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ABSTRACT
We use N-body simulations to revisit the globular cluster (GC) ‘timing problem’ in the Fornax
dwarf spheroidal (dSph). In agreement with earlier work, we find that, due to dynamical
friction, GCs sink to the centre of dark matter haloes with a cuspy inner density profile but
‘stall’ at roughly 1/3 of the core radius (rcore) in haloes with constant-density cores. The time-
scales to sink or stall depend strongly on the mass of the GC and on the initial orbital radius, but
are essentially the same for either cuspy (Navarro–Frenk–White) or cored haloes normalized
to have the same total mass within rcore. Arguing against a cusp on the basis that GCs have
not sunk to the centre is thus no different from arguing against a core, unless all clusters are
today at ∼ (1/3) rcore. This would imply a core radius exceeding ∼3 kpc, much larger than
seems plausible in any core-formation scenario. (The average projected distance of Fornax
GCs is 〈RGC, Fnx〉 ∼ 1 kpc and its effective radius is ∼700 pc.) A simpler explanation is that
Fornax GCs have only been modestly affected by dynamical friction, as expected if clusters
started orbiting at initial radii of the order of ∼1–2 kpc, just outside Fornax’s present-day half-
light radius but well within the tidal radius imprinted by Galactic tides. This is not entirely
unexpected. Fornax GCs are significantly older and more metal-poor than most Fornax stars,
and such populations in dSphs tend to be more spatially extended than their younger and more
metal-rich counterparts. Contrary to some earlier claims, our simulations further suggest that
GCs do not truly ‘stall’ at ∼ 0.3 rcore, but rather continue decaying towards the centre, albeit
at reduced rates. We conclude that dismissing the presence of a cusp in Fornax based on the
spatial distribution of its GC population is unwarranted.
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1 IN T RO D U C T I O N

The globular cluster (GC) system of the Fornax dwarf spheroidal
(dSph) is often cited as evidence for the presence of a constant-
density core in the dark matter halo density profile. The issue has
been addressed repeatedly in the literature, starting with the early
work of Hernandez & Gilmore (1998), who were among the first
to describe how the spatial distribution of GCs may be used to
gain insight into the dark matter density distribution in dSphs. This
elaborated on the earlier work of Tremaine (1976), who puzzled
about the lack of a central stellar ‘nucleus’ in Fornax, expected
from the orbital decay and subsequent fusion of its GCs. Indeed,
the five GCs in Fornax are widely spread through the galaxy, with an
average projected radius1 of 〈RGC, Fnx〉 ∼ 1 kpc (Mackey & Gilmore

� E-mail: jfn@uvic.ca
1For a comparison, Fornax’s effective radius is Reff, Fnx ∼ 700 pc (Irwin &
Hatzidimitriou 1995).

2003), despite the fact that their orbital decay time-scales, inferred
at the time from simple analytical dynamical friction estimates
(Chandrasekhar 1943), were substantially shorter than their ages.

This puzzle is widely referred to as the Fornax ‘GC timing
problem’ and has elicited the proposal of a number of possible
solutions, ranging from the ‘dynamical stirring’ of GC orbits by
Galactic tides or massive black holes (Oh, Lin & Richer 2000) to
more straightforward options, such as assuming that GCs in Fornax
started decaying from initial radii somewhat larger than where they
are currently at (Angus & Diaferio 2009; Boldrini, Mohayaee &
Silk 2019).

An alternative solution was proposed by Goerdt et al. (2006), who
reported some of the first fully self-consistent N-body simulations
of the problem. These authors found that analytical predictions for
dynamical friction-induced orbital decay fail in the case of haloes
with constant-density cores. Instead of continually decaying, GCs
‘stall’ once they are well inside the core, at a radius that is roughly
independent of GC mass. In cuspy haloes, such as the Navarro–
Frenk–White profiles of cold dark matter (CDM) haloes (NFW;
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Navarro, Frenk & White 1996b, 1997), GCs do not stall but rather
sink until they reach either the centre or a radius where the enclosed
dark mass is comparable to that of the cluster (Goerdt et al. 2010).

The ‘stalling radius’ result has been reproduced in subsequent
work (see e.g. Read et al. 2006; Inoue 2009; Petts, Gualandris &
Read 2015; Kaur & Sridhar 2018), and has become an often cited
argument for the presence of a core in Fornax: If GCs ‘stall at the
core radius’, as is often claimed, then for 〈RGC, Fnx〉 ≈ rcore ∼ 1 kpc
the timing problem would be solved.

A core radius of that size would be comparable to Fornax’s
effective radius, as expected if cores are carved out of cuspy, NFW
haloes by baryonic inflows/outflows during the formation of the
galaxy (see e.g. Navarro, Eke & Frenk 1996a; Pontzen & Governato
2012; Di Cintio et al. 2014, and references therein). It would also
be commesurate with the core size expected for Fornax in models
where cores are produced by ‘self-interactions’ between dark matter
particles (Spergel & Steinhardt 2000; Rocha et al. 2013; Kaplinghat,
Tulin & Yu 2016), at least for self-interacting cross-sections in the
preferred range of 0.1–1 cm2 g−1. These coincidences have helped
galvanize support for the ‘core’ solution to the Fornax GC timing
problem.

One problem with this solution is that the stalling radius is
actually well inside the core2, i.e. rstall ∼ 0.3 rcore. Taken at face
value, this would imply that a core radius as large as ∼3 kpc would
be needed to solve the timing problem, a value that seems, in
principle, much larger than can be reasonably accommodated by
current core-formation models.

One reason why cores remain a viable solution is that subsequent
simulation work uncovered a rather puzzling phenomenon that
affects clusters that reach the inner regions of the core. In the
simulations reported by Cole et al. (2012), clusters well inside
the core tend to gain orbital energy, and are pushed out by
‘dynamical buoyancy’, a mechanism whose detailed origin remains
unclear but which apparently counteracts dynamical friction in the
innermost regions. The combination of friction and buoyancy could,
in principle, lead to a stationary ‘shell-like’ distribution of globulars
near the core radius, where the two effects would presumably cancel
out. Although appealing, this result relies on a mechanism that is still
poorly understood, and that urgently needs theoretical underpinning
and independent numerical confirmation.

We address some of these issues here using a series of N-body
simulations of the decay of GCs in cuspy or cored haloes. We focus
on the difference in the time-scales needed for clusters to ‘sink’
(i.e. to reach the centre, in the case of cusps), or to ‘stall’ (in the
case of cores). We also follow the long-term evolution of several
clusters after they stall, in order to learn about the possible effects
of dynamical buoyancy on these systems.

This paper is organized as follows. Section 2 describes our
numerical setup, while our main results are presented in Section 3.
We conclude with a discussion of the applicability of these results
to Fornax and to the ongoing cusp versus core debate in Section 4.

2 N U M E R I C A L S I M U L AT I O N S

The simulations follow the evolution of a GC (represented by a
softened point mass) in two spherical N-body halo models. The first

2We shall hereafter define the core radius, rcore, as the (3D) radius where
the dark matter density drops by a factor of 2 from its central value. Since
this convention is not always followed, care is needed when comparing
quantitative results from different authors.

model is a cuspy, NFW halo (hereafter, ‘NFW’) with parameters
consistent with those expected in a Planck-normalized �CDM
cosmology (Ludlow et al. 2016). The second model is a non-singular
isothermal sphere (hereater, ‘ISO’) normalized to have the same
mass as the NFW profile within its core radius.

2.1 Halo models

The cuspy halo model follows an NFW profile,

ρ(r) = ρs

(r/rs)(1 + r/rs)2
, (1)

and is fully specified by two parameters, e.g. a scale density, ρs,
and a scale radius, rs, or, alternatively, a maximum circular velocity,
Vmax, and the radius at which it is achieved, rmax. The two radial
scales are related by rmax = 2.16 rs.

The cored halo is modelled as a non-singular ISO (see e.g.
Binney & Tremaine 1987, p.228). Although there is no simple
algebraic formula to describe this model, it is also fully specified by
two parameters, usually expressed as the central density, ρ0, and the
core radius, rcore. To prevent divergences, the models are truncated
with an exponential taper in the outer regions, but this should be of
little consequence for our analysis.

The models are assumed to have isotropic velocity distributions
and are normalized to have the same enclosed mass within the de-
projected (3D) half-light radius of Fornax, M(< 1 kpc) = 108 M�,
inferred from observations of the line-of-sight velocity dispersion
and projected light profile of Fornax (Walker, Mateo & Olszewski
2009; Wolf et al. 2010). This is widely agreed to be the most
robust dynamical mass estimate available for this system [see
the discussion of fig. 1 in Fattahi et al. (2016), and references
therein].

Fig. 1 contrasts the density, ρ(r), circular velocity, Vc(r), enclosed
mass, M(r), and radial velocity dispersion, σ r(r), profiles of the two
models. The NFW profile has rs = 2.11 kpc and ρ(rs) = (ρs/4) =
3 × 106 M� kpc−3. This corresponds to a ‘virial’3 mass M200 =
2.7 × 109 M� and c = r200/rs = 14. The isothermal profile has ρ0 =
3 × 107 M� kpc−3 and rcore = 1 kpc.

The contours in the middle panel of Fig. 1 indicate the constraints
derived by Fattahi et al. (2016) on M(< 1 kpc). For a comparison,
we also indicate with crosses the constraints at various radii from
Walker & Peñarrubia (2011) and Amorisco et al. (2013). The grey
shaded band corresponds to the results of the recent kinematic
analysis of Fornax’s stellar component of Read et al. (2019). Note
how all of these estimates concur at r ∼ 1 kpc to a mass close to
what is assumed in our models.

For reference, the circular orbit time-scale is tcirc ≈ 3 × 108 yr at
r = 1 kpc for both models; at r = 0.1 kpc, tcirc = 8 × 107 yr for the
NFW case, and tcirc = 2.2 × 108 yr for the cored halo.

2.2 GC models

GCs are modelled as single softened point masses. Three different
masses were chosen in our runs: a fiducial value of MGC =
3 × 105 M�, similar to Fornax GC3 (NGC 1049), the most mas-
sive cluster orbiting Fornax (Mackey & Gilmore 2003). We also
explored models with MGC = 105 M�, comparable to GC2, GC4,

3Virial quantities are conventionally defined as those measured at a radius
where the mean enclosed density equals 200× the critical density for closure,
and are identified with a ‘200’ subscript.
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Figure 1. Density (top), enclosed mass (middle) and circular velocity/radial
velocity dispersion (bottom) profiles of the halo models used in this study.
The profiles (shown with circles/thick curves) correspond to the 16M-
particle N-body realization of each model, and are plotted after the halo
has been run for ∼4 Gyr to allow it to relax to equilibrium. The blue
corresponds to the cuspy NFW halo, and the red corresponds to the non-
singular isothermal (cored) halo. The analytic NFW profile is shown with
thin black lines. The contours in the middle panel are constraints on the
enclosed mass within ∼1 kpc, derived from the stellar velocity dispersion
and density profiles [see Fattahi et al. (2016), for details]. In the same
panel, the crosses indicate the estimates of Walker & Peñarrubia (2011) and
Amorisco, Agnello & Evans (2013). The grey shaded band corresponds to
the recent kinematic analysis of Read, Walker & Steger (2019). All of these
estimates coincide at r ∼ 1 kpc.

and GC5. The other GCs in Fornax have much lower mass (GC1,
3.7 × 104 M�). Recall that dynamical friction times scale inversely
with mass. In the absence of other complicating factors, and in
the regime where the GC mass is small compared to that enclosed

within its orbit, the orbital decay of different clusters should be
similar, once their times are inversely scaled by cluster mass. We
assume that GC masses remain constant during the evolution. This
neglects possible mass losses due to internal collisional processes
within the cluster. Including this effect would result in even longer
orbital decay time-scales than the ones reported here, so our results
may be regarded as conservative from that point of view.

2.3 N-body models

Equilibrium N-body models with 1.6 and 16 million particles
are generated for each halo using the software package Zeno4

developed by Josh Barnes at the University of Hawaii. This
package allows for the creation of a number of systems in virial
equilibrium by Monte Carlo, sampling the appropriate distribution
function.

The simulations were run with the publicly available Gadget2
code (Springel 2005), with standard numerical integration parame-
ters. Pairwise interactions between N-body particles are softened
with a Plummer-equivalent softening length of εP = 66.4 and
210 pc, for the 16M- and 1.6M-particle haloes, respectively. The
halo particle mass is 1.78 × 102 M� (cusp) and 1.99 × 102 M�
(core) for the 16M-particle realizations. Particle masses are 10×
larger for the 1.6M-particle haloes.

Each halo model is run for ∼4 Gyr in isolation to allow them to
equilibrate and fully relax before introducing the GC. The profiles
shown in Fig. 1 are measured at the end of these equilibration
runs. Careful centring is required to obtain robust results; we use in
our analysis the reference frame given by the gravitational potential-
weighted centre of all halo particles, i.e. �xC = ∑

�i �xi/
∑

�i ; �vC =∑
�i�vi/

∑
�i .

GC particles are softened with εP, GC = 13 pc and are introduced at
the end of the equilibration period. They are placed at various radii
(typically rinit = 0.5, 1, and 2 kpc) on circular orbits with random
orientations. Their radial evolution is then monitored as a function
of time. Most of the runs reported here correspond to the 1.6M
model; a representative sample of those have been repeated with
the 16M-particle model, with indistinguishable results. We have
also repeated several runs varying εP, GC. No significant variations
were seen in the GC orbital evolution for values of εP, GC smaller
than adopted for our runs, although substantially longer dynamical
friction decay times were seen for (unrealistically) large values of
εP, GC. For εP, GC ∼ 10 pc, for example, GCs take roughly twice as
long to decay than for our fiducial value of 13 pc.

3 R ESULTS

3.1 Orbital decay time-scales

The time evolution of the fiducial mass GC (MGC = 3 × 105 M�,
similar to the most massive Fornax GC, NGC 1049) is shown in
the top panel of Fig. 2. The figure shows the evolution of three
different runs per halo, each with different starting radii, rinit = 2, 1,
and 0.5 kpc. Curves for the latter two have been shifted horizontally
so that they coincide in radius and time, at the beginning, with the
rinit = 2 kpc case. All three curves are essentially indistinguishable
from each other. This highlights the fact that the GC evolution is
independent of starting radius, as expected if orbits remain roughly
circular throughout the evolution.

4http://www.ifa.hawaii.edu/faculty/barnes/zeno/
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Figure 2. Evolution of the radial distance of an MGC = 3 × 105 M� (top),
MGC = 1.5 × 106 M� (middle), and MGC = 105 M� (bottom) globular
cluster. The evolution is followed for roughly 20 Gyr. The cuspy, NFW
halo case is shown in blue; the core case is shown in red. (The curves
in black correspond to the 16M-particle halo model.) The different hues
correspond to independent runs with different initial radii, rinit = 2, 1,
and 0.5 kpc, respectively, and are shown after shifting their time origin so
that their starting radii coincide. The near-perfect overlap between different
curves shows that the numerical results are independent of starting radii,
as expected if clusters remain on a nearly circular orbit as they decay.
Clusters either sink to the centre (cusp) or stall (core), but do so on similar
time-scales. The top panel corresponds to a cluster with mass comparable
to the most massive GC in Fornax (GC3/NGC 1049). Its orbit decays
from 2 to 1 kpc in ∼13 Gyr, before stalling (core) or sinking (cusp) after
∼18 Gyr. The middle panel represents a cluster 5× more massive than NGC
1049. The bottom panel corresponds to a mass comparable to GC2, GC4,
and GC5.

This figure illustrates a few interesting points. One is that, if NGC
1049 had formed at 2 kpc from the centre, then it would only have
decayed to a distance of ∼1 kpc after a Hubble time. The orbital
decay accelerates once the cluster reaches 1 kpc, and the cluster

quickly sinks to the centre in the case of the cusp, or ‘stalls’ at
rstall ∼ 0.3 rcore = 300 pc in the case of the core.5

This behaviour is consistent with earlier work (see e.g. Goerdt
et al. 2006; Read et al. 2006; Cole et al. 2012): GCs always stall at
∼ 0.3 rcore, when the core radius is defined as that where the density
drops to half its central value.

Interestingly, the time the cluster takes to either sink or stall is
approximately the same, ∼18 Gyr (∼4 Gyr since the cluster reached
1 kpc) in both cases. In other words, dynamical friction time-scales
in cored or cuspy haloes are essentially indistinguishable for haloes
normalized as in Fig. 1. The difference is in the final radius reached
by the cluster: ∼300 pc in the case of the core, or the centre in the
case of the cusp.

The middle panel of Fig. 2 confirms this conclusion for the case of
a cluster 5× more massive, MGC = 1.5 × 106 M�. The evolution of
this cluster is exactly analogous to that of its less massive counterpart
shown in the top panel. The time-scales to sink or stall are still
roughly the same for cusp or core, albeit 5× shorter than in the
former case, just as expected from the mass ratio between those
clusters.

Conversely, for clusters less massive than our fiducial mass,
the decay time-scales are substantially longer. The results for
MGC = 105 M� (comparable to Fornax GC2, GC4, and GC5) are
shown in the bottom panel of Fig. 2, and show that clusters with
rinit = 1 kpc take more than 13 Gyr to either sink or stall. This is
as expected from the fiducial (3 × 105 M�) mass case, which takes
∼4 Gyr to sink or stall from a radius of 1 kpc. Placed at rinit >

1 kpc, GC2, GC4, and GC5 would have barely evolved over 13 Gyr.
Again, the evolution shown in the three panels of Fig. 2 is all
analogous and consistent with each other, once times are scaled by
the mass of a cluster, and comparisons are made for the same starting
radius.

3.2 Long-term evolution

The middle panel of Fig. 2 follows the evolution of the most massive
cluster in our series for ∼20 Gyr, quite a long period of time after its
initial stall/sink. This allows us to probe the long-term evolution of
the clusters once they reach the inner regions of the halo. In the case
of the cusp, once the cluster sinks to the centre it stays there. In the
case of the core, after its initial stall the cluster keeps losing energy
and slowly drops deeper inside the core. At the end of the simulation
the cluster has reached a radius of ∼200 pc, roughly where the halo
enclosed mass is comparable to its own (see Fig. 1). Note that we
find the same result for the 1.6M- and 16M-particle haloes, so the
long-term sinking behaviour seems robust.

This long-term evolution is not unique to this massive cluster.
The fiducial mass GC also keeps losing energy after its initial stall,
as shown in Fig. 3. The main difference is that this long-term trend
takes, as expected, 5× longer, and is therefore only noticeable in
simulations that follow the evolution for roughly ∼100 Gyr. Indeed,
after that time the cluster has shrunk its orbit to roughly 100 pc,
which is about the radius where the enclosed mass of the halo
matches that of the cluster.

These results seem to disagree with those of Cole et al. (2012),
who report that clusters that drop deep into the core of a halo are
pushed out by a mechanism they call ‘dynamical buoyancy’. This

5Note that GCs do not truly stall at rstall; rather, the rate of their inspiraling
slows down when clusters reach that radius. See Section 3.2 below for
details.
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Figure 3. As Fig. 2, but following the evolution for t = 100 Gyr. Note that
the GC keeps decaying inside the core, but on an ∼5× longer time-scale
than in Fig. 2, as expected given the mass ratio between the clusters.

effect was only seen in the case of their ‘large-core’ (LC) halo, which
is actually quite similar to the ISO halo we adopt here. Indeed, the
LC halo has rcore ∼ 1.2 kpc (only 20 per cent larger than ISO’s) and
ρ0 ∼ 4 × 107 M� kpc−3 (about 33 per cent larger than ISO’s). The
main difference is that the LC density profile steepens faster than
ISO’s: at rcore, the logarithmic slope is dlog ρ/dlog r = −1.8 for LC
and −1.1 for ISO. This difference seems, at face value, too small
to explain why we do not see ‘dynamical buoyancy’ in our runs. At
this point, it is unclear what the origin of the discrepancy might be,
but it is something that we plan to investigate in future work.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In agreement with earlier work, our simulations indicate that
the GC population of Fornax is expected to evolve continuously
due to dynamical friction. For the halo models considered here
(Section 2.1), our results are summarized in Fig. 4, where we plot
the time it would take for clusters of various masses to sink (NFW,
blue) or stall (ISO, red). These times are computed by fitting the
results of our simulations with simple power laws and therefore,
in a strict sense, are rough estimates that apply only to clusters
in circular orbits. However, these times are not expected to differ
much from those for clusters in non-circular orbits with comparable
average radii (Angus & Diaferio 2009).

We compare these results with Fornax GCs (shown with open
squares in Fig. 4), taking into account the masses of individual
clusters and assuming that they are at radii 4/3× their current
projected distance. These results indicate that GC1, GC2, and GC5
are either too far, or have too little mass, to decay significantly, even
over a time span as long as the next 10–15 Gyr. It is thus highly
unlikely that all clusters are today at a common radius dictated by
dynamical friction effects.

On the other hand, both GC3 and GC4 (the two closest to the
centre, with projected distances of 0.43 and 0.24 kpc, respectively;
Mackey & Gilmore 2003) should either sink or stall over the next
few Gyr, according to Fig. 4. Could it be that Fornax has a core
and these two clusters have ‘stalled’ at a common radius? This
possibility may, in principle, be checked using the radial velocities
of these clusters relative to Fornax. GC4, in particular, has a well-
defined radial velocity offset of nearly ∼10 km s−1 relative to Fornax

Figure 4. Time to stall (core, in red) or sink (cusp, in blue) as a function
of GC mass and initial radius. Note that, at given radius and mass, the time-
scales are similar for cuspy and cored haloes normalized to the same mass
within rcore = 1 kpc (Fig. 1). As expected, time-scales scale inversely with
mass, and are strongly dependent on initial radius. Fornax GCs are placed on
this figure at radii equal to 4/3× the present-day projected distance, and at a
location consistent with its mass. Note that only GC3 and GC4 are expected
to evolve significantly due to dynamical friction over the next few Gyr. See
the text for a full discussion.

(Hendricks et al. 2016). This is significantly higher than the expected
circular velocity at its present deprojected radius (in the case of a
core), so it is highly unlikely that this cluster is actually close to its
stalling radius.

This leaves GC3, which, if ‘stalled’, would imply rstall ∼ 600 pc,
its inferred 3D distance from the centre.6 This implies rcore ∼ 2 kpc
(i.e. at least twice as large as its stellar half-mass radius; recall that
rstall ≈ 0.3 rcore).

A core radius this large seems difficult to accommodate in either
of the two leading scenarios for core creation, i.e. baryonic outflow-
induced cores, or dark matter self-interactions. Indeed, if cores are
carved out of CDM haloes through stellar feedback, then it would
be difficult to explain a core size at least twice as large as the half-
light radius of the galaxy (Pontzen & Governato 2014; Oman et al.
2016).

On the other hand, if cores are due to self-interacting dark matter,
these would be expected to be of sub-kpc scale in galaxies as small
as Fornax, even for extreme values of the cross-section. Elbert
et al. (2015), for example, report sub-kpc core radii7 even for
haloes substantially more massive than Fornax, and for all values
of the cross-section in the plausible range of 0.1–1 cm2 g−1 (the
same is true even for larger cross-sections; see e.g. Sameie et al.
2019).

6There is, of course, also the possibility that this cluster is much further
away in distance and lie, by chance, only in projection near the centre of
Fornax. This would make the case for a core even weaker, and could be
checked by inspecting the relative proper motion of GC3 relative to Fornax,
an issue we are currently working on.
7Recall that our definition of core radius follows the traditional convention
of designating the distance where the density drops by a factor of 2 from the
central value.
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If, on the other hand, Fornax has a cusp, then GC3 and GC4 must
be on their way to sinking to the centre, having started their decay
from rinit ∼ 1.5 kpc (GC3) and rinit ∼ 1 kpc (GC4) about ∼10 Gyr
ago (their typical ages; see e.g. Buonanno et al. 1998). These initial
radii are quite plausible, as they lie well within the inferred tidal
radius of Fornax imposed by the Galactic tides, which is estimated
to be of the order of 1.8–2.8 kpc (Angus & Diaferio 2009; Cole
et al. 2012).

It could be argued that, because the sinking accelerates once GCs
reach the inner regions of the halo, this represents a ‘fine-tuning’
problem. In other words, why are we observing GC3 and GC4 at
such radii and not at the centre if they are at a rapidly evolving stage
of their decay? The same fine-tuning argument may be used against
a core, however, since in that case GCs also accelerate their decay
before stalling, and the time-scales to sink or stall are very similar.
This argument only favours a core if both clusters have stalled,
which, as discussed above, is disfavoured by the radial velocity
of GC4 and requires an implausibly large core radius of at least
2 kpc.

In the case of the cusp, the disadvantage of a scenario where GC3
and GC4 formed at slightly larger initial radii and are at present on
their way to sinking to the centre is that all clusters would then have
formed outside the present-day half-light radius of the dwarf. In
the absence of a well-defined theory of GC formation it is difficult
to assess the severity of this objection, but it should be noted that
Fornax GCs are older and more metal-poor than most stars in the
dwarf. Such populations tend to be more spatially extended than
younger and more metal-rich ones, in Fornax (Battaglia et al. 2006;
Walker & Peñarrubia 2011) as well as in other dwarfs such as
Sextans (Battaglia et al. 2011) and Sculptor (Tolstoy et al. 2004).

Some of these differences could indicate an ancient merger,
which would have dispersed the old stellar component, and allowed
the enriched gas to sink further in before forming stars (Benı́tez-
Llambay et al. 2016; Genina et al. 2019). This would provide
a plausible explanation for the radial offset between the original
distribution of Fornax GCs and the present-day distributions of its
stars.

We end by noting that our simulations show no clear evidence
of the ‘dynamical buoyancy’ effects reported by Cole et al. (2012).
It is thus unclear at this point what the origin of the difference
might be, but it does underscore the need for further study of
the effect, including a theoretical explanation and an exploration
of its dependence on cluster mass and on the detailed dynamical
properties of the core.

The Fornax GC spatial distribution is thus unlikely to help discern
between cusp and core. In this sense, the GC timing problem
is no different from dynamical analyses that use the spherical
Jeans equations to derive mass profiles from velocity dispersion
and density profile data. These models suffer from well-known
degeneracies that prevent a conclusive determination of the shape
of the inner density profile (see e.g. the reviews by Strigari 2013;
Walker 2013, and references therein). Indeed, data for several dSphs
are consistent with NFW cusps and cores (e.g. Gilmore et al. 2007;
Strigari, Frenk & White 2010).

Using higher order moments of the line-of-sight velocity distribu-
tion offers in some cases the possibility of breaking the degeneracy.
Recently, Read et al. (2019) applied this method to Fornax and
concluded that the dark matter density drops by about an order of
magnitude (from ∼108 to 107 M� kpc−3) over the range 0.1–1 kpc
(see the middle panel of their fig. 3). This is close to what is expected
for a ρ ∝ r−1 NFW cusp and is only slightly less concentrated than
the model we analyse here (see the middle panel of Fig. 1).

Our overall conclusion is that it is unclear how or whether the
spatial distribution of GCs in Fornax may be used to discern between
the core and cusp scenarios. What is clear, though, is that it cannot
be used to argue convincingly against the presence of a cusp in the
inner density profile of the Fornax dSph.
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