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Abstract
Organic-inorganic hybrid material is one of the ma®mising materials for high performance
gas sensors due to its improved properties liké Bensitivity, selectivity, fast response time,
flexibility and low power consumption. This work gzents ultrasensitive, selective and low
operating temperature,B gas sensor. It is based on metal-oxide nanoleartilPs) embedded
in organic semiconductor polymeric nanofibrous (NFembrane containing an ionic liquid
(IL). In this context, high surface area Tungstdip(uxide- Polyvinyl alcohol (W@PVA)
nanofibrous composite sensor material with avedigmeter of 130 + 20 nm were synthesized
with controlled morphology and interconnectivityradngh an electrospinning technique. The
obtained WQ NPs-containing PVA nanofibrous sensing materiad eaaluated for its ability as
a potential sensor forJ3 gas at different operating temperatures and @aseatrations. Results
demonstrated that the fabricated sensor is ultsiidemand selective for £ gas and exhibit an
excellent reproducibility, and long-term stabilitifurthermore, the sensor showed adequate
response in a humid environment. It was also shthah nanofibers’ membrane porosity and
thickness control the sensing performance. Thampti operating temperature of 4D with a
detection threshold as low as 100 ppb with a respdime of 16.37 £ 1.42 s were achieved. This
combined high sensitivity, fast response time aad loperating temperature (low-power
consumption) provides clear evidence of the seagmotential to outperform existing devices,

which could pave the way for a commercial explatat

Keywords: H,S sensor; W@nanoparticles; Semiconductor polymer; Nanofibers



1. Introduction

The increasing concern about environmentaltegtion has resulted in continuous
expansion in sensor development for hazardous gstestion. Hydrogen Sulfide ¢8) is a
colorless, highly flammable, extremely toxic, anglesive gas [1, 2]. It is produced as a by-
product in petroleum and refining processes, sewer wastewater treatment, pulp and paper
processing, food processing, hot asphalt pavingildemanufacturing, landfills and mining [3-
5]. Generally, workers in these industries face tisk of S gas exposure. Although
Wetchakun et al. [6] reported that$Fexposure threshold limit value is 10 ppm, thee@dic
Advisory Board on Toxic Air Pollutants (SAB-USA)perted that the acceptable ambient level
of H,S is at a lower range of 20-100 ppb [7]. Therefesmentists and researchers have recently
focused their efforts on developing$igas sensors with low detection limit, fast resgoand
low power consumption [8-18].

Organic materials have recently been desigrs an effective approach to achieve cost-
effective sensors with high performance. Condugbelymers and semiconducting materials are
characterized by their ease of operation and fatiois, high sensitivity and low cost [15-17, 19].
It was also noted that conducting polymers haverdranced affinity to gases, especially those
that result in a change in their resistance [2Q-22] the other hand, semiconducting materials
were found to change their electrical conductizigyised by adsorption and desorption of gases,
a phenomenon that was first observed by Seiyamah &t 1962 [18]. A number of metal-oxide
semiconducting materials such as;Qg[23, 24], SnQ [25, 26], CuO [27, 28], W©[29, 30],
MoOs; [31] and FgO; [32, 33] were investigated as potentialSHgas sensors. Among these
oxide materials, W@is an n-type metal-oxide with a band gap of 2.6-&\W[34], a good

surface morphology, active surface area and dstagatture that boost its sensing properties.
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Gas sensing applications are expected to undéggdicant development due to the use
and integration of nanomaterials in their devicadtres. The core advantage of the nano-scale
structures, in the form of nanoparticles and nd®o§, is the large surface area to volume ratio
compared to bulk materials. This feature leadsvihg towards more possibilities for creating
new materials and facilitating chemical proces¥esious types of nanomaterials were explored
in this regard, such as thin films [35-37], nanefi®[38, 39], nanosheets [40, 41], nanowires [32,
42], nanocluster [43], quantum dots [44]. Amongstherarious geometries, nanofibers (NFs)
were found to possess a better sensitivity anct®ealy for H,S gas detection due to their large
surface-to-volume ratio and high interconnecteagity [45].

Most recently, there has been an increasing irttereshe fabrication of electronic
devices based on hybrid structures that are madegahic and inorganic nanomaterials because
of their distinguished properties such as poweingg\wize compactness and portability [46].
Their use for HS detection would help achieving the optimum enbarent of HS sensors in
terms of sensitivity, selectivity, response timeyw|power consumption, easy fabrication, and
flexibility. Hybrid organic-inorganic thin films nde of semiconducting polymer, in which
metal-oxides NPs were embedded, have been symtdedia detect b6 gas at low
concentrations. Results revealed an excellent pedioce in terms of sensitivity (10-25 ppm),
fast response (20 s), operating temperature’GBCand selectivity for BB gas at low
temperatures [47-49]. On the other hand, Virji bt[2l] had reported that the addition of
inorganic NPs to polymer NFs increased the seityitof the HS sensor. The advantage of the
latter system is to combine the high surface afémit nanoparticles and nanofibers in order the
maximize the possibilities of interaction betweée tadsorbed gas molecules and the sensor

material. Moreover, recent studies investigatedetifiect of adding ionic liquids on the electrical



properties of insulating polymers. The results ade®@ that insulating polymers act as
semiconducting materials when mixed with ionic itjat specific ratios [50, 51]. An example of
an environmentally-friendly ionic liquid is glycdrowhich is believed to serve both as
electrolytes and diffusion barriers [52].

Researchers usually use sacrificial polymeric neersuch as PVA, as templates for the
containment of NPs, and to provide NPs-based senatarials upon calcination [53, 54]. This is
resulting in high activation energy of the develbgensors due to the high activation energy pf
the prepared nanoparticles.

In the current study, PVA was used as a startingenaa for the development of a novel
nanofibrous sensor membrane that contaings WBs, as a semiconducting sensor material, and
glycerol, as an ionic liquid. Despite the continsi@asearch in the area of fabrication of organic-
inorganic gas sensors, the current study provideswel formulation of organic nanofibers,
inorganic nanoparticles and an ionic liquid to Isedias a b§ gas sensor. The performance of
the prepared organic-inorganic nanofiber based csemsms thoroughly characterized and
evaluated as a function of [WD membrane thickness and sensing temperatureu@hout the

obtained findings, optimization of the sensor fiwanembrane will be attempted.

2. Experimental

2.1. Preparation of Nanofibers composites
Tungsten oxide nano-powder (<100 nm), PVA (Mw ~60)0and GlycerolX 99.5%)

were purchased from Sigma-Aldrich. A 10 wt% PVAuwmn was prepared by adding 1 g of
PVA polymer to 10 mL of deionized water. The homuogeus PVA solution was further loaded
with 5 vol% glycerol and 5, 7.5 and 10 wt% of W@ano-powder. Each mixture was then

exposed to vigorous stirring at @ until a clear homogenous solution was formedoteéd by
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cooling to room temperature. Each solution theledilinto a 10 ml syringe with gauge 18

stainless steel needle to be electrospun into §ibAn electrospinning process was used at
ambient conditions, and following a pre-determirsed of parameters: spinning distance of 10
cm, an applied voltage of 12 kV applied betweenrtbedle tip and a grounded collector, and a
constant flow rate of 0.5 ml/h was adjusted usingaatomatic syringe pump. The fiber density,
hence membrane thickness, was controlled by vatji@egpinning process for 5, 7, and 9 hours,
to study the effect of polymer fibers density opSHsensing. The obtained electrospun fibrous

membranes were further dried aP6Gor 24 hours to remove residual deionized water.

2.2. Material Characterization
A Shimadzu 6100 X-ray diffractometer with a CasKadiation { = 1.54056 A) was used to

study the crystal structure of the as-received;WPBs. The as-received WOPs and the as-
prepared fibers’ morphologies were investigatechgisscanning electron microscopy (SEM:
JEOL, JSM- 5600). A DiameterJ software tool wagduseanalysis the SEM images in terms of
fiber and pore size distributions [55]. In additican energy-dispersive X-ray spectrometer
(EDX) was used to confirm the presence and homageatthe WQ-PVA composite fibrous
membranes. In order to determine the electricalgasdsensing properties of the prepared fibers,

Keithley Instruments source measurement unit (KJ)2@as utilized.

2.3. Sensor fabrication and Characterization

The device structure of sensor fabricated is shawrFig. 1 and consists of three
components: a copper sheet, sensing nanofiber ialadéed a stainless-steel grid. The copper
sheet (1.5 x 1.5 cthwas used as a bottom contact, and the stainiesbegid (250 x 250 pfh
as the top contact. A square piece (1 x f)@hthe composite NFs was cut and placed between

the two contacts. A strong heat-proof squash tegeewsed to attach the three parts together. The
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device was positioned on a heater plate inside flmehamber fitted with 2 electrical feed-
troughs to contact the bottom and top parts ofdinéce. A detailed schematic diagram of the
gas testing system is provided in Fig. 1. A mé&ssrheter (Bronkhorst) was used to control the
gases flow rate. % gas was mixed with fixed proportion of dry aitegs otherwise stated. With
this arrangement, the developed sensors were sudrshy exposed to ¥ gas inside the
temperature-controlled Teflon chamber. The testsewsnducted at different temperatures
(20°C, 40°C and 60C) under atmospheric pressure inside a fume hobbdegts were performed
by applying a fixed bias of 2 V and the current wasasured as a function of time at different
H,S concentrations. For each measurement, adequaibenwf samples were prepared and

tested.

3. Results and discussion

3.1. Structural and morphological characteristics

XRD investigation of the as-received W®IPs was carried out to confirm structural
purity of the NPs. Fig. 2A indicates the preseofca monoclinic WQ phase, as compared with
its JCPDS card number 83-0950 where all charatitepsaks were observed. No other phases
were detected. In addition, the intense peaks wedereflect the high crystallinity of the
prepared W@QNPs. However, the relative broadness of the pmasitributed to their small size
(nm) as shown in Fig. 2B, where nanoparticles of Vd@d their agglomerates were observed.
The average particle size of the as-received; W@&s calculated using an imageJ software, and

was found to be 13 + 3 nm, which was further conéid using a zetasizer measurement.

Fig. 3 A-C show the SEM micrographs of the PVA ofédirous membranes containing 5
vol% IL and 5 wt% WQ@NPs, made by electrospinning their respective swiatfor 5, 7 and 9

hours, respectively. All composite nanofibers shdwentinuous, uniform and smooth surface
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morphology. Moreover, their size distribution measu by Diameter J software, were also
homogeneous, as evident from the fiber size digioh graphs shown in the insets of the SEM
micrographs, with an average size of 140-200 nnteritied spinning for 9 hours showed the
formation of fibers with ribbon-like morphology, abown ion Fig 3C. Extending the spinning
time was also reflected in the pronounced increadée thickness of the fibrous membranes
showing thickness of 56.8, 173.5 and 210.6 um femitranes made by spinning for 5, 7 and 9
hours, respectively. Accordingly, this resultedaislight decrease of the interconnected porosity
of the membranes to an average of 45%, as showigir8D. A spinning time of 9 hours was
accordingly selected as an optimum condition foudging the effect of varying the
concentration of the WONPS in the membranes prepared thereafter. Fighows the
morphology of the prepared membranes containing%and 10 wt% of WONPs. Figure 4A
shows the morphology of a pristine PVA membrane domparison, where fibers with a
homogeneous size distribution and an average deroétl16.4 nm were observed, as indicated
from the fiber size distribution shown in the irtseirFig. 4A. In contrast, the SEM micrographs
of PVA nanofibrous membranes containing 5, 7.5 Bdadvt% of WQ NPs shown in Fig. 4B-D
show a noticeable change in the average fiberasidesxtent of ribbon formation with increasing
the concentration of WEONPs in the fibrous membranes. These results aaegimod agreement
with the data presented by Park et al. [56], whaneincrease of the diameter of PVA-
montmorillonite-silver fibers was reported with reasing the content of Ag NPs, and was
attributed to the increase in the viscosity of fudution with the addition of the NPs. It is a
known fact that increasing the viscosity of theusioh prior its electrospinning leads to a
pronounced increase in the diameter of the prodfibeds [57]. Consequently, the increase in

the dimensions of the W&zontaining PVA nanofibers led to a decrease ingbeosity of the



membranes, as shown in Fig. 4E. Both thickness @ordsity of the WO3-PVA fibrous
membranes were believed to play an important noléhé sensing efficiency of the produced
membranes, as will be described later. Moreoves, gfesence of the WO3 NPs was further
confirmed by an elemental analysis (EDS) of theofils membrane containing the highest
concentration of WQNPs (10 wt%), as shown in Fig. 4F. An optimum @ntcation of 7.5 wt%
of WO; NPs in the PVA fibrous membranes was selectedttatying the sensing characteristics

of the prepared membranes.

A comparison between the thermal history of theaeagived PVA pellets and the
electrospun PVA nanofibers was carried out by tlogmavimetric analysis (TGA), as shown in
Fig. 5. The weight loss of both samples was measorer the temperature range 30-600°C.
The decomposition of PVA beads takes place thrdbigie main events; at 250, 340 and @G0
These events are related to the dehydratiopQ}hrough the removal of the pending OH group
and a neighboring H atom, while the second andl thents are related to the degradation and
decomposition (burn out) of the polymeric chainsspectively [58]. In contrast, the TGA
thermogram of the PVA nanofibers took place throfigk events at 75, 180, 260, 360 and
480°C. The first two events represent the removal efwleakly adsorbed water molecules at 75
and 186C, while the event at 260 is related to the removal of structural water enales from
the PVA polymeric chains. The last two events & 86d 486C are related to the degradation
and decomposition of the polymeric chains [58]. Tegailed and early thermal history of the
PVA nanofibers is attributed to its higher surfaediich is a consequence of their nm-scale
dimensions. However, the early thermal instabilify the PVA NFs indicates their limited

application as NPs-containing sensor membranesngtdratures below 76 to avoid the early



deterioration of the sensor material. These resuisn agreement with previous findings where

semiconducting polymers are used to dete& ¢bs in a temperature range of 26c8p7-49].

3.2. Electrical properties

PVA nanofibrous membranes containing 7.5 wt% of MPs and electrospun for 9
hours in addition to 5 vol% of the IL were usedingestigate their electrical characteristics at
various temperatures and concentrations £ Has. Fig. 6A shows the |-V characteristics of
nanofibrous membranes as measured %€ 280C and 66C. All I-V curves exhibited a degree
of linearity, which became dominant at high tempe® Based on these results a bias voltage of
2 V was applied to measure the electrical curréthesensor in the linear part of I-V curve. The
voltage point was chosen from the liner point ie thV curve in order to avoid any current
saturation. On the other hand, the nonlinear sectiothe I-V curves can be correlated to the
charge carriers transport at the potential bafoemed between the PVA nanofibers and the
WO; NPs entrapped within the nanofibers. Fig. 6B shive natural logarithm of the resistance
versus the reciprocal of temperature where thastaste decreases with increasing temperature.
This phenomenon is attributed to the increase ennibimber of the free change carriers in the
conduction band that were thermally excited. Tiststance of the membranes, as depicted from

the results of Fig. 6B, are therefore best fittgdhe Arrhenius equation (1):

fa (Eq. 1)

R = R,eXsT



where,R is the sensor resistand®, is a pre-exponential factor, 5 the activation energ¥s is

the Boltzmann constant and T is the temperature. slbpe of the line in Fig. 6B was used to
calculate the activation energy for the YWOPs-containing PVA nanofibrous sensor membrane.
An activation energy of 0.146 eV was found, whishlower than that of other Wcbased
sensors, e.g. CuO-functionalized Wanowires(E,= 2.6 eV) [59]. Lower activation energy is
highly desirable since it boosts the sensor's mrespand recovery time while decreasing the

operating temperature [60].

3.3. Gassensing properties
In addition to the variation of the proportion ofOA/NPS in the PVA nanofibrous

membrane and the spinning time, the gas sensingegies of the prepared nanofibrous
membranes were also investigated as a functioneofemperature and concentration of th& H
gas. The fabricated nanofibrous sensor membramge wstalled in a closed temperature-
controlled Teflon chamber and exposed to differemmicentrations of 6 gas. A fixed bias
voltage of 2V was applied across the sensor’s relées and the variation of the current was

recorded as a function of time. The sensor respaasecalculated using equation 2,

S(%) = £—2x 100 (Eq. 2)

a

where S is the sensor respongehé reference current when the sensor is expasad aind §

the current measured when the sensor is expogbd targeted k6 gas mixture.

Fig. 7 represents a typical response curve folVA Ranofibrous sensor membrane
containing 7.5 wt% W@and 5 vol% IL and electropsun for 9 hours whertcgdain a chamber
containing HS gas with a concentration of 1 ppm afQ@nd 100 ppm at 4. The sensor

membrane clearly shows a significant increase @ dtrrent as b6 was introduced to the

10



chamber. Upon switching off the 8 supply, the current drops back to its initial neal
Moreover, it was found that the current of the sengas changed in an identical manner through
the five duty cycles displayed. In order to furthmraluate the sensitivity of the currently
optimized sensor towards lower concentrations ¢ lgas, the later was reduced to 100 ppb.
However, no detection was observed. Accordingly tbmperature inside the chamber was
raised to 48C, at which detection was observed, as shown ir¥BigDoubling the concentration
of H,S required the increase of the temperature indidechamber to be 40 to maintain
sensing efficiency, as shown in Fig 7B. This cooddrelated to the enhanced activation of the
sensor material in the presence of higher condsmmsaof the pollutant gas, as was previously
shown in Fig. 6B. These results clearly demonsttiagereproducibility and reliability of the

described nanofibrous sensor membranes.

The effect of increasing the thickness of the nimmofis sensor membranes on their
sensing efficiency was also studied as a functidhe@H,S gas concentration, up to 10 ppm, and
temperature, 40 and BD. A lower concentration of 5 wt% for the W@®IPs in the sensor
membranes was, therefore selected. Results amenshioFig. 8, where the fibrous sensor
membrane with the largest thickness; spun for @djouas found to be capable of detecting as
low as 1 ppm of b5 gas at 40C and 60C, with an enhanced performance than fibrous sensor
membranes with lower thicknesses. This could bdbated to the densification of the fibrous
membranes caused by extending he spinning timeshmiias previously shown in Fig. 4E in
terms of the decreased membrane porosity and theeased fiber size. The enhanced
densification is believed to result in higher cocthaty between the fibers and the WQIPs

entrapped within [45]. Accordingly, a thorough istigation of the sensing performance was
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carried out using WONPs-containing PVA nanofibrous membranes that weade by spinning

for 9 hours as a function of temperature and canagon of HS gas.

Fig. 9 A-C illustrates the effect of the operatiiegnperature on the performance of the
sensor, showing that the sensor response impravéideatemperature was raised t6@0then
decayed at higher temperatures (*®0 This could be related to the effect of raisihg
temperature on the structural characteristics o ®VA fibers as the temperature of
measurement was elevated to a value closer tartelermal event that was observed in the
TGA thermogram of the PVA fibers (Fig. 5). On thteer hand, the results shown in Fig. 9 A-C
also indicate that the response of the AWPs-containing fibrous sensor was improved with
increasing the proportion of the WO®Ps in the membranes up to to 7.5 wt%. This isbatied
to the increase in the concentration of the adites within the fibrous sensing membrane with
the addition of W@ NPs [48], which boosts the sensor’s performancavéver, a noticeable
decrease in the response of the yWPs-containing fibrous sensor was observed byeasing
the content of the WONPs to 10 wt%. This could be related to a possagiglomeration of the
WO; NPs within the fibers, which is a common probleaned during the dispersion of NPs in
polymeric solutions. As a result, a loss of thehrsgrface area of the NPS will take place, hence

affect their sensing capability.

In brief, our investigation demonstrated that a PYAnofibrous sensor membrane
containing 7.5 wt% WO3, and 5 vol% IL and electiasgor 9 hours exhibit the highest
performance at 4C when compared with all other samples. Therefarmaximum operating
temperature of 4€ was used for the rest of the measurements. itldh® mentioned that the
sensor’s response time for 1 ppm, which is defiagdhe time needed to achieve 90% of the

response value, was found to be approximately 14.229 s for the optimally selected WO

12



NPs-containing PVA nanofibrous sensor membranshas/n in Fig. 9 D. This response time is

shorter than that previously reported sensors 2485 61, 62].

Accordingly, the long-term stability of the optirhalfabricated sensor membrane was
further evaluated by measuring the sensor responte presence of 1 ppm og$lgas at 4TC
for 21 days. Results are shown in Fig. 10A. Thesse exhibited an excellent stability with a
minimal standard deviation of 2.59. On the othendhathe influence of humidity on the
sensitivity of the optimally selected sensor membravas also evaluated under 20-80% relative
humidity. The sensor exhibits stable performancedtative humidity less than 40% as shows in
Fig. 10 B. However, a decrease in the sensingtyabil the fiborous membrane was observed at
higher degrees of relative humidity, which could &i#ributed to the adsorption of water
molecules onto the PVA fibers, hindering their sty to H,S gas. These findings were
previously observed when a non-fiborous PVA-basedsae film was evaluated [47].
Furthermore, the selectivity of the sensor was oreaksby exposing the sensor to various gasses,
namely H, C;Heg, NH3, and NQ in addition to HS at an concentration of 300 ppm of each of the
gasses. These gases were selected based on taeiicaghstructure with various degrees of
polarity. Despite the high polarity of NHind NQ gases, their interaction with the PVA fibrous
membrane was minimal. Results are shown in Fig., W@re the response time of the optimally
fabricated WQ NPs-containing PVA sensor membrane was 18 timgisehithan other gasses
used in this study, indicating its high selectivityH,S gas. Most significantly, Fig. 10D shows
that the optimally fabricated sensor membrane tiasgnsitive to H2S gas with a capability of
detecting 100 ppb at 4Q. It should be emntioned that previously descridéds-based sensors
have been reported to achieve similar low detedimits, but at very high temperatures (200-

300°C) [30, 40, 63, 64]. Thus, reducing the operati@gerature from 200°C to 40°C saves
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almost 90% of power consumed by the heating eleroéhe sensor. This is based on the

estimation of the percent power reduction usingdiewing equation:

Preducton = ([P20occ = Paoed/ P200°0 (Ea. 3)
x100
Where Boyo-c and Ro-c are the power consumed for sensing a fixed coretgan of HS gas at
200 and 48C, respectively. The higher sensing efficiencyhaf optimally fabricated WONPs-
containing PVA sensor membrane is highly attributedhe higher surface area of the PVA
nanofibers, as compared with PVA non-fibrous filmvkjch in turn provides an enhanced access
of the entrapped WONPs to the KIS gas at lower operating temperatures. It shoul@dlbe
mentioned that the presence of the ionic liquidhfeir assists the sensing efficiency through its
charged ions, which is also boosted due to itsgm@s in a nm-size high surface area fibrous
membrane. In addition, the non-woven nature ofRR& nanofibers provides a 3-dimensional
network with interconnectivity and porosity whick believed to further facilitate the contacts
between the W@and IL within the fibers. A detailed comparisornvieeen the performance of

our sensor versus already reported sensors intéh&tlire are summarized in Table 1.
3.4. Gas sensing mechanism

In general, the change of sensor response arisgs durface interactions between the
target gas and sensing material. Therefore, uratetisty the sensing mechanism for YMOPs
embedded in a PVA NFs-based sensor membrane sbondider: (i) the high surface area and

porosity of the nanofiber which produces more rigacsites, and (ii) the adsorbed oxygen

species (@, O° and O) onto the nanoparticle surface. The sensing mésimaim metal-oxide

gas sensors depends on resistance change duesidstivption of the target gas on the surface of
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the sensing material. At first, the oxygen moleswasily adsorb on the surface of the sensing
materiel due to the high electron affinity of theygen molecules (0.43 eV) [63]. The adsorbed
oxygen molecules attract electrons from the PVAWOFs surface. Consequently, adsorbed

oxygen ions (@, O and @) appear on the NFs surface. The following equatidescribe these

reactions:

0,(g) — 0y(ads) (Eq.4)
0,(ads) + e~ —» 05 (ads) (Eq.5)
05 (ads) + e~ = 207 (ads) (Eq.6)
0~ + e~ - 0% (ads) (Eq.7)

Upon exposure to $$ gas, the adsorbed oxygen interacts witd ldnd free electrons are
released as shown in the following equation.

2H,S +30; — 2H,0 +250,+3 e~ (Eq.8)

The free electrons released from the above interagbcreases the conductivity (decrease in
resistance) of the nanofibers, and hence the dusignal increases. This is further assisted by
the nm-dimensions of the PVA fibers and the preseasicthe IL molecules. The high surface
area of the PVA nanofibers enhances the extent,chd3orption onto its surfaces, while the
ionizable IL molecules facilitate the communicatibatween the WONPs, hence improves
current signal and the overall conductivity of thbole assembly. Upon turning off the;$
flow, the density of free electrons is reduced dmhce decreasing the conductivity of the
sensing element causing a reversible sensing bwhph8]. The proposed optimally fabricated
WOs-PVA-IL fibrous sensor membrane, therefore, proside novel formulation with an
improved current pathway for,8 gas detection utilizing, as compared widsHas sensors that

are commercially available or recently describethmliterature.
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4. Conclusion

This work demonstrates that high performance sensam be fabricated using a hybrid
organic-inorganic electrospun nanofibrous membrdoethe detection of 6 gas with the low
ppb range. The sensing element of th& ldensor was produced by embedding;WPs in a
nanofibrous PVA polymeric membrane together witicgtol as an ionic liquid. The effects of
varying the spinning time, WANPs content and operating temperature on thergge$iiciency
were investigated. Results revealed that the gasosefabricated with novel formulation
exhibited exceptional $$ sensing performance by detecting 1 ppm withil34 2.29 s at
room temperature. An optimally selected formulataira PVA nanofibrous sensor membrane
containing 7.5 wt% WO3 NPs, 5 vol% IL and electrapgor 9 hours was shown to have the
highest detection performance at low temperatu®8QR unlike WO3 NPs-based sensors that
are described in the literature. With this novehfalation, we were able to detect 100 ppb of
H,S gas with a response time of 16.37 + 1.42 s daC4Moreover, the fabricated sensor
assembly exhibited excellent reliability, long testability and low power consumption, which
are characteristics required by next generatiorsgasing devices. As such, it offers an excellent

potential to develop high performanceS+sensing applications.
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7. Figures and tables captions:

Fig. 1 HS gas testing system.
Fig. 2 XRD patterns (A) and SEM micrograph (B}lué as-received WENPs.

Fig. 3 SEM images of A) PVA-5vol%IL-5wt%W4sbH B) PVA-5vol%IL-5wt%WQ-7H C)
PVA-5vol%IL-5wt%WGOs-9H D) Porosity and thickness variation with spitgntime

Fig. 4 SEM images of A) Pristine PVA nanofibers BYA-5vol%IL-5wt%WG;-9H C) PVA-
5vol%IL-7.5wt%WQ-9H D) PVA-5vol%IL-10wt%WQ-9H E) Porosity and fiber variation
with WO; content F) EDX of PVA-5vol%IL-7.5wt%W§E9H.

Fig. 5 Thermograms of the as-received PVA peleis the electrospun PVA NFs.

Fig. 6 A) I-V characteristic curve of (PVA-5voI%IL.5wt%WQ-9H) sensor as a function of
temperature B) The dependence of the natural libgarof the resistance on inverse temperature
for the PVA-5vol%IL-7.5wt%WGQ-9H.

Fig. 7 Reproducibility and Representative meaguduarve of PVA-5vol%IL-7.5wt%W@9H
sensor for A) 1 ppm at 20°C B) 100 ppb at 40°C.

Fig. 8 PVA-5vol%IL-5wt%WQ-5-9H sensor response at (A) 40°C (B) 60°C for edéht
spinning time.

Fig. 9 PVA-5vol%IL-5-10wt%WG@-9H sensor response at (A)20°C (B)40°C and (C)6@L
Variation of response time of PVA-5vol%IL-7.5wt%WOH with temperature.

Fig. 10 A: Long term stability of PVA-5vol%IL-78%WO;-9H sensor B) Humidity effect on
PVA-5vol%IL-7.5wt%WQ-9H sensor C) Selectivity of PVA-5vol%IL-7.5wt%WOH sensor
D) detection limit of PVA-5vol%IL-7.5wt%W@9H sensor at 40°C.

Table 1 Comparison between the performance of ems® and other recently developegSH
gas sensors.
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Table 1

Material Structure Detection Response Operation Reference
limit Value (%) temperature (°C)
PVA-IL-WO, Nanofib 100 ppb 12540 1 40 Present work
PVA-IL-WO, ANOTIDErS 1 ppm o4 TOr 2 ppm 20 Present work
PVA-WO, Thinfilm 15 ppm - 20 [48]
Reduced graphene Nano sheets 10 ppb 168.5 for 40 ppm 330 [40]
oxide/hexagonal
WO,
Pd-NPs/Pd-embedded 1.36 for 1 ppm
WO
— > NFs 1 ppm 350 [30]
PristineWO; NFs 11.1 for 1 ppm
Polythiophene-WO3 Nano sheet 2 ppm 3 for 10 ppm 70 [63]
WO, hemitube Hemitubes 100 bbp - 200-300 [64]
functionalized with
graphene-based

material
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Table 1

Material Structure Detection Response Operation Reference
limit Value (%) temperature (°C)
PVA-IL-WO, i 100 ppb ; 40 Present work
PVA-IL-WO, Nanofibers 1 ppm 1254 for 1 ppm 20 Present work
PVA-WO, Thin film 15 ppm - 20 [48]
Reduced graphene Nano sheets 10 ppb 168.5 for 40 ppm 330 [40]
oxide/hexagonal
WO,
Pd-NPs/Pd-embedded 1.36 for 1 ppm
WO, 350
Pristine WO, NFs NFs 1 ppm 11.1 for 1 ppm [30]
Polythiophene-WO3 Nano sheet 2 ppm 3 for 10 ppm 70 [63]
WO, hemitube Hemitubes 100 bbp - 200-300 [64]
functionalized with

graphene-based
material




Research Highlights

1. Organic-Inorganic nanofibers based gas sensors were successfully prepared by
electrospinning for the first time.

2. The prepared organic-inorganic gas sensor could detect 100 ppb of H,S gas at a very
low temperature (40°C).

3. The fabricated sensor is very selective with fast response time of 16.37 s.

4. The sensor is having long-term stability and low power consumption.
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