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Abstract 20 

The Frasnian–Famennian biotic crisis (~372 Ma) was one of the “big five” mass 21 

extinction events in the Phanerozoic. This event was associated with dramatic climatic 22 

and oceanographic perturbations, including oceanic anoxia, global cooling, sea-level 23 

fluctuations, etc. Large-scale volcanic activity is one of several possible triggers that 24 

have been suggested as the ultimate cause of this crisis, based on Hg enrichment data 25 

from widespread sections. However, there are also sections that do not show a Hg 26 

enrichment across the Frasnian–Famennian boundary. To further investigate the 27 

hypothesis of a volcanic trigger for the Frasnian–Famennian mass extinction event, 28 

mercury (Hg) analyses were performed on six North American records (five from the 29 

Appalachian Basin and one in the Illinois Basin) that include the Frasnian–Famennian 30 

boundary. There is no uniformly observed Hg enrichment at or below the Frasnian–31 

Famennian boundary across the six sites. A potentially volcanically driven Hg anomaly 32 

is found in the Illinois basin; however, the Hg enrichment occurs stratigraphically 33 

above the Frasnian–Famennian boundary. Mercury records from the studied sites 34 

question the timing of the volcanism that may be responsible for the mass extinction 35 

event. Further studies are needed to fully understand the geographic distribution and 36 

eruption history of the large igneous provinces, as well as the link between Hg and 37 

volcanism during the Frasnian–Famennian interval. 38 

Keywords: Appalachian basin; Illinois basin; volcanism; large igneous provinces; 39 

wildfires  40 



1. Introduction 41 

The Late Devonian Frasnian–Famennian (F–F) mass extinction (also known as the 42 

Upper Kellwasser Crisis, ~372 Ma; Becker et al., 2012; Da Silva et al., 2020; Percival 43 

et al., 2018a), is one of the ‘big five’ mass extinction events of the Phanerozoic Eon 44 

(Stanley, 2016). Marine ecosystems, especially metazoan reefs, were severely impacted 45 

during this biotic crisis (Ma et al., 2016; Stanley, 2016). Stratigraphic records of the 46 

extinction are associated with a large positive carbon-isotope excursion (up to 4 ‰) 47 

both in the inorganic and organic carbon contents (13Ccarb and 13Corg) of sedimentary 48 

strata in the linguiformis conodont Zone (= Frasnian Zone 13b) across the globe, 49 

indicating perturbations to the carbon cycle beginning ~150 kyr prior to the end of the 50 

Frasnian Stage (e.g., Chen et al., 2005; De Vleeschouwer et al., 2017; Joachimski and 51 

Buggisch, 1993; Joachimski et al., 2002; Stephens and Sumner, 2003; Wang et al., 52 

1996). Proposed causes of the F–F mass extinction event include globally anoxic or 53 

euxinic marine conditions (Bond et al., 2004; Song et al., 2017), land-plant evolution 54 

(Algeo et al., 1995), climate cooling (Huang et al., 2018; Joachimski et al., 2009; 55 

Joachimski and Buggisch, 2002), sea-level change (Bond and Wignall, 2008; Johnson 56 

et al., 1985), bolide impact (Claeys et al., 1992) and volcanism (e.g., Racki, 2020; Racki 57 

et al., 2018b). Recently, the volcanism scenario has been supported by the discovery of 58 

spikes in mercury (Hg) concentrations at several F–F boundary records (Estrada et al., 59 

2018; Moreno et al., 2018; Racki et al., 2020; Racki et al., 2018a; Racki et al., 2018b; 60 

Kaiho et al., 2021). Mercury and its isotopes have been used as a marker of ancient 61 



volcanic events associated with several other major climate perturbations and/or 62 

extinctions in the geological history, such as the Permian–Triassic mass extinction, 63 

Toarcian Ocean anoxic event, Late Ordovician mass extinction, Paleocene–Eocene 64 

thermal maximum, and end-Devonian mass extinction, etc. (e.g., Grasby et al., 2016; 65 

Grasby et al., 2020; Grasby et al., 2013; Grasby et al., 2017; Grasby et al., 2019; Jones 66 

et al., 2018; Liu et al., 2019a; Percival et al., 2018b; Percival et al., 2015; Paschall et 67 

al., 2019; Sanei et al., 2012; Shen et al., 2019a; Shen et al., 2019b; Them et al., 2019; 68 

Kaiho et al., 2020, 2021). Volcanic events can emit mercury through two pathways: (1) 69 

direct outgassing from effusive and explosive volcanic eruptions, and (2) Hg-enriched 70 

volatiles that are hypothesized to have been generated by contact metamorphism of 71 

organic-rich sedimentary rocks and subsequently emitted through hydrothermal vent 72 

complexes (Jones et al., 2019). In either case, the emitted Hg is distributed far from the 73 

source through the atmosphere, due to a relatively long stratospheric residence time of 74 

around 0.5–2 years (e.g. Driscoll et al., 2013). In modern environments, mercury is 75 

typically deposited to sediments complexed with organic matter (Gamboa Ruiz and 76 

Tomiyasu, 2015; Gehrke et al., 2009; Outridge et al., 2007; Sanei et al., 2014). Thus, 77 

normalization against TOC is necessary to evaluate whether any Hg enrichment is 78 

caused by increased organic matter preservation or an externally derived influx of the 79 

element during perturbations of the local/global Hg cycle. In addition to organic matter, 80 

clay minerals and sulphides may also be important host fractions within the sediments 81 

(Grasby et al., 2019; Shen et al., 2019a, 2020). However, in spite of global-scale records 82 



of Hg enrichment at the Frasnian–Famennian boundary, some sections do not show a 83 

trend of Hg enrichment (Racki et al., 2019). Thus, the timing and magnitude of the 84 

volcanism that may be responsible for the Frasnian–Famennian biotic crisis is still 85 

poorly understood.  86 

In addition to volcanism, local/global Hg cycling may also be perturbed by the 87 

disruption of terrestrial Hg sources, such as wildfires and continental runoff (e.g. Amos 88 

et al., 2014; Biswas et al., 2007; Sanei et al., 2012; Them et al., 2019; Grasby et al., 89 

2017; Shen et al., 2019c). Forests and organic-rich upper soils are major terrestrial Hg 90 

pools (e.g., Obrist et al., 2018); thus, biomass burning would release Hg back into the 91 

atmosphere and volatile Hg that stored in organic-rich soils (Obrist et al., 2018). The 92 

amount of Hg released from wildfire would, of course, depend on the quantity of plant 93 

burning to some degree. The burning severity is also an important factor controlling the 94 

degree of Hg emission from wildfires (Webster et al., 2016). The higher the burning 95 

temperature, the greater the emissions of Hg from soil heating (Webster et al., 2016). It 96 

has also been suggested that Hg emissions from post-fire soil erosion could represent a 97 

significant Hg source to the oceans and atmosphere (Melendez-Perez et al., 2014). 98 

Finally, terrestrial runoff can also act as an important contributor to the Hg budgets 99 

of the oceans (Fisher et al., 2012; Soerensen et al., 2012). The majority of Hg is bound 100 

to organic matter particles in the river and deposited in deltas, estuaries and on the 101 

continental shelf (Chester, 1990). Thus, riverine Hg discharges largely affect nearshore 102 

Hg sediments, as supported by the Hg-isotopic compositions of nearshore vs more distal 103 



marine sediments (e.g., Grasby et al. 2017; Shen et al., 2019). In the event of enhanced 104 

continental weathering, riverine Hg input to the ocean would likely become more 105 

significant (Grasby et al., 2017; Them et al., 2019). Although wildfires and riverine Hg 106 

inputs are relatively well constrained in the modern Hg cycles (e.g., Amos et al., 2014; 107 

Obrist et al., 2018), their role in ancient Hg records are still poorly understood due to 108 

both a paucity of data (but see Grasby et al., 2017; Them et al., 2019), and, in the case 109 

of the Devonian, a markedly different global paleogeography and terrestrial biosphere. 110 

In this study, we perform mercury (Hg) analysis on six Frasnian–Famennian 111 

boundary sections from North America (New York and Iowa). We discuss the potential 112 

evidence for volcanic and terrestrial mercury emissions at the time of the Frasnian–113 

Famennian extinction, and, by inference, any potential volcanic link with that biotic 114 

crisis. Of the investigated sections, the five New York sites comprise a proximal to 115 

distal transect, and have been previously examined for wildfire records (Liu et al., 116 

2020a). As such, these sections are also ideal for the evaluation of wildfires and riverine 117 

runoff (as well as volcanism) as sources of Hg input into the oceans in the geological 118 

record. 119 

2. Geological background 120 

In this study, samples were collected from six Frasnian–Famennian archives of 121 

North America (Fig. 1). Five records from western New York were investigated, 122 

including four outcrop sections (Joint Creek, JC; Beaver Meadow Creek, BMC; Irish 123 

Gulf, IG; Walnut Creek Bank, WCB), and one drill core (West Valley, WV). These 124 



records are preserved as slope to basin deposits from the northern Appalachian foreland 125 

basin, and are interpreted as proximal to distal deposits in terms of paleoceanography, 126 

with the following order of increasing distance from the paleoshoreline: JC, BMC, WV, 127 

IG and WCB (see inserted map of Fig. 1) (Over et al, 1997, 2002; Sageman et al., 2003). 128 

In all five records, the studied interval is composed of the latest Frasnian–earliest 129 

Famennian Hanover Formation and the early Famennian Dunkirk Formation. The 130 

Hanover Formation is dominated by light gray, silty shales (less than 1 wt. % total 131 

organic carbon, TOC) interbedded with black silty shales that is rich in organic matter 132 

(~1–6 wt. % TOC) with low thermal maturity (BRo ~ 0.6 %, solid bitumen reflectance; 133 

Liu et al., 2020a). The grey shales are bioturbated, and poorly preserved brachiopods 134 

and bivalves have been identified within it (Over, et al., 1997; Over, 2002). The black 135 

shales are rich in pyrite and finely laminated (except the base parts where bioturbation 136 

is observed), suggested that they were deposited in anoxic/dysoxic conditions (Lash, 137 

2017; Over, et al., 1997; Over, 2002; Sageman et al., 2003). The Hanover Formation is 138 

overlain by the Dunkirk Formation, which contains thick beds of black shale (Over, et 139 

al., 1997). In all five Appalachian Basin records studied here, the F–F boundary is 140 

defined by the first occurrence of the conodont Palmatolepsis triangularis (Fig. 2; 141 

Klapper et al., 1993; Over, 1997, 2002). This boundary occurs in a regionally 142 

continuous bed of black shale that is thought to locally mark the Upper Kellwasser 143 

Horizon (Over, 1997, 2002).  144 



To obtain a more regional scale viewpoint beyond the local environment of the 145 

Appalachian Basin, the H-32 drill core was studied as a sixth record, consisting of 146 

sediments deposited in a deep-water environment of the Illinois Basin (40.47° N, 91.47° 147 

W; Fig. 1; Day and Witzke, 2017). The Frasnian–Famennian interval in the Illinois 148 

Basin is composed of the Sweetland Creek Shale Formation (shales and carbonates) 149 

and the overlying Grassy Creek Shale Formation (fissile organic-rich brown shale). The 150 

F–F boundary is positioned just above the base of the Grassy Creek Shale (above the 151 

conodont Zones 13b and 13c; i.e., the linguiformis interval) (Fig. 3; De Vleeschouwer 152 

et al., 2017). Several volcanic ash layers are also preserved in the lowermost part of 153 

Grassy Creek Shale Formation, just above the F–F boundary (Fig. 3; De Vleeschouwer 154 

et al., 2017). 155 

3. Methods 156 

Mercury (Hg) concentrations were determined on an Advanced Mercury Analyser 157 

(AMA) 254.7 at Vrije Universiteit Brussel. Mercury in the solid sample was volatilized 158 

during direct thermal decomposition of the sample, and the resultant gas drawn into an 159 

amalgamator containing a gold trap, before being analyzed by atomic absorption 160 

spectrometry (see Sholupov and Ganeyev, 1995). Blank measurements on the AMA 161 

during the analyses were better than 0.001 ng. 100±2 mg of powdered sample was used 162 

per analysis, with at least two measurements per sample to check repeatability, which 163 

was typically better than ±10%. The accuracy and repeatability of the measurements 164 



was further tested by multiple measurements of the Certified Reference Material IAEA-165 

MESL-ILC-TE and an internal sedimentary sample SCH U5 as standards. 166 

Total organic carbon (TOC) contents and isotopic compositions of the TOC were 167 

determined for samples from the H-32 core using a Nu Instruments Horizon 2 coupled to 168 

an Eurovector isotope ratio mass spectrometer (IRMS) elemental analyzer EuroEA3000 at the 169 

Vrije Universiteit Brussel (Belgium). Approximately 1–2 grams of homogenized powder were 170 

decarbonated with 10% HCl, before being rinsed three times with mill-Q water and dried at 50 171 

°C. Analyses of the decarbonated samples were calibrated using the international reference 172 

materials IAEA-CH-6 (sucrose), and multiple certified reference materials that have been 173 

calibrated against international standards: IA-R041 (L-alanine), IVA33802151 (organic-rich 174 

sediment), IVA33802153 (organic-poor soil). The measured carbon content in decarbonated 175 

powder was converted to a bulk rock TOC value by accounting for the measured mass lost 176 

following decarbonation. Analytical uncertainty was typically better than ±0.1 wt% (1σ) for 177 

carbon contents, and ±0.2 ‰ (1σ) for isotopic compositions. 178 

4. Results 179 

All the Hg analysis data are listed in Table S1 and S2, and the stratigraphic plots 180 

are presented in Fig. 2 and Fig. 3.  181 

At the Joint Creek section, the Hg concentrations are generally above 30 ppb 182 

below the F–F boundary, dropping slightly to ~25 ppb at the base of the Dunkirk 183 

Formation. The Hg/TOC values show a slight increase from ~20 ppb/wt.% at the 184 



bottom part to ~26 ppb/wt.% towards the F–F boundary, which then decrease to ~20 185 

ppb/wt.% at the base of Dunkirk Formation.  186 

At the Beaver Meadow Creek section, the Hg values are generally about 20 ppb 187 

in the lower part of the section, with an increase up to ~54 ppb about 15 cm below the 188 

F–F boundary. The Hg values then drop to ~30 ppb immediately below the boundary 189 

and further decline to ~20 ppb across it. Hg/TOC values also reach their maximum 190 

about 15 cm below the F–F boundary (from ~10 to ~22 ppb/wt.%), dropping to less 191 

than 10 ppb across the F–F boundary.  192 

At the West Valley section, the Hg values range from ~22 to 43 ppb across the 193 

studied intervals, with no clear pattern observed. The Hg/TOC values average about 35 194 

ppb/wt.% (n = 6) at the lowest part of the section, which then decrease gradually to 195 

about 11 ppb/wt.% around the F–F boundary and remain at ~10 ppb/wt.% up section, 196 

except for one sample with an anomalously high Hg/TOC value (81.88 ppb/wt.%) that 197 

is caused by low TOC level (0.32% compared to average 2.5% for adjacent samples).  198 

At the Irish Gulf section, the Hg values drop from ~30 ppb to 15 ppb at the very 199 

bottom part, which then rapidly increase to ~46 ppb around the F–F boundary. The Hg 200 

values then decrease to about 25 ppb and further drop slightly to about 23 ppb upwards. 201 

The Hg/TOC values drop gradually from ~12 ppb/wt.% to ~5 ppb/wt.% across the F–202 

F boundary and remain around 5 ppb/wt.% towards a higher stratigraphic level.  203 

At the Walnut Creek Bank section, the Hg values increase from ~35 ppb to ~56 204 

ppb across the F–F boundary, which then gradually drop to ~25 ppb at the base of the 205 



Dunkirk Formation. Except for a very high Hg/TOC value of 51 ppb/wt.% at the bottom 206 

of this section, samples below the F–F boundary generally have Hg/TOC values about 207 

11 ppb/wt.%, which then gradually decrease to ~6 ppb/wt.% towards the lower part of 208 

the Dunkirk Formation (Fig. 2).  209 

In the H-32 core, the Hg values range from ~44 to 213 ppb (average ~98 ppb, n = 210 

19), with several peaks at the bottom part of the section, which then gradually decrease 211 

to a minimum of ~16 ppb just below the F–F boundary. The Hg values then increase 212 

sharply to ~314 ppb immediately above the F–F boundary, before gradually declining 213 

to ~46 ppb at the top of the studied interval. A minimum threshold of 0.2 wt.% TOC 214 

has been suggested for normalization of Hg by TOC, in order to avoid artificially 215 

inflated Hg/TOC spikes due to the high uncertainty/value ratio of the TOC data (Grasby 216 

et al., 2016). A sharp rise in TOC content takes place just below the F–F boundary, 217 

from typically <0.5 wt.% (apart from a discrete layer between 281–335 cm where 218 

values rise to over 2 wt.%), to an average of 3.1 wt.% in the uppermost Frasnian and 219 

Famennian strata (Fig. 3). This rise in TOC occurs at the base of the Grassy Creek Shale 220 

Formation and within a broad rise in 13Corg values from -28.5 ‰ to -27.1 ‰, and is, 221 

therefore, interpreted as marking the local expression of the Upper Kellwasser Horizon. 222 

The Hg/TOC values average about 251 ppb/wt.% (n = 16) at the lower part of the 223 

section, with two one-point excursions to 790 and 722 ppb/wt.%. The Hg/TOC values 224 

then drop to ~200 ppb/wt.% below the F–F boundary, which then further drop to ~17 225 

ppb/wt.% across the F–F boundary. A one-point excursion to 1127 ppb/wt.% is detected 226 



above the F–F boundary, reflecting a low TOC value (0.2 %) of the sample compared 227 

to the rocks either side that feature both high Hg and organic matter contents (Fig. 3). 228 

Notably, both Hg and Hg/TOC values recorded in the H-32 core are significantly higher 229 

than for the five Appalachian Basin records. 230 

5. Discussion 231 

5.1 Constraining the Hg source(s) 232 

The Appalachian Basin sites have Hg values average 30.5 ppb (15.1 ppb/wt.% 233 

Hg/TOC), which are relatively low compared to postulated average shale 234 

concentrations (62.4 ppb Hg and 71.9 ppb/wt.% Hg/TOC; Grasby et al., 2019). Thus, 235 

the majority of the samples (except the peaks in Hg documented from the H-32 core) 236 

would also be classified as average shale contents (Fig. 3). This low Hg abundance does 237 

not seem to result from dilution by a high sedimentation rate, as the formation of shale 238 

generally requires a low sedimentation rate, and there is no discernible Hg abundance 239 

difference between the WV and WCB sections where sedimentation rates could vary 240 

by up to ~7 times (based on an appropriate estimation according to the thickness 241 

between the F–F boundary and the base of the Dunkirk Formation). In addition to 242 

organic matter, the Hg may also be associated with sulphides and clay minerals in 243 

certain environments (Bergquist, 2017; Shen et al., 2019a; Shen et al., 2020; Them et 244 

al., 2019). Thus, if mercury is deposited bound to one of those phases, it may cause a 245 

rise in sedimentary Hg and Hg/TOC values without any major increase of the Hg fluxes 246 

from its sources. However, Algeo and Liu (2020) compiled a large geochemical dataset 247 



of trace-metal redox proxies and found that the Hg/TOC and Hg/S ratios of ancient 248 

sediments were generally not significantly related to local redox conditions, and thus 249 

might reflect volcanic Hg fluxes. A non-relationship between redox changes and 250 

Hg/TOC ratios is also supported for the sites studied here by the lack of correlation 251 

between Hg/TOC and redox proxies (Mn, Mo, V/[V + Ni], MoEF, VEF and NiEF; Table 252 

S1).  253 

After normalization against the TOC data, only the Beaver Meadow Creek section 254 

from western New York shows a minor Hg (Hg/TOC) enrichment below the F–F 255 

boundary. No positive correlation between this Hg peak and Mo concentrations is 256 

observed; indeed, the increase of Hg and Hg/TOC values is associated with a decrease 257 

in Mo content (Fig. 2 and 4, Table S1, r = +0.10, p(a) > 0.05, n = 52). The Mo element 258 

might be affected by changes of the marine reservoir size due to restriction of the 259 

Appalachian Basin (Algeo, 2004). However, Hg and Hg/TOC values also lack 260 

correlations with Mn and V/(V+Ni) proxies (Fig. 4). This result suggests that the 261 

mercury enrichment did not result from redox changes or a switch to burial with 262 

sulphides. An increase of clay mineral content is also excluded for driving the Beaver 263 

Meadow Creek Hg enrichment, as no liner relationship is observed between 264 

sedimentary Hg and Al2O3 contents (Table S1; r = +0.10, p(a) > 0.05, n = 52).  265 

Previous studies have suggested that wildfire activity could release Hg into the 266 

environment (Biswas et al., 2007; Sanei et al., 2012; Them et al. 2019; Grasby et al., 267 

2017, 2019, and references therein). Fossilised charcoal, a by-product of wildfires, has 268 



been widely used to study ancient fire events (e.g., Glasspool and Scott, 2010). A 269 

previous organic petrology study of the New York sections found the presence of 270 

fossilised charcoal (inertinite) as evidence for wildfire activity (Liu et al., 2020a). 271 

However, no correlation between Hg concentration and inertinite abundance is 272 

observed in this study (Fig. 2; Liu et al., 2020a).Although it is possible that wildfire-273 

released Hg and charcoal (inertinite) entailed different durations to reach the 274 

depositional record, it would be expected that the majority of Hg and inertinite would 275 

be deposited geologically simultaneously. During biomass burning, Hg is released from 276 

plant combustion, as well as soil heating (Friedli et al., 2003; Obrist et al., 2007). 277 

Thermal volatilization of the Hg bonded to the organic-rich soil would occur at 150 °C 278 

(Biester and Scholz, 1996), with mercury readily emitted once the soil reached that 279 

temperature (Biswas et al., 2007, 2008; Woodruff and Cannon, 2010). Previous 280 

charcoal-reflectance analyses have suggested that the type of wildfire documented in 281 

the New York F–F records was surface fire, with a burning temperature between 400 282 

and 500 °C (Liu et al., 2020a). The primary burnt material was herbaceous and shrubby 283 

plant matter (Liu et al., 2020a), and it is possible that such plants do not sequester Hg 284 

efficiently. However, previous research has suggested that the temperature of burning 285 

is different from that of soil heating due to a strong thermal gradient. Thus, a fire with 286 

burning temperature of 850 °C on the surface would generally not increase the 287 

subsurface temperature over 150 °C below 5 cm (Debano, 2000). If this was also the 288 

case for wildfires during the F–F extinction, it might explain the apparent lack of Hg 289 



emissions from soil heating at that time. Alternatively, the wildfires may have been too 290 

small in scale (with a low burning severity), or the ash and charcoal have too low a Hg 291 

content, to supply large amounts of mercury to the local environment. Kaiho et al. 292 

(2021) report Hg/TOC enrichments together with coronene spikes are shown for three 293 

carbonate-dominated F-F sections (Yangdi, China; Sinsin, Belgium; Coumiac, France; 294 

with TOC generally less than 0.3 %), and concluded that the Hg was emitted from 295 

thermal heating of country rocks by sill intrusion, rather than normal wildfire, as 296 

supported by the evidence of coronene index [coronene/(benzo[e]pyrene + 297 

beozo[ghi]perylene + coronene)] (Kaiho et al., 2016, 2020, 2021). Whilst coronene 298 

requires higher energy to form than other polycyclic aromatic hydrocarbons (PAHs), a 299 

higher energy demand cannot rule out the wildfire origin of coronene. Additionally, 300 

there are also further factors that may affect the PAHs compositions (e.g. burning 301 

pattern, plant community etc.; Boudinot and Sepúlveda, 2020; Lima et al., 2005). In 302 

addition, most samples have coronene index over the threshold of 0.2 in the studied 303 

sections (which would suggest coronene generated from heating by sill intrusion or 304 

wildfires set by high temperature magma, in contrast to normal wildfires, according to 305 

the authors), and this would imply a prolonged time duration for the volcanism, which 306 

is unlikely and does not correlate with the Hg/TOC profiles. We suggest that it is still 307 

at an early stage to link the coronene spikes with magmatic activity and interpret the 308 

Hg/TOC as a signal of volcanism and associated volatilization of mercury from 309 

organic-rich sediments by sill intrusions. Importantly, other events for which sill 310 



intrusions of organic-rich shales have been proposed invariably feature a pronounced 311 

negative carbon-isotope excursion (assumed to reflect the large-scale release of 312 

isotopically light carbon from the intruded lithologies; e.g., Svensen et al., 2004, 2009; 313 

McElwain et al., 2005), in contrast to the positive 13C shift that marks the F–F 314 

boundary. 315 

Riverine discharge of Hg to the oceans is another important source and may 316 

significantly affect the Hg record of the proximal sections (e.g., Amos et al., 2014 and 317 

many others). In theory, if riverine input is the controlling factor of Hg enrichment, a 318 

trend of decreasing Hg concentrations from proximal to distal transections might be 319 

expected (see Them et al., 2019). However, no such relationship is found within the 320 

five Appalachian Basin sections. Rather, the most distal sections have the highest 321 

average Hg abundance (from proximal to distal: Joint Creek–29.5 ppb, Beaver Meadow 322 

Creek–30.8 ppb, West Valley–29.7 ppb; Irish Gulf–28.1 ppb; Walnut Creek Bank–323 

35.32 ppb). We have also noted that the four proximal sections have very similar 324 

average Hg concentrations, despite variable TOC amounts (from proximal to distal: 325 

Joint Creek–1.37 %, Beaver Meadow Creek–2.33 %, West Valley–2.10 %; Irish Gulf–326 

3.40 %). As such, our data suggest that riverine Hg input and organic matter 327 

sequestration played minimal roles in the Hg enrichment within the Appalachian Basin. 328 

However, it is also possible that the studied sites are too geographically close to yield 329 

any noticeable difference on the Hg records, as evidenced by similar Ti/Al values of 330 

these sections (Fig. 1, Table S1). 331 



Racki (2020) proposed a hypothesis of masked signal of Hg in Devonian records, 332 

i.e., a co-increase of productivity and Hg abundance may keep the Hg/TOC values 333 

constant, or even reduce the Hg/TOC values if the percentage increase of organic matter 334 

preservation is higher than the amount of Hg increase, as has also been proposed for 335 

some Mesozoic events (see Percival et al., 2015, 2018b; Charbonnier and Föllmi, 336 

2017). However, for the western New York sites, increases in both Hg and Hg/TOC are 337 

largely absent, suggesting that there was no major increase in mercury input to this 338 

region, rather than a volcanic influx that was then masked by elevated TOC. The 339 

variations of the Hg data in western New York sections are more appropriately 340 

explained by a combination of local depositional factors. In summary, the western New 341 

York sections show no major perturbations of the Hg cycle that may be linked with 342 

volcanic events. Variations of local depositional factors are more likely to be the main 343 

control of the Hg fluctuations at western New York sections.  344 

Two Hg/TOC spikes (up to ~800) are detected about 4–6 m below the F–F 345 

boundary in the H-32 core (Fig. 3). These Hg enrichments are well above the 346 

background the Hg/TOC values, suggesting a potential volcanic contribution or local 347 

environmental perturbation (e.g., sulphides depositions), although currently the exact 348 

roles of clay mineral and sulphides are not evaluated due to a paucity of data. However, 349 

these peaks are about 750–900 kyr before the mass extinction event (De Vleeschouwer 350 

et al., 2017). Consequently, even if those Frasnian Hg/TOC peaks are indicative of 351 



large-scale volcanic eruptions, they likely occurred too early to have triggered the mass 352 

extinction event. 353 

We have also noticed that both the H-32 core and the West Valley section express 354 

a single-point Hg/TOC peak above the F–F boundary (Fig. 2 and 3), although there is 355 

no evidence as to whether these enriched strata are time equivalent. However, these 356 

Hg/TOC spikes are not likely caused by enhanced Hg input from volcanism, due to 357 

their apparent correlation to a TOC minimum in those intervals (Fig. 2 and 3). The H-358 

32 core does document large-scale Hg perturbations from less than 100 ppb to over 300 359 

ppb above the F–F boundary, but the Hg/TOC values generally remain relatively 360 

constant. Thus, these strata could simply record an increase in organic matter burial 361 

under anoxic–euxinic conditions, and a resultant rise in Hg deposition. Intriguingly 362 

however, this increase in Hg content correlates with the lowermost Famennian volcanic 363 

ash layers preserved in the H-32 core (Fig. 3), potentially indicating volcanism as an 364 

Hg source that was muted by excess organic-matter deposition, (Fig. 3; cf. Racki, 365 

2020). This scenario would match the model of Racki (2020), but even if this was the 366 

case, this volcanism occurred after the F–F extinction, and cannot have triggered the 367 

event. 368 

5.2 No Hg evidence in North America for a volcanic trigger of the F–F mass extinction  369 

A volcanic trigger has long been proposed to have caused the F–F mass extinction 370 

(e.g., Courtillot et al., 2010; Kravchinsky, 2012; Racki et al., 2002). Recently, this 371 

scenario has been supported by the discovery of widely distributed Hg anomalies in the 372 



F–F stratigraphic interval (Estrada et al., 2018; Moreno et al., 2018; Racki et al., 2020; 373 

Racki et al., 2018a; Racki et al., 2018b), although some localities do not show a Hg 374 

enrichment signal (Racki et al., 2019). In this study, among the five sections 375 

investigated in western New York, only one section (Beaver Meadow Creek) expresses 376 

a Hg and Hg/TOC peak below the F–F boundary (Fig. 2), but it is too small in scale to 377 

be unequivocally linked with volcanism rather than local depositional processes, and 378 

may simply result from a combination of changes in local depositional environments, 379 

such as redox variation, organic matter preservation, sulphide precipitation and clay 380 

mineral input. The H-32 section in Iowa shows a major Hg enrichment (from 58 to 314 381 

ppb), which is correlative with volcanic ash layers, but this Hg peak is above the F–F 382 

boundary (Fig. 2 and 3), and is largely correlative with elevated TOC contents. Even if 383 

the H-32 peak was associated with volcanism, it remains unclear whether it was linked 384 

to local eruptions that produced the ash layers, or a large-scale magmatic event (e.g., 385 

Viluy Traps, Kola, Vyatka, and Pripyat-Dniepr-Donets rift systems; Arzamastsev et al., 386 

2017; Kiselev et al., 2006; Kravchinsky, 2012). However, a correlation between 387 

individual eruptive events and stratigraphic Hg enrichments has been speculated for 388 

other sites, and increased arc activity also postulated as a trigger for the F–F extinction 389 

(Racki et al., 2018; Racki, 2020).  390 

The osmium-isotope ratio of a sedimentary rock is another widely used proxy to 391 

study ancient volcanic events (e.g., Dickson et al., 2015; Du Vivier et al., 2014; 392 

Georgiev et al., 2015; Liu et al., 2020b; Liu et al., 2019b; Percival et al., 2020; Peucker-393 



Ehrenbrink and Ravizza, 2012; Turgeon and Creaser, 2008). The modern seawater 394 

osmium-isotope (187Os/188Os) composition is controlled by the mass balance of 395 

unradiogenic Os input from mantle and extraterrestrial sources (~0.126) and riverine 396 

input of radiogenic material following weathering of ancient continent crust (~1.4 397 

today) (Peucker-Ehrenbrink and Ravizza, 2000). In the event of large-scale volcanism 398 

and/or weathering of newly emplaced volcanic basalts, a shift in the Os-isotope profile 399 

to lower values would be expected (e.g., Du Vivier et al., 2014; Georgiev et al., 2015; 400 

Liu et al., 2019b; Turgeon and Creaser, 2008). However, available Os-isotope data for 401 

the F–F transition interval do not show a clear unradiogenic shift, although a few data 402 

points do have quite unradiogenic values of ~0.2 and 0.3 (Gordon et al., 2009; Liu et 403 

al., 2020a; Percival et al., 2019; Turgeon et al., 2007). Thus, if volcanism indeed 404 

occurred at this time, it is likely to be a small/transient event that differs from other 405 

LIPs claimed to be responsible for major environmental/biotic perturbations. For 406 

example, LIP activity associated with the Late Cretaceous Cenomanian–Turonian 407 

Oceanic Anoxic Event lasted ~200 kyr and is marked by a global-scale shift to very 408 

unradiogenic values in the sedimentary Os isotope record (e.g., Du Vivier et al., 2014, 409 

2015; Percival et al., 2020; Jones et al., 2020). Prolonged unradiogenic Os isotope shifts 410 

are also documented in response to widespread igneous activity related to the Central 411 

Atlantic magmatic province during the Triassic–Jurassic boundary interval (Cohen and 412 

Coe, 2002; Kuroda et al., 2010). 413 



Instead, an increase in Os isotope values has been reported from the Kowala 414 

Quarry section (Poland), and interpreted to reflect enhanced weathering of the continent 415 

(Percival et al., 2019). Although this same signal has not been reported from the New 416 

York Sites (Turgeon et al., 2007; Gordon et al., 2009; Liu et al., 2020a), it should be 417 

noted that those osmium records focus on the F–F boundary itself, whereas the Kowala 418 

weathering peak is just below the base of the Upper Kellwasser Level, which is 419 

typically somewhat stratigraphically below the F–F horizon, and thus may not have 420 

been reached by the New York datasets. However, a weathering signal in Os isotopes 421 

does not prohibit the occurrence of volcanic activity, if the influx of unradiogenic Os 422 

from volcanism was outweighed by radiogenic Os input from weathering of the 423 

continental crust, as is thought to be the case for the Toarcian Ocean Anoxic Event 424 

(Cohen et al., 2004; Percival et al., 2016; Kemp et al., 2020; Them et al., 2017), and 425 

potentially the PETM to some degree (Ravizza et al., 2001; Dickson et al., 2015). 426 

Whilst not supported by the coronene index and the lack of a negative 13C 427 

excursion, sill intrusion is still a possible scenario that would leave the majority of 428 

igneous unit underground. Such a process could have allowed Hg to be emitted without 429 

exposing massive mafic rock onto the Earth surface that could have been weathered to 430 

deliver large amounts of unradiogenic osmium into the ocean (Dickson et al., 2015; Liu 431 

et al., 2019a; Wieczorek et al., 2013). An impact scenario has also been proposed for 432 

the F–F interval (e.g., Claeys et al., 1992). However, current Os isotope data do not 433 

show any unradiogenic excursion that may support an impact scenario, and even if an 434 



impact event occurred, the impactor is likely to have a very small size that leaves little 435 

geochemical trace in the sedimentary record (Harris et al., 2013; Liu et al., 2020a; 436 

Percival et al., 2019; Turgeon et al., 2007). Further studies about the timing, locality 437 

and scale of proposed large igneous provinces are needed to fully understand the role 438 

of large igneous provinces in the climate change and mass extinction of Late Devonian.  439 

 440 

5.3 Implications for the link between volcanism and the F–F mass extinction 441 

Whilst volcanism has been inferred as the cause of the Frasnian–Famennian mass 442 

extinction on the basis of Hg spikes at several sections around the world, it is clear that 443 

these enrichments are not documented in all locations (Estrada et al., 2018; Moreno et 444 

al., 2018; Racki et al., 2020; Racki et al., 2018a; Racki et al., 2018b; Kaiho et al., 2021; 445 

this study), arguing against a global-scale disturbance of the mercury cycle. Even where 446 

Hg spikes are preserved, there is no consistency regarding their stratigraphic correlation. 447 

Mercury enrichments are detected below, at and above the F–F boundary (e.g., Kaiho 448 

et al., 2021; Racki, 2020 and references therein, H-32 core in this study). In addition, 449 

several LIPs (e.g., Viluy Traps, Kola, Vyatka, and Pripyat-Dniepr-Donets rift systems; 450 

Arzamastsev et al., 2017; Kiselev et al., 2006; Kravchinsky, 2012) were active during 451 

the F–F period. Thus, even if the previously observed Hg anomalies were derived from 452 

volcanism, it remains unclear whether they were sourced from a single volcanic system 453 

or a combination of the LIPs, or an intensification in arc volcanism.  454 



Further studies are needed to rigorously test the link between Hg and volcanism 455 

during the F–F interval, especially the relative timing of sedimentary Hg enrichment 456 

and F–F mass extinction (see e.g., Percival et al. 2018a). Moreover, high-resolution 457 

geochronology work that can precisely characterize the eruption/magmatic history of 458 

the LIPs is necessary to fully understand the role of volcanism in driving the climatic 459 

and biotic changes during the F–F period (following the approaches undertaken for the 460 

P–T mass extinction and Siberian traps, and T–J mass extinction and Central Atlantic 461 

Province; e.g., Burgess et al., 2017; Davies et al., 2017).  462 

 463 

6. Conclusions  464 

Mercury records of six Upper Devonian sections from North America show no 465 

sign of Hg enrichment associated with the F–F mass extinction (Fig. 2 and 3). Minor 466 

Hg variations in the New York records are more likely to be controlled by a 467 

combination of local deposition processes such as redox variation, organic matter 468 

preservation, sulphide precipitation and clay mineral input, rather than perturbations by 469 

volcanic events. Previous study of the New York sections suggests enhanced wildfire 470 

activity (as evidenced by inertinite abundance) across the F–F interval. The lack of 471 

correlation between inertinite abundance and Hg concentration data excludes wildfires 472 

as a major source of Hg during the F–F transition interval, at least to North American 473 

basins. These findings may indicate that during the F–F extinction, ash and charcoal 474 

had low Hg contents, or that the wildfires were limited in scale and/or had low burning 475 



severity that released minimum Hg into the local environment. The H-32 section (Iowa) 476 

records a possible volcanism-driven Hg enrichment with coeval increase of TOC 477 

values; however, this Hg anomaly is stratigraphically above the F–F boundary (Fig. 3). 478 

A volcanic trigger for the F–F mass extinction has recently been supported by Hg 479 

anomalies data from widespread localities, but is not reinforced by study of the North 480 

American F–F archives investigated here. Further investigations are needed to 481 

understand why some F–F records are marked by pronounced Hg peaks, and others not, 482 

as well as the timing and scale of Late Devonian volcanism and its potential role in 483 

driving the F–F biotic crisis.  484 
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List of figures: 849 

Figure 1. Reconstructed paleogeography map showing location of the Appalachian 850 

Basin (open square) and Illinois Basin (red circle) in North America, after Joachimski 851 

et al. (2009). Inserted map showing present day New York sample locations – 1: Walnut 852 

Creek Bank, 2: Irish Gulf, 3: West Valley, 4: Beaver Meadow Creek, 5: Joint Creek).  853 
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Figure 2. Hg and Hg/TOC stratigraphy for the New York sections investigated. 855 

Inertinite data (volume percentage), Mo abundance and TOC data are from Liu et al. 856 

(2020a). 857 
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Figure 3. Stratigraphic plot of 13Corg, Hg and Hg/TOC data for the H-32 section. 13Corg 859 

and TOC data are from Percival et al. (in review). 860 
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Figure 4. Crossplots of Hg and Hg/TOC with TOC, Al2O3, Mo, Mn, V/(V+Ni) and 862 

Si/Al. 863 
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