
LML-Spline 44 2 3 2 2 2 2 3 2 3 2
LML-Spline 55 2 3 2 2 2 2 3 3 3 2
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Appendix to:
Logit mixed logit under asymmetry and

multimodality of WTP:
a Monte Carlo evaluation

Results from the Monte Carlo experiment

In what follows we describe the results with focus on those obtained from datasets gener-

ated with the D-error minimizing design. Similar results were also obtained with regards

to the accuracy measures MSE and MRAE and for this reason we limit our appendix to the

MSE values across different models and DGPs. All omitted results are available from the

authors upon request.

Model fit

Table A3 reports the information criteria for models estimated on datasets with bimodal

DGP and D-efficient experimental design with four choice tasks per simulated respodent

(T = 4). Model fit statistics suggest that the increase in the number of parameters in all

LML variants improves the loglikelihood value at convergence at every sample size, but

it does not necessarily improve the model fit in terms of AIC and BIC. At small sample

sizes (from 70 to 490 respondents) MXL-N models outperform LML models in terms of

both AIC and BIC. As it concerns the performance of LML variants, at small sample sizes

the specifications with k = 24are consistently the best performing ones in terms of AIC

and BIC. This suggests that at small sample sizes, more flexible LML mixing distributions

(which require more parameters) do not necessarily yield a large enough gain in the likeli-

hood values to make these models preferable in terms of AIC and BIC to both LML models



with fewer parameters and MXL-N models. At large sample sizes, instead, the more flex-

ible specifications (k = 36,48) seem to fit the data better than the less flexible ones. At

N = 980 the LML-Spline with k = 48 is the best performing LML variant in terms of AIC,

and the LML-Step with k = 36 parameters according to BIC. At the largest sample size

(N = 1980), the LML-Spline with 48 parameters is the best performing model according

to both AIC and BIC. It is also interesting to note that at the largest sample size all LML

variants outperform the MXL-N models according to all the information criteria. Similar

results were retrieved for model estimated from dataset generated with trimodal DGP (Ta-

ble A4) and for datasets with eight choice tasks per simulated respondent, which we omit

for the sake of brevity.

Mean squared errors

Short panel results, T = 4, bimodal distributions

Table A5 reports MSE values for estimates of the mean mWT P for attribute 1 and at-

tribute 2 as retrieved from datasets with four choice tasks per respondent, with DGP 1 that

implemented asymmetric bimodal distributions of the real parameters. It is immediately

noticeable that, given w , the value of MSE decreases as N increases: accuracy is increased

by larger samples. For small samples (simulated respondents N = 70 and N = 210) the

best performing model—that is, the one with the lowest MSE (and MRAE)—is the MXL-

N WTP space, which outperforms all LML models. A bias variance tradeoff seems to take

place at this level. At intermediate sample sizes (N = 490 and N = 980 simulated respon-

dents) some of the LML specifications outperformed the MXL in WTP-space (e.g. LML-

poly with k = 36 for w1 and LML-Spline with k = 48 and k = 24 for w2), but it is only at

large sample sizes (N = 1,960) that LML models consistently outperformed the MNL-N

WTP for some value of k . At N = 1,960 there is also a clear improvement in performance
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by LML models with higher dimensions of k . Among LML models based on step func-

tions and splines the best model specifications were those with k = 48, whereas the best

model specification among LML-Poly models was the one with k = 36 according to both

MSE and MRAE.

In terms of identification of the optimal number of parameters k to be adopted in LML

models for both bimodal coefficients, we obtain no clear indication at such sample sizes.

According to the MSE values for w1, for the LML-Poly the best specification is the one

with k = 24, followed by k = 48 and then k = 36. Moving to the results for LML-Step,

the best performing models are those with high number of k (36 and 48). Finally, among

LML-Spline, the best performing model specification is the one with k = 24, followed by

the one with k = 36. For to the MSE for the second coefficient w2, the best performing

LML-Poly has k = 24 and 48; for the LML-Step k = 48, while for the LML-Spline is the

one with k = 36.

The second important distribution feature is its spread, often measured by the standard

deviation. The MSE for these statistics of the Monte Carlo results are reported in Table A6.

As for the means, at the smallest sample size the MXL-N WTP outperforms all models

(and it always outperforms the MXL-N in preference space), but already at N = 210 we

have LML-Step with k = 36 that does better and at higher sample sizes LML models do

better both more frequently and more consistently, especially at high values of k .

Long panel results, T = 8, bimodal distributions

Tables A7 and A8 reports the same statistics as above, but for the longer panel with eight

choice tasks per respondent (T = 8). So, the number of choices are doubled at each sample

size. Doubling the number of responses collected from each respondent obviously sharpens

the estimation of the distributions of taste, as it allows for both better panel designs and
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more information from more numerous choices. Whether and at what sample size this

difference becomes apparent with respect to T = 4 is an empirical question we try to answer

here. The results from datasets with small sample size (N = 70 and N = 210) are similar

to those retrieved from datasets with four choice scenarios per respondent, in that the MXL

model outperforms the LML specifications and there are no clear indications about the

effect of increasing the number of parameters of LML specifications.

However, MSE for both means and standard deviations show that flexible LML specifi-

cations consistently surpass the MXL model at both intermediate and large sample sizes.

Similarly to the short panel results, for N = 980 respondents, each LML specification out-

performed the MXL model for some value of a k . This suggests that increasing the number

of observations per respondent (a longer panel) does not seem to allow analysts to retrieve

substantively more accurate estimates with LML models at smaller sample sizes. At both

N = 980 and N = 1,960, it is also apparent that model specifications with large k outper-

form the others.

Short panel results, T = 4, trimodal distributions

We now move to the results for the choice data generated under the DGP 2 with asymmetric

trimodal distributions for w1
n and w2

n reported in Tables A9 and A10 for the case with short

panel. Results are similar to those retrieved for the first set of coefficients in that the MXL-

N WTP model always outperforms the MNL-N Pref. and does so for LML models at small

sample sizes. The main difference is that in this case, already a N = 490, so at intermediate

sample sizes, the MSE for LML are frequently smaller than those for the MXL-N WTP.

It seems to be the case that with a trimodal distribution DGP flexible distribution models

are more accurate than MXL-N at lower sample sizes, even with short panel, especially the

LML-Step and LML-Spline.
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Long panel results, T = 8, trimodal distributions

Tables A13 and A14 report the same statistics for the long panel. No noticeable difference

is found from the results obtained for the short panel, indicating that doubling the number of

choices per respondent does not substantially change the tradeoff between bias and sample

size.

Bimodality

Tables A13-A16 report the means and standard deviations of modal estimates of distribu-

tions of w1
n and w2

n from the various model specifications in both the short panels and long

panels. They all have in common the bimodal DGP 1 as true process.

The first important observation concerns the number of modal values retrieved from differ-

ent model specification. Naturally, MXL-N models (both in preference and WTP space) are

inherently unimodal and cannot, by their very nature, imply bimodal distributions, but they

are expected to retrieve a mean/mode/median at an intermediate value between the modes

of the underlying DGPs. Indeed the results confirm this. Instead, LML models can retrieve

bimodal distributions and do so in our experiment, with a degree of accuracy that increases

with the sample size. This confirms that LML models are able to approximate better the

shape of the true underlying distributions of random coefficients, and should always be

considered when unimodality is not well supported a-priori, as it is often the case.

The second objective of the analysis was to identify how close the local maxima and min-

ima retrieved from different LML specification were to the true ones. In this sense, it

appears that increasing both the sample size and k increases the accuracy of the estimates.

In fact, the values that are closer to the real ones were obtained from LML specifications

with k = 48 estimated using datasets with N = 1,980. Of course, one can also compute
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MSE and MRAE values for modal estimates and compare them across LML models. We

have those results, but chose not to discuss them here.

Trimodality

Tables A18-A20 report the number of modal values from model estimated on data from

DGP 2 (trimodal real distributions of mWTPs). As for the bimodal case, MXL model can-

not retrieve the complex form of the real distributions, and deliver unimodal distributions at

intermediate values of the modes in the real data. LML specifications with k = 12, instead,

always retrieve distributions with two modal values, instead of three. On the other hand,

LML specifications with k = 48 always correctly retrieve distribution with three modal

values. Finally, LML specifications with intermediate k = 24� 36 retrieve distributions

with three modal values at intermediate and large sample sizes, but bimodal distributions

at lower N. As in previous cases, it is apparent that increasing sample sizes and k increases

the accuracy of estimates. In fact, modal values of distributions retrieved from model esti-

mated from large datasets are closer to the DGP values.

Overall the results suggest that LML models may outperform the standard MXL-N speci-

fications and represent more accurately complex distributions, but do so especially at large

N. With regards to the optimal k to be used in LML models, it seems that high k values

should be considered, but unsurprisingly they work better at large N.
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Figure A1. Contour plots.
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Tables

Table A2. Descriptive statistics for variables used in surface response models

Dependent variables Mean Median Max Min

MSE 0.188 0.184 0.361 0.004
MRAE 0.123 0.125 0.197 0.068
MNRE 0.111 0.109 0.176 0.061
MPRE 0.129 0.127 0.203 0.069

Continuous indipendent variables Mean Median Max Min

N 742 490 1960 70
Dimensions of k 30 30 12 48

Binary indipendent variables Frequency of value = 1

z(·) is Polynomial 0.333
z(·) is Spline 0.333
D-efficient design 0.333
Choice tasks T = 8 0.500
DGP is bimodal 0.500
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Table A3. Information criteria (bimodal, T = 4)
Model N = 70 N = 210 N = 490 N = 980 N = 1,960

Model k lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC

MXL-N Pref. 6 -1003.2 2018.4 2031.9 -1775.7 3563.3 3583.4 -2548.1 5108.3 5133.4 -3665.6 7343.2 7372.5 -5582.4 11176.9 11210.4
MXL-N WTP 6 -1005.6 2023.2 2036.7 -1779.9 3571.8 3591.9 -2564.3 5140.6 5165.7 -3677.1 7366.2 7395.5 -5565.4 11142.8 11176.4
LML-Poly 12 -1033.7 2091.4 2118.4 -1820.7 3665.4 3705.6 -2569.7 5163.4 5213.8 -3635.9 7295.8 7354.4 -5394.9 10813.7 10880.8

24 -1006.2 2060.3 2114.3 -1785.9 3619.8 3700.1 -2530.6 5109.2 5209.9 -3562.2 7172.4 7289.7 -5351.7 10751.4 10885.6
36 -1001.8 2075.5 2156.4 -1778.1 3628.2 3748.7 -2519.5 5110.9 5261.9 -3541.5 7154.9 7330.9 -5318.2 10708.3 10909.6
48 -1000.3 2096.5 2204.4 -1775.4 3646.9 3807.5 -2515.6 5127.3 5328.6 -3517.0 7130.0 7364.6 -5283.0 10662.0 10930.4

LML-Step 12 -1029.4 2082.8 2109.8 -1816.6 3657.3 3697.4 -2591.9 5207.8 5258.1 -3627.7 7279.4 7338.0 -5394.3 10812.5 10879.6
24 -1000.7 2049.3 2103.3 -1781.2 3610.3 3690.6 -2571.7 5191.3 5292.0 -3566.5 7181.0 7298.3 -5353.1 10754.2 10888.4
36 -1000.3 2072.6 2153.5 -1775.5 3623.1 3743.6 -2520.8 5113.5 5264.5 -3514.2 7100.4 7276.4 -5306.0 10684.0 10885.3
48 -998.0 2091.9 2199.8 -1771.4 3638.7 3799.4 -2509.8 5115.6 5316.9 -3506.8 7109.6 7344.2 -5281.0 10658.0 10926.4

LML-Spline 12 -1022.8 2069.6 2096.6 -1820.8 3665.6 3705.7 -2572.6 5169.3 5219.6 -3643.7 7311.4 7370.1 -5401.5 10827.0 10894.1
24 -1010.8 2069.5 2123.5 -1789.0 3626.1 3706.4 -2527.3 5102.6 5203.3 -3582.4 7212.8 7330.1 -5363.2 10774.5 10908.7
36 -1007.2 2086.3 2167.2 -1782.7 3637.5 3757.9 -2513.3 5098.6 5249.6 -3538.2 7148.4 7324.3 -5317.0 10706.1 10907.4
48 -1005.3 2106.5 2214.4 -1779.3 3654.6 3815.2 -2508.3 5112.7 5314.0 -3489.2 7074.3 7308.9 -5255.8 10607.5 10875.9

10



Table A4. Information criteria (trimodal, T = 4)
N = 70 N = 210 N = 490 N = 980 N = 1,960

Model k lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC lnL ⇤ AIC BIC

MXL-N Pref. 6 -1092.5 2197.0 2210.5 -1865.2 3742.5 3762.6 -2638.0 5288.0 5313.2 -4022.8 8057.7 8087.0 -6079.1 12170.1 12203.7
MXL-N WTP 6 -1095.1 2202.2 2215.7 -1869.5 3751.0 3771.1 -2654.5 5321.0 5346.1 -4024.9 8061.8 8091.2 -6094.6 12201.2 12234.8
LML-Poly 12 -1132.1 2288.3 2315.3 -1921.3 3866.5 3906.7 -2660.7 5345.3 5395.7 -4096.9 8217.8 8276.5 -5899.8 11823.6 11890.7

24 -1092.6 2233.2 2287.2 -1875.8 3799.7 3880.0 -2650.6 5349.1 5449.8 -4053.9 8155.7 8273.0 -5855.6 11759.1 11893.3
36 -1091.2 2254.4 2335.4 -1868.1 3808.1 3928.6 -2649.5 5371.0 5522.0 -4013.0 8097.9 8273.9 -5808.9 11689.9 11891.2
48 -1089.3 2274.5 2382.5 -1864.5 3824.9 3985.6 -2635.1 5366.1 5567.4 -4001.7 8099.5 8334.1 -5760.1 11616.2 11884.6

LML-Step 12 -1119.9 2263.9 2290.9 -1917.0 3858.0 3898.1 -2654.1 5332.2 5382.6 -4098.3 8220.6 8279.2 -5889.5 11803.1 11870.2
24 -1090.7 2229.4 2283.4 -1870.3 3788.6 3868.9 -2641.1 5330.2 5430.9 -4062.7 8173.4 8290.7 -5848.4 11744.7 11878.9
36 -1090.0 2252.1 2333.0 -1865.5 3802.9 3923.4 -2635.6 5343.2 5494.2 -4002.7 8077.5 8253.4 -5797.5 11667.1 11868.3
48 -1087.4 2270.7 2378.7 -1860.4 3816.8 3977.4 -2629.4 5354.8 5556.1 -3960.5 8017.0 8251.6 -5762.5 11621.0 11889.4

LML-Spline 12 -1124.0 2271.9 2298.9 -1913.7 3851.5 3891.6 -2663.7 5351.4 5401.7 -4103.5 8231.1 8289.7 -5900.6 11825.1 11892.2
24 -1101.1 2250.2 2304.2 -1879.2 3806.4 3886.7 -2657.4 5362.7 5463.4 -4054.8 8157.6 8274.9 -5849.4 11746.8 11881.0
36 -1097.4 2266.8 2347.7 -1872.9 3817.7 3938.2 -2653.9 5379.9 5530.9 -4025.7 8123.5 8299.4 -5818.6 11709.2 11910.4
48 -1095.2 2286.4 2394.4 -1868.8 3833.5 3994.2 -2643.8 5383.6 5584.9 -4005.9 8107.7 8342.3 -5755.0 11606.1 11874.4
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Table A5. MSE for means of random coefficients in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

MXL-N Pref. 6 0.276 0.436 0.234 0.383 0.142 0.299 0.108 0.200 0.055 0.135
MXL-N WTP 6 0.165 0.301 0.095 0.281 0.038 0.208 0.013 0.128 0.009 0.104
LML-Poly 12 0.224 0.429 0.132 0.311 0.059 0.294 0.042 0.245 0.014 0.137

24 0.268 0.404 0.104 0.359 0.064 0.225 0.022 0.125 0.009 0.077
36 0.361 0.554 0.215 0.379 0.036 0.301 0.019 0.095 0.004 0.059
48 0.276 0.395 0.212 0.349 0.037 0.229 0.012 0.097 0.005 0.054

LML-Step 12 0.245 0.407 0.237 0.312 0.039 0.231 0.054 0.248 0.023 0.160
24 0.209 0.405 0.149 0.384 0.072 0.201 0.061 0.132 0.014 0.104
36 0.212 0.326 0.174 0.304 0.094 0.225 0.026 0.101 0.012 0.056
48 0.261 0.365 0.141 0.315 0.115 0.271 0.013 0.093 0.007 0.052

LML-Spline 12 0.288 0.485 0.243 0.322 0.069 0.235 0.089 0.219 0.021 0.084
24 0.197 0.423 0.139 0.332 0.089 0.191 0.008 0.148 0.014 0.053
36 0.263 0.456 0.201 0.463 0.126 0.231 0.022 0.128 0.006 0.049
48 0.309 0.445 0.282 0.312 0.044 0.188 0.008 0.105 0.006 0.046
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Table A6. MSE for st. dev. of random coefficients in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

MXL-N Pref. 6 0.463 0.693 0.420 0.629 0.360 0.516 0.322 0.401 0.283 0.359
MXL-N WTP 6 0.370 0.542 0.319 0.516 0.293 0.475 0.286 0.376 0.246 0.346
LML-Poly 12 0.467 0.639 0.481 0.672 0.361 0.591 0.342 0.487 0.284 0.384

24 0.484 0.628 0.341 0.551 0.351 0.487 0.265 0.329 0.245 0.297
36 0.449 0.765 0.419 0.714 0.305 0.614 0.261 0.317 0.220 0.278
48 0.411 0.645 0.329 0.561 0.267 0.495 0.246 0.293 0.214 0.267

LML-Step 12 0.392 0.597 0.421 0.554 0.341 0.579 0.363 0.469 0.252 0.373
24 0.401 0.644 0.492 0.638 0.362 0.516 0.295 0.360 0.223 0.346
36 0.424 0.553 0.425 0.505 0.330 0.440 0.255 0.333 0.222 0.289
48 0.408 0.556 0.367 0.551 0.299 0.489 0.245 0.313 0.207 0.275

LML-Spline 12 0.421 0.591 0.775 0.649 0.312 0.421 0.305 0.449 0.282 0.378
24 0.424 0.651 0.324 0.560 0.269 0.413 0.279 0.352 0.241 0.263
36 0.467 0.718 0.449 0.624 0.334 0.582 0.262 0.342 0.232 0.288
48 0.488 0.681 0.489 0.665 0.426 0.412 0.253 0.345 0.218 0.248
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Table A7. MSE for means of random coefficients in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

MXL-N Pref. 6 0.185 0.277 0.168 0.252 0.144 0.207 0.129 0.161 0.113 0.144
MXL-N WTP 6 0.148 0.217 0.128 0.207 0.117 0.190 0.115 0.151 0.099 0.139
LML-Poly 12 0.187 0.256 0.193 0.269 0.145 0.237 0.137 0.195 0.114 0.154

24 0.194 0.251 0.137 0.221 0.141 0.195 0.106 0.132 0.098 0.119
36 0.180 0.306 0.168 0.286 0.122 0.246 0.105 0.127 0.088 0.111
48 0.165 0.258 0.132 0.225 0.107 0.198 0.099 0.117 0.086 0.107

LML-Step 12 0.157 0.239 0.169 0.222 0.137 0.232 0.145 0.188 0.101 0.149
24 0.161 0.258 0.197 0.255 0.145 0.207 0.118 0.144 0.085 0.139
36 0.170 0.221 0.170 0.202 0.132 0.176 0.102 0.133 0.089 0.116
48 0.163 0.223 0.147 0.221 0.120 0.196 0.098 0.125 0.083 0.110

LML-Spline 12 0.169 0.237 0.210 0.260 0.125 0.169 0.122 0.180 0.113 0.151
24 0.170 0.261 0.130 0.224 0.108 0.165 0.112 0.141 0.097 0.105
36 0.187 0.287 0.180 0.250 0.134 0.233 0.105 0.137 0.093 0.115
48 0.195 0.273 0.196 0.266 0.171 0.165 0.101 0.138 0.087 0.099
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Table A8. MSE for st. dev. of random coefficients in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

MXL-N Pref. 6 0.204 0.305 0.185 0.277 0.158 0.228 0.142 0.177 0.124 0.158
MXL-N WTP 6 0.163 0.239 0.141 0.228 0.129 0.209 0.127 0.166 0.109 0.153
LML-Poly 12 0.206 0.282 0.212 0.296 0.160 0.261 0.151 0.215 0.125 0.169

24 0.213 0.276 0.151 0.243 0.155 0.215 0.117 0.145 0.108 0.131
36 0.198 0.337 0.185 0.315 0.134 0.271 0.116 0.140 0.097 0.122
48 0.182 0.284 0.145 0.248 0.118 0.218 0.109 0.129 0.095 0.118

LML-Step 12 0.173 0.263 0.186 0.244 0.151 0.255 0.160 0.207 0.111 0.164
24 0.177 0.284 0.217 0.281 0.160 0.228 0.130 0.158 0.094 0.153
36 0.187 0.243 0.187 0.222 0.145 0.194 0.112 0.146 0.098 0.128
48 0.179 0.245 0.162 0.243 0.132 0.216 0.108 0.138 0.091 0.121

LML-Spline 12 0.186 0.261 0.231 0.286 0.138 0.186 0.134 0.198 0.124 0.166
24 0.187 0.287 0.143 0.246 0.119 0.182 0.123 0.155 0.107 0.116
36 0.206 0.316 0.198 0.275 0.147 0.256 0.116 0.151 0.102 0.127
48 0.215 0.300 0.216 0.293 0.188 0.182 0.111 0.152 0.096 0.109
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Table A9. MSE for means of random coefficients in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

MXL-N Pref. 6 0.248 0.392 0.211 0.345 0.128 0.269 0.097 0.180 0.050 0.122
MXL-N WTP 6 0.149 0.271 0.086 0.253 0.074 0.187 0.068 0.115 0.008 0.094
LML-Poly 12 0.202 0.386 0.119 0.280 0.053 0.265 0.038 0.221 0.013 0.123

24 0.241 0.364 0.094 0.323 0.058 0.203 0.020 0.113 0.008 0.069
36 0.325 0.499 0.194 0.341 0.032 0.271 0.017 0.086 0.004 0.053
48 0.248 0.356 0.191 0.314 0.033 0.206 0.011 0.087 0.005 0.049

LML-Step 12 0.221 0.366 0.213 0.281 0.035 0.208 0.049 0.223 0.021 0.144
24 0.188 0.365 0.134 0.346 0.065 0.181 0.035 0.119 0.013 0.094
36 0.191 0.293 0.157 0.274 0.085 0.203 0.023 0.091 0.011 0.050
48 0.235 0.329 0.127 0.284 0.104 0.244 0.012 0.084 0.006 0.047

LML-Spline 12 0.259 0.437 0.219 0.290 0.062 0.212 0.080 0.197 0.019 0.076
24 0.177 0.381 0.125 0.299 0.080 0.172 0.057 0.133 0.013 0.048
36 0.237 0.410 0.181 0.417 0.113 0.208 0.020 0.115 0.005 0.044
48 0.278 0.401 0.254 0.281 0.040 0.169 0.007 0.095 0.005 0.041
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Table A10. MSE for standard deviations of random coefficients in DGP 2 (trimodal,
T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

MXL-N Pref. 6 0.426 0.633 0.392 0.581 0.341 0.477 0.352 0.368 0.304 0.342
MXL-N WTP 6 0.371 0.500 0.301 0.479 0.281 0.443 0.344 0.398 0.294 0.328
LML-Poly 12 0.432 0.592 0.447 0.614 0.340 0.549 0.312 0.469 0.283 0.356

24 0.452 0.577 0.319 0.510 0.329 0.447 0.271 0.367 0.262 0.323
36 0.413 0.701 0.388 0.654 0.288 0.566 0.216 0.369 0.262 0.257
48 0.383 0.596 0.307 0.522 0.255 0.462 0.230 0.304 0.244 0.250

LML-Step 12 0.368 0.551 0.389 0.511 0.318 0.538 0.365 0.424 0.256 0.306
24 0.373 0.592 0.457 0.584 0.337 0.482 0.271 0.357 0.233 0.290
36 0.394 0.507 0.392 0.470 0.315 0.410 0.272 0.374 0.223 0.268
48 0.382 0.515 0.342 0.506 0.282 0.458 0.272 0.332 0.192 0.262

LML-Spline 12 0.395 0.542 0.707 0.600 0.293 0.391 0.339 0.452 0.289 0.281
24 0.394 0.597 0.306 0.517 0.252 0.383 0.290 0.399 0.280 0.271
36 0.432 0.659 0.418 0.576 0.312 0.540 0.315 0.383 0.285 0.262
48 0.453 0.626 0.456 0.610 0.401 0.385 0.280 0.326 0.247 0.257
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Table A11. MSE for means of random coefficients in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k w1 w2 w1 w2 w1 w2 w1 w2 w1 w2

MXL-N Pref. 6 0.167 0.249 0.151 0.227 0.130 0.186 0.116 0.145 0.102 0.130
MXL-N WTP 6 0.133 0.195 0.115 0.186 0.105 0.171 0.104 0.136 0.089 0.125
LML-Poly 12 0.168 0.230 0.174 0.242 0.131 0.213 0.123 0.176 0.103 0.139

24 0.175 0.226 0.123 0.199 0.127 0.176 0.095 0.119 0.088 0.107
36 0.162 0.275 0.151 0.257 0.110 0.221 0.095 0.114 0.079 0.100
48 0.149 0.232 0.119 0.203 0.096 0.178 0.089 0.105 0.077 0.096

LML-Step 12 0.141 0.215 0.152 0.200 0.123 0.209 0.131 0.169 0.091 0.134
24 0.145 0.232 0.177 0.230 0.131 0.186 0.106 0.130 0.077 0.125
36 0.153 0.199 0.153 0.182 0.119 0.158 0.092 0.120 0.080 0.104
48 0.147 0.201 0.132 0.199 0.108 0.176 0.088 0.113 0.075 0.099

LML-Spline 12 0.152 0.213 0.189 0.234 0.113 0.152 0.110 0.162 0.102 0.136
24 0.153 0.235 0.117 0.202 0.097 0.149 0.101 0.127 0.087 0.095
36 0.168 0.258 0.162 0.225 0.121 0.210 0.095 0.123 0.084 0.104
48 0.176 0.246 0.176 0.239 0.154 0.149 0.091 0.124 0.078 0.089
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Table A12. MSE for standard deviations of random coefficients in DGP 2 (trimodal,
T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

MXL-N Pref. 6 0.184 0.275 0.167 0.249 0.142 0.205 0.128 0.159 0.112 0.142
MXL-N WTP 6 0.147 0.215 0.127 0.205 0.116 0.188 0.114 0.149 0.098 0.138
LML-Poly 12 0.185 0.254 0.191 0.266 0.144 0.235 0.136 0.194 0.113 0.152

24 0.192 0.248 0.136 0.219 0.140 0.194 0.105 0.131 0.097 0.118
36 0.178 0.303 0.167 0.284 0.121 0.244 0.104 0.126 0.087 0.110
48 0.164 0.256 0.131 0.223 0.106 0.196 0.098 0.116 0.086 0.106

LML-Step 12 0.156 0.237 0.167 0.220 0.136 0.230 0.144 0.186 0.100 0.148
24 0.159 0.256 0.195 0.253 0.144 0.205 0.117 0.142 0.085 0.138
36 0.168 0.219 0.168 0.200 0.131 0.175 0.101 0.131 0.088 0.115
48 0.161 0.221 0.146 0.219 0.119 0.194 0.097 0.124 0.082 0.109

LML-Spline 12 0.167 0.235 0.208 0.257 0.124 0.167 0.121 0.178 0.112 0.149
24 0.168 0.258 0.129 0.221 0.107 0.164 0.111 0.140 0.096 0.104
36 0.185 0.284 0.178 0.248 0.132 0.230 0.104 0.136 0.092 0.114
48 0.194 0.270 0.194 0.264 0.169 0.164 0.100 0.137 0.086 0.098
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Table A13. Means and st. dev. of modal estimates of w1
n in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real � 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26
MXL�N Pref. 6 0.89 � 0.84 � 0.75 � 0.86 � 0.80 �

(0.11) � (0.14) � (0.10) � (0.15) � (0.16) �
MXL�N WTP 6 0.99 � 1.02 � 1.11 � 0.94 � 0.84 �

(0.14) � (0.18) � (0.19) � (0.21) � (0.17) �
LML-Poly 12 0.68 2.06 0.71 1.99 0.74 1.77 0.65 1.56 0.42 1.36

(0.07) (0.24) (0.06) (0.21) (0.08) (0.16) (0.05) (0.15) (0.03) (0.12)
24 0.71 2.11 0.68 2.08 0.74 1.63 0.63 1.44 0.60 1.34

(0.07) (0.31) (0.06) (0.22) (0.06) (0.15) (0.06) (0.20) (0.03) (0.10)
36 0.69 2.07 0.61 1.99 0.61 1.69 0.47 1.49 0.55 1.25

(0.05) (0.20) (0.06) (0.19) (0.04) (0.18) (0.04) (0.17) (0.03) (0.11)
48 0.74 2.08 0.66 2.02 0.62 1.66 0.49 1.45 0.52 1.22

(0.06) (0.22) (0.05) (0.21) (0.07) (0.14) (0.04) (0.14) (0.02) (0.09)
LML-Step 12 0.77 2.05 0.74 2.03 0.75 1.80 0.67 1.45 0.44 1.35

(0.07) (0.22) (0.06) (0.21) (0.09) (0.19) (0.05) (0.18) (0.05) (0.14)
24 0.79 2.09 0.72 2.05 0.71 1.67 0.62 1.40 0.49 1.39

(0.07) (0.26) (0.05) (0.27) (0.08) (0.16) (0.03) (0.16) (0.03) (0.11)
36 0.76 2.01 0.61 1.92 0.61 1.50 0.49 1.37 0.53 1.22

(0.07) (0.25) (0.09) (0.21) (0.07) (0.18) (0.04) (0.18) (0.04) (0.09)
48 0.71 2.06 0.64 1.93 0.60 1.53 0.48 1.32 0.54 1.29

(0.06) (0.19) (0.06) (0.22) (0.06) (0.16) (0.06) (0.14) (0.03) (0.08)
LML-Spline 12 0.78 2.13 0.63 2.10 0.66 1.52 0.68 1.44 0.53 1.32

(0.09) (0.26) (0.07) (0.20) (0.08) (0.21) (0.06) (0.18) (0.05) (0.11)
24 0.76 2.19 0.65 2.06 0.72 1.56 0.67 1.39 0.54 1.31

(0.08) (0.21) (0.08) (0.23) (0.08) (0.20) (0.06) (0.19) (0.05) (0.12)
36 0.76 2.13 0.67 2.08 0.65 1.49 0.48 1.34 0.58 1.24

(0.07) (0.32) (0.08) (0.24) (0.08) (0.19) (0.06) (0.20) (0.05) (0.08)
48 0.75 2.18 0.71 2.08 0.62 1.44 0.46 1.31 0.53 1.21

(0.07) (0.24) (0.05) (0.21) (0.08) (0.19) (0.06) (0.17) (0.05) (0.08)
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Table A14. Means and st. dev. of modal estimates of w1
n in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real � 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26
MXL�N Pref. 6 0.88 � 0.80 � 0.77 � 0.74 � 0.71 �

(0.14) � (0.12) � (0.12) � (0.18) � (0.15) �
MXL�N WTP 6 0.95 � 0.93 � 0.91 0.94 � 0.88 �

(0.20) � (0.15) � (0.12) � (0.18) � (0.14) �
LML-Poly 12 0.71 2.14 0.74 2.07 0.67 1.65 0.67 1.48 0.64 1.43

(0.06) (0.22) (0.06) (0.15) (0.07) (0.18) (0.05) (0.14) (0.04) (0.11)
24 0.74 2.19 0.71 2.16 0.66 1.51 0.65 1.47 0.62 1.41

(0.06) (0.21) (0.07) (0.19) (0.05) (0.18) (0.06) (0.17) (0.06) (0.12)
36 0.72 2.15 0.73 2.07 0.73 1.57 0.69 1.42 0.56 1.32

(0.07) (0.19) (0.05) (0.17) (0.06) (0.17) (0.04) (0.15) (0.05) (0.09)
48 0.77 2.16 0.69 2.10 0.64 1.54 0.61 1.39 0.54 1.29

(0.05) (0.18) (0.06) (0.16) (0.05) (0.15) (0.04) (0.13) (0.04) (0.08)
LML-Step 12 0.70 2.13 0.77 2.11 0.77 1.78 0.69 1.42 0.66 1.42

(0.11) (0.22) (0.14) (0.22) (0.12) (0.19) (0.09) (0.12) (0.05) (0.12)
24 0.72 2.17 0.75 2.13 0.73 1.75 0.64 1.37 0.51 1.37

(0.10) (0.24) (0.09) (0.22) (0.08) (0.15) (0.09) (0.11) (0.06) (0.10)
36 0.69 2.08 0.73 2.00 0.63 1.78 0.61 1.39 0.55 1.29

(0.12) (0.22) (0.09) (0.21) (0.08) (0.14) (0.08) (0.12) (0.05) (0.09)
48 0.73 2.14 0.67 2.01 0.64 1.71 0.60 1.36 0.54 1.26

(0.09) (0.19) (0.06) (0.22) (0.07) (0.15) (0.06) (0.11) (0.04) (0.08)
LML-Spline 12 0.71 2.22 0.66 2.18 0.68 1.80 0.60 1.44 0.63 1.44

(0.09) (0.22) (0.08) (0.20) (0.08) (0.21) (0.05) (0.20) (0.05) (0.15)
24 0.69 2.28 0.77 2.14 0.74 1.84 0.69 1.48 0.59 1.48

(0.08) (0.24) (0.09) (0.19) (0.08) (0.20) (0.06) (0.18) (0.06) (0.11)
36 0.69 2.22 0.72 2.16 0.67 1.70 0.60 1.33 0.57 1.31

(0.06) (0.29) (0.10) (0.24) (0.09) (0.17) (0.06) (0.21) (0.05) (0.08)
48 0.62 2.27 0.74 2.16 0.64 1.75 0.58 1.38 0.55 1.28

(0.05) (0.16) (0.07) (0.21) (0.06) (0.15) (0.04) (0.10) (0.03) (0.07)
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Table A15. Means and st. dev. of modal estimates of w2
n in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real � �1.78 1.69 �1.78 1.69 �1.78 1.69 �1.78 1.69 �1.78 1.69
MXL�N Pref. 6 0.78 � 0.76 � 0.65 � 0.56 � 0.46 �

(0.16) � (0.15) � (0.11) � (0.12) � (0.09) �
MXL�N WTP 6 0.55 � 0.43 � 0.38 0.29 � 0.18 �

(0.18) � (0.11) � (0.10) � (0.08) � (0.04) �
LML-Poly 12 �1.14 1.22 �1.19 1.18 �1.18 1.41 �1.22 1.43 �1.23 1.50

(0.16) (0.25) (0.14) (0.22) (0.14) (0.16) (0.15) (0.19) (0.13) (0.15)
24 �1.19 1.35 �1.20 1.26 �1.34 1.31 �1.37 1.37 �1.49 1.40

(0.18) (0.24) (0.12) (0.21) (0.12) (0.17) (0.12) (0.16) (0.12) (0.12)
36 �1.29 1.42 �1.28 1.45 �1.40 1.44 �1.41 1.54 �1.51 1.55

(0.11) (0.20) (0.12) (0.18) (0.11) (0.12) (0.17) (0.16) (0.15) (0.16)
48 �1.38 1.43 �1.45 1.51 �1.53 1.52 �1.49 1.54 �1.64 1.62

(0.11) (0.14) (0.11) (0.14) (0.09) (0.11) (0.08) (0.11) (0.08) (0.07)
LML-Step 12 �1.20 1.49 �1.16 1.46 �1.26 1.12 �1.33 1.15 �1.43 1.20

(0.14) (0.25) (0.15) (0.20) (0.14) (0.19) (0.15) (0.15) (0.14) (0.16)
24 �1.37 1.49 �1.43 1.57 �1.37 1.34 �1.46 1.44 �1.50 1.42

(0.16) (0.21) (0.13) (0.13) (0.17) (0.18) (0.14) (0.12) (0.13) (0.14)
36 �1.40 1.36 �1.46 1.40 �1.50 1.45 �1.59 1.46 �1.67 1.51

(0.14) (0.17) (0.12) (0.12) (0.16) (0.13) (0.17) (0.09) (0.12) (0.11)
48 �1.26 1.11 �1.32 1.14 �1.35 1.49 �1.42 1.61 �1.66 1.73

(0.15) (0.15) (0.16) (0.15) (0.13) (0.12) (0.09) (0.09) (0.08) (0.06)
LML-Spline 12 �1.28 1.19 �1.23 1.12 �1.39 1.21 �1.42 1.33 �1.46 1.41

(0.15) (0.22) (0.17) (0.18) (0.15) (0.16) (0.15) (0.19) (0.12) (0.14)
24 �1.28 1.19 �1.23 1.17 �1.51 1.22 �1.60 1.38 �1.54 1.40

(0.15) (0.18) (0.15) (0.21) (0.12) (0.16) (0.14) (0.16) (0.13) (0.16)
36 �1.36 1.03 �1.42 1.16 �1.33 1.55 �1.40 1.59 �1.54 1.66

(0.16) (0.20) (0.18) (0.19) (0.1) (0.16) (0.12) (0.11) (0.10) (0.12)
48 �1.32 1.12 �1.31 1.17 �1.43 1.59 �1.55 1.53 �1.66 1.70

(0.16) (0.16) (0.14) (0.15) (0.09) (0.10) (0.08) (0.12) (0.07) (0.09)
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Table A16. Means and st. dev. of modal estimates of w2
n in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real � �1.78 1.69 �1.78 1.69 �1.78 1.69 �1.78 1.69 �1.78 1.69
MXL�N Pref. 6 0.22 � 0.34 � 0.27 � 0.49 � 0.45 �

(0.04) � (0.05) � (0.02) � (0.08) � (0.05) �
MXL�N WTP 6 0.12 � 0.12 � 0.17 0.27 � 0.08 �

(0.03) � (0.05) � (0.04) � (0.06) � (0.03) �
LML-Poly 12 �1.19 1.27 �1.24 1.23 �1.23 1.47 �1.27 1.49 �1.28 1.56

(0.19) (0.25) (0.16) (0.20) (0.15) (0.18) (0.16) (0.15) (0.12) (0.14)
24 �1.24 1.40 �1.25 1.31 �1.39 1.36 �1.42 1.42 �1.55 1.46

(0.16) (0.22) (0.11) (0.18) (0.14) (0.15) (0.14) (0.14) (0.11) (0.12)
36 �1.34 1.48 �1.33 1.51 �1.46 1.50 �1.47 1.60 �1.57 1.61

(0.11) (0.21) (0.14) (0.15) (0.12) (0.13) (0.15) (0.13) (0.10) (0.13)
48 �1.44 1.49 �1.51 1.57 �1.59 1.58 �1.55 1.60 �1.71 1.68

(0.13) (0.12) (0.10) (0.13) (0.09) (0.10) (0.09) (0.10) (0.06) (0.08)
LML-Step 12 �1.25 1.55 �1.21 1.52 �1.31 1.16 �1.38 1.20 �1.49 1.25

(0.20) (0.25) (0.13) (0.12) (0.14) (0.19) (0.14) (0.12) (0.14) (0.16)
24 �1.42 1.55 �1.49 1.63 �1.42 1.39 �1.52 1.50 �1.56 1.48

(0.11) (0.21) (0.13) (0.13) (0.17) (0.18) (0.14) (0.12) (0.12) (0.16)
36 �1.46 1.41 �1.52 1.46 �1.56 1.51 �1.65 1.52 �1.74 1.57

(0.13) (0.17) (0.12) (0.12) (0.18) (0.13) (0.17) (0.09) (0.12) (0.14)
48 �1.31 1.15 �1.37 1.19 �1.40 1.55 �1.48 1.67 �1.73 1.80

(0.12) (0.13) (0.15) (0.15) (0.11) (0.10) (0.09) (0.11) (0.06) (0.10)
LML-Spline 12 �1.33 1.24 �1.28 1.16 �1.45 1.26 �1.48 1.38 �1.52 1.47

(0.18) (0.22) (0.19) (0.18) (0.15) (0.16) (0.15) (0.19) (0.12) (0.14)
24 �1.37 1.28 �1.24 1.22 �1.57 1.27 �1.66 1.44 �1.60 1.46

(0.15) (0.18) (0.15) (0.18) (0.12) (0.16) (0.14) (0.16) (0.13) (0.16)
36 �1.41 1.07 �1.48 1.21 �1.38 1.61 �1.46 1.65 �1.60 1.73

(0.16) (0.17) (0.11) (0.19) (0.1) (0.19) (0.12) (0.11) (0.10) (0.12)
48 �1.37 1.16 �1.36 1.22 �1.49 1.65 �1.61 1.59 �1.73 1.77

(0.14) (0.11) (0.12) (0.11) (0.09) (0.09) (0.07) (0.12) (0.07) (0.06)
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Table A17. Means and st. dev. of modal estimates of w1
n in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61
MXL�N Pref. 6 1.13 � � 1.34 � � 1.27 � � 1.19 � � 1.25 � �

(0.26) (0.29) (0.28) (0.23) (0.22)
MXL�N WTP 6 1.15 � � 1.13 � � 1.18 � � 1.27 � � 1.38 � �

(0.26) (0.19) (0.27) (0.28) (0.20)
LML-Poly 12 �1.89 3.10 � �1.80 3.16 � �1.76 3.23 � �1.72 3.29 � �1.38 3.36 �

(0.21) (0.35) (0.22) (0.18) (0.19) (0.29) (0.15) (0.26) (0.13) (0.25)
24 �1.91 3.19 � �1.81 3.25 � �1.78 3.32 � �1.74 2.22 4.04 �1.39 2.00 3.86

(0.22) (0.37) (0.24) (0.19) (0.22) (0.25) (0.14) (0.28) (0.39) (0.15) (0.25) (0.32)
36 �1.86 3.32 � �1.77 2.24 4.37 �1.73 2.20 4.28 �1.70 2.15 4.20 �1.36 1.94 3.72

(0.19) (0.32) (0.21) (0.25) (0.41) (0.24) (0.24) (0.38) (0.13) (0.21) (0.35) (0.16) (0.22) (0.34)
48 �1.77 2.33 4.39 �1.68 2.21 4.17 �1.79 2.17 4.09 �1.61 2.13 4.01 �1.29 1.91 3.68

(0.18) (0.28) (0.46) (0.19) (0.26) (0.38) (0.22) (0.21) (0.36) (0.10) (0.20) (0.33) (0.12) (0.18) (0.29)
LML-Step 12 �1.98 3.26 � �1.88 3.32 � �1.84 3.39 � �1.81 3.45 � �1.45 3.52 �

(0.24) (0.31) (0.21) (0.22) (0.22) (0.19) (0.12) (0.29) (0.12) (0.17)
24 �1.90 3.35 � �1.80 3.42 � �1.76 3.48 � �1.73 2.19 4.15 �1.38 1.97 3.82

(0.23) (0.27) (0.20) (0.22) (0.23) (0.18) (0.15) (0.31) (0.46) (0.13) (0.16) (0.33)
36 �1.83 3.49 � �1.74 2.26 4.20 �1.70 2.22 4.37 �1.67 2.17 4.03 �1.34 1.95 3.71

(0.25) (0.26) (0.24) (0.25) (0.42) (0.27) (0.16) (0.39) (0.14) (0.26) (0.44) (0.15) (0.14) (0.36)
48 �1.76 2.42 4.46 �1.67 2.30 4.24 �1.77 2.25 4.24 �1.61 2.21 4.07 �1.28 1.89 3.68

(0.21) (0.22) (0.51) (0.21) (0.23) (0.40) (0.19) (0.20) (0.37) (0.14) (0.20) (0.39) (0.09) (0.15) (0.34)
LML-Spline 12 �2.01 3.18 � �1.91 3.24 � �1.87 3.31 � �1.83 3.37 � �1.47 3.44 �

(0.14) (0.27) (0.21) (0.19) (0.22) (0.21) (0.19) (0.15) (0.16) (0.25)
24 �1.89 3.27 � �1.90 3.34 � �1.76 3.40 � �1.75 2.15 4.11 �1.38 2.01 3.79

(0.15) (0.29) (0.19) (0.24) (0.22) (0.23) (0.18) (0.25) (0.49) (0.14) (0.29) (0.40)
36 �1.89 3.40 � �1.80 3.19 � �1.79 3.15 � �1.72 2.11 4.09 �1.35 1.93 3.76

(0.12) (0.32) (0.24) (0.15) (0.22) (0.24) (0.17) (0.26) (0.42) (0.16) (0.28) (0.42)
48 �1.83 2.39 4.40 �1.74 2.27 4.18 �1.70 2.23 4.10 �1.71 2.18 4.01 �1.34 1.92 3.69

(0.16) (0.24) (0.44) (0.20) (0.13) (0.41) (0.22) (0.17) (0.22) (0.11) (0.23) (0.38) (0.11) (0.24) (0.36)

24



Table A18. Means and st. dev. of modal estimates of w1
n in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61 �1.12 1.77 3.61
MXL�N Pref. 6 1.24 � � 1.28 � � 1.35 � � 1.38 � � 1.43 � �

(0.22) (0.23) (0.25) (0.23) (0.28)
MXL�N WTP 6 1.26 � � 1.33 � � 1.38 � � 1.57 � � 1.49 � �

(0.27) (0.30) (0.25) (0.26) (0.22)
LML-Poly 12 �1.80 2.95 � �1.71 3.00 � �1.67 3.06 � �1.64 3.13 � �1.31 3.19 �

(0.23) (0.33) (0.21) (0.19) (0.20) (0.31) (0.13) (0.26) (0.14) (0.22)
24 �1.81 3.03 � �1.72 3.09 � �1.69 3.15 4.18 �1.66 2.11 3.84 �1.32 1.90 3.67

(0.25) (0.35) (0.24) (0.21) (0.23) (0.23) (0.41) (0.12) (0.28) (0.37) (0.13) (0.26) (0.35)
36 �1.77 3.15 � �1.68 2.13 4.15 �1.65 2.09 4.07 �1.61 2.05 3.99 �1.29 1.84 3.53

(0.20) (0.30) (0.21) (0.24) (0.42) (0.22) (0.22) (0.36) (0.12) (0.21) (0.36) (0.14) (0.24) (0.33)
48 �1.68 2.21 4.17 �1.60 2.10 3.96 �1.57 2.06 3.88 �1.53 2.02 3.81 �1.23 1.82 3.50

(0.16) (0.22) (0.44) (0.20) (0.24) (0.37) (0.21) (0.19) (0.38) (0.12) (0.20) (0.32) (0.11) (0.15) (0.28)
LML-Step 12 �1.88 3.09 � �1.79 3.15 � �1.75 3.22 � �1.72 3.28 � �1.37 3.35 �

(0.25) (0.30) (0.20) (0.23) (0.25) (0.19) (0.11) (0.23) (0.13) (0.17)
24 �1.80 3.18 � �1.71 3.25 � �1.68 3.31 4.21 �1.64 2.08 3.94 �1.31 1.87 3.63

(0.24) (0.24) (0.22) (0.24) (0.26) (0.17) (0.43) (0.15) (0.32) (0.48) (0.13) (0.14) (0.37)
36 �1.74 3.31 � �1.65 2.15 3.99 �1.62 2.10 4.16 �1.59 2.06 3.91 �1.27 1.86 3.58

(0.22) (0.25) (0.25) (0.22) (0.45) (0.23) (0.18) (0.37) (0.14) (0.22) (0.43) (0.14) (0.14) (0.38)
48 �1.67 2.30 4.24 �1.68 2.18 4.03 �1.66 2.14 4.08 �1.53 2.02 3.87 �1.22 1.81 3.51

(0.24) (0.24) (0.53) (0.22) (0.25) (0.42) (0.21) (0.22) (0.34) (0.17) (0.19) (0.40) (0.10) (0.16) (0.33)
LML-Spline 12 �1.91 3.02 � �1.81 3.08 � �1.78 3.14 � �1.74 3.20 � �1.39 3.27 �

(0.16) (0.27) (0.21) (0.19) (0.22) (0.21) (0.19) (0.15) (0.16) (0.25)
24 �1.80 3.11 � �1.71 3.17 � �1.67 3.23 4.32 �1.64 2.05 3.91 �1.31 1.84 3.60

(0.15) (0.29) (0.19) (0.24) (0.22) (0.23) (0.46) (0.18) (0.25) (0.49) (0.14) (0.29) (0.40)
36 �1.88 3.23 � �1.73 2.08 4.12 �1.67 2.04 4.04 �1.66 2.00 3.88 �1.29 1.83 3.57

(0.15) (0.32) (0.24) (0.15) (0.48) (0.22) (0.24) (0.44) (0.17) (0.26) (0.42) (0.16) (0.28) (0.42)
48 �1.74 2.27 4.18 �1.65 2.16 3.97 �1.62 2.11 3.96 �1.59 1.98 3.81 �1.27 1.79 3.51

(0.15) (0.24) (0.44) (0.20) (0.13) (0.41) (0.22) (0.17) (0.22) (0.11) (0.23) (0.38) (0.11) (0.24) (0.36)
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Table A19. Means and st. dev. of modal estimates of w2
n in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82
MXL�N Pref. 6 3.92 � � 4.01 � � 4.11 � � 4.05 � � 4.01 � �

(0.47) (0.51) (0.48) (0.46) (0.42)
MXL�N WTP 6 4.10 � � 4.04 � � 3.99 � � 4.08 � � 4.12 � �

(0.58) (0.49) (0.47) (0.39) (0.36)
LML-Poly 12 0.26 3.24 � 0.41 3.21 � 0.74 3.46 � 0.80 3.53 � 0.87 3.60 �

(0.04) (0.41) (0.05) (0.28) (0.13) (0.29) (0.08) (0.30) (0.12) (0.29)
24 0.25 3.21 � 0.24 3.60 � 0.29 3.68 � 0.31 3.28 5.25 0.34 3.38 5.34

(0.04) (0.36) (0.06) (0.31) (0.09) (0.32) (0.05) (0.29) (0.48) (0.03) (0.28) (0.45)
36 0.29 3.29 � 0.50 3.08 5.14 0.67 3.31 5.21 0.72 3.38 5.31 0.79 3.45 5.43

(0.03) (0.37) (0.11) (0.30) (0.55) (0.16) (0.26) (0.51) (0.11) (0.28) (0.49) (0.10) (0.28) (0.42)
48 0.68 3.01 5.15 0.79 3.32 5.21 0.87 3.34 5.27 0.94 3.41 5.34 1.02 3.50 5.55

(0.13) (0.35) (0.53) (0.12) (0.29) (0.48) (0.19) (0.28) (0.46) (0.08) (0.25) (0.44) (0.08) (0.25) (0.39)
LML-Step 12 0.33 3.31 � 0.38 3.50 � 0.48 3.63 � 0.51 3.70 � 0.56 3.75 �

(0.05) (0.40) (0.06) (0.30) (0.07) (0.32) (0.06) (0.26) (0.08) (0.26)
24 0.15 3.32 � 0.17 3.28 � 0.17 3.24 � 0.19 3.25 5.16 0.21 3.27 5.29

(0.02) (0.38) (0.03) (0.31) (0.01) (0.29) (0.02) (0.25) (0.46) (0.05) (0.30) (0.44)
36 0.22 3.38 � 0.43 3.12 5.18 0.69 3.19 5.20 0.75 3.30 5.22 0.81 3.37 5.25

(0.02) (0.35) (0.08) (0.28) (0.43) (0.10) (0.28) (0.47) (0.12) (0.27) (0.42) (0.10) (0.28) (0.45)
48 0.78 3.04 5.22 0.82 3.22 5.25 0.85 3.29 5.23 0.92 3.36 5.31 1.00 3.45 5.49

(0.10) (0.32) (0.49) (0.11) (0.29) (0.45) (0.12) (0.25) (0.41) (0.15) (0.24) (0.40) (0.13) (0.22) (0.38)
LML-Spline 12 0.40 3.36 � 0.61 3.47 � 0.91 3.69 � 0.98 3.77 � 1.07 3.86 �

(0.06) (0.34) (0.25) (0.20) (0.24) (0.35) (0.16) (0.21) (0.13) (0.31)
24 0.09 3.41 � 0.17 3.61 � 0.19 3.36 � 0.21 3.21 5.13 0.23 3.23 5.29

(0.01) (0.41) (0.26) (0.23) (0.03) (0.32) (0.18) (0.22) (0.27) (0.17) (0.24) (0.25)
36 0.25 3.35 � 0.38 3.43 � 0.43 3.53 � 0.46 3.26 5.23 0.50 3.31 5.36

(0.04) (0.39) (0.20) (0.21) (0.06) (0.31) (0.15) (0.25) (0.28) (0.16) (0.28) (0.27)
48 0.85 3.02 5.18 0.75 3.25 5.23 0.93 3.28 5.31 1.00 3.34 5.33 1.09 3.44 5.60

(0.21) (0.33) (0.35) (0.22) (0.18) (0.35) (0.19) (0.29) (0.35) (0.15) (0.24) (0.23) (0.12) (0.24) (0.25)
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Table A20. Means and st. dev. of modal estimates of w2
n in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82
MXL�N Pref. 6 3.86 � � 3.97 � � 4.04 � � 4.08 � � 4.15 � �

(0.45) (0.46) (0.44) (0.43) (0.44)
MXL�N WTP 6 3.98 � � 3.95 � � 4.14 � � 4.12 � � 4.20 � �

(0.50) (0.48) (0.42) (0.47) (0.42)
LML-Poly 12 0.31 3.33 � 0.43 3.31 � 0.76 3.56 � 0.81 3.60 � 0.91 3.68 �

(0.06) (0.40) (0.05) (0.28) (0.13) (0.29) (0.08) (0.30) (0.14) (0.23)
24 0.28 3.30 � 0.25 3.71 � 0.30 3.81 � 0.32 3.39 5.31 0.35 3.40 5.35

(0.05) (0.35) (0.06) (0.31) (0.09) (0.32) (0.05) (0.26) (0.46) (0.09) (0.23) (0.44)
36 0.29 3.33 � 0.67 3.20 5.28 0.70 3.40 5.43 0.74 3.47 5.32 0.83 3.51 5.44

(0.05) (0.36) (0.11) (0.30) (0.55) (0.16) (0.26) (0.51) (0.11) (0.24) (0.52) (0.11) (0.25) (0.40)
48 0.71 3.12 5.16 0.84 3.45 5.40 0.90 3.39 5.36 0.95 3.51 5.52 1.07 3.55 5.66

(0.13) (0.35) (0.53) (0.12) (0.29) (0.48) (0.19) (0.28) (0.46) (0.09) (0.27) (0.45) (0.09) (0.24) (0.37)
LML-Step 12 0.38 3.43 � 0.39 3.50 � 0.49 3.71 � 0.52 3.79 � 0.58 3.94 �

(0.05) (0.38) (0.06) (0.30) (0.05) (0.32) (0.05) (0.26) (0.08) (0.25)
24 0.18 3.48 � 0.18 3.36 � 0.18 3.32 � 0.19 3.26 5.19 0.21 3.30 5.36

(0.04) (0.36) (0.07) (0.30) (0.06) (0.29) (0.04) (0.25) (0.46) (0.03) (0.30) (0.44)
36 0.29 3.53 � 0.66 3.21 5.27 0.71 3.31 5.45 0.78 3.39 5.29 0.82 3.49 5.43

(0.05) (0.35) (0.11) (0.26) (0.43) (0.12) (0.28) (0.45) (0.13) (0.27) (0.42) (0.10) (0.26) (0.45)
48 0.82 3.17 5.31 0.82 3.24 5.46 0.86 3.33 5.35 0.93 3.39 5.36 1.04 3.59 5.69

(0.12) (0.29) (0.49) (0.14) (0.26) (0.45) (0.14) (0.25) (0.40) (0.16) (0.24) (0.40) (0.13) (0.22) (0.38)
LML-Spline 12 0.41 3.46 � 0.62 3.48 � 0.94 3.70 � 1.01 3.89 � 1.08 4.05 �

(0.07) (0.40) (0.15) (0.24) (0.13) (0.32) (0.16) (0.26) (0.18) (0.34)
24 0.09 3.43 � 0.17 3.78 � 0.20 3.40 � 0.21 3.30 5.20 0.24 3.35 5.48

(0.03) (0.34) (0.04) (0.28) (0.09) (0.32) (0.05) (0.26) (0.25) (0.05) (0.27) (0.32)
36 0.34 3.51 � 0.71 3.31 5.38 0.44 3.32 5.40 0.47 3.27 5.45 0.52 3.41 5.46

(0.07) (0.33) (0.12) (0.26) (0.41) (0.10) (0.30) (0.38) (0.07) (0.26) (0.25) (0.14) (0.28) (0.35)
48 0.85 3.14 5.41 0.92 3.34 5.32 0.93 3.41 5.43 1.02 3.42 5.59 1.15 3.60 5.63

(0.14) (0.36) (0.35) (0.14) (0.28) (0.35) (0.12) (0.32) (0.35) (0.13) (0.28) (0.31) (0.16) (0.28) (0.30)
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