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1 Introduction

The complete quantum theory of gravity stands as one of the most relevant and loftiest goals
of theoretical high energy physics. While prospects for the experimental test of our theories
of gravity are challenging due to the smallness of the Planck lenght Lp, this also means
that the low energy theory of gravity can be treated perturbatively in Lp to a very, very
good approximation. This expansion on a small distance or large mass scale Lp = (Mp)~!
is the basis of Effective Field Theory (EFT), a scheme in which gravity fits seamlessly [2—-
4]. As such quantum corrections in the low energy theory of gravity are well defined and
calculable. Computational methods exist since half a century to obtain these corrections;
the most developed being the coordinate-representation based heat kernel [5-14]. Within
this technique an expansion characterized by Schwinger-DeWitt coefficients is appropriate
for the computation of short distance contributions and in particular UV divergences.
Momentum representation techniques have also been studied [15-18] to a lesser extent.



This letter adds to the techniques for loop computations by introducing a covariant
momentum representation which treats on equal footing local internal and space-time sym-
metries. The technique, dubbed covariant derivative expansion (CDE), indeed originates
from gauge theories and was proposed in [1, 19] and more recently developed in [20-23]
whereas here it is extended to gravity. This method presents a number differences with
previous works on momentum-representation in gravity [15-18], one of them is the central
role in the CDE of a covariant description in momentum space. What we mean by this can
be sketched for local space-time (internal) symmetries as follows: the naive transformation
to momentum representation V — ig +I' (V — iqg + A) does not display gauge covariance
when one integrates over d%q leaving 'y, (A,) behind; this is addressed in the CDE with a
transformation that trades the dependence on connection I' (gauge field A) for curvature
(field strength). Previous literature on momentum representation approached the prob-
lem starting from the propagator and extracted covariant results by e.g. the use Riemann
normal coordinates around flat space [15]. Another difference is that the technique is de-
veloped here, as opposed to diagrammatic computations, using functional methods with
a covariant description in field variables, in particular in the metric g,,,. This description
is relevant for non-linear theories [24-26] and hence for gravity [27]. Lastly the common
usage of the CDE and recent surge in the study of EFT (and even automatization [28-32])
in the field of beyond the Standard Model physics gives the method the potential to make
loop computations in gravity readily accessible to said community and application of de-
velopments in each field available to the other. An instance of this cross-talk is how [33]
used results in [34] for EFT in gravity.

As an application of the CDE method to gravity, the UV divergences at one loop
generated by gravitational interactions for Hilbert-Einstein gravity with a cosmological
constant (CC) and scalar, fermions and vector bosons is computed. A good deal of these
results have been in the literature for some time [35-37] and we find agreement, after the
pertinent connection is established. The main point to be aware of for these comparisons
is that here a covariant description on the fields is applied and so use of the equations of
motion is required to compare with those works which do not use this description.

The paper is organized as follows: section 2 lays out the functional formulation of one
loop corrections and computes the field-covariant second order variation of the action. Sec-
tion 3 presents the transformation and the resulting covariant momentum-representation
for gravity and applies it to the second variation of the action. Section 4 gives an explicit
formula to evaluate one loop corrections and combines the previous results to compute the
UV divergences for the theory of section 2. Finally section 5 compares the present method
with the heat kernel.

The reader interested in the computational method only can find the transformation in
section 3.1, the evaluation of the determinant in section 4 and contrast with other methods
in section 5. The reader interested in the UV divergent terms for Hilbert-Einstein with
cosmological constant and spin 0,1/2,1 matter will find intermediate steps in section 3.2,
egs. (3.28), (3.34), and results in 4.1, eqs. (4.18)—(4.20), (4.32)—(4.37), (4.57).



Our conventions are a flat metric as 7,,, =Diag(1, -1, -1, —1) and

VA" = 9, A% + T, 47 Vi, VA" = R%,, A7 Byw = R0y (1.1)

where we note that part of the literature uses an opposite-sign definition for R, [2]. Given
that in section 4 dimensional regularization is used we write our formulae in d dimensions
with d in the vicinity of 4.

2 Second order covariant variation of the action

Functional methods have been applied to particle physics over the decades and the recent
literature contains complete and accessible descriptions [20, 21] to which we refer the reader
for the detailed formulation; here rather we shall start from a number of results in the
literature whose combination is required to tackle gravity. The one-loop corrections to the
action can be synthesized into a Gaussian integral as, formally,

oiS[Plert — / Dt SIO1Fi8835191+5 (39)282S[1+0(69%) 1 (iSI9] -3 tr(log(~0>SI9])) (2.1)
with gZ; the background field, S the effective action and the last equality valid to one loop.

The one point to be underlined here is that, if one were to use a different variable for the
field related as ¢ = ¢(¢) the second variation 625 does not transform as a true tensor,
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this one can remedy making use of a (true) 2-tensor, the metric in field space:
u 99 0% Ired 1z
OudG(9)0"6 = Dy G(0) 5 0"p = 0"pG(2)0"¢, (2.3)

and a covariant derivative in field space [24] D;V7 = &V + f‘ika In particular for the
action (taken to be a scalar) we have:
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where we note that this applies even if one started with a constant metric G and for some
reason wanted to perform a non-linear change of field variable. In this way the covariant

one loop action result, including the invariant measure in field space vGD¢ reads, to the
one-loop level

iSuald] = log  [VGDboeS DS HOSDSIE) _isif] - Sun(log(~(D2SG)G). (25)

where the product (D%S [(ﬁ])G_l makes an operator with a covariant and a contra-variant
index in field-variable-indexes and hence the trace is an ‘invariant’ result, meaning an ex-
pression for which physicists who choose to describe a system with different field variables



agree on. This covariant description does as well preserve the (linear & non-linear) sym-
metries of the original action at the loop level which one can realise in this formalism as a
specific change of variable.

Let us then turn to the action at hand to first determine (D?S [gg])G_l, here considered
is the Hilbert-Einstein action with a cosmological constant and spin 0,1/2 and 1 matter,

iV

S = /dV( (20— R) + 1( VuoVIe —mie?) + uloh Ly 4 FagFﬁa>, (2.6)

with dV = d%z —g, k2 = 8GN where Gy is Newton’s constant. This action describes the
Standard Model (SM) plus gravity in the limit of vanishing SM couplings (gauge, Yukawa
and quartic) and so with A ~ 4 x 1075 eV?2 we believe it describes nature in said limit.
For the covariant action the first variation of the action w.r.t. the metric is needed

o5 L A RS B P R
5gu,,_/dv< 2,{2(2 (R —2A) R“>+2<2 (09* — m307) aﬂ¢a¢>

+ %w’f <g/ujo_v B U“?V _; O‘V?'U‘> b+ ég“”(FF) . ;(FF)/.U/> 7 (27)

whereas for matter fields we have linear realizations, that is, with the chosen variables their
‘metrics’ are flat and hence f[(;ﬁ, ¥, A] = 0. The metric itself (g,,) in contrast does have a
‘metric’ (GHP7), not to dwell in linguistics let us anticipate results and simply give it here:

1 -, 1 [e% o
Gaﬂ’ap(g) 1 <ga(ag B _ gaﬂgpa> : Ffjﬁ’pa _ _ég((ug(lf)gﬁ) ) ’ (2.8)

where parenthesis around indixes denotes symmetrization V(,Wg) = VoW + VW, and
with the opposite placing of indices as usual yet this convention follows from our compo-
nent field g,,,. This somewhat unfamiliar language might be more accessible if we note
that the graviton propagator or the inverse of the two point action contains the inverse of
the metric G, Gaﬁ oo
is not new in gravity and is related to what is at times termed a Vilkovisky’s action [27].

= Ya(09p)8 — Yapgpo- Otherwise this treatment for a covariant result

The covariant second order variation then reads
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Next the explicit expression for (D2S[¢])G~! arising from each piece of the action in (2.6)
is given, for which purpose we define:

1
52) — 5(sqs?D?Sn = /dvzg?), {Sn} ={Sg, S, Sy, Sa}. (2.10)

2.1 Hilbert-Einstein and cosmological constant

The covariant second order variation of the Hilbert-Einstein action with a cosmological
constant reads (with an abuse of notation we compute variations from eq. (2.6) with g, —



9uv + 09 so that the background field is g which is also understood to raise and lower
indices from now on)

B g o o 1 « 1
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(5g)2>ddx, (2.11)

where a two-index object within parenthesis means it is traced over, (dg) = 69 g"". As
with other gauge theories, the path integral has a large redundant integration volume
associated here to the linearised symmetry:

0ge = 0guw + Vueu) (2.12)

which one disposes of with the Faddeev-Popov procedure. The function , X,,(6g) = V'6g,,—
V,.(69), is used for gauge fixing and requires of an extra term in the action

1= /De(5 (X(ge)) det <5X(6g€)> - /D65 (X(ge)) /DEDceifdvc“(g“”vz+R“")cu )

det
(2.13)
with ¢, the wrong-statistics auxiliary field, our ghosts, and adding the term
1 1 2
= Y0gu, — =V (6 av, 2.14
Sc= [ uze (77000~ 59.00)) av (214)

leads to the Harmonic gauge when & = 1 which is selected here for computational simplicity.
In this gauge the kinetic term reads:

1 5guV 2 1 2 _ 59046 2 1 a(p,0)B 1 af  po

from where the metric in eq. (2.8) follows. Note that as for the overall normalization this
metric yields off-diagonal components as dgGdg = (5gz-2< j + ... for a flat metric. As a final
step we raise the index of one of the variations with the metric G so that the resulting
operator is ready to be traced over which results in a remarkably simple expression:

o= = [0 (9075 ) 219
1 a B vQ a B af af po
= | 520905 \ 9080y g B0y 8" Rop + Ay | (G- 0g)7dV
2.2 Scalars

The addition of a scalar field brings an extra contribution to the graviton variation as well
as mixed ¢ — g terms:

57 = [ (~5007%06 + § ((©098000) - (09)(@00900) + }(00)%((06) - mo?))

(d9)

—(0pdgdsP) + T(agﬁaw — miqséqs)) dv, (2.17)



where again a two-index object within parenthesis means it is traced over and d¢g in between
0¢ are taken as vector-matrix scalar products, e.g (0¢6g0¢) = O pdg,,,0”¢. The mixed
terms are removed here completing squares without modifying the measure [23]:

2
56 60— L ((V3¢(59))+m¢¢

- (V598¢)> . (2.18)
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This results into, after raising the index in the graviton variation
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where, to keep the equations of manageable length we have used the semi-colon notation
0.« = Voo and the explicit V’s are to be taken as acting on everything on their right,
termed ‘open’ derivatives.

A global transformation as g, — (1+@)guw, 6¢ — (1+ 27%a)d¢ leaves the action the
same (for mg — 0) whereas one can change the scalar action mto

__} 2 d—2
Loorr = 2¢<V A(d—1) >¢7 (2.20)

for a locally scale-invariant action.

2.3 Fermions
The diffeomorphism-invariant Weyl-fermion kinetic term in eq. (2.6) is, explicitly
glag?)

8

1 1
§¢T%?¢ = §¢Taceg (au + e (auebvu + r;pebﬁp)> Y+ h.c. (2.21)
where eheln® = g, 0% = (1,5), ¢* = (1,—-G), and ¢ is a RH fermion (¢%). In the
following a Greek letter (or symbol) as index for the sigma matrices denotes contraction
with the vierbein o - ¢, = Uaez =0,

The second order covariant action is

; (Y 11690s)0g"
s = / : [(w*avaw — e + Vn0900)05 985) Ib yienanve,
59)? 1 )
+ <(?¢TUV¢ + §1/1Ta5g5gv¢ — fdJTU(SgVi/)) —
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with etP* = elelefe)e?, 0123 = 1. Here as well a field redefinition of the integrating

field 41 can be used as
1 (6g)oV — (00gV)

(M—HW—E 5

b, (2.23)



to reduce the action to diagonal form

i i .
7 = 5 [&N oV — h.c. + g(agvuég)paw HOPY )

2
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_ <av . ¢> . b — h.c.] , (2.24)

this variation, modulo the equation of motion piece, agrees with the Feynman rule for a
two-graviton two-fermion vertex as in [38]. The raising of the rear index of the operator in
metric space reads

2P = %wa?aw (2.25)
0908 | Ypo B, ” Pliolepih) 1 t_plo v 8)
- [4 gl im = S | e — {01 Couwg)) 0. 0, )
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where once more we resorted to semicolon for derivatives on background fields whereas the
remaining V act on anything on its arrow direction and {, } is the anticommutator. Here
as in the scalar case one has derivatives acting on the field variation, i.e. ‘open’ derivatives,
but as opposed to the spin 0,1 case the action is linear in V which is of relevance for
the loop integral analysis as shown in section 3. In addition we convert the Grassmanian
gaussian integral into an opposite-sign scalar integral as e1080 = ¢1/2tr 10g(O0") f61 which
purpose the following relations are used
olag?) R

ViV = ——e€apey B, 0, oto"V,V, = V? — e (2.26)

2.4 Vector boson

For gauge vector bosons one has a kinetic term, in our matrix notation

Sy = —/dde;gF,wFaBgWg”ﬁ = /ddx V;g(F F), (2.27)

whose second order covariant variation reads

2
5O _ / dV(i <<5g> (FF)+(F5959F)+(F59F59)—(59)(F59F)>

+ % ((0F6F) —2(FoFbdg) — 2(FogoF) + (59)(F5F))) . (2.28)



The gauge symmetry acting on the variation of the vector boson field 64, is, in the limit
of vanishing gauge coupling,

(6A), = 0A, + V,e() . (2.29)

The second order variation on gauge fields, explicitly, is
— Y254, (9977 V 5V — g*7V?) 54,

- ——\’2_%14,\ (gmg“ﬁvavﬁ + RO g’\"V2) 5A, (2.30)

which we supplement with gauge fixing via the function X(0A4) = V,0A*. The ghost

action is not innocuous even for a U(1) symmetry since it involves a field-dependent ghost

Lagrangian as,

= [ Des (X(5AL)) det 0X(0A) ) _ Ded (X(6A.)) | DeDee=t)4Vevie —(2.31)
-/ (5) -/ [ pepaciieves

The gauge fixing term .%; = —(V§A4)?/(2€) is added to the action and the Feynman gauge
is selected in the following again for computational simplicity. As for the mixed terms, the
redefinition that eliminates them is

1
64— 34y — S(V2 = R)}1V, ((5gF + Fog)lon — (59)F‘”“> , (2.32)
which leaves behind the term
1 — [ % wvV
2 5 =SV, ((6gF + Fog)™) — (89)F¥)(V? = R)TIV,((6gF + Fog)*)) — (69)F*").

that combines with the remaining terms to give

20 Lsa (v peysa, —evie 2.33
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Collection of formulae. The one loop action then is the sum of the tr log of the
operators above as

Stloop = %tr [log Os,] — itr [log O] + %tr llog O] — %tr llog Oy] + %tr llog O.4] —itr [log O] ,

where the operators are, for the different Lorentz representations considered here,

R

Op=V>+mj, 0. =V?, O¢:V2_Z’ Oa=9uV? =R, (234)
9098

Ocp = g V?+ Ry, Oy = 4(’)2 D24 RS = g Ry + Mg g0 + O, (2.35)



where the matter-field-dependent operator Op can be written as

o, 0/lglr) 1 6(v/19l<r)
OT-G—\/H<D(\/@$T)+D< 5o )\/@%D( 5o ))

K2 k26T 1 6T
= DWIIT) = A <= (2.36)

Vldl

where %p is the matter Lagrangian, T the stress-energy tensor, —+/|g|]T =
20(\/|9|%r)/0g = D(\/|g9|%r) and D the covariant derivative in metric-field space. The
first term above contains the connection I' as in eq. (2.8) whereas the second term does

not since it is made up of first derivatives only. The explicit form of Or here is collected
from egs. (2.19), (2.25), (2.33).

3 Covariant derivative transformation and applications

This section presents the CDE transformation for gravity in momentum (¢) representation
computed to fourth order. The transformation acts on derivatives and bacground fields
and their transformed form is also given to fourth order. It is useful to note that this
transformation is valid for fields with arbitrary spin. The second part of this section applies
the transformation to the second order covariant variation of the theory in section 2.

3.1 Covariant derivative transformation

Consider an operator O defined in field space ¢(x) which contains background fields ®(x)
and covariant derivatives V. Within the covariant derivatives of this operator we distinguish
between those that act solely on background fields [V, ®(z)] = ®., and those which are
open or act on everything to their right (including the field-space that the operator is
defined on) with commutator notation, e.g. (Oy = V®¢ = [V, ®|p 4+ DV ). The standard
transformation to take O(V, ®) to momentum representation is:

e UTO(V, ®)e" " = O(iq + V, D) (3.1)

where ¢ is taken to be covariant ¢, as opposed to the contravariant z* so that dqdiz is
invariant. This representation turns spacetime derivatives d,, acting on the ‘quantum’ field
one is integrating (tracing) over into ig yet this is not a manifestly covariant description;
in the present case there is in addition the connection I' in our covariant derivatives. A
general and simple way of evaluating the operator in a covariant manner all throughout is
to perform a unitary transformation which turns covariant derivatives into field strenghts,
i.e. commutators of V [1]. The naive application of this procedure to gravity nonetheless
does not yield the desired outcome,

eia‘lve”'qg”Vueiq’”e”'@qV = eiaqv(iqu + V,l)e”'a‘Zv =iqu + 0,[V ., qu] + oY, (32

where 0 = 0/0qu, 0,V = 04V, and [V,,q] is —I/,q,. In addition this same non-
commutativity means that the transformation as in the above is not unitary since:

0,V) = V0, = Vo, = 9,V + [V, 8,]. (3.3)



The transformation to yield a covariant description must therefore be extended, let us write
a transformation e’’’ and expansion in ¢ as

e’ T = Z Ty Tiny(Aq) = X "Iy (q) (3.4)
n=1

and so using the Baker-Campbell-Hausdorff formula one can expand the matrix product
into a sum of nested commutators; for the first few terms

eiTe_iquHeiqxe_iT = el (ig+ V) e T = iqy — [T(1ys qu) + Vi + (’)(q_l) , (3.5)

and to first order 1 )
Tty = 510 Viud + 3110,V 7] 4w} (3.6)

returns el (ig + V)e ™ = ig + O(¢~!). As in the case without gravity the field strength

1

appears at order ¢~ *, which reads

T, i ) 1 ) ) _
e (ig+ V) e ™ =gy — [Ti2), qu) — Ty [Ty, all + ilT), Vil + Olg . (37)

Here in contrast to the flat case and once more due to the non-commutativity of V and
q& 9, one has that terms like {[0, V], V,}/2 C [T, V] with open derivatives together
with non covariant I' terms appear. This is what complicates the procedure and means
one has to iterate and determine T{) by canceling these terms. Solving for T, results in

Toy =~ (10,9041, 9} = 5[0V, 10,981} (39)

and
6T (ig + V) e =g+ (04 [V, Vull + R0 a) 4 O (39)
where R” M&'JQ = Vaﬁuaga(? . After solving for T,y nonetheless the order g2 transformed

covariant derivative presents still open derivative and non-covariant terms and one iterates
the procedure to solve for T{3). An all-order solution for this transformation could not

be found here so the pertinent question is then how many orders in ¢*

are required to
encompass UV divergences which are subject of study of this work; anticipating results

from section 4, the answer, for four dimensions, is two more terms,

1 14
~5;1 10V, 91V, 071, Vi } (3.10)
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v
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1
T(4) = —@{[&IV, [aqv7 [%Vﬁf;m avu} +

{[0,V, [0,V,04] 0%, [V,., V] } (3.11)
~ a0 |
+ 5y 0% 9. 941] 193 9. 951] )

= 1110 {0V [0,V 0411 [0,V [V, 9111 0} + O([V, 04])
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where by O([V, 04|") we mean terms which are proportional to the connection I' to the n
power (recall [V, ;] ~ T'0;) and vanish in an inertial frame I' — 0 as opposed to derivative
OrT" terms. It is rightful to drop the terms we have since the final result for the covariant
derivative ¢! (ig + V)e™* will be covariant and given the order we are working at, e.g. we
need to consider [T(3), V] so orders O([V, d,]) must be retained in T(gy but O([V, 8,]?) can
be dropped as we do. If one however were to descend one more order these omitted terms
will be needed.
The transformation, to this order, turns the derivative iq + V into:

. . —1 . Z v Z v .

eZT(qu +V,)e T _ iqu + 1{8(1, Vo, Vit + ER --u{an’ qv} (3.12)

1 v 1 v

- 7{[8 vv [vl/’v H 78 } - ﬂ[vvR “#]{8('13,%,}
v 7
y o, _
E{R ..,uaé]:s’ [va vl/]} + %R p“’u{af’ ql/} + O(q 4)
= i(Qu + ’Cu(Ra q))

where given that (9,)" is symmetric on its n indices and for brevity we collapse them into

Vo VLR IO 0}

‘e.g. Raﬁagaﬁ = R,,B‘f and we defined the ‘gravitational’ covariant derivative KC. The last
equality acts as a definition of the CDE transformation, that is, a transformation of V into
momentum space q which depends only on curvature (R) but not explicitly on connection (I")
V —i(¢+K(R)). To make this definiton explictit and introduce the notation K,y we write

eTe %(V)e%e T =j(q + K(R,q)), K= Z/c Aq) = A"K(y(q).  (3.13)
The paralell with internal local symmetry is clear and indeed the additon of a gauge field

in V=0+A+T will yield field strengths F),, in eq. (3.12). In this regard the limit of
small curvature with internal symmetry yields a check on our result

KulR=0.Fq) = 8” Fopt 0”8”[ Fyy) - §<8¢>3[D.,[D.,F.MH +0(g7™)
-3 n’ﬂl )" [DL.[D, Py (3.14)
n—1 times

with the last line being the known [20] all-order result.

Obtaining the transformation that yields eq. (3.12) is somewhat involved but the pro-
cess has built-in consistency checks. The term 7{; first enters eT'(ig + V)e T at order
¢ — 1 through —[T(i), g] and it is determined by cancellation of open derivative and non-
covariant terms produced by lower order terms, e.g. [T(i—1)7 V]. One has that the number
of open derivative and non-covariant terms to be canceled exceeds the number of possible
structures in [T(i), q]. The system of equations is over-constrained which allows for checking
a solution obtained with some minimal set of equations against the remaining conditions.
The necessity of the anti-commutators {, } follows from requiring a unitary transformation

as sketched in eq. (3.3).
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The transformation on a background field then ®(z) is, to this order:

eTD(x)e T = & +i0,[V, D] — %a?[v,, v, 3] - éaf[v,, VL VL0 + O (3.15)

q
N 1., i L4y 7 e 00)"
=0 +i0,0, — S0P — OB+ O =Y

n n times

with the ‘.” notation for d, of eq. (3.12). The expression coincides with the local internal
symmetry case up to the order we are working at which leads us to postulate the last
equality. One difference to point out however it that the 9,’s are all to one side of the
commutators, which is relevant since [V, dy] # 0.

It is not always the case however that either V or a background field is present, it is
sometimes both. Take for instance the following construction that appears on eq. (2.19)

eiT ((Zq + v)p¢;g + migpg¢) e—iT — €iT(iq + V)pe—iT €iT(Z);O—€_iT + m?bgpa'ede)e_iT
= (iq + i’C(l) + O(q_2))p (¢;0 + iﬁb;o*a; + (’)(q_2)) + migpv(ﬁb + iqb;*@’; + O(q_2))
= Z'QpQS;U + migapqs - Qp¢;o*6; + (9(q_1) . (3.16)

This is the result for a piece of (2.19), itself part of the operator U in metric-space.
In summary we have that the transformation acts on covariant derivatives and back-
ground fiels as:

eTe OV, ®(z))e' e = O(i(q + K), T ®(x)e™) = O(i(q + K), Dp(z))  (3.17)
where we have defined the transformed background field ®.

3.2 Application to the second order variation of the action

All the operators obtained from the second order variation of the action have the structure
O=IV:+{V" V,} +U(V,z), (3.18)

with the ‘identity’ I being on whatever state we are considering both on Lorentz represen-
tation and internal space and U is a series in inverse powers of open derivatives V starting
at degree 0.

One has, after the transformation

eTe 0 1%e™ T = (¢ +K)2 +i{V,q+ K}y +U = (ig+iK+ V)  +U - V?. (3.19)
where U, V are the transformed U, V' with the usual expansion:
eTemlaryelaze= T = 1y U= ZU(H) Ll(n)()\q) = )\_nZ/[(n)(q) (3.20)
n=0

eTemtazy/lave—iT =y V= Z V(n) V(n)()\q) = )\_nV(n) (q) (3.21)
n=0

- 12 —



As in conventional loop integrals a ‘shift’ in our integration variable can remove the linear
term in V only now this ‘shift’ is again a transformation of the operator (note that V' is a
Vo,

matrix in whatever spin-space is under consideration). The transformation e leaves:

e1V0q (zq ik + V) e~V — iq — [VIH q](‘)f]‘ + i[vué)g‘ , V] + ZIC(l) + ...
. . . L0 _
=iq + iy — [[10,V, V,], q]0} + g[Vu@’f’ V]+0(q?) (3.22)
. . i v i v -
=1q + Z/C(l) + iaq (V[VVM] + V[Z,VM) — iaqV(l,V#) + O(q 2) .

Higher order will enter our computation as well but as we shall see their contributions to
the UV divergent action cancel and we need not make them explicit here.
The final form of the operator is

eVl =1 et = T o=V — _ (¢ 4 )2+ U, (3.23)

with
eivaqeiTefiqx(v + V)eiql‘e*iTefiVOq =i(q+ }E) , (3.24)
eiVquiTe—iqa:(U _ V2)eiq1?e—iT€—iV8q = Z;[v’ (3.25)

and the action of the full transformation on a background field is

oy . . 0?
ezvequ)eszefW = d + iaq[vj (I)] _ ?‘l[vj [V7 (I)H 4+ ..

0,V ® + 0, [V, ] +...] — LV, V. S+ .. ] +... (3.26)
= &+ i0,[V + V, D] ‘?[v, IV, 3]

2

W ve) - RIVIV. 9] - 02,7V 0]+ 0. (327)

To close this section the derived transformation is applied to the operators obtained
from the second order action of eq. (2.6) in section 2 to second order in inverse loop
momenta.

Spin < 2. The case of lower spin (< 2) in this work has a simple operator, in particular
all the operators for spin (< 2) have V = 0 and U = e %“%[/¢%* has only the zeroth term
in the large momenta expansion as follows

Scalar CFT scalar Weyl Fermion Gauge boson
R R
— 2 B A
U= my ~ 3 - 45 & - R, (3.28)

with the ghost ¢, operator having U = R, and the ghost ¢, U = 0. The expansion of U
in eq. (3.20) is then

) 1
U =T, Uy =109, Upa) = _§U;--82127 (3.29)

~13 -



Graviton. The case of the graviton has a linear term in V induced in our case by
fermions, this is extracted from eq. (2.25):

amﬁz— W” Sl (3.30)

On the other hand U has accommodated in this case the mixed graviton-matter terms
produced after completing squares in the second order covariant action. These terms do
depend on open derivatives V a fact that can be used to tell them apart through the

definition
U = Us + Upnx e T = [ (3.31)
where with the variation computed in section 2 one has, for the single-species operator
[Us]af — o o (e
2p = A 2 (R (pﬂo') -9 ﬁRaP + Ag ﬂgpa) (332)
K
2 42 iaBut(o® )
o Gpo My ® L (o 19, V" (0%p) + o))
+gﬁ<¢mﬁp2¢> 26097 - — - +he,
i (aqyiB) Bty .
4 ’ 2 4
ap (FF)“g))
# 8 (P = CE(ER) ) 4 P F )y = P F,f = =2

meanwhile the mixed term reads

Uil . ~
Emdpo ((gu(%,,ﬁ) _ gaﬁd,,u) V.t mg)gbgaﬁ) (Vipbso) + Goomed)  (3.33)

2 2
K Vv + my

1 . (@) tgh) i
T3 <<w7M)TU“gaB 2 g (o0 b+ (00)
_ (Q[/\(aFﬁ)u] _ gaﬁp/\u> V,.(V2-R);lv, (ggp Jl)'] gngwu> _
In the notation of section 2, the open derivatives in Uy are V’s whereas for derivatives
acting only on the background fields we have used the semicolon‘;’ notation. After the

transformation e’’’ one has, to second order, for the single-species contribution
af
-] o ;
=R (R =9 Rop 0950 ) - 162@“ 0o gn vt Cosg g,
af
1/ ia N 9 gpomZ e’
-3 (gu( P —g ﬁ(p,u) Iu(pio) — #
ZQE§¢T (O—Oé)w;p) +O—p)¢;a))
- +h.c.
16
15 5(aq8) ap Tig .

1
4 1 (g[)\(aFﬂ)M _goz/J’FAM> (g[)\(chr),u} —ngF)\“)
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with higher orders being total derivatives as U}, = [0V, U, |, Uy = =104V, [0V, U, ]] /2
and where we have rearranged the scalar and vector boson kinetic contributions in factor—
ized form, which is relevant when one compares with the mixed part of & which reads
umx Ofﬁ
]

L Ve (e B) _ gaB g v v
KIQ (g QS g d) ) q2 g(pgb,a)

_ (Q[A(a FOM _ goB FAu) Wwd” (9070 Foy) — oo Fow) (3.35)

for the zeroth order and where we see that the same scalar and vector boson structures
appear; this is in agreement with both operators transforming covariantly and serves as
an internal consistency check. Whether it futhermore follows neccesarily that the same
structures appear in both operators and if there is a factorized form for the fermion con-
tribution it remains an open question, here we simply note that scalar and vector boson
terms appear in different linear combinations in eq. (3.34) and (3.35). The next order in
the mixed term is

af
[ (1)] - v (WO 1 ,
= ((w;u)Ta"g - o 00" Vs + Tg) (3.36)
im2¢ . .
- qg ( aﬁq(9¢;0) + (gﬂ(a(ls’ﬁ) - gaﬁfﬁ’“)%gpo)

+i (g0 — g*ipn) [a” e ] b0)

- (g[)‘(O‘Fﬂ)M _ gaBF)\,u) |:aw Q,t; :| (g[A( ] — ngFAV)
gy @ g, « , v w

+its (90 — g29gm) g(qu,g));w a

quq” a o 1
B ZZT <<g[>\( O g ﬂF“‘) (9o Foy) — gng)\u))_ %

w

whereas for second order

af
[”533( ]p(, B ( o) of ,M> o I % e q” 3.37
T = (g — g Wt q 900 (3:37)
. [)\(aF,B)M] - oa,BF)\u (IC( )qi qMICV q# 7 qf
<9 g ) M q2 2 {q }q2
x (950 o)) = 9o Fav)
AMa aB ) 4 R}\qu
+ (e — gos p) Tt (o) — gooFu)
1 o aB 4, 2 Qwdv| o
-5 (gu( B — g8 u);” [aq , 22 ]g(paﬁ,a)
4 42 _af
o N 7  quqy v W m¢¢ g gpff
— <9”( ¢ —g ’8¢M>;. [8(;7 22 ]g(p¢%0)waq -
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+m§<<q<“¢ﬁ> B (q¢)) Qgpgqbwaug% o, qum)

+(¢¢? — <q¢)>i4< pqﬁ;a)))

v

+ ( e pBiul _ O‘ﬁF’\“)“ {8;12, q’;g } (g[)\(ng)u] —gpoF,\z/)

1
2
+ (ghepnl — i g {521, ng } (9o Fon) = gorFrw) , 0

(et 58)
+1i {85732] <(¢; ) g’ - W) UV(QPUUA¢;A+U(p¢;U))
o

2

+ (total derivative) .

The last transformation, V%, together with the definition in eq. (3.25) determines
Uy = Up) — V2 where for convenience this combination has been given in eq. (3.34). In
particular since V is itself g-independent we allocate V2 to U® and so being explicit

Uy = Uy — V2, Upy = i0,V, U] + i[OV, Uy (3.38)
and the second order

~ . . s 1 1 /S 1 7 /S /5
Uly) = i[V0q,i[04V,Uip)] — 5[[6qV, [04V, U]l — §[V0q, [V, Uiyl = IV, V15, Usy]

(3.39)
Meanwhile for the mixed term we have
L{EB‘;‘ = U(Igf , leﬁ‘i‘ = Uﬁ‘;‘ + i[V(?q,L{(”f;‘] , (3.40)
and a second order
Uy = U5 +ilV o, U] - [vaq, Vo, Uil = [V VIOR. Ui ). (341)

With these transformed operators one is in a position to evaluate the one loop action.

4 Evaluation of the operator trace

The evaluation has now been cast into the log of the trace of the transformed operator
zvaqezTe quoeiqxe—iTe—iV(?q _ _(q + 16)2 _1_2;?’ (4'1)

where the transformation e’e~*" has turned open derivatives into functions of the com-
mutator [V, V] and e’V% has removed a possible linear term in V. However just like V
did not commute with d, & g so does its commutator, [V, V]. To illustrate the relevance of
this fact let us rearrange the first term in K as

1 1

= Z {ag, [vw vu]} + ERV {Qw 62} (4'2)
]‘ 14 1 14 14 1 14 .

= 5%V, Vil + 5 [V, V], 0] + R O+ ER“#[ﬁ(f,qy] (4.3)

1 1
= 5a;;[vy, V] + gagRW + R””quaf. (4.4)

6
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In this way the commutator acts solely on whatever lies to the right of K(;). The case for
K1) is not qualitatively different but for completeness it is

=~ v 1 RP“
,C(l) = aq <2([vl’a v,u] + V[VV;L] + ‘/[I/V/.L]) - 9 T“qpaf . (45)

1 1
SV Vi + 3Rvu> +

When the commutator is acting on the field we are integrating over, i.e. [V,, V] is to its
rightmost in the operator of eq. (4.1), one has, depending on the spin of the field,

[a50]
oleg
Vo, Vslé =0 (Voo Valt = “g—caped Byppr  (46)
[Va, Vg]AF = R“paﬂAp Va, V] TH = R’“ILDQBT"’” + R”paﬂT“p, (4.7)
so it is useful to define
[Va, V] (Field @) = Zop(Field @) . (4.8)

In a way analogous to creation and annihilation operator rearrangement one can put in
the form of eq. (4.4) all terms in the expansion, i.e. the commutator [V, V] to its rightmost
position and all J; to the right of ¢’s, e.g. the first order in {¢g, L} in this form

R 1 1
0> {q,Kn)} = 57T q" 0 <%vu + 3Rvu) + gR*..*Qan27 (4.9)

with the notation R* *¢? = R* Vq,q, whereas for the tilded case

~ R ~ 1 1
0> {q, IC(l)} == ~VV+d'y (%W + 3R — v(,,vu)) + gR*”*qfaq? ., (4.10)
where we have defined
R = Bw + NV V) + ViV (4.11)

the fact that this structure arranges as [V 4V, V 4 V] suggests a combined transformation
in place of '”'¢’%Y might simplify the algebra. Nevertheless here such option is not pursued
since in contrast to the universal V, the action of V' might be confined to a single operator.

In the form of eq. (4.10) the hermiticity is not an obvious property yet it is more
adequate for computations since all commutators are ‘evaluated’ as opposed to 9,, for
whom it is still left to specify what is acts on. For this purpose let us rewrite the one
loop correction introducing m?, (not to be confused with the scalar mass mé) the one loop

action of eq. (2.5):

; d,,1d
%trlog(O—I—mQ) 2/d vd’q /d 2tr[(O +m*) ™Y (4.12)

7 d o d _ N
B 2 / d(27rd)d /dm2tr[(_q2 +m? — {]C7 q} _ K2 _i_u)fl]

_ L fdled 2y (| U= {0, K} - /C2)n%
2 et/ =

where the order of integration shall be kept as above and m? will, at the end of the

calculation here, be taken to 0 but in general it is useful to keep it as an IR regulator as
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not all terms converge for m? — 0. Once all terms in K,U are in the form of eq. (4.10)
only 0, is left to act on propagators and other terms in the expansion to its right. After
allowing all d; to make their way to the right the result will be momenta g contracted with
Lorentz tensors made out of the background fields. The momentum dependence in g after
loop integration will yield tensors built out of the metric (recall ¢ is a covariant object g,
@ = quavg™). o

With our expansion of IC,U in its dimensions in loop momenta we can organize the
effective action; the first order is O(¢?~?);

trlog(O + m?) (4.13)

dlad qdm’ 1 ) = 1 d—4
= / (27‘(‘)d <q2 — m2 (u(O) - {q,}C(l)}> (]2—77’L2) * O(q )

Taking for demonstration a scalar field and with the result in eq. (4.10)

dlzdiq 5 1 1
/W/dm Z—m Vo —{ekol) 505 (4.14)
ddxddq 2 1 1 1 * 1 * x 29.2 1
Z/dd:pR L
6J o —m?)

which for dimensional regularization is non vanishing (when m? — 0) only for d = 2 and
contributes for Ny scalars the well-known Ng/(247) to Weyl’s anomaly (the ‘—26/247’
contribution for the bosonic string we cannot reproduce since Weyl scaling was not taken
as local symmetry). The focus of this paper is however d = 4 and the UV divergences

contained in the next non-vanishing order O(g%=*)

trlog(O+m?) =0(¢"~?) (4.15)
+/ d(d;rd)zq / am’ (A (o)~ 0K}~ K ) + (A (o) - {q,/E(l)}»z) A+ O

where for brevity we introduced A = (¢ —m?)~! and this is the integral at the core of our

computation. This expression, safe for the term 16(3), resembles the static flat background
case [20] taking loosely speaking K as our (field strength)xd,.

4.1 Ultraviolet divergences

Given the main novel result of this work, i.e. the covariant derivative in eq. (3.12), eq. (4.15)
can be evaluated in a straight-forward way as done for the O(¢?~2) term sketched above
and in particular the UV terms can be computed with the regularization of choice. The
amount of algebra now nonetheless makes it more digestible to split the computation into
sections and introduce some minimal notation. Here dimensional regularization will be

employed and the following definition for an integral and propagator

- 8724 —d) [ dlqdm? 1
dQ = li A= ——— 4.16
/ 0= BT / (2m)d e
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Figure 1. Schematic of the UV divergent curvature terms at one loop.

casts the UV contributions subject of this work as

Loy = (47r)2(14_d) /dQZtr ((A(ﬁ g, K — /E%)”A) (4.17)

= (47r)2(14_d) / dQ (Ts + Tx) 5 (4.18)
where
7= (8 (G - 0 R) - Ryy) + (& @y - @Rw))) )&, @)
~ ~ 2 ~ ~ ~
Ty = (Augg;( + (adiy) + { At A (U - 0. Ko} }) A, (4.20)

encode the contributions from single-spin species running in the loop and mixed contribu-
tions respectively. The following sections are concerned with the part of the effective action
computation for each of these two cases: single species loops 4.1.1 (Zg), and mixed-species
loops 4.1.2 (Zpnx).

4.1.1 Single species loops
The integration of a given spin field results in the UV divergent terms of eqs. (4.18) with

.= A (U — {0, K — K2y) A+ (8 (o)~ o E(l)}))2 A, (4.21)

this subsection carries out the loop integrals and yields the 1-loop corrections.
Let us start with

[aoautiy)a. (1.22)

here total derivatives are neglected and hence the —[V, [V, L?(SO)]]@?/Q (with L~{(SO) =Us-V?)

piece in Uy, as per eq. (3.39) can be ignored, whereas for the remainder of Us

S S 62 . . S 1 s 1 /S
U + [V, [Vau(())]]jq = i[V0q,i[V, U] 0q] — i[Vﬁq, [V Oy, Uyl = [[V, V197, Uy

s e T 1 ~ ~
= i[V,ilV, U 10g — 5[V, V.U 10F — [[V, V], Uy JogA - (4.23)
where we used that [8(1,?/7(50)] = [04, V] = 0 in the second line. This form makes clear that
these are commutators of matrices which yield zero when traced over. One has that for the
mixed pieces [aq,u(H;)X] # 0 and these terms do contribute, as made explicit in section 4.1.2.
On the other hand the results of tilding K(3) are terms which vanish when tracing over

them or of the form of

a0t Ry~ Kapia > [a@ata.ilve, ke (4.24)
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where
1 14 1 14
[V8Q7IC/(12)] = _6{[‘/&17 [8qv7 [VV, Vum 7aq} - ﬂR ..u;.{ag}ga Vp [8qpaqu]} (4‘25)

which, regardless of the matrix structure contained, involve the vanishing integral

/dQA{q,ag’}A =0, (4.26)

and so one can drop the tilde and consider K(3) only. Given these cancellations and total
derivative terms the part relevant of eq. (4.21) is:

A (—a K} —K2y) A+ (A ()~ o ’Em}))Q A
7

:—A{q“ SRV V) + o

<R#.pRé.ua¢4,qy}} A (4.27)

1 1 1 RY 2
—A (85 (2([Vw Vil + ViV + Vi Vi) - §V(VVM) + 3Rl'u> + 6““%86'12) A

~ 1 ~ 1 PR 2

Here the detailed loop integral computation is not made explicit for all terms, rather it is
carried out for the first term of eq. (4.27) since this is the novel term that differs with the
flat metric case. First, via the relation

{A,{B,C}} ={{A,B},C} + [B,[C,A]] =2{A,B}C + [C,{A,B}] + [B,[C, A]] (4.28)

one has, making all ¢ dependence explicit,

’ y [dlgdm? 1 4 3, . .a2 1
720 oo / (2m)d ¢> —m? (44u900;" 429,410’ + 9,997 ) Z—m? (4.29)
LRH Rp,,/ddqde _295/9#9(&12)
720 (27)d (@2 —m?2)3
8 .2 o o
+m (nguq(xm) 29049 9(x12) +4q,qu9 g(><3))
96 ( W iud
LA Tn 2009.9%9; )+15367
T (@ —m2)p o (xa) rd"9(x12) (2 —m2)s
et (o)
7203 T ) [\ @ryagd TO e .
where R? = R ,B’y&R aB7%  the purple subscript indicates the multiplicity in terms from

symmetrizing in ‘.” indices and we used Rqg- sR*P9 = R? /2. Even if somewhat involved
the contrast with conventlonal Feynman-diagram techniques makes this integral, the basic
element of the computation, a relatively simple exercise whereas no knowledge of the heat-
kernel method or De-Witt coefficients was required.
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The other term in K(3) adds up with the above to yield:

d4qdm? 7 IN1 /. o 3. o diq m?
/ (27 A{g K@t A= <720 - 48) 3 (R.. + 23...) /(27r)dq4 +0 <q2) (4.31)

The loop integration for the left-over terms in (4.27) follows the above lines and results

in, with the abbreviated notation of (4.16), one of the main results here derived

_ _ ~ ~ ~ ~ 2
/dQIs = /dQ <A (—{% K@)} — K%l)) A+ (A (u(SO) - {q,/Cu)})) A) (4.32)
R’ R? 1, /= - 1 ([~ R\’
— L L L — a4 — 5 —
= (180 180> tr(l) + 12tr (:%’uyﬁ ) + 2tr <Z/{(0) + 6> + (total der.)
This 1 loop result has long been available in the literature, see [10, 12, 39], yet the emphasis
here is the new computational technique. In this regard the universal formulae for the flat
case taking [F),,]% — R‘fBW reproduces all terms except the first one which ‘counts’ the
degrees of freedom, is connected to the a theorem and has been explicitly computed here.
If one splits the contribution by the dimension of the operators, for the action of eq. (2.6)
and according to eq. (3.34) the sum runs from a CC term to dimension twelve (see [33] for
a study of the operator basis) which here we organize as

6
To =Y KT (am,, an, R, 6,0, F) (4.33)
n=0
where the action taken as a function of only one dimensionfull parameter k=1 = o1/ V8T

2 ap = Ak?. A set of diagrams, which although incomplete repre-

and ratios o, o = m?ﬁ
sents all the possible external fields is given in figures 1-3.
Let us look at the curvature square (R?) terms explicitly caring for the ghosts contri-

butions as well in the structure of eq. (4.32):

Field tr(I)(R?. — R*)/180  tr(#%)/12  tr(Ug) + R/6)*/2  (4.34)
180 180 12 2 9
R’ R’ 1 1 22
Metri 10 [ === — —= —(—6R? - 2 _4R?> + ZR?
etric 0 <180 180) +12( 6R” ) +2 <3Rw R- + 36R
Scala. L +1 R\®
r O bl (ke
180 180 2\ 6
R2 R2
FT Scal L.
CFT Scalar <180 180)
. R R 1(-1),, 1R
Weyl Fermion (—1)|2 (180 - 180) +ETR“" +§ﬁ
R R 1 2 L 2.9
Vector boson 4 (180 — 180) +E(_R““) +§ <R“ - §R )
R? R 1 (R\?
host —2) | == - — =
Ghostle)  (~2) <180 180) 3 <6)
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Figure 2. Schematic of UV divergent matter terms at one loop where T stands for the stress
energy tensor so schematically T~ ¢ + 92 + F2.

S T ] ég%

Figure 3. Schematic of the UV divergent terms at one loop.

If there are Ny scalars, N, fermions and N4 (spin 1) gauge bosons the contribution reads

Ny — 13N TN, 2Ny, — Ny + 88N, 2Ny — Ny — 20N

2 ¢ A ¥ 2 ¥ ¢ A 2 ¢ ¥ A

K. ( 180 + 720> + ( 180 > A < 144 )
and so for the SM input NV; = {4,45,12}. One can also project onto the basis of Euler
number density (R?> = R?> —4R? + R?) and Weyl tensor (C?> = R?> —2R? + R?/3) and
a total derivative (VJ = R? + R? + 3R?) with the transformation

CR 1 39 6 —15 CR.. .
co =5 |-19-8 9 CR. (4.35)
CcyJ 2 2 6 CR

for the coefficients of each operator to check that the trace anomaly is reproduced as in
e.g. [40]. The remaining terms are contained in %2 or (U + R/6)? and are straightforward
to obtain. Here we do not reproduce them all but give for scope the lowest dimensional
operators generated

2
/ dQ (12 +12) = fmd)tr(]l(ﬁ) +5A% + (n;qbtr(]l(p) + §A> R+ 8AmjK>¢° (4.36)

where this contribution together with those in eq. (4.34) encapsulates all spin < 1 contri-
butions and on the other end the highest dimensional term generated is

faazs - 2 ()’

which produces an 8-point amplitude that grows with energy E as x8E*.
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Figure 4. Non-exhaustive set of diagrams for mixed contributions.

4.1.2 Mixed contributions in the loop

Diagrams with internal particles of different spin contribute terms like those in figure 4
and the UV divergences that they give rise to in the effective action read

_ - - N2
/dQImX - /dQ <AL{ {A (u(o) _ {q,/C(l)}) AU )}+ (Au(o)) >A. (4.38)
Let us first address the ﬁ(z) term which is given in terms of U in egs. (3.35)—(3.37)
mx . mx 1 mx mx
UBT = UBS +i[V O, UL - 51V 04, [V O, U] = [V, V187, U] - (4.39)
Tracing over these operators one can simplify to
. mx 1 mx mx
wlhy — ) = v (V0 U] - §VO VO, U] - (T VIGR) (a0

since for algebraic commutators like [V L?gg;‘] one has a vanishing trace. Given the structure

in eq. (3.35) and the result

/dQA [af, ngﬁ] A=0, (4.41)

the last term in eq. (4.40) cancels. The first term on the r.h.s. of eq. (4.40) contains the
integrals

T g, - 9048 o 1 Low v
/dQA [Oq, Zg} A= ?”, /dQA {3" 2 B] 0y A = Eg GaB — ég&gﬁ), (4.42)

so that

_ i i) T 58)
/dQ (ZA[aéLuu(Iﬁ(]A) = 5 <(¢;V)To-ygaﬁ - (17Z)2)> U”(gpaff“/);. + O-(pq/);g)) (443)
m2¢ . .,
+ ; (g‘”‘ﬂg“%) + (g7 — Py )gﬁgpo)
1 1 moow (a 1,8) afB 1, v
(129 Gyv — 6g(yg,,)) ((g7 o —g qﬁ”) 9(,%.0)

. <g[)\(aF/3)’Y] _ gaﬁFA’Y) (g[/\(pFa)é] — ngF)\(;) géy>

W
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however when tracing the above times V o £ g5 all terms but the fermionic one cancel:
/ dQtr(AiV [0y, U] A (4.44)

4
= == (1000 ity — 208 C o Ylo,y — 60 Y ?) (0 ) eaun ) -

The remaining term in eq. (4.40) cancels as can be seen as follows introducing the notation

U™ (0) = U auav/a® = Uy " 6¢ /4

O S "
tr<[V8q, [V(?q,l/{(o)’ q2”>:tr<[va Vi [aé,qg] \aZts ] a]) (4.45)

<Vvumx** [82 q*} v [V umx**] {a q*] a.)

(0) 77 42 (0) ¢ 2

again given that the integral in eq. (4.41) cancels one has

~ I L v mx,a
/ dQtr(A[Vdy, [Vo, UIA) = (12gu Gop — Gggugﬂ>) tr(V), [vy,u(0)7 ﬂ}) (4.46)
1 i 1 (2] mx,a3
159" 908 = 59a'9s ) tr([Vi, Vul.Uigy™"]) = 0.
The terms in eq. (4.40) then reduce to:
/ dQA ( — U ) A (4.47)
K . . . Lt . v
= = (1000 4 ity — 201 o Ylo,y — 60 Y ?) (0 ) eaun )

Now we turn to the term L{(HQI;‘ given in eq. (3.37). Useful relations for the trace of the
operator are

(9"CFDT — PG gl 6515 = 26 drasg™ | (4.48)
ol . B
(g[A(aFB)“] - ga'@F’\“> (9@ Fpyw) — gaﬁFAu)_ = 4F"Y Fops + 20 F*P 7 Fops, (4.49)
(467 = 9°%0) 5 9056.0; + 97 6.0, 5 d(aip) = 20,46" |04 5 (4.50)
q g q 29046 g q QQ(a iB8) — w q7q2 ) .
and the possible integrals reduce to those in eqgs. (4.42), (4.41) plus the following
q” a g R+ 2R
/dQA </cﬂ) + /c 2 {q, lc(l)} ) = (4.51)
so that the result is
/dQA ( ) A= (F‘”@AF&[; A — 2FPAF 5 — 2F" F. ) +3m2R%0% — Amin2g?
K2 , ()T 58)
2 (w g~ WO o(guprin + o) (452)
S
2 2
2
+ %Rd)? + %R(FF) . %(FFR) (4.53)

where (FFR) = FFF,, RV,
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The square of the 1,7(161;‘ term involves a trace and a simple integral, carrying on the
notation of eq. (4.47), they combine into,

0 o )

4 7Kt 4k4 4
= 2K qﬁ + — 6 (FF) 3 —— (FFFF)+3:%(¢,FF¢,), (4.54)

174 w —"_ w)v
/ AQtr (ML) & = g 2w T 90 %)

where (FF) =trFF = F,gF°* (FFFF) = FYF, . FF,,.

Lastly the crossed term, given the integrals

=~ o =~ o R
/dQ{A,AqqZ‘*}:gjﬁ, /d@{ NCE A{q,lcm}} ol (45)

results in

/ aQ{ Ay & (i) (0. K ) A= itr (T2 9o 0By + 1/6)

2

~ af
=%[u€0)}p <g,,(a¢.ﬁ< 05— g6) — (g Fapuy —gas o) (s70F7 = g7 7))
+ = R¢2 (FF)R (4.56)

So to summarize, we have that

/ QT s = / dQ (Aumx {A (- {q,ﬁ(l)}) ALY+ (Aﬁgg;‘)2> A
B

10Wa“mwaaw 20 oyl — 6i(y o ) (61 eappn

FO%Fg, —2F%F, 5 —2F0 F, ) + 3m3n? — dmin®e?

(@)t 58)
+— <(w;*)10*gaﬁ_(¢2)0> O'V(goz,é’o'.d};.‘l'o'(aw;,@))

)

4kt

+2rt el + g4(FF)2 +—(FFFF)+3x*(¢.FF¢.)

3
5k2 2K

+ —Rqﬁ + = (R(FF)—(FFR)), (4.57)
and the dimension of operators generated goes from 2 to 10.

The computation here presented, compiled in egs. (3.28), (3.34), (4.18)—(4.20), (4.32)—
(4.37), (4.57) has been checked against: i) for the curvature squared contributions from
spin 0, 1/2, 1 particles, results from the trace anomaly, e.g. [40], ii) for gravity with a scalar
field with ref. [35] and iii) for gravity plus a spin 1 field with ref. [37], the latter two after
use of the equations of motion.
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5 Comparison with Schwinger-DeWitt coefficient computation

The previous section dealt extensively with the complete renormalization of Hilbert-
Einstein gravity with CC and spin 0, 1/2 and 1 matter and applies to the Standard Model
of particle physics. In the midst of all the components of the previous computation the
advantages and disadvantages of the new method presented here are not in accessible dis-
play. Some of the difficulties in loop computations in gravity might be after all intrinsic
at least in our present scheme of quantum field theory. It is best therefore to put the
technique introduced here side-by-side with known computational methods to appreciate
its characteristics. In this section we compare with the prevailing technique for quantum
computations in gravity, the heat kernel method and computation of Schwinger-DeWitt
coefficients.

The heat kernel is a coordinate space method which involves solving a partial differ-
ential equation (PDE) resembling the heat equation in d 4+ 1 dimensions and an integral
over ‘proper time’. The method presented in this letter in contrast is in momentum-
representation (for the field we are integrating over; background fields are in coordinate
representation) and gives the result in terms of loop integrals. Both techniques maintain a
covariant description all throughout.

In mathematical terms the two methods are two avenues for the computation of a func-
tional determinant, or to be precise its logarithm. We will therefore present the expression
of said functional quantity in both cases first to later unfold the central equations into the
core computations required for the application of each. For notational cohesion let us call
the operator whose determinant we evaluate as O which is the second covariant derivative
of the action w.r.t. fields © = —D?S. The quantity of interest is therefore

det(O) = exp (tr(log(Q))) . (5.1)

The operator O contains up to two derivatives and depends on the background fields, so
it reads

O = VIV, + U(®(x)), (5.2)

where ®(z) is meant to represent background fields including the curvature R(z).

5.1 Heat kernel in brief

In the heat kernel technique, which we present here following the formulation in [12], one
writes the inverse of O or Green function making use of Schwinger’s representation [5] of
the propagator:

(0 +m?) G(z,y) = —6%z —y) G= z/ drelm(©O+m?) (5.3)
0
where O in the Lh.s. is in  coordinates, (9, = d/0x"). The logarithm then can be written
as ;
log(0) = —i / dm? / dreim(©@+m?) — _ [ 0T ir0 (5.4)
T
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where m?2

serves much the same purpose as in our formalism, i.e. writing a logarithm
as an integral over an inverse, eq. (4.12). What keeps eq. (5.4) from being a tautology
is application of the heat equation solving machinery on the exponentiated operator. In

particular we have:

Ker(z,y;7) = ¢™© %Ker(w, y;7) = OKer(x,y; 1) (5.5)
T
in our case 5
Za—TKer = (0+U)Ker (5.6)

which for a potential-less case U = 0 resembles the heat kernel equation in (euclidean)
d + 1 dimensions for the spreading of heat in a body with unit diffusivity. In a nutshell
therefore

tr(log(0)) = — / d7tr Ker) / dr / d'z\/|g| Ker(z, z; 7) (5.7)

where Ker is the solution to the PDE (5.5), which in the present case is a second-order
eq. (5.6).
5.2 Covariant momentum representation in brief

Instead in the covariant momentum representation and without the need to review it twice
(see section 3), this same tr(log) reads

dl‘ d . . .
tr(log(0)) = / d(%:; I, g( i e—WO(v,qneme—”)) (5.8)
dw d
- [ Gt e ©lifa + ). 07) (59)

The defining property of the transformation is that X does only depend on the connection
I implicitly through the curvature and its derivatives (and if internal local symmetries are
present it depends on gauge fields (A,) only through field strengths (F},)), that is:

zTe—iquﬂeiqace—iT = iq;L + Z.IC,U«(RO,(BVp’ q) (510)

Both K and ®1 depend on ¢ (and 9,) and admit an expansion in inverse powers of loop
momenta as

K= 3 K KipOa) = A"Keo(a), - @r =3 500" VL [,90)" - (.11

n times

While K can be found to all orders for internal gauge symmetry, in the case of gravity we
had to solve iteratively in K(,) up till 3rd order. On the other hand the transformation
in @1 to the order we worked at coincides in form with the internal symmetry case. This
leads us to postulate 1 as in eq. (5.11) even if we only explicitly tested it to 3rd order.
Lastly although not strictly necessary (one could evaluate the expression (5.9)
with (5.11) as it is) we write the logarithm as an integral in m? just like in the heat
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kernel and expand on the ‘free’ term of the second derivative of the action

B dixdq 1
trlog(0) = / @) /deC’)(z’(q TR G T (5.12)

dizdiq 1
= [ ST [ g2
(2m)4 qQ*m2+{q K} +K2-u

_ /d4$d4 /d 22{ (U - {g, K} - 162)712_17”2 (5.13)

q

where U(®) = U(®r). The series in powers of ¢~ ! for K and U plugged into eq. (5.13) after
evaluation of d,’s on the functions to their rights leaves the result in terms of a conventional
integral.

5.3 Core computations in heat kernel

The computation at the core of this method is the solution of a PDE, the heat equation in
d + 1 dimensions. In order to solve it one writes the kernel as

Ker(z,y;7) = m exp (Za(g;y)> Qz,y;7) (5.14)

where o is the world function and & is the Van Vleck-Morette determinant, defined as
0 %0 (z,y)
det | ———-=~ 1
Erd ¢ < dzHdy” ) ’ (5.15)
Whereas the operator € which acts on the field space is decomposed as [6]

Qx,y;7) =Y _(iT) an(x,y) (5.16)

So the computation is translated to finding the coefficients a,,, dubbed Schwinger-DeWitt

7

o= 5(7“0“, o, =

coefficients or Sheley-DeWitt coefficients with the initial condition ag(z,x) = 1 (one has

o(xz,x) =0).

The PDE on the coefficients returns a system which can be solved iteratively and reads
(n+1)ant1 + 0"Vyani1 = 271202 %a,) + Uay, n>0, (5.17)

with 2(x,y) = \/|9(x)|2(x,y)\/]9(y)|. For the solution of these equations and in partic-
ular finding the coefﬁments in the coincidence limits a,(x,x) one makes use of a covariant
Taylor series of o, & as well as the coefficients a. Here we do not compute these explicitly
but refer to egs. (4.16-4.33) and note added in proof of ref. [12].

Back into the original equation one has

tr(108(0) = = [ Vigla's [ T2 e ) (5.18)

at which point is pertinent to examine the mass dimensions of 7, a,,. Although 7 is some-
times referred as proper time it has dimension of (mass) 2 and so a,, has dimension 2n. In
the absence of a potential then one has a,, as a function of curvature and its derivatives only
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as a, ~ (V)" 2R with some of the terms possibly combining two derivatives into further
powers of R. In the presence of U which has dimension 2 one could have a number of com-
binations of powers of U and its derivatives/curvature adding up to 2n i.e. (V)?*U"~* with
k < n. It is useful to note that a,, does not depend on the dimensionality d of space-time.

The first two non-trivial terms in eq. (5.18), those for a; 2, contain an integral in 7
which diverges for 7 — 0 and correspond to ultraviolet divergent terms. In dimensional
regularization only as is non-zero and gives logarithmically divergent terms which were the
subject of study of section 4.

5.4 Core computations in covariant momentum representation

The main computational hurdle in this case is finding the curvature dependent ¢+ K(R) as
the transformed e?'e =42V e~ = ¢ (ig+V,)e™T. Asreviewed in section 3 the differ-
ence between the exactly solvable internal local symmetry case with 7' = 94 D,, and gravity
stems from the non-commutativity [V, ¢,] # 0 and here we could only solve it order by or-
der. For this purpose we write 7" in a series in inverse powers of ¢, expand the transformed V
using the Baker-Campbell-Hausdorff formula and iteratively solve; egs. (3.5) and (3.7) con-
tain the first and second order equations respectively. The resulting K’s first few terms read:

K= {0 190, V) + 5 R, {0507 0 +0(a) (5.19)

which shows how K is an operator in momentum representation both dependent on ¢ and
0y The iterative solution for K(,) in terms of lower orders does have a parallel in the
iterative solution of a,, in the heat kernel, even if in the latter involves a PDE.
Evaluation of the logarithm then implies substitution of the series in K of eq. (5.11) in
eq. (5.13) which at present nonetheless we can only evaluate to order ¢~%d%q. A dimensional
analysis on the dependence on background fields will reveal again which terms does one
capture given the order in ¢~!. One has that K(n) scales with curvature and its derivatives
as V" 1R with some of the terms possibly combining two derivatives into further powers
of R. For the case of U,y one has scaling as (V)"Uy) with gy = U having mass dimension

2 and being made up of background fields ®(z).

To be explicit the expansion and the terms up to order ¢~%d% in the logarithm read:
dlzdiqdm? 1 21" 1
tr(log(0)) = —/ @n)d Zn: [qz —s (Bl — {6 %K } - (B5K)) ] prp—
dlzdqdm? 1 1
= —/ et gz Vo —{eko}) 5= (5.20)
d%xd?qdm? 1 9 1
/ a7 Vo~ {eKe} —Kh) =0

d4zdiqdm? 1 1 6.4
- / (27)d [qQ —m2 (U(O) - {q, 1)})} 5 +0(¢7d%)
The remaining computation for the effective action is straightforward yet to be precise it

involves, in this order, i) letting the 0, inside K and U act on the functions of ¢ to their
right, ii) doing the m? integral iii) doing the loop integrals in gq. The expression for the
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trace log in this case presents more terms for a given order than the heat kernel yet this
also means that if one is interested in a specific term in the effective action, say U*R"V*,
it can be spotted and calculated exclusively.

The connection between the two methods can then be laid out order by order given
our dimensional analysis and it reads, for the first two:

i idr digdm? 1 1
(47T)d/2 / ( )d/2 a1($,ﬂf) = / (27T)d q2 — m2 (U(O) — {q,’c(l)}) m (521)

1T
i idr ddgdm? 1 21
(4772 / (ir) 421 az (@, z) = / (274 [q2 — 2 U — {a. ’C(l)})] 2 —m? (5.22)

digdm? 1 9 1
+/ (2m)d ¢ —m? <U(2) ~{eKe) - K(1)> @ —m?’

The summary of this method-comparison is then

e The heat kernel is a position-representation method and involves solving a set of
PDEs (5.17) for Schwinger-DeWitt coefficients a,, of expansion (5.16) and an integral
in 7 for the final expression (5.18). The coefficients a,, have mass dimension 2n and
in eq. (5.18) the UV behaviour of the theory can be extracted from the limit 7 — 0.

e The covariant momentum representation method requires instead solving algebraic

1" and loop integrals in the

equations for the operator K expanded in powers of ¢~
final expression (5.13) (so conventional dimensional analysis applies to e.g. extract
UV divergences). This method treats on equal footing internal and space-time lo-
cal symmetries starting from the covariant derivative even if the procedure is more

involved for gravity.

Both methods are valid for d dimensions as made explicit in the exposition above and
maintain a covariant description throughout.

6 Conclusions

A novel method for computing loop corrections in gravity was presented based on a covari-
ant derivative expansion in momentum representation. The generalization for the covariant
derivative expansion to gravity was carried out explicitly to 3rd order in inverse loop mo-
menta and employed to compute the one loop UV divergences in Hilbert-Einstein gravity
with a cosmological constant A and spin 0, 1/2 and 1 matter. Our results apply therefore
to the elementary action for gravitational interactions which it is believed describes the
universe today (provided dark matter is a particle of spin < 1) and are summarized in
egs. (3.28), (3.34), (4.18)—(4.20), (4.32)—(4.37), (4.57). While the selected target here was
the UV, this technique could be extended to obtain the full one loop action in a universal
formula akin to the flat case and in doing so study the model independent properties of
gravity on the IR. This extension would require pushing to higher orders in inverse loop
momenta in the covariant derivative expansion which stands as a computational challenge.
Inflation or the recent interest on low energy consequences of the UV completion of gravity
are fields where this technique could be put to use.
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