1	Multiple episodes of gold mineralization in the East Kunlun Orogen, western Central
2	Orogenic Belt, China: Constraints from Re-Os sulfide geochronology
3	
4	Jiajie Chen ^{1,2,3} · Lebing Fu ² ·David Selby ³ ·Junhao Wei ² ·Xu Zhao ² ·Hongzhi Zhou ²
5	
6	¹ State Key Laboratory of Nuclear Resources and Environment, School of Earth Sciences,
7	East China University of Technology, Nanchang, 330013, China
8	² Faculty of Earth Resources, China University of Geosciences, Wuhan, 430074, China
9	³ Department of Earth Sciences, University of Durham, Durham, DH1 3LE, UK
10	
11	🖂 Junhao Wei
12	E-mail: junhaow@163.com
13	Tel: +86-13437179812.
) , ,	
)	
)	
, }	
1	

Abstract

The Gouli goldfield (>110 t Au), located in the East Kunlun Orogen, western Central Orogenic Belt of China, is one of the most important goldfields in this area. In the last decade, a number of orogenic gold deposits (e.g., Guoluolongwa and Annage) have been shown to be hosted by rock units of different lithology and ages. Rhenium-osmium (Re-Os) geochronology of sulfides from gold-bearing veins was performed to define the chronologic relationships between gold mineralization present in the metamorphic rocks (Proterozoic and Silurian) of the East Kunlun Orogen. Sulfides (pyrite and chalcopyrite) from pyrite-quartz vein and polymetallic sulfides-quartz vein in the Guoluolongwa gold deposit yield Re-Os isochron dates of 374 ± 15 Ma (MSWD = 4.6; initial ¹⁸⁷Os/¹⁸⁸Os ratio (Osi) = 0.06 ± 0.22) and 354 ± 7 Ma (MSWD = 0.18; Osi = 0.13 \pm 0.01), respectively. Similar ages are also revealed by the pyrite mineral separates from the Annage gold deposit (383 ± 8 Ma and $349 \pm$ 6 Ma). These ages are interpreted to record the timings of the formation of the two vein types in these deposits, which are nominally separated by ~ 20 Ma.

The new Re-Os ages presented here identify the first two Late Paleozoic (Devonian and Early Carboniferous) gold-mineralizing events in the East Kunlun Orogen and thus indicate at least two mineralization epochs in this area given ages (Late Triassic) of other gold systems and field observations. Considering the geological background and temporal distribution of gold deposits in adjacent areas (western Qinling and Qaidam-Qilian), we suggest that gold deposits in the western Central Orogenic Belt were formed in collisional/post-collisional settings being controlled by common tectonic-magmatic activities

related to the evolution of both the Prototethys Ocean (Proterozoic – Paleozoic) and
Paleotethys Ocean (Paleozoic – Early Cenozoic).

Further, the initial Os (Osi) obtained from the Re-Os isochron suggest that for the two vein types in the Guoluolongwa gold deposit the Os and by inference the ore metal (Au) were derived from a mantle-like source (Osi values = $\sim 0.12 - 0.13$), which should be related to the contemporaneous mantle-like magmatism. In contrast, the pyrite-quartz vein in the Annage gold deposit possesses a significantly radiogenic Osi value (3.65 ± 0.51) . Given the similar timing of mineralization between the Guoluolongwa and Annage deposits, it is considered that the ore metal likely has a similar origin, i.e., a mantle-like source, however at Annage the hydrothermal fluid interacted with the Proterozoic metamorphic host rocks and leached radiogenic Os that masks any evidence of a mantle-like source.

47 Keywords: Gold deposit; Paleozoic mineralization; Re-Os isotopic dating; East Kunlun
48 Orogen

1. Introduction

The East Kunlun Orogen, comprising the western part of the Central Orogenic Belt of China (Fig. 1A), records two stages of orogenesis that correspond to the evolution of the Neoproterozoic-Late Paleozoic Prototethys Ocean and Late Paleozoic-Triassic Paleotethys Ocean in this area (Fig. 1B; Ma et al., 2015). During the last ten years, in the East Kunlun Orogen, a number of gold deposits/fields, such as the Wulonggou (>70 t Au; unpublished report; Zhang et al., 2017) and Gouli (>110 t Au; unpublished report) goldfields, and the Balong and Kaihuangbei gold deposits, have been discovered (Fig.1C; Zhao, 2004 and references therein). Most of the gold deposits/fields exhibit quartz-vein type or fracturehosted pervasive alteration type mineralization and are spatially controlled by brittle-ductile shear zones and, in turn, have been regarded to be orogenic gold deposits (Feng, 2002; Zhao, 2004). A Silurian–Devonian timing, coincident with that of the evolution of Prototethys, has been proposed to be responsible for the formation of these deposits based on the conclusion that the ore-controlling structures were formed during the Silurian-Devonian tectonic deformation (e.g., Zhang et al., 2001; Feng, 2002 and references therein). However, reported Ar-Ar dating of sericite or muscovite from gold deposits in the East Kunlun Orogen revealed a Triassic age population (Feng, 2002; Zhao, 2004; Zhang et al., 2005; Xiao et al., 2014; Zhang et al., 2017). This, together with the close spatial relationship between some gold deposits and ubiquitous Late Permian-Triassic granitoids (Li et al., 2012; Zhang et al., 2017) is taken to suggest that the Triassic gold-mineralizing dominated the formation of these deposits, although the gold deposits in this area are hosted by different geological units of various ages (from Paleozoic to Mesozoic). The lack of a temporal record of Paleozoic "gold mineralization" may be due to: (1) an early Paleozoic mineralization event did not occur, and (2) post-ore thermal events, such as Triassic mineralization or extensive magmatism, have reset the Ar-Ar systems in micaceous minerals due to the susceptibility of this system to hydrothermal overprint (Selby et al., 2002). The ambiguity of the timing of the early and late "gold-mineralizing events" not only hampers our understanding of the origin of these gold deposits but also exploration. As such, a more robust dating method is required.

Recently, rhenium-osmium (Re-Os) isotopic dating of sulfide minerals (e.g., pyrite, chalcopyrite, and molybdenite) has been applied to several types of hydrothermal deposits. Among these sulfide minerals, molybdenite is particularly suitable for Re-Os geochronology, given its high abundance of Re (typically ppm levels) and negligible common Os (Stein et al., 2003; Selby and Creaser, 2004). However, molybdenite is commonly absent in many gold deposits, nevertheless other sulfides, e.g. pyrite (Stein et al., 2000), arsenopyrite (Morelli et al., 2005; Morelli et al., 2007), chalcopyrite (Lawley et al., 2013), bornite (Selby et al., 2009) and even pyrrhotite (Wang et al., 2008) can be utilized to delineate the timing of gold mineralization. In this contribution, we present Re-Os geochronology on gold-related pyrite and chalcopyrite from two deposits in the Gouli goldfield located in the eastern East Kunlun Orogen, western Central Orogenic Belt to pinpoint the timing of gold mineralization and constrain the sources of ore-forming materials. We demonstrate that at least two gold mineralizing epochs (Late Paleozoic and Late Triassic) exist in the East Kunlun Orogen and

possibly wider west of Central Orogenic Belt and that the ore metal (Au) exhibit a mantle-like derived origin.

2. Regional and deposit geology

The East Kunlun Orogen is located in the northern Tibet and is bounded by the Qaidam Basin to the north, the Qinling Orogen to the east, the Bayan Har Terrane to the south and the Altyn Tagh fault to the west (Fig. 1B). The East Kunlun Orogen is composed of the Northern East Kunlun Terrane and the Southern East Kunlun Terrane, which are separated by the Central East Kunlun Suture Zone (Fig. 1C). Two regional suture zones, the Central East Kunlun Suture Zone and Southern East Kunlun Suture Zone, which correspond to the evolution of the Prototethys Ocean (Proterozoic-Early Paleozoic) and Paleotethys Ocean (Late Paleozoic -Mesozoic), respectively, traverse the East Kunlun Orogen (e.g., Yang et al., 1996). The basement rocks in the East Kunlun Orogen are composed of Proterozoic intermediate - high -grade metamorphic rocks that are mainly exposed in the Northern East Kunlun Terrane (Meng et al., 2013; He et al., 2016; Wei et al., 2016). Overlying these basement rocks are the Early Paleozoic low-grade metamorphic sedimentary and volcanic rocks (e.g., Chen et al., 2013; Chen et al., 2014) that are unconformably overlain by the Devonian Maoniushan Formation (molasse) (e.g., Zhang et al., 2010). Carboniferous–Middle Triassic marine facies rocks mainly occur in the Southern East Kunlun Terrane. Magmatic rocks in the East Kunlun Orogen consist of granitoids with minor mafic-ultramafic rocks (Fig. 1C). The mafic-ultramafic rocks occur mainly along the Central East Kunlun Suture Zone and Southern East Kunlun Suture Zone. The mafic-ultramafic rocks from the Central East Kunlun Suture Zone

are dated as Cambrian-Ordovician with ages that range from 537 Ma to 467 Ma (Zhu et al., 2000; Bian et al., 2004; Li et al., 2013; Wei, 2015; Qi et al., 2016). The mafic-ultramafic units from the Southern East Kunlun Suture Zone exhibit both Cambrian-Ordovician (555-516 Ma; Li, 2008; Liu et al., 2011) and Carboniferous ages (345–332 Ma; Chen et al., 2001; Liu et al., 2011). The granitoids yield dates mainly concentrated in Ordovician-Devonian (470–390 Ma) and Permian-Triassic (260–220 Ma) (Mo et al., 2007). Granitoids in both age groups show time-varying lithology from early calc-alkaline granodiorites to late monzogranites and syenogranites (e.g., Lu et al., 2013; Zhang et al., 2014; Chen et al., 2016; Chen et al., 2017). Succeeding the Ordovician-Devonian massive intrusion of granitoids were widespread volcanic activities, which are evidenced by bimodal volcanic rocks from the Maoniushan Formation (Zhang et al., 2010; Liu et al., 2016). 2.1 Geology of the Gouli goldfield The Gouli goldfield is located in the east end of the East Kunlun Orogen (Fig. 1C). The Central East Kunlun Suture Zone, which is evidenced by the ophiolites, traverses the central part of this area (Fig. 2). Proterozoic middle-high-grade metamorphic basement rocks occur across the entire area. Overlying the basement rocks are the Ordovician-Silurian low-grade metamorphic rocks from the Naij Tai Group, Devonian Maoniushan Formation and the Carboniferous-Triassic sedimentary and volcanic rocks. The lithology of magmatic rocks varies from mafic-ultramafic intrusions/dikes to felsic granitoids. The mafic-ultramafic rocks exhibit Cambrian and Devonian-Carboniferous ages (Yang et al., 1996; Chen et al., 2001;

- ⁴⁰⁸₄₀₉ 131 Feng et al., 2010), with the felsic granitoids mainly defining two age groups, Ordovician-

Devonian and Permian-Triassic (Fig. 2). A number of gold deposits have been discovered in this field, including the Guoluolongwa (>40 t Au), Annage (>8 t Au), Asiha (>6 t Au), Walega (>12 t Au) and Delong (>5 t Au) (unpublished report). These deposits can be divided into two groups according to their host rocks, ore-controlling structure, mineralization styles, and alteration. Group one, represented by the Guoluolongwa and Annage, is hosted in metamorphic rocks (Proterozoic for Annage and Silurian for Guoluolongwa) (Figs 2–4; Ding et al., 2013; Tao, 2014), mainly controlled by EW-trending brittle-ductile shear zone, which contrast to the Group two deposits (represented by the Walega and Asiha) being hosted in Silurian (Fig. 2; 431-440 Ma; our unpublished data) or Triassic (238-244 Ma; Fig. 2; Li et al., 2012; Li et al., 2014) felsic intrusions and mainly controlled by NW or NE-trending brittle fractures (Chen, 2018). The gold mineralization of both groups is mainly associated with quartz veins and subordinate associated with pervasively altered fracture zones. However, the mineral assemblages of the two groups are distinct, with group one showing sulfides dominated by pyrite and those of group two dominated by arsenopyrite (Chen, 2018). The close spatial relationship of these deposits makes researchers consider that these deposits were formed by a common mineralization event during Triassic after the emplacement of the youngest host (Asiha quartz diorite) (Yue, 2013).

149 *2.2 Geology of the Guoluolongwa and Annage gold deposits*

In the Central East Kunlun Suture Zone, the Guoluolongwa gold deposit is the largest gold deposit is the largest gold deposit in the Gouli goldfield. The ore deposit is structurally controlled by the Silurian–
Devonian formed (427–408 Ma; Wang et al., 2003), EW-trending thrust zone. In the north of

the deposit is the oldest rock unit, Proterozoic aged schist (Fig. 3). In the center of the deposit are the Ordovician-Silurian Naij Tal Group metamorphic rocks, which have zircon U-Pb ages of 479.1 ± 2.4 and 479.7 ± 5.6 Ma, indicating that the sedimentary and volcanic protoliths were formed no later than 479 Ma. (Fig. 3A; our unpublished data). In the south of the deposit are conglomerates of the Devonian Maoniushan Formation (e.g., Lu et al., 2010). Magmatic rocks in this area include mylonitic diorite (~ 477 Ma; our unpublished data) and gabbro (416 Ma; Yue et al., 2013).

Six gold orebodies (I – VI) have been delineated in the Guoluolongwa gold system (Fig. Six gold orebodies (I – VI) have been delineated in the Guoluolongwa gold system (Fig. 3). All of the orebodies show an EW trend (Fig. 3A) and high angle dips (50 – 80°) towards the south (180°; Fig. 3B). The gold grades vary from 1 g/t to hundreds g/t, with an average grade at 6.75 g/t (Fig. 3B; unpublished geological report). The gold mineralization is mainly associated with quartz veins that cross cut the Devonian gabbro (Yue et al., 2013), with subordinate pervasively altered fracture-hosted mineralization occurring in the north of the deposit area (Xiao et al., 2014).

Three stages of mineralization are defined at the Guoluolongwa based on mineral assemblages and crosscutting relationships (Figs. 5–6). The first stage is characterized by coarse milky quartz with sparse coarse pyrite (up to 5 mm) (stage I vein), which is cross-cut by the disseminated-massive pyrite-quartz vein of the second stage (stage II vein). Both coarse and fine grain pyrite can be observed in the stage II vein (Fig. 5H) that are cut cross by the polymetallic stage III quartz vein (Figs. 5D and H). Minerals in the stage III quartz vein mainly include pyrite, sphalerite, galena, chalcopyrite and quartz (Figs. 5D and I).

Native gold can be found in fractures of pyrite and between grains of sulfide and quartz (Figs.
5D and E) or as inclusions enwrapped in pyrite and quartz (Yang et al., 2006). High-grade
gold ores are found associated with both stage || and ||| veins.

The Annage gold deposit is located to the immediate northwest (<3km) of the Guoluolongwa deposit (Fig. 2). As such the local geology is very similar to that of the Guoluolongwa deposit. But in contrast, the ore bodies are hosted by Proterozoic metamorphic mica-quartz schist, amphibolite and marble units (Fig. 4). Most of the Annage orebodies (I, II, V, and VI; Fig. 4) strike east-west and dip $50 - 85^{\circ}$ to south-southwest (Fig. 4). The orebodies as a whole show identical mineralization stages and mineral assemblages to those of the Guoluolongwa system (Chen, 2014; Tao, 2014), suggesting that the two gold deposits should have a common origin. However, some orebodies at Annage (e.g., orebody I; Figs. 4 and 5J-I) are dominated by stage II vein (gold grade averaging at 5.18 g/t) with the stage III polymetallic sulfides-quartz vein mineralization poorly developed. The ore grades vary widely (grades of different ore bodies average between 1.06 and 43.51 g/t), with the highest grade being 156 g/t.

3 189 **3. Sampling and analytical methods**

To define the timing of sulfide (± gold) mineralization by application of the Re-Os chronometer, fourteen samples from the quartz vein orebodies (seven from the stage II veins and seven from the stage III veins) of the Guoluolongwa system and 10 samples from the pyrite-quartz veins (orebody I; Fig. 5E) of the Annage gold deposit were selected. For the Guoluolongwa system, samples are all collected from the underground tunnel of orebodies I

 for the stage III quartz veins were collected from dense disseminated ores that are mainly composed of galena, sphalerite, chalcopyrite, pyrite and quartz (Fig. 5C). In total, seven pyrite mineral separates from the stage II veins, and four pyrite and three chalcopyrite mineral separates from the stage III veins were prepared for the Guoluolongwa gold deposit. For the Annage deposit, the samples were all collected from the open mining pit of orebody I (Fig. 4) that is mainly composed of Stage II pyrite-quartz vein (Figs. 5J and K). In total, ten pyrite mineral separates were prepared. The mineral separates were obtained using traditional isolation methods (e.g., crushing, heavy liquids separation and handpicking).

The Re-Os analyses were conducted at the Source Rock and Sulfide Geochronology and Geochemistry Laboratory at Durham University. The analytical method is described below. The purified mineral separate of about 400 mg was accurately weighed and loaded into a Carius tube with a known amount of mixed Re-Os tracer solution containing ¹⁸⁵Re and ¹⁹⁰Os, and a mixture of 11 N HCl (3 ml) and 15.5 N HNO₃ (6 ml) (inverse aqua regia). The Carius tube was sealed and then placed into an oven at 220 °C for 24 h to permit sample and tracer digestion and equilibration. Osmium was isolated from the inverse aqua regia using solvent extraction (CHCl₃) method and purified by microdistillation, and rhenium was isolated using solvent extraction (NaOH-acetone) followed by anion column chromatography methods (Selby et al., 2009; Cumming et al., 2013). The purified Re and Os were loaded onto outgassed Ni and Pt filaments with corresponding activators (barium nitrate and sodiumbarium hydroxide), respectively (Selby et al., 2009). The Re and Os isotope compositions were measured using negative thermal ionization mass spectrometry on a Thermo Scientific TRITON mass spectrometer using static Faraday collection for Re and secondary electron multiplier in peak-hopping mode for Os. Total procedural blanks of this study for Re and Os were 2.3 +/- 0.2 and 0.08 +/- 0.02 pg, with an average 187 Os/ 188 Os value of 0.25 ± 0.05 (n = 3). All uncertainties are calculated by error propagation of uncertainties in Re and Os mass spectrometer measurements, blank abundances and isotopic compositions, spike calibrations, sample and spike weights, and reproducibility of standard Re and Os isotope values. The operational conditions of the mass spectrometer were monitored by solution reference materials which yielded values of 0.16087 ± 0.00026 for DROsS and 0.5993 ± 0.0006 (1SD, n=9) for the Re standard. These values are in agreement with those reported previously (e.g., Selby, 2007; Nowell et al., 2008). The Re-Os isochron age, ¹⁸⁷Re-¹⁸⁷Os^r isochron age, and weighted mean age were determined using Isoplot/Ex version 3.75 (Ludwig, 2012). 4. Results The Re-Os data are presented in Table 1 and Figures 7 - 10. The Re and Os abundances in the pyrite from the stage II vein in the Guoluolongwa gold deposit varies widely, from 0.06 to 0.57 ppb and 1.5 to 228.8 ppt, respectively. The ¹⁸⁷Re/¹⁸⁸Os (4.57 - 4917.48) and 187 Os/ 188 Os (0.15 – 31.19) ratios display highly variable values and yield a Re-Os isochron Model 3 date of 374 ± 15 Ma (MSWD = 4.6) and initial 187 Os/ 188 Os (Osi) of 0.06 ± 0.22 . Using the Osi value from the isochron, with the exception of Au4-1, the sample set possesses \geq 93 % radiogenic ¹⁸⁷Os (¹⁸⁷Os^r) and are therefore characterized as low level highly

radiogenic sulfides (LLHR, Stein et al., 2000). In contrast, sample Au4-1 exhibits a high abundance of common Os (192 Os = 94.2 ppt). Individually, the six LLHR samples yield Re-Os model dates of 353 - 394 Ma (Table 1 and Fig. 7C), with a weighted mean age of $375 \pm$ 11 Ma (MSWD = 0.60; Fig. 7C) and 187 Re- 187 Os^r isochron date of 373 ± 17 Ma (Fig. 7B; MSWD = 0.68; initial 187 Os^r = 0.01 ± 0.05). For the sample Au4-1, calculation of model age using the Osi from the isochron yields a highly imprecise and inaccurate date (1147 ± 5724) Ma; Table 1). Further, the weighted average (375 ± 11 Ma; MSWD = 0.51) and 187 Re- 187 Os^r isochron date (373 ±17 Ma; MSWD = 0.56; initial ${}^{187}\text{Os}^{r}$ = 0.01 ± 0.06) is not appreciably affected including data of the sample Au4-1. Using a date of 375 Ma, the six LLHR samples yield either positive or negative Osi values with significant uncertainties (Table 1), with the non-radiogenic sample, Au4-1, yielding an Osi value of 0.12 ± 0.01 (Table 1 and Fig. 10). Based on this Osi value, model dates for all samples are recalculated, which yield a weighted mean date of 365 ± 16 Ma (all samples; MSWD = 3.70; Fig. 7C) and 365 ± 19 Ma (excluding sample Au4-1; MSWD = 4.4; Fig. 7C). The Re and Os abundances in pyrite from the stage III vein of the Guoluolongwa gold deposit are 0.17 - 0.62 ppb and 1.4 - 3.7 ppt, respectively. The chalcopyrite mineral separates display much lower Re abundances (0.01 –0.06 ppb) and wide range of Os contents (0.8 - 322.2 ppt). As a whole, the ¹⁸⁷Re/¹⁸⁸Os (0.24 - 2809.52) and ¹⁸⁷Os/¹⁸⁸Os (0.13 - 16.91) data from the four pyrites and the three chalcopyrites yield a Model 1 Re-Os isochron date of 354 ± 7 Ma (MSWD = 0.18; Fig. 8A), with non-radiogenic Osi value of 0.13 ± 0.01 . Based on the Osi value defined by the Re-Os isochron, five samples possess > 93% ¹⁸⁷Os^r and two

samples show a high abundance of common Os (192 Os = 16.5 and 132.9 ppt). Individually, the LLHR samples yield Re-Os model dates between 349 and 407 Ma, with the two non-radiogenic samples possessing large uncertainties (Table 1 and Fig. 8C). The ¹⁸⁷Re-¹⁸⁷Os^r isochron date based on the five LLHR samples $(355 \pm 11 \text{ Ma; MSWD} = 0.16; \text{ initial } {}^{187}\text{Os}^{r} =$ 0.00 ± 0.02 ; Fig. 7B) and all samples (355 ± 11 Ma; MSWD = 0.10; initial ¹⁸⁷Os^r = 0.00 ± 0.01; Fig. 7B), are identical and so are the weighted mean dates $(354 \pm 7 \text{ Ma}; \text{Fig. 7C})$. The Osi values of individual samples calculated based on the weighted mean date vary from 0.05 to 0.32, with the LLHR samples showing significant uncertainties. (Table 1 and Fig. 10) The Re and Os abundances of pyrite from the Stage II quartz vein of the Annage gold deposit range from 2.4 to 7.6 ppb and 21.9 to 105.1 ppt, respectively (Table 1). The 187 Re/ 188 Os (299.13 – 28139.20) and 187 Os/ 188 Os (5.53 – 145.66) ratios vary greatly and yield a Re-Os isochron date of 369 ± 18 Ma (MSWD = 24), with radiogenic Osi value of 3.9 ± 2.4 (Fig. 9A). Discarding the sample CK003 that deviates the isochron, the remaining nine samples yield an isochron date of 382.6 ± 8.0 Ma, with a much more precise Osi value (3.65 \pm 0.51) and smaller MSWD (6.6; Fig. 9B), indicating that sample CK003 is the cause of the scatter in the linear regression analysis. Using the Osi value of 3.65 ± 0.51 , the Re-Os model dates of the nine samples range from 370 to 460 Ma (Table 1 and Fig. 9D). A ¹⁸⁷Re-¹⁸⁷Os^r isochron date of 396 ± 28 Ma (initial ¹⁸⁷Os^r = -0.8 ±1.5; MSWD = 0.42) and a weighted mean age of 383 ± 6 Ma (MSWD = 0.57) is determined based on the nine samples. Further, using the Osi value of 3.65 ± 0.51 , the outlier sample, CK003, yields a model age of 349 ± 6 Ma that approach the isochron age of stage III veins of the Guoluolongwa gold deposit (Table 1).

5. Discussion

5.1 Evaluation of the Re-Os dates and Osi values

The Re-Os isochron date (Fig. 7A; 375 ± 15 Ma) and the ¹⁸⁷Re-¹⁸⁷Os^r isochron date (Fig. 7B; 373 ± 17 Ma) determined from the stage II veins in the Guoluolongwa gold deposit are identical including uncertainty. The weighted mean of the Re-Os model dates based on the Osi value from the Re-Os isochron (0.06 ± 0.22) is in agreement with the age based on the Osi value calculated for the non-radiogenic sample Au4-1 (0.12 ± 0.01) within uncertainty. However, the Re-Os model dates determined based on an Osi value of 0.12 ± 0.01 are nominally younger than the date obtained from that based on Osi value of 0.06 ± 0.22 (365) vs. 375 Ma; Fig. 7) and show much higher MSWD (3.7 and 4.4 vs. 0.5 and 0.6; Fig. 7C). The reason for this is the greater precision in the model Re-Os dates determined using an Osi value of 0.06 ± 0.22 relative to 0.12 ± 0.01 . Regardless, all Re-Os date determinations indicate that stage II mineralization at the Guoluolongwa occurred at ~370 Ma suggesting the interval of mineralization occurred between the Latest Devonian and Earliest Carboniferous. The Osi value from the Re-Os isochron and the LLHR samples show significant uncertainties (Fig. 7A and Table 1), making the geological significance of these Osi values

ambiguous. However, the Re-Os data for the non-radiogenic sample (Au4-1) yields a highly precise Osi value (0.12 ± 0.01). Considering the much higher common Os of this sample (Au4-1) than those for the LLHR samples, the ¹⁸⁸Os determination of this sample is more reliable and so is the Osi value (Stein et al., 2000). Consequently, we take 0.12 ± 0.01 to

The Re-Os isochron date $(354 \pm 7 \text{ Ma})$, ¹⁸⁷Re-¹⁸⁷Os^r isochron date $(355 \pm 11 \text{ Ma})$ and weighted mean dates (354 \pm 7 Ma) based on all samples from the stage III vein in the Guoluolongwa gold deposit are identical, with the MSWD values corresponding to these dates being < 0.3, indicating that the degree of scattering in the data set is almost entirely analytical. As such the timing of the stage III mineralization is taken to be \sim 355 Ma (\pm 7 - 11). The Osi values from the Re-Os isochron and the non-radiogenic samples are consistent, at 0.13 ± 0.01 , which are taken to represent the best estimate of the Osi composition of the stage III mineralization.

The two Re-Os isochron dates (369 ± 18 Ma (all samples) and 383 ± 8 Ma (excluding sample CK003)) from the stage II quartz veins in the Annage gold deposit are similar including the uncertainty. However, the uncertainty of the age 369 Ma is much larger (18 vs. 8 Ma) and so is the uncertainty in the corresponding Osi (2.4 vs. 0.5) and degree of scatter about the best fit of the data (MSWD = 24 vs. 6.6). The scatter coupled with the obvious deviation of the CK003 from the best fit of all the Re-Os data (Fig. 9A) indicate the CK003 could relate to a different stage of mineralization from that of the stage III mineralization and/or its Re-Os systematics are slightly disturbed. The model Re-Os date for sample CK003 is much younger than those of other samples $(349 \pm 6 \text{ Ma})$. As such, we regard the Re-Os isochron date determined from all samples with the exception of CK003 (383 ± 8 Ma) as the best estimate of the timing of the stage II veins at Annage. This age is consistent with the

weighted mean date of the Re-Os model dates $(383 \pm 6 \text{ Ma})$ and within the uncertainty of the 187 Re- 187 Os^r isochron date (396 ± 28 Ma). Interestingly, the Re-Os model date of the sample CK003 (349 \pm 6 Ma) is consistent with that of stage III veins in the Guoluolongwa gold deposit, indicating that a common Carboniferous event may occur in the two deposit. The Osi value from the Re-Os isochron (3.65 ± 0.51) is similar to those calculated for each sample (~2.9 to 4.3 excluding CK003) and could be taken to represent the initial compositions of these samples. 5.2 Multiple gold-mineralizing events in the East Kunlun Orogen Muscovite collected from the gold-bearing vein in the Guoluolongwa yields a Late Triassic 40 Ar/ 39 Ar plateau age that was interpreted as the timing of gold mineralization (202.7 ± 1.5 Ma; Xiao et al., 2014). Although, no detailed paragenesis between the muscovite and gold/gold-bearing minerals are reported (Xiao et al., 2014), it is considered that the Guoluolongwa gold deposit, and even all gold deposits in the Gouli goldfield, are Triassic in age, similar to many other gold deposits/fields in the East Kunlun Orogen and adjacent areas, e.g., Wulonggou (sericite Ar-Ar, 236.5 ± 0.5 Ma; Zhang et al., 2005), Shuizhadonggou (deposit in the Wulonggou gold field; sericite Ar-Ar, 237-231 Ma; Zhang et al., 2017) and Dachang (sericite Ar-Ar, 218.6 ±3.2 Ma; Zhang et al., 2005). However, the Re-Os data obtained from directly analyzing of sulfides (pyrite and chalcopyrite) from the Guoluolongwa and Annage yield much older ages (Late Devonian and Early Carboniferous) and thus it is necessary to re-evaluate the Triassic age gained from Ar-Ar dating and timing of gold mineralization of these deposits in the East Kunlun Orogen.

Crosscutting relationships of different geological units can offer the first-order constraint on the timing of the gold mineralizing events. In the Guoluolongwa gold deposit, field observations indicate that the hydrothermal veins related to gold mineralization cut cross the gabbro (416.2 \pm 3.5 Ma; Yue et al., 2013) and the stage || pyrite-quartz vein are crosscut by the stage III polymetallic sulfides-quartz veins (Fig.5 A). Thus, both types of gold-bearing veins should be emplaced after ~416 Ma and the stage || pyrite-quartz vein must be older than the stage III polymetallic sulfides-quartz vein. These conclusions are consistent with our data (375 ± 11 Ma and 354 ± 7 Ma, respectively), but cannot explain the contradictory results between our Re-Os dates and the previously reported muscovite Ar-Ar age (202.7 ± 1.5 Ma; Xiao et al., 2014). Two possible models are: (1) the Paleozoic ages obtained from the Re-Os data of the sulfides represent the timing of gold mineralization, with the ⁴⁰Ar/³⁹Ar plateau age from muscovite being a product of a late thermal/hydrothermal overprint; (2) the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ plateau age represent the timing of gold mineralization, while sulfides were contaminated by old rocks during fluid migration leading to inhomogeneous initial ¹⁸⁷Os/¹⁸⁸Os compositions of sulfide samples and thus result in an errorchron or pseudochron (Yang et al., 2008). A valid method to test the two models is to plot initial ¹⁸⁷Os/¹⁸⁸Os against 1/¹⁹²Os (Faure and Mensing, 2005). If model two is correct, a linear relationship between the initial ¹⁸⁷Os/¹⁸⁸Os and $1/^{192}$ Os should be expressed by the data. However, our data from both the two stages of mineralization (stage II and III) are randomly distributed in ¹⁸⁷Os/¹⁸⁸Os vs. 1/¹⁹²Os space (Figs. 11a and b), which means the isochrons we obtain represent the best estimate of the timing of gold mineralization, thus indicating Devonian and Carboniferous gold

mineralization. In addition, samples from the stage || vein in the Annage gold deposit yield a Devonian age of 383 ± 8 Ma, which is consistent with the age of the stage II vein of the Guoluolongwa gold deposit within uncertainty. The random distribution of the data in ¹⁸⁷Os/¹⁸⁸Os vs. 1/¹⁹²Os space (Fig. 11C) indicate the isochron of the Annage gold deposits should also not be an errorchron or pseudochron (Faure and Mensing, 2005; Yang et al., 2008) and thus the isochron age should represent the formation age of the stage II vein of this deposit, which support the Devonian gold mineralizing event occurred in the Gouli area. The Re-Os model date of the sample CK003 (349 ± 6 Ma) from the Annage gold deposit, is identical with the Carboniferous age of stage III veins in the Guoluolongwa gold deposit, which further implies that this gold mineralizing event occurred in the Gouli gold field during the Early Carboniferous. Furthermore, the contemporaneous Devonian gold-mineralizing event has been revealed to the north of the East Kunlun Orogen (Qilian-Qaidam; Sericite Ar-Ar, 409-372 Ma; Yang et al., 2005; Zhang et al., 2005), indicating the existence of a Devonian gold-mineralizing event regionally. Consequently, we interpret the two episodes recorded by our Re-Os data from both the Guoluolongwa and Annage gold deposits as the formation ages of stage II and III veins in the Gouli gold field, respectively. In this context, early reported muscovite Ar-Ar age is considered to represent a the later thermal/hydrothermal activity that may be related to the pervasive Permian-Triassic magmatic event in the East Kunlun Orogen (Chen et al., 2017). Whether this later thermal/hydrothermal activity contribute gold to the two deposits deserve further study. Based on the present evidence, we prefer that the later thermal/hydrothermal activity

(Triassic) is unlikely to contribute significant gold to the two deposits, since a later gold-bearing fluid should affect the Re-Os system of the dating mineral formed early or form new dating mineral (such as gold-bearing pyrite) which is closely relate to gold in the studied area. Our Re-Os data do not record any information of this Triassic event and no new gold-bearing assemblage or vein has been found by field observation.

From a regional perspective, with the exception of the Guoluolongwa and Annage gold deposits that occur in Proterozoic or Ordovician-Silurian metamorphic rocks, the three other gold deposits in the Gouli goldfield crosscut Triassic (Asiha and Delong) or Silurian (Walega) aged intrusions (Fig. 2) and show distinct mineralization styles from those of Guoluolongwa and Annage (Li et al., 2012; Chen, 2018), indicating different gold-mineralizing events forming these deposits. Thus at least one Triassic or post-Triassic goldmineralizing event occurred in the Gouli goldfield based on the cross-cutting relationship between orebodies and Triassic intrusion (Li et al., 2014), which is likely to be the same Triassic event leading to the formation of the Wulonggou goldfield to the west of the Gouli (Zhang et al., 2017). Consequently, together with the Late Paleozoic (Devonian and Carboniferous) mineralization revealed by our Re-Os data, there are at least two gold-mineralizing epochs (Late Paleozoic and Late Triassic) in the Gouli goldfield.

5.3 Source of ore-forming materials and implications on the genetic model

The geochronological data presented above improve the framework of the temporal relationships between gold mineralization and tectonic-magmatic activities (discussed below) that may directly contribute to the formation of the gold deposits. However, timing constraint

alone does not distinguish between rock types or reservoirs that may have contributed to the
formation of these gold deposits. In this regard, the Osi values of the sulfides from the Gouli
goldfield can provide a unique insight into the ore-forming process (e.g., Morelli et al., 2007;
Morelli et al., 2010).

As discussed above, the non-radiogenic Osi values of the stage $\parallel (0.12 \pm 0.01)$ and $\parallel \parallel$ (0.13 ± 0.1) veins in the Guoluolongwa gold deposit are consistent, similar to that of the mantle (Fig. 10; ~0.12–0.13; Shirey and Walker, 1998), indicating mantle or extremely juvenile crustal source of Os, by inference the ore metal (Au). This also excludes the wall rocks of the Naij Tal Group or possibly the concealed Proterozoic metamorphic basement rocks as the sources of the ore-forming materials (Fig. 10). Considering the contemporaneous mantle-derived mafic rocks in the East Kunlun Orogen (345 - 380 Ma; Chen et al., 2001; Bao et al., 2013), we contend that the ore metals of the two vein types of the Guoluolongwa gold deposit were derived from partial melting of the mantle. As to the ore-forming fluids, previously reported H-O isotopes (e.g., Wang, 2012; Yue, 2013; Xiao et al., 2014) indicate they were derived mainly from magmatic sources (Fig. 12) (Chen, 2018). The δ^{34} S of the Guoluolongwa gold deposit shows a range of -6% - 5.2% (Chen, 2018 and references therein), a much wider range than that of mantle-derived sulfur ($\delta^{34}S=0\pm3\%$), indicating crustal sulfur may also contribute to the mineralization. Taker together, the origin of the Guoluolongwa gold deposit is different to that of typical orogenic gold deposits whose ore metal and fluids are considered to be derived from old metamorphic rocks (Goldfarb et al., 2005 and references therein). It is also noteworthy that there is a nominally ~ 20 Ma age gap

between the formations of the two gold-bearing vein types. Such a large age gap is likely to imply two separately magmatic events contributing to the formation of the two vein types instead of a continuous hydrothermal activity, which could also explain the different mineral assemblages between the two vein types. In summary, the Guoluolongwa gold deposit is considered to be of magmatic origin and formed in relation to multiple magmatic events.

For the Annage gold deposit, considering the close spatial relationship (<3km), contemporaneous mineralization (Figs. 7 - 10), identical mineralization styles and mineral assemblages (Figs. 5 - 6), and consistent H-O isotope compositions (Fig. 12) between the Guoluolongwa and Annage deposits, we contend that the two deposits should have similar origin, which suggests that mantle-derived fluids and metals contributed to the formation of the Annage deposit. However, the Osi values of the sulfides from this deposit are much higher than that of the mantle ($\sim 0.12 - 0.13$; Shirey and Walker, 1998), indicating another radiogenic source supplied the Os of this deposit. Considering the specific geological background of the two deposits, wall rocks, i.e. the Ordovician-Silurian (Naij Tal Group) and Proterozoic metamorphic rocks (Figs. 3 and 4), are likely candidates leading to the high Osi values of the stage II gold-bearing veins. The protoliths of the Ordovician-Silurian metamorphic rocks are mudstone and volcanic rocks that were formed in the marine environment (Chen et al., 2013; Chen et al., 2014). Thus, the mudstone should have a similar initial ¹⁸⁷Os/¹⁸⁸Os ratio with that of the Ordovician-Silurian sea water (0.28-1.08; 449 Ma; Finlay et al., 2010). Considering ~70 Ma (time gap between 449 Ma and 383 Ma) of ¹⁸⁷Os ingrowth from ¹⁸⁷Re decay, the ¹⁸⁷Os/¹⁸⁸Os ratio of the Ordovician-Silurian black shale (0.6

01		
02 03	446	to 1.9; Fig. 10) is much lower than the Osi value of the stage II veins, indicating that the
04 05	447	mudstone is likely not be the sole source of the Os in the stage $ $ veins. Further, the volcanic
07 07 08	448	rocks of the Naij Tal Group that formed at 429 Ma had a similar initial ¹⁸⁷ Os/ ¹⁸⁸ Os (429 Ma)
09 10	449	ratio with that of the mantle (Feng et al., 2009). Taking into account of the mantle-like initial
11 12 13	450	¹⁸⁷ Os/ ¹⁸⁸ Os ratios and Os accumulation due to ¹⁸⁷ Re decay, our calculation indicates that the
14 15	451	volcanic rocks must have ${}^{187}\text{Re}/{}^{188}\text{Os} > 4600$ to gain high ${}^{187}\text{Os}/{}^{188}\text{Os}$ ratio of 3.65 at 383 Ma,
16 17 18	452	which is unlikely to be true (Shirey and Walker, 1998). Taken together, the Ordovician-
19 20	453	Silurian metamorphic rocks (the host rocks of the Guoluolongwa gold deposit) are unlikely to
22 22 23	454	be the main Os source of the stage $$ II vein in the Annage gold deposit, which is consistent
24 25 26	455	with the low initial ¹⁸⁷ Os/ ¹⁸⁸ Os ratios of the Guoluolongwa gold deposit. The reported age for
20 27 28	456	the Proterozoic metamorphic rocks in the Gouli area is 904 Ma that represents the age of the
29 30 31	457	protoliths (Fig. 2; Chen et al., 2006). If these rocks are the source of the Os, the Proterozoic
32 33	458	metamorphic rocks would have ¹⁸⁷ Re/ ¹⁸⁸ Os values between 300 and 500 to produce the
34 35 26	459	observed Osi of the sulfides (Fig. 10). Geological units that have such high ¹⁸⁷ Re/ ¹⁸⁸ Os could
37 38	460	be basalts or black shales (Shirey and Walker, 1998) that are possible protoliths of the
39 40	461	Proterozoic metamorphic rocks given these rocks contain amphibolite and schist (Fig. 4).
42 43	462	Thus, it is likely that the Proterozoic metamorphic rocks are the main source of the Os
44 45 46	463	associated with stage II veins, which is supported by that the host rocks of orebody I, where
47 48	464	the samples collected, are Proterozoic metamorphic rocks (Fig. 4). Consequently, in addition
49 50	465	to the same mineralizing process in the Guoluolongwa gold deposit, the ore-forming fluids of
51 52 53	466	the Annage gold deposit likely reacted with the Proterozoic metamorphic wall rocks that
54		

released leached radiogenic Os to the fluids and changed the initial non-radiogenic Os compositions (0.12 - 0.13) to a radiogenic composition (3.65). However, whether this process added crustal ore metal (Os and Au) to the Annage gold deposit need further study.

470 5.4 Relationships between gold mineralization and tectonic-magmatic activities and
471 significance on regional exploration

Regionally, two gold-mineralizing epochs are revealed from our Re-Os data (Late Devonian and Early Carboniferous), published Ar-Ar dating and field observations (Triassic; e.g., Zhang et al., 2017). Interestingly, all the gold mineralizing events overlap with emplacement of A-type granites and mafic rocks (Fig. 13), which indicate the extensional regime within the East Kunlun Orogen. Considering the geological background of the East Kunlun Orogen (Chen et al., 2017), the two gold-mineralizing epochs should occur during the post-collisional stages related to the evolution of the Prototethys Ocean and Paleotethys Ocean, respectively (Fig. 13), with the ore-forming fluids being derived from a juvenile magma (Fig. 12). In this context, gold mineralization in the East Kunlun Orogen should be genetically related to post-collisional magmatism that supplied auriferous fluids.

From a more regional perspective, a number of gold deposits have been reported in the adjacent western Qinling (to the immediate west of the East Kunlun Orogen; Figs. 1A and B) (Liu et al., 2015) and Qilian-Qaidam (to the north of the East Kunlun Orogen; Figs. 1 A and B) (Zhang et al., 2005). In these areas, both lode and disseminated gold deposits are present and most of these gold deposits are hosted in Proterozoic – Early Paleozoic (Qilian-Qaidam) (Zhang et al., 2005) and Devonian (western Qinling) (Liu et al., 2015) (metamorphic) volcanic-sedimentary rocks, similar to those of gold deposits in the East Kunlun Orogen. Many of these gold deposits exhibit similar H-O isotopes with those in the East Kunlun Orogen (Fig. 12), indicating magmatic fluids with minor meteoric water played an important role in the mineralizing process (e.g., Fan et al., 2008; Liu et al., 2015; Zhang et al., 2017). In addition, the currently reported ages of these gold deposits display two peaks (Late Paleozoic and Triassic) of gold mineralization (Fig. 13). These ages, integrated with the geological background, indicate that most of these gold deposits were formed in collisional or post-collisional regime related to the evolution of the Prototethys Ocean and Paleotethys Ocean (Fig. 13). In summary, it is likely that common tectonic-magmatic activities controlled the formation of gold deposits from the East Kunlun Orogen, Qilian-Qaidam and western Qinling, all of which are located in the west of the Central Orogenic Belt (Fig. 1A) that are controlled by the evolution of the Prototethys Ocean and Paleotethys Ocean (Qiu and Wijbrans, 2008; Wu and Zheng, 2013). Thus, considering the common geological background and the gold ore-forming potential of the whole western Central Orogenic Belt, it is possible that more Late Paleozoic gold deposits may be revealed in these areas, especially in the western Qinling where multiple magmatic activities developed, but only indirect dating methods (e.g., Ar-Ar dating of micaceous minerals) have been applied (Fig. 13 and related references). 7. Conclusions Pyrites and chalcopyrites from gold-bearing ores in the Guoluolongwa gold deposit in the

1468507Pyrites and chalcopyrites from gold-bearing ores in the Guoluolongwa gold deposit in the14691470508Gouli goldfield yield Re-Os ages of 375 ± 11 Ma for the stage II pyrite-quartz vein and $354 \pm$

7 Ma for the stage III polymetallic sulfides-quartz vein, which are also recorded by the stage II pyrites from the adjacent Annage gold deposit (383 ± 6 Ma and 349 ± 6 Ma). These data, together with field observations indicate that at least three gold mineralizing events (two in Late Paleozoic and one in Late Triassic) occurred in the Gouli goldfield. The Osi values of sulfides indicate that Os and by inference, the ore metal (Au) of the Guoluolongwa deposits were derived from mantle-derived magma. A common ore metal source is also recommended for the Annage gold deposit, but the Os of this deposit is considered to be derived from both the mantle and Proterozoic wall rocks. Results from this study together with previously reported ages of gold mineralization in the East Kunlun Orogen and adjacent areas, indicate that there are two gold-mineralizing epochs (Late Paleozoic and Late Triassic) in the west of the Central Orogenic Belt (included western Qinling, East Kunlun Orogen and Qaidam-Qilian) and all gold mineralizing events occurred in collisional or post-collisional setting related to Tethyan evolution that controlled the whole Central Orogenic Belt. Thus, we infer that more Late Paleozoic gold deposits may be present in the west of Central Orogenic Belt.

523 8. Acknowledgments

This research was jointly supported by the Fundamental Research Funds for the Central Universities (CUGL17043), the Funds from the East China University of Technology (DHBK2018009 and GJJ180387), and the China Geological Survey (12120114081401, 12120114000701). DS acknowledges the Total Endowment Fund. We appreciate fieldwork assistance of Shaoqing Zhao, Zhen Wang, Xiaolong Wang, Yang Tang, Junlin Chen, Yujing Zhao, and Yan Liu from the China University of Geosciences.

1535 1536		
1537 1538	530	References
1539	531	
1540 1541 1542	532	Bao, G.P., V
1543 1544	533	geocher
1545 1546 1547	534	English
1548 1549	535	Bian, Q.T.,
1550 1551 1552	536	Gao, S.
1553 1554	537	of Buqi
1555 1556 1557	538	Science
1557 1558 1559	539	Chen, J., W
1560 1561	540	of the E
1562 1563 1564	541	Plateau
1565 1566 1567	542	p. 161-1
1568 1569	543	Chen, L., S
1570 1571 1572	544	Paleo-T
1572 1573 1574	545	dating c
1575 1576 1577	546	Chen, X.H.,
1578 1579	547	magmat
1580 1581 1582	548	zircon U
1583 1584	549	p. 350-3
1585 1586 1587	550	Chen, G.J.,
1588 1589	551	East Ku
1590		
1592		
1593		

9	501	
0 1 2	532	Bao, G.P., Wang, G.L., Liu, R., Han, H.C., 2013, Kayakedengtage area two basic dike rocks
2 3 4	533	geochemistry and significance: Northwestern Geology, v. 46, p. 37-43 (in Chinese with
5 6 7	534	English abs.).
8 9	535	Bian, Q.T., Li, D.H., Pospelov, I., Yin, L.M., Li, H.S., Zhao, D.S., Chang, C.F., Luo, X.Q.,
0 1 2	536	Gao, S.L., Astrakhantsev, O., Chamov, N., 2004, Age, geochemistry and tectonic setting
2 3 4	537	of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China: Journal of Asian Earth
5 6 7	538	Sciences, v. 23, p. 577-596.
8 9	539	Chen, J., Wei, J., Fu, L., Li, H., Zhou, H., Zhao, X., Zhan, X., Tan, J., 2017, Multiple sources
0 1 2	540	of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan
2 3 4	541	Plateau: Linking continental crustal growth with oceanic subduction: Lithos, v. 292-293,
5 6 7	542	p. 161-178.
8 9	543	Chen, L., Sun, Y., Pei, X.Z., Gao, M., Tao, F., Zhang, Z.Q., Chen, W., 2001, Northernmost
0 1 2	544	Paleo-Tethyan oceanic basin in Tibet: geochronological evidence from 40Ar/39Ar age
3 4	545	dating of Dur'ngoi ophiolite: Chinese Science Bulletin, v. 46, p. 1203-1205.
5 6 7	546	Chen, X.H., Gehrels, G., An, Y., Li, L., Jiang, R.B., 2012, Paleozoic and Mesozoic basement
8 9	547	magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS
0 1 2	548	zircon U-Pb geochronology and its geological significance: Acta Geologica Sinica, v. 86,
3 4	549	p. 350-369.
5 6 7	550	Chen, G.J., 2014, Metallogenesis of gold deposits in Gouli regional and peripheral area of
8 9	551	East Kunlun, Qinghai province: Ph.D. thesis, Changchun, Jilin University, 165p (in
0		

d mineralization in
d mineralization in
d mineralization in
d mineralization in
a mineralization in
China University of
5
J., Qi, Y.Q., 2016,
, , , , , ,
auli ana Eastam
ouil area, Eastern
on of Proto-Tethys
c)
5.).
6, Zircon SHRIMP
he southern margin
, p. 1311-1314 (in
LIVD Vong I
LI, A.D., Tallg, J.,
ic significance of
lun: Farth Science
iun. Durth Science
2014, Geochemical
,
· ··· NI-:: T-1 - ·····
om Naij Tai group,
inese with English
a in the terrestrial

1653		
1654		
1655		
1656	573	environment during the late Mesoproterozoic: Geology, v. 41, p. 583-586.
1657		
1658	671	Ding, C.M. 2007, Congris of Tanjianshan gold denosit: Oinghai Sajanaa and Taahnalagu, n
1659	574	Ding, C.M., 2007, Genesis of Tanjiansnan gold deposit. Qingnal Science and Technology, p.
1660		
1661	575	32-36 (in Chinese with English abs.).
1662		
1663	576	Ding O.F. Jin S.V. Wang G. Zhang D.J. 2012 Ore Forming fluid of the Gueluslangwa
1664	570	Ding, Q.F., Jin, S.K., Wang, G., Zhang, B.L., 2015, Ole-Follining fluid of the Guoluololigwa
1665		
1666	577	gold deposit in Dulan county, Qinghai province: Journal of Jilin University (Earth
1667		
1668	578	Science Edition) v 13 n 115 126 (in Chinese with English abs.)
1669	570	Science Edition), V. 45, p. 415-420 (in Chinese with English abs.).
1670		
1671	579	Esser, B.K., Turekian, K.K., 1993, The osmium isotopic composition of the continental crust:
1672		
1673	580	Geochimica Et Cosmochimica Acta y 57 n 3093-3104
1675	500	Sebelininea Et Cosmoenninea rieta, v. 57, p. 5055 5101.
1676		
1677	581	Fan, J.J., Lu, Y.M., Cong, Y.X., Chang, C.J., 2008, Study on 3 gold deposits varied in
1678		
1679	582	characteristics at the north slope of the Danghe Nanshan Mountain in the west Oilian
1680		
1681	500	
1682	583	Mountains: Contributions To Geology and Mineral Resources Research, v. 23, p. 48-53
1683		
1684	584	(in Chinese with English abs.).
1685		
1686	585	Fan LL Zhang XL Chang CL Zhang HV Cong VX Ren S 2006 Geochemistry
1687	202	ran, J.J., Zhang, A.J., Chang, C.J., Zhang, H.T., Cong, T.A., Ken, S., 2000, Ocochemistry
1688		
1689	586	and genesis of the Jijiaogou gold deposit in Subei, Gansu Province, China: Geology and
1690		
1691	587	Resources v 15 n 272-276 (in Chinese with English abs.)
1692	507	Resources, v. 10, p. 272 270 (in childse with English ubs.).
1693		
1694	588	Faure, G., Mensing, T.M., 2005, Isotopes: principles and applications: 3 ed. Hoboken, New
1695		
1696	589	Jersey, John Wiley & Sons, 897p.
1697		
1698	500	Fore CV On WI There DO Dere VV Du AD Li DV She HO 2000 De Or
1699	590	Feng, C. Y., Qu, W.J., Zhang, D.Q., Dang, A.Y., Du, A.D., LI, D.A., She, H.Q., 2009, Re-OS
1700		
1701	591	dating of pyrite from the Tuolugou stratabound Co(Au) deposit, eastern Kunlun Orogenic
1702		
1703	592	Belt northwestern China: Ore Geology Reviews y 36 n 213-220
1704	572	Den, northwestern ennia. Ore Geology Reviews, v. 50, p. 215 220.
1705		
1707	593	Feng, C.Y., 2002, Multiple orogenic processes and mineralization of orogenic gold deposits
1708		
1709		
1710		
1711		

1712		
1713		
1714		
1716	594	in the East Kunlun Orogen, Qinghai province: Ph.D. thesis, Beijing, Chinese Academy of
1717		
1718	595	Geological Sciences, 104p (in Chinese with English abs.).
1719		
1720	596	Feng CY Zhang DO Wang FC Li DX She HO 2004 Geochemical characteristics
1721		
1722	507	of are forming fluids from the gragonic An (and Sh) denosits in the sector Kunhun area
1723	577	of ore-forming fluids from the orogenic Air (and So) deposits in the eastern Kulliun area,
1724		
1725	598	Qinghai province: Acta Petrologica Sinica, v. 20, p. 949-960 (in Chinese with English
1720		
1728	599	abs.).
1729		
1730	600	Feng, J.Y., Pei, X.Z., Yu, S.L., Ding, S.P., Li, R.B., Sun, Y., Zhang, Y.F., Li, Z.C., Chen,
1731		
1732	601	V.V. Zhang, V.F. Chan, C.C. 2010. The discovery of the matic ultramatic malance in
1/33	001	T.A., Zhang, A.F., Chen, O.C., 2010, The discovery of the mane-utramane metalige in
1734		
1736	602	Kekesha area of Dulan County, East Kunlun region, and its LA-ICP-MS zircon U-Pb age:
1737		
1738	603	Geology in China, v. 37, p. 28-38 (in Chinese with English abs.).
1739		
1740	604	Finlay, A.J., Selby, D., Gr Cke, D.R., 2010, Tracking the Hirnantian glaciation using Os
1741		
1742	605	isotones: Farth and Planetary Science Letters y 293 n 339-348
1743	000	isotopes. Earth and Flahoury Science Letters, v. 295, p. 559 546.
1745	(0)	Coldford D. J. Dokon T. Duko D. Crowed D.I. Hart C.I. Consolin D. 2005 Distribution
1746	000	Goldialo, R.J., Bakel, T., Dube, B., Gloves, D.I., Hall, C.J., Gosselli, P., 2005, Distribution,
1747	•	
1748	607	character, and genesis of gold deposits in metamorphic terranes: Economic Geology
1749		
1750	608	100th Anniversary Volume, p. 407-450.
1752		
1753	609	He, D.F., Dong, Y.P., Zhang, F.F., Yang, Z., Sun, S.S., Cheng, B., Zhou, B., Liu, X.M., 2016,
1754		
1755	610	The 1.0 Ga S-type granite in the East Kunlun Orogen Northern Tibetan Plateau.
1756	010	The 1.6 Ou 5 type granice in the Last Kunnan Orogen, Northern Theean Thateau.
1757	(11	Implications for the Mass to Magnetonezzia testanic evolution. Issued of Asian Forth
1758	011	implications for the Meso-to Neoproterozoic tectonic evolution. Journal of Asian Earth
1759		
1761	612	Sciences, v. 130, p. 46-59.
1762		
1763	613	Hu, R.G., 2008, Research on geological-Geochemical characteristics and Genesis of the
1764		
1765	614	Guoluolongwa gold deposit in Qinghai Province: master thesis, Changsha, Central South
1766		
1769		
1769		
1770		

1771	
1772	
1773	
1774	615
1775	015
1776	
1777	616
1778	
1779	617
1780	01/
1781	
1782	618
1783	
1784	619
1785	01/
1786	(
1787	620
1788	
1789	621
1790	
1791	(00
1792	622
1793	
1794	623
1795	
1796	101
1797	624
1798	
1799	625
1800	
1801	404
1802	020
1803	
1804	627

1774 1775	615	University, 99p (in Chinese with English abs.).
1776 1777 1778	616	Kong, H.L., Li, J.C., Li, Y.Z., Jia, Q.Z., Yang, B.R., 2014, Geochemistry and zircon U-Pb
1779 1780	617	geochronology of Annage diorite in the eastern section from East Kunlun in Qinghai
1781 1782 1783	618	province: Geological Science and Technology Information, v. 33, p. 11-17 (in Chinese
1784 1785	619	with English abs.).
1786 1787 1788	620	Lawley, C., Selby, D., Imber, J., 2013, Re-Os molybdenite, pyrite, and chalcopyrite
1789 1790 1791	621	geochronology, Lupa goldfield, southwestern Tanzania: tracing metallogenic time scales
1792 1793	622	at midcrustal shear zones hosting orogenic Au deposits: Economic Geology, v. 108, p.
1794 1795 1796	623	1591-1613.
1797 1798	624	Li, R.B., Pei, X.Z., Li, Z.C., Pei, L., Liu, C.J., Chen, Y.X., Chen, G.C., Liu, Z.Q., Yang, J.,
1799 1800 1801	625	2015, Geochemistry and zircon U-Pb geochronology of granitic rocks in the Buqingshan
1802 1803	626	tectonic mélange belt, northern Tibet Plateau, China and its implications for Prototethyan
1804 1805 1806	627	evolution: Journal of Asian Earth Sciences, v. 105, p. 374-389.
1807 1808	628	Li, R.B., Pei, X.Z., Li, Z.C., Sun, Y., Feng, J.Y., Lei, P., Chen, G.C., Liu, C.J., Chen, Y.X.,
1809 1810 1811	629	2013, Geochemical features, age, and tectonic significance of the Kekekete mafic-
1812 1813	630	ultramafic rocks, East Kunlun Orogen, China: Acta Geologica Sinica, v. 87, p. 1319-
1814 1815 1816	631	1333.
1817 1818	632	Li, B.Y., Shen, X., Chen, G.J., Yang, Y.Q., Li, Y.S., 2012, Geochemical features of ore-
1819 1820 1821	633	forming fluids and metallogenesis of vein I in Asiha gold ore deposit, Eastern Kunlun,
1822 1823	634	Qinghai province: Journal of Jilin University (Earth Science Edition), v. 42, p. 1676-1687
1824 1825 1826 1827	635	(in Chinese with English abs.).
1020		

1831		
1832		
1833	636	Li, B.Y., Sun, F.Y., Yu, X.F., Qian, Y., Wang, G., Yang, Y.Q., 2012, U-Pb dating and
1834		
1836	637	geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted
1837		
1838	628	basement and granitic helt: Acta Petrologica Sinica v 28 n 1163 1172 (in Chinese with
1839	030	basement and graintic beit. Acta reuologica Sinica, v. 28, p. 1103-1172 (in Chinese with
1840		
1841	639	English abs.).
1842		
1843	640	Li, H.M., Wang, C.L., Liu, Z.W., Liu, J.Q., 2003, Two different kinds of gold deposits on
1844		
1846	641	northern slope of Danghenanshan area in South Qilian Mountains: Mineral Deposits, v.
1847		
1848	642	22 n 191-198 (in Chinese with English abs.)
1849	072	22, p. 191 196 (in chinese with English dos.).
1850	(10	
1851	643	Li, J.C., Jia, Q.Z., Du, W., Su, Y.Z., Kong, H.L., Nan, K.E.W., Yang, B.R., 2014, LA-ICP-
1852		
1000	644	MS zircon dating and geochemical characteristics of quartz diorite in Asiha gold deposit
1855		
1856	645	in east segment of the Eastern Kunlun: Journal of Jilin University (Earth Science Edition),
1857		
1858	646	v. 44, p. 1188-1199 (in Chinese with English abs.).
1859		
1860	647	Li W.V. 2008 Geochronology and geochemistry of the ophiolites and island-arc-type
1861	047	Li, W.T., 2008, Geoemonology and geoenemistry of the opmontes and island-are-type
1863	(10	
1864	648	igneous rocks in the Western Qinling orogen and the Eastern Kunlun orogen: implication
1865		
1866	649	for the evolution of the Tethyan Ocean: Ph.D. thesis, Hefei, University of Science and
1867		
1868	650	Technology of China, 1-174p (in Chinese with English abs.).
1869		
1871	651	Liu, J., Liu, C., Carranza, E.J.M., Li, Y., Mao, Z., Wang, J., Wang, Y., Zhang, J., Zhai, D.,
1872		
1873	652	Zhang H Shan I Zhu I Lu R 2015 Geological characteristics and ore-forming
1874	052	Zhang, II., Shan, E., Zhu, E., Eu, R., 2015, Geological characteristics and ore-forming
1875	(50	
1876	653	process of the gold deposits in the western Qinling region, China: Journal of Asian Earth
18//		
1879	654	Sciences, v. 103, p. 40-69.
1880		
1881	655	Liu, L., Liao, X.Y., Wang, Y.W., Wang, C., Santosh, M., Yang, M., Zhang, C.L., Chen, D.L.,
1882		
1883	656	2016, Early Paleozoic tectonic evolution of the North Oinling Orogenic Belt in Central
1884		
1885		
1887		
1888		
-		

1889 1890		
1891		
1892	657	China: Insights on continental deep subduction and multiphase exhumation: Farth-
1893	037	ennia. Insignes on continental deep subduction and mattiphase exhamation. Data
1894	(=0	
1895	658	Science Reviews, v. 159, p. 58-81.
1896		
1897	659	Liu, C.D., Zhang, W.Q., Mo, X.X., Luo, Z.H., Yu, X.H., Li, S.W., Zhao, X., 2002, Features
1898		
1899	660	and origin of matic microgramular enclayes in the Yuegelu gramite in the Fastern Kunlun:
1900	000	and origin of marie interogranular cheraves in the Taegera granite in the Eastern Raman.
1901		
1902	661	Geological Bulletin of China, v. 21, p. 739-744 (in Chinese with English abs.).
1904		
1905	662	Liu, S., Li, J., Li, Y., Li, D., Zhang, A., He, S., 2016, Geochemical Characteristics of the
1906		
1907	663	Volcanic Rocks from the Maoniushan Formation in the Dadakenwulashan Ph-Zn Deposit
1908		
1909		
1910	004	East Kuniun and its Significance: Northwestern Geology, V. 49, p. 11-24 (in Chinese
1911		
1912	665	with English abs.).
1913		
1915	666	Liu, Z.O., Pei, X.Z., Li, R.B., Li, Z.C., Zhang, X.F., Liu, Z.G., Chen, G.C., Chen, Y.X., Ding,
1916		
1917	667	S.P. Guo, I.F. 2011, I.A. ICP MS ziroon, U.Ph. googhronology of the two guites of
1918	007	S.I., Ouo, J.F., 2011, LA-ICI-WS Zircon O-10 geochronology of the two suites of
1919		
1920	668	ophiolites at the Buqingshan area of the A'nyemaqen Orogenic Belt in the southern
1921		
1922	669	margin of East Kunlun and its tectonic implication: Acta Geologica Sinica, v. 85, p. 185-
1923		
1924	670	194 (in Chinese with English abs.)
1926		
1927	171	Ly L Wy 7 H Hy D C Detrick LD Has S They C L 2010 Times H Dh age for
1928	0/1	Lu, L., Wu, Z.H., Hu, D.G., Patrick, J.B., Hao, S., Zhou, C.J., 2010, Zircon U-Po age for
1929		
1930	672	rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun
1931		
1932	673	Mountains: Acta Petrologica Sinica, v. 26, p. 1150-1158 (in Chinese with English abs.).
1933		
1934	671	Lu I Zhang VI Wu ZH Hu DG 2013 Zircon ILPh dating of Early Paleozoic
1935	074	Lu, L., Zhang, T.L., Wu, Z.H., Hu, D.O., 2019, Zheon O To during of Early Tuleozole
1937	175	
1938	6/5	granites from the East Kunlun Mountains and its geological significance: Acta
1939		
1940	676	Geoscientica Sinica, v. 34, p. 447-454 (in Chinese with English abs.).
1941		
1942	677	Ludwig, K.R., 2012, User's manual for Isoplot 3.75—A geochronological toolkit for
1943		
1944		
1945		
1940		

1948		
1949		
1950		
1951	678	Microsoft Excel: Berkeley, Berkeley Geochronology Center Special Publication No. 5, 1-
1952		
1953	679	75n
1904	0, ,	10p.
1955	(0.0	
1950	680	Ma, C.Q., Xiong, F.H., Yin, S., Wang, L.X., Gao, K., 2015, Intensity and cyclicity of
1958		
1959	681	orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern
1960		
1961	682	Kunlun, northern Oinghai-Tibetan Plateau: Acta Petrologica Sinica y 31 n 3555-3568
1962	002	Rumun, normenn einghur ribetan riatetat. rieta rettologieta Sinieta, v. 51, p. 5555 5566
1963	(0.0	
1964	683	(in Chinese with English abs.).
1965		
1966	684	Mao, J.W., Zhang, Z.H., Yang, J.M., Wang, Z.L., 2000, Fluid inclusions of shear zone type
1967		
1968	685	gold deposits in the western part of North Oilian Mountain. Mineral Deposits v 19 p 9-
1909	005	gola deposito in the western part of North Qinan Mountain. Mineral Deposito, V. 19, p. 9
1970	(0)	
1972	686	16 (in Chinese with English abs.).
1973		
1974	687	Meisel, T., Walker, R.J., Morgan, J.W., 1996, The osmium isotopic composition of the
1975		
1976	688	Earth's primitive upper mantle. Nature v 383 p 517-520
1977	000	Lutin's primitive upper manife. Future, V. 505, p. 517 520.
1978	(00	
1979	689	Meng, F.C., Cui, M.H., Wu, X.K., Wu, J.F., Wang, J.H., 2013, Magmatic and metamorphic
1980		
1981	690	events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains,
1982		
1903	691	Northwest China: Acta Petrologica Sinica v 29 p 2107-2122 (in Chinese with English
1985	0,1	Torutteet ennue Teurorogieu Sinieu, († 2), p. 2107 2122 (in enniete With English
1986	(00	1)
1987	692	ads.).
1988		
1989	693	Mo, X.X., Luo, Z.H., Deng, J.F., Yu, X.H., Liu, C.D., Chen, H.W., Yuan, W.M., Liu, Y.H.,
1990		
1991	694	2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt: Geological
1992		
1993	405	Journal of China Universities v 12 n 402 414 (in Chinasa with English and)
1994	075	Journal of China Oniversities, v. 15, p. 405-414 (in Chinese with English abs.).
1995		
1990	696	Morelli, R., Creaser, R.A., Seltmann, R., Stuart, F.M., Selby, D., Graupner, T., 2007, Age
1998		
1999	697	and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-
2000		
2001	698	Os-He isotones in arsenonyrite: Geol. v. 35 n. 795
2002	070	05 ne isotopes in disenopynie. 0001, v. 55, p. 775.
2003		
2004		
2005		
2006		

2007							
2008							
2009							
2010	699	Morelli, R.M., Bell, C.C., Creaser, R.A., Simonetti, A., 2010, Constraints on the genesis of					
2011							
2012	700	gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota fr					
2014							
2015	701	rhenium-osmium sulfide geochronology: Mineralium Deposita y 45 p 461-480					
2016	/01	memum osimum suntae geoemonology. Mineranum Deposita, v. 45, p. 401 400.					
2017							
2018	702	Morelli, R.M., Creaser, R.A., Bell, C.C., 2005, Re-Os arsenopyrite geochronology of the					
2019							
2020	703	Homestake gold deposit, Black Hills, South Dakota, and implication for chronometer					
2021							
2022	704	closure temperature: Salt Lake City					
2023	704	elosure temperature. Sait Eake enty.					
2024							
2025	/05	Nowell, G.M., Luguet, A., Pearson, D.G., Horstwood, M.S.A., 2008, Precise and accurate					
2027							
2028	706	186 Os/ 188 Os and 187 Os/ 188 Os measurements by multi-collector plasma ionisation					
2029							
2030	707	mass spectrometry (MC-ICP-MS) part I: Solution analyses: Chemical Geology v 248 p					
2031	, 0,	muss spectrometry (me fer mis) part it solution analyses. Chemical Geology, v. 210, p.					
2032	700	2(2,202					
2033	708	363-393.					
2034							
2035	709	Qi, X.P., Yang, J., Fan, X.G., Cui, J.T., Cai, Z.F., Zeng, X.W., Wei, W., Qu, X.X., Zai, L.M.,					
2030							
2037	710	2016. Age, geochemical characteristics and tectonic significance of Changshishan					
2039							
2040	711	anniality in control East Kumhun testania málanga halt alang the cast gestion of East					
2041	/11	opinionie in central East Kulturi tectoric metange beit along the east section of East					
2042							
2043	712	Kunlun Mountains: Geology in China, v. 43, p. 797-816 (in Chinese with English abs.).					
2044							
2045	713	Qiu, H.N., Wijbrans, J.R., 2008, The Paleozoic metamorphic history of the Central Orogenic					
2046							
2047	714	Belt of China from 40 Ar/39 Ar geochronology of eclogite garnet fluid inclusions: Earth					
2040	, .	Beit of china from to the system geochronology of cologice gamet fraid morasions. Earth					
2050	745						
2051	/15	and Planetary Science Letters, v. 268, p. 501-514.					
2052							
2053	716	Selby, D., 2007, Direct Rhenium-Osmium age of the Oxfordian-Kimmeridgian boundary,					
2054							
2055	717	Staffin bay, Isle of Skye, U.K., and the Late Jurassic time scale: Norwegian Journal of					
2056							
2057	710	G_{22}					
2058	/10	Ocology, v. 29, p. 291-299.					
2059							
2061	719	Selby, D., Creaser, R.A., 2004, Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os					
2062							
2063							
2064							
2065							

2067		
2068		
2069	720	isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age
2070		
2071	704	
2072	/21	determinations, and implications for the decoupling of Re and Os within molybdenite:
2073		
2074	722	Geochimica Et Cosmochimica Acta, v. 68, p. 3897-3908.
2075		
2076	700	Salby D. Craager D.A. Hart C. Dembach C.S. Thempson J. Smith M.T. Dalde A.A.
2077	123	Seloy, D., Cleaser, K.A., Hart, C., Koliloach, C.S., Hiompson, J., Shinui, M.T., Dakke, A.A.,
2078		
2079	724	Goldfarb, R.J., 2002, Absolute timing of sulfide and gold mineralization: A comparison
2080		
2081	725	of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt Alaska.
2002	723	of ite os moryodenite and iti iti inica methods from the Tintina Gold Delt, Huska.
2003		
2004	726	Geology, v. 30, p. 791-794.
2005		
2000	727	Selby, D., Kelley, K.D., Hitzman, M.W., Zieg, J., 2009, Re-Os sulfide (bornite, chalcopyrite,
2088		
2089	700	and muite) contained in the contract hasted common demonity of Dates Constructions
2090	/28	and pyrite) systematics of the carbonate-nosted copper deposits at Ruby Creek, southern
2091		
2092	729	Brooks range, Alaska: Economic Geology, v. 104, p. 437-444.
2093		
2094	720	Shiray S.B. Walker, P.I. 1008. The Re Os isotope system in cosmochemistry and high
2095	/30	Sincey, S.D., Walker, R.J., 1998, The Re-OS isotope system in cosmochemistry and ingi-
2096		
2097	731	temperature geochemistry: Annual Review of Earth and Planetary Sciences, v. 26, p.
2098		
2099	732	423-500
2100		
2101	700	
2102	/33	Song, S., Niu, Y., Su, L., Zhang, C., Zhang, L., 2014, Continental orogenesis from ocean
2103		
2104	734	subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The
2105		
2106	725	example of the North Osidam LIHPM belt NW China: Earth Science Reviews y 120 n
2107	/55	example of the North Qaldam Off W ben, NW China. Earth-Science Reviews, V. 129, p.
2100		
2109	736	59-84.
2110		
2112	737	Stein, H., Scherstén, A., Hannah, J., Markey, R., 2003, Subgrain-scale decoupling of Re and
2113		
2114	700	197 Os and assessment of loss schlation ICD MS and dating in maluh denites Casahimias
2115	/30	187 Os and assessment of faser ablation ICP-IMS spot dating in morybuenne. Geochimica
2116		
2117	739	Et Cosmochimica Acta, v. 67, p. 3673-3686.
2118		
2119	740	Stein H.I. Morgan I.W. Scherstén A 2000 Re-Os dating of low-level highly radiogenic
2120	, 10	stem, met, morgan, ett., senersten, m., 2000, ne os duting of low level inging faulogenie
2121		
2122		
2123		
2124		

2125							
2120							
2127	711	(LILID) sulfides. The Harris cald densit southwest Sweden records continental scale					
2129	741	(LLTIK) sumues. The mainas gold deposit, southwest Sweden, records continental-sca					
2130							
2131	742	tectonic events: Economic Geology, v. 95, p. 1657-1671.					
2132							
2133	743	Tao, J.J., 2014, Characteristics of fluid inclusions and genesis of Annage gold deposit,					
2134							
2135	711	Oinghai Province: master thesis Changeles Control South University 66n (in Chinese					
2136	/44	Qinghai Province. master mesis, Changsha, Central South Oniversity, oop (in Chinese					
2137							
2130	745	with English abs.).					
2139							
2140	746	Wang, G.C., Chen, N.S., Zhu, Y.H., Zhang, K.X., 2003, Late Caledonian ductile thrusting					
2142							
2143	7/7	deformation in the Central Fast Kunlun Belt Oinghai. China and its significance:					
2144	/4/	deformation in the central Last Kullian Den, Qinghai, ennia and its significance.					
2145							
2146	748	evidence from geochronology: Acta Geologica Sinica, v. 77, p. 311-319.					
2147							
2148	749	Wang, J., Li, J., Zhao, X., Ma, C., Qu, W., Du, A., 2008, Re-Os dating of pyrrhotite from the					
2149							
2150	750	Chaoshan gold skarn eastern Yangtze craton eastern China. International Geology					
2152	,	enacenan gera enann, eastern rangeze eraten, eastern ernna. mernational everegy					
2152	754	B					
2154	/51	Review, V. 50, p. 592-400.					
2155							
2156	752	Wang, G., 2012, Study on geological characteristics and genesis of Guoluolongwa gold					
2157							
2158	753	deposit in Qinghai province: master thesis, Changchun, Jilin University, 86p (in Chinese					
2159							
2160	754	with English abs)					
2162							
2163	755	Wai P 2015 Study on the geological characteristic and tectoric attribute of the ophicitic					
2164	/55	wei, B., 2015, Study on the geological characteristic and tectome attribute of the opnionte					
2165	/						
2166	/56	and island-arc-type igneous rocks, central belt of East Kunlun (eastern section): master					
2167							
2168	757	thesis, Xi'an, Chang'an University, 141p (in Chinese with English abs.).					
2109							
2170	758	Wei, X.L., Zhang, D.X., Gan, C.P., Chen, L.B., 2016. Discovery and geological significance					
2172							
2173	759	of Neoproterozoic intrusive body in the Kaerqueka area of the East Kunlun mountain:					
2174	///	of Neoproterozoie mitusive obdy in the Kaerqueka area of the East Kumun mountain.					
2175	7/0						
2176	/60	Contributions to Geology and Mineral Resources Research, v. 31, p. 236-244 (in Chinese					
21/7							
∠1/Ŏ 2170	761	with English abs.).					
2180							
2181							
2182							
2183							

2184							
2185							
2186							
2187	762	Wu, Y.B., Zheng, Y.F., 2013, Tectonic evolution of a composite collision orogen: An					
2188							
2189	763	overview on the Oinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central Chir					
2190	,	overview on the Annual Longour Hongan Duole Suit Grogenie ook in central Chilla.					
2191							
2192	764	Gondwana Research, v. 23, p. 1402-1428.					
2194							
2195	765	Xia, R., Wang, C., Qing, M., Deng, J., Carranza, E.J.M., Li, W., Guo, X., Ge, L., Yu, W.,					
2196							
2197	766	2015 Molybdenite Re-Os zircon U-Pb dating and Hf isotonic analysis of the					
2198	700	2013, Worybuchite Re-03, Zheon 0-10 dating and Th isotopic anarysis of the					
2199							
2200	767	Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province,					
2201							
2202	768	China: Ore Geology Reviews, v. 66, p. 114-131.					
2203							
2204	769	Xia R. Wang C.M. Oing M. Li W.L. Carranza F.I.M. Guo, X.D. Ge, I.S. Zeng, G.Z.					
2205	/0/	$X_{1a}, X_{.}, wang, C_{.}w_{.}, Q_{ng}, w_{.}, L_{i}, w_{.L.}, Carranza, L.J.w_{.}, Gub, X_{.}D_{.}, Ge, L.S., Zeng, G.Z.,$					
2200							
2207	770	2015, Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan					
2209							
2210	771	granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: record of					
2211							
2212	772	closure of the Paleo-Tethys: Lithos $x 234 \text{ n} 47-60$					
2213	//2	closure of the 1 alco-1 ethys. Lithos, v. 234, p. 47-60.					
2214							
2215	773	X1ao, Y., Feng, C.Y., L1, D.X., L1u, J.N., 2014, Chronology and fluid inclusions of the					
2216							
2217	774	Guoluolongwa gold deposit in Qinghai province: Acta Geologica Sinica, v. 88, p. 895-					
2218							
2219	775	902 (in Chinese with English abs.)					
2220	//5	yoz (in chinese with English dos.).					
2221	/						
2223	//6	Yang, J.S., Robinson, P.T., Jiang, C.F., Xu, Z.Q., 1996, Ophiolites of the Kunlun Mountains,					
2224							
2225	777	China and their tectonic implications: Tectonophysics, v. 258, p. 215-231.					
2226							
2227	778	Yang SH Ou WI Tian YI. Chen IF Yang G Du A.D. 2008 Origin of the					
2228	//0						
2229	770						
2230	//9	inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu suifide ore deposit, China: Post-					
2231							
2232	780	segregation diffusion of Os: Chemical Geology, v. 247, p. 401-418.					
2233							
2235	781	Yang, J.G., Yang, L.H., Ren, Y.X., Li, Z.P., Song, Z.B., 2005, Isotopic Geochronology of the					
2236							
2237	700	are forming process in the Hanshan cold denosit of the North Oilion Mountainer Acts					
2238	102	ore-rornning process in the manshan gold deposit of the North Qillian Mountains. Acta					
2239							
2240							
2241							
2242							

2243		
2244		
2245		
2246	783	Geoscientica Sinica, v. 26, p. 315-320 (in Chinese with English abs.).
2247		
2248	784	Vang X B. Vang B R. Wang X V. 2006. Gold occurrence in Guoluolongwa gold deposit
2249	704	Tang, A.D., Tang, D.K., Wang, A.T., 2000, Oold occurrence in Guoluolongwa gold deposit
2250		
2251	785	of Qinghai Province: Geology and Prospecting, v. 42, p. 57-59 (in Chinese with English
2232		
2200	786	abs.).
2255		
2256	707	Ving U.F. Zhang V.V. 2002 Decignal geological survey report of Decele's Depublic of
2257	/8/	ring, H.F., Zhang, K.X., 2005, Regional geological survey report of People's Republic of
2258		
2259	788	China: Dongjicuonahu (I47C001002, Scale: 1:250000): Wuhan, China University of
2260		
2261	789	Geosciences Press 457n (in Chinese)
2262	/0/	Subsciences (1955, 197) (in ennièse).
2263		
2264	790	Yue, W.H., 2013, Geological, geochemical and genetic study of typical deposits from Gouli
2265		
2266	791	gold field, Eastern of East Kunlun: Ph.D. thesis, Kunming, Kunming University of
2267		
2268	792	Science and Technology 207n (in Chinese with English abs.)
2269	//2	Science and Teenhology, 207p (in Chinese with English dos.).
2270		
2271	793	Yue, W.H., Gao, J.G., Zhou, J.X., 2013, LA-ICP-MS Zircon U-Pb Ages and
2273		
2274	794	Lithogeochemistry of Basic Dykes in the Guoluolongwa gold ore Field, Qinghai
2275		
2276	705	Province Chine: Journal of Mineralagy and Petrology y 22 n 02 102 (in Chinese with
2277	175	Trovince, China. Journal of Wineralogy and Teurology, V. 55, p. 55-102 (in Chinese with
2278		
2279	796	English abs.).
2280		
2281	797	Yue, W.H., Zhou, J.X., Gao, J.G., Huang, Y.H., Jia, F.J., 2017, Geochemistry, zircon U-Pb
2282		
2283	700	abranciant and goological implications of Sodari disbass. Dulan county. Oinstein
2284	/70	chronology and geological implications of Sederi diabase, Duran county, Qinghar
2285		
2200	799	province: Bulletin of Mineralogy, Petrology and Geochemistry, v. 36, p. 270-278 (in
2288		
2289	800	Chinese with English abs.).
2290		
2291	001	Zhang I. Ma C. Li, I. Dan V. 2017. A paggible genetic relationship between gragenia
2292	001	Zhang, J., Ma, C., Li, J., Fan, T., 2017, A possible genetic relationship between orogenic
2293		
2294	802	gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen,
2295		
2296	803	western China: Ore Geology Reviews, v. 81, p. 342-357.
2297		
2298		
2299		
2300 2301		
2001		

2302		
2303		
2304		
2305	804	Zhang, J.Y., Ma, C.Q., Xiong, F.H., Liu, B., Li, J.W., Pan, Y.M., 2014, Early Paleozoic high-
2306		
2307	805	Mg diorite-granodiorite in the eastern Kunlun Orogen, western China: Response to
2309		
2310	004	continental colligion and slop break off: Lithes v 210 211 n 120 146
2311	000	continental conision and slab bleak-off. Litnos, v. 210-211, p. 129-146.
2312	_	
2313	807	Zhou, Z., Mao, S., Chen, Y., Santosh, M., 2016, U-Pb ages and Lu-Hf isotopes of detrital
2314		
2315	808	zircons from the southern Qinling Orogen: Implications for Precambrian to Phanerozoic
2316		
2317	809	tectonics in central China: Gondwana Research y 35 n 323-337
2310	007	tectonics in contral china. Contavana resolution, v. 55, p. 525-557.
2320	040	These DO Deve VV She HO L: DV Fire CV L: LW 2005 An An define of
2321	810	Zhang, D.Q., Dang, X.Y., Sne, H.Q., Li, D.X., Feng, C.Y., Li, J.W., 2005, Ar-Ar dating of
2322		
2323	811	orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its
2324		
2325	812	geological significance: Mineral Deposits, v. 24, p. 87-98 (in Chinese with English abs.).
2326		
2327	Q12	Zhang D.O. Fang C.V. Li D.V. Vu W.V. Van S.H. Sha H.O. Dong V.L. Cui V.H.
2328	013	Zhang, D.Q., Feng, C. I., LI, D.A., Au, W. I., Tan, S.H., She, H.Q., Dong, T.J., Cui, T.H.,
2329	_	
2331	814	2001, Orogenic gold deposits in the north Qaidam and East Kunlun Orogen, west China:
2332		
2333	815	Mineral Deposits, v. 20, p. 137-146 (in Chinese with English abs.).
2334		
2335	816	Zhang, Y.L., Hu, D.G., Shi, Y.R., Lu, L., 2010, SHRIMP zircon U-Pb ages and tectonic
2336		
2337	Q17	significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt
2338	017	significance of Maoniushan Formation Volcance focks in East Rumun orogenic ben,
2339		
2341	818	China: Geological Bulletin of China, v. 29, p. 1614-1618 (in Chinese with English abs.).
2342		
2343	819	Zhao, C.S., 2004, Gold, silver metallogeny in Eastern Kunlun Orogenic Belt, Qinghai
2344		
2345	820	province [.] Ph D thesis Changchun Jilin University 144p (in Chinese with English abs.)
2346		$\mathbf{F} = \mathbf{F} = $
2347	001	Zhao LW 2008 Study on orogania gold matellagenia garies in Fastern Kunlun Orogania
2348	021	Zhao, J.W., 2008, Study on orogenic gold metanogenic series in Eastern Kunnun Orogenic
2349	_	
2351	822	Belt, Qinghai Province: Ph.D. thesis, Changchun, Jilin University, 189p (in Chinese with
2352		
2353	823	English abs.).
2354		
2355	824	Zhu, Y.H., Pan, Y.M., Zhang, K.X., Chen, N.S., Wang, G.C., Hou, G.J., 2000. Mineralogical
2356	-	, , , , , , , , ., ., .,, ,, <u>,</u> ,, <u>,</u> , <u></u>
2357		
2358		
23280		
2000		

2361 2362 2363		
2364 2365	825	characteristics and petrogenesis of ophiolites in East Kunlun Orogenic Belt, Qinghai
2303 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2377 2378 2377 2378 2377 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2400 2411 2412 2413 2414 2415 2416 2417 2418 2419	826	Province: Acta Mineralogica Sinica, v. 20, p. 128-142 (in Chinese with English abs.).

Figure captions

Fig. 1 (A) Tectonic map of China showing the location of Central Orogenic Belt and significant gold producing areas (after Li et al., 2015). (B) Tectonic divisions of the Qinghai-Tibetan plateau showing the location of the East Kunlun Orogen (after Xia et al., 2015). (C) Simply Geological map of the East Kunlun Orogen showing the main gold deposits/fields (after Xia et al., 2015). Fig. 2 Geological map of the Gouli goldfield showing the distribution of the main gold deposits (after unpublished geological report). Ages labeled on the map are zircon U-Pb ages and the related references are as follows: (1) (Chen et al., 2012); (2) (Liu et al., 2002); (3) (J.J. Chen et al. in prep.); (4) (Ying and Zhang, 2003); (5) (our unpublished data); (6) (Chen et al., 2016); (7) (our unpublished data); (8) (Li et al., 2012); (9) (Yue et al., 2017); (10) (Chen et al., 2006). Fig. 3 (A) Geological map of the Guoluolongwa gold deposit showing the locations of the main gold orebodies and the profile A-B. (B) Representative cross-section in the Guoluolongwa gold deposit (after unpublished geological report). Ages in (A) are zircon U-Pb ages from our unpublished data and Yue et al. (2013). Fig. 4 (A) Geological map of the Annage gold deposit showing the distribution of the main gold orebodies and the location of profile A-B (after Chen, 2014). (B) Representative cross-

section in the Annage gold deposit (after unpublished geological report). Age of diorite in (A) is zircon U-Pb age from Kong et al. (2014). Fig. 5 Photographs and photomicrographs showing representative veins and minerals in the Guoluolongwa (A-I) and Annage (J-L) gold deposits. (A) Crosscutting relationship of the pyrite-quartz vein, polymetallic sulfides-quartz vein, gabbro, and phyllite. (B) Pyrite-quartz vein cutting cross early quartz vein. (C) Polymetallic sulfides-quartz ore. (D) Native goldchalcopyrite-sphalerite vein filling the crack of pyrite. (E) Native gold occurring between sphalerite and quartz grains. (F) Chalcopyrite-galena vein; (G) Eutectoid of sphalerite and chalcopyrite. (H) Polymetallic sulfides-quartz vein cut cross early pyrite-quartz vein. (I) Polymetallic sulfides-quartz vein. (J) Pyrite-quartz vein with local massive pyrite. (K) Pyrite-quartz ore. (L) Coarse pyrite. Fig. 6 Mineral paragenetic sequence of Guoluolongwa and Annage deposits. Fig. 7 Re-Os plots of stage || pyrite-quartz vein in the Guoluolongwa gold deposit: (A) ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot; (B) ¹⁸⁷Re vs. ¹⁸⁷Os^r plot; (C) Weight average of Re-Os model dates.

deposit: (A) ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot; (B) ¹⁸⁷Re vs. ¹⁸⁷Os^r plot; (C) Weight average of Re-Os model dates. Fig. 9 Re-Os plots of stage gold-bearing vein in the Annage gold deposit: (A) ¹⁸⁷Re/¹⁸⁸Os vs. ¹⁸⁷Os/¹⁸⁸Os plot; (B) ¹⁸⁷Re vs. ¹⁸⁷Os^r plot; (C) Weight average of Re-Os model dates. Fig. 10 Initial ¹⁸⁷Os/¹⁸⁸Os vs. T (Ma) of sulfides from the Guoluolongwa (A, B) and Annage (C) gold deposits. The number "48" overriding the grey lines is the present-day continental crustal ¹⁸⁷Re/¹⁸⁸Os value used for calculating evolution lines of crust with different ages (Esser and Turekian, 1993). The numbers 300 and 500 overriding orange lines are assumed present-day ¹⁸⁷Re/¹⁸⁸Os values used for calculating corresponding crustal evolution lines. Present-day ¹⁸⁷Os/¹⁸⁸Os and ¹⁸⁷Re/¹⁸⁸Os values used for calculating the primitive upper mantle evolution line are 0.1290 and 0.428, respectively (Meisel et al., 1996). Os composition of the Ordovician black shales is also shown for comparison (Finlay et al., 2010). The initial ${}^{187}\text{Os}/{}^{188}\text{Os}$ ratios present here are from samples with ${}^{\%}{}^{187}\text{Os}{}^{r} < 90$ %. Fig. 11 initial ¹⁸⁷Os/¹⁸⁸Os vs. 1/Os of sulfides from Guoluolongwa (A, B) and Annage (C) gold deposits. The initial ¹⁸⁷Os/¹⁸⁷Os ratios used were calculated back to 202.7 Ma (Xiao et al., 2014).

Fig. 8 Re-Os plots of stage III polymetallic sulfides-quartz vein in the Guoluolongwa gold

2598		
2599		
2600	888	Fig. 12 H-O isotopic characteristics of Guoluolongwa and Annage gold deposits. The H-O
2601		
2602	000	
2603	889	isotopic data of the Guoluolongwa and Annage gold deposit are from fue (2013), Xiao et al.
2604		
2605	890	(2014), Wang (2012), Hu (2008) and Tao (2014), H-O isotopic data of gold deposits from the
2606		
2607		
2608	891	East Kunlun Orogen (Feng et al., 2004; Zhao, 2008; Li et al., 2012; Tao, 2014), western
2609		
2610	892	Oinling (Liu et al., 2015 and references therein) and Oaidam-Oilian (Mao et al., 2000; Li et
2611		
2612	000	
2613	893	al., 2003; Fan et al., 2006; Ding, 2007) are also shown for comparison. GLLW-
2614		
2615	894	Guoluolongwa gold deposit; ANG- Annage gold deposit; EKO- East Kunlun Orogen.
2616		
2617	0.05	
2618	893	
2619		
2620	896	Fig. 13 Temporal distribution of gold deposits from East Kunlun Orogen, western Qinling
2621		
2622	Q 07	and Oaidam Oilian. A type granitas and related matic rocks from East Kunlup Orogan are
2623	077	and Qaluani-Qinan. A-type grannes and related mane rocks noin East Kunnun Orogen are
2624		
2625	898	also shown indicating post-collisional extensional setting for gold deposits. The period of
2626		
2627	800	colligion/post colligion of the East Kunlun Orogon (Chan at al. 2017 Chan at al. in
2628	077	consion/post-consion of the East Ruman Orogen (chen et al., 2017 chen et al., in
2029		
2030	900	preparation), western Qinling (Liu et al., 2016; Zhou et al., 2016) and Qaidam-Qilian (Song
2632		
2633	901	et al., 2014) are also marked. The sources of ages of gold deposits. A-type granites, and
2634		
2635		
2636	902	related matic rocks are summarized in the appendix.
2637		
2638	903	
2639		
2640		
2641		
2642		
2643		
2644		
2645		
2646		
2647		
2648		
2649		
2650		
2651		
2652		
2653		
2654		
2655		

Fig. 3

Fig. 4

	Stage I quartz vein with sparse pyrite	Stage II pyrite-quartz vein	Stage III polymetallic sulfides -quartz vein	Stage 4 supergene
quartz				
pyrite				
sericite		=	-	
gold			-	
galena		-		
sphalerite				
chalcopyrite				
siderite				
limonite				
malachite				

Fig. 7

Fig. 8

Fig. 9

Fig. 11

A

Q

B3840-57-4-1

Fig. 12

Appendix table A1 Typical gold deposits in the west of the Central Orogenic Belt of China					
deposit	resources (t)	Tectonic terrain	mineralization age (Ma)	mineral and method	reference
Hanshan		Qilian	372 ± 8; 213.9 ± 3.1	Quartz, Rb-Sr; Sericite, K- Ar	(Mao et al., 2000; Yang et al., 2005)
Yeluotuoquan		Qaidam	246 ± 3	Sericite, Ar-Ar	(Zhang et al., 2005)
Tanjianshan		Qaidam	284 ± 3; 401	Sericite and biotite, Ar-Ar;	(Zhang et al., 2005)
Qinglonggou		Qaidam	409.4 ± 2.3	Sericite, Ar-Ar	(Zhang et al., 2005)
Saibagou		Qaidam	425.5 ± 2.1	Sericite, Ar-Ar	(Zhang et al., 2005)
Wulonggou	72.93	East Kunlun Orogen	236.5 ± 0.5	Sericite, Ar-Ar	(Zhang et al., 2005)
Shuizhadonggou Huanglonggou	45.00	East Kunlun Orogen	230.8 ± 1.7; 237 ± 2	Sericite, Ar-Ar	(Zhang et al., 2017)
Guoluolongwa	40.00	East Kunlun Orogen	202.7 ± 1.5	Sericite, Ar-Ar	(Xiao et al., 2014)
Dachang	220.00	East Kunlun Orogen	$218.6 \pm 3.2; 220.3 \pm 3.2$	Sericite, Ar-Ar	(Feng, 2002; Zhang et al., 2005)
Naomuhun		East Kunlun Orogen	227.84 ± 1.13	Sericite, Ar-Ar	(Li et al., 2017)
Guoluolongwa	40.00	East Kunlun Orogen	$202.7 \pm 1.5; 375 \pm 11; 354 \pm 7$	Pyrite, Re-Os	(Xiao et al., 2014; This study)
Annage		East Kunlun Orogen	383 ± 6	Pyrite, Re-Os	This study
Baguamiao	106.00	western Qinling	232.58 ± 1.59; 131.9 ± 0.98; 131.91 ± 0.89	Quartz, Ar-Ar	(Shao andWang, 2001)
Xiaogouli		western Qinling	197.45 ± 1.13	Quartz, Ar–Ar	(Shao andWang, 2001)
Shangjiagou		western Qinling	161.59 ± 0.56	Quartz, Ar–Ar	(Shao andWang, 2001)
Liziyuan		western Qinling	206.8 ± 1.6	Sericite, K-Ar	(Liu et al., 2011)
Liba	80.00	western Qinling	216.4 ± 1.5	Muscovite and biotite, Ar–Ar	(Zeng et al., 2012)
Huachanggou	10.00	western Qinling	215 ± 0.5	Fuchsite, K-Ar	(Bai, 1996)

Jinlongshan	>150	western Qinling	232.7 ± 6.9	Sericite, Ar–Ar	(Zhao et al., 2001)	
Yangshan	>300	western Qinling	197.6 ± 1.7	Zircon, U-Pb (SHRIMP)	(Qi et al., 2005)	

	Appendix table A2 A-type granites and related mafic rocks in the East Kunlun Orogen			
Location	lithology	age (Ma)	method	references
Yugouzi	A-type granite	210 ± 0.6	Zircon LA-ICPMS U-Pb	(Gao, 2013)
Yemaquan	A-type granite	213 ± 1	Zircon LA-ICPMS U-Pb	(Gao et al., 2014)
Kendekeke	A-type granite	230.5 ± 4.2	Zircon LA-ICPMS U-Pb	(Xi et al., 2010)
Baishiya	A-type granite	238 ± 1	Zircon LA-ICPMS U-Pb	(Yin et al., 2013)
Halashan	A-type granite	239.2 ± 1.7	Zircon LA-ICPMS U-Pb	(He, 2015)
Tula	A-type granite	385.2 ± 8.1	Zircon SHRIMP U-Pb	(Wu et al., 2007)
Wulanwuzhuer	A-type granite	388.9 ± 3.7	Zircon LA-ICPMS U-Pb	(Guo et al., 2011)
Binggou	A-type granite	391 ± 3	Zircon LA-ICPMS U-Pb	(Liu et al., 2013)
Xiarihamu	A-type granite	391 ± 1	Zircon LA-ICPMS U-Pb	(Wang et al., 2013)
Dagangou	A-type granite	392 ± 2	Zircon LA-ICPMS U-Pb	(Tian et al., 2016)
Lalingzaohuo	A-type granite	396 ± 2	Zircon LA-ICPMS U-Pb	(Chen et al., 2013)
Shuizhadonggou	A-type granite	404.6 ± 5.2	Zircon LA-ICPMS U-Pb	(Wang, 2015)
Shuizhadonggou	A-type granite	409.3 ± 2.8	Zircon LA-ICPMS U-Pb	(Wang, 2015)
Dacaigou	A-type granite	416 ± 3	Zircon LA-ICPMS U-Pb	(Wang, 2015)
Huanglonggou	A-type granite	416.9 ± 1.3	Zircon LA-ICPMS U-Pb	(Li et al., 2014)
Houtougou	A-type granite	419 ± 1.9	Zircon LA-ICPMS U-Pb	(Yan et al., 2016)
Baiganhu	A-type granite	421 ± 3.7	Zircon SHRIMP U-Pb	(Li et al., 2012)
Baiganhu	A-type granite	422 ± 3	Zircon SHRIMP U-Pb	(Li et al., 2012)
Helegangnaren	A-type granite	425 ± 6.7	Zircon LA-ICPMS U-Pb	(Li et al., 2013)
Zongjia	basic dike	218±2	Zircon LA-ICPMS U-Pb	(Xiong, 2014)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

Binggou	basic dike	226±3	Zircon LA-ICPMS U-Pb	(Xiong, 2014)
Qimantage	dolerite	380.3 ± 1.5	Zircon LA-ICPMS U-Pb	(Qi et al., 2013)
East of Yuejinshan	hornblende gabbro	393.1 ± 1.6	Zircon LA-ICPMS U-Pb	(Xiong et al., 2014)
Xiarihamu	gabbro	394 ± 3	Zircon LA-ICPMS U-Pb	(Li et al., 2012)
Geyakedengtage	gabbro	403.3 ± 7.2	Zircon SHRIMP U-Pb	(Chen et al., 2006)
Yuejinshan	gabbro	406 ± 3	Zircon LA-ICPMS U-Pb	(Liu et al., 2012)
Guoluolongwa	lamprophyre	416.3 ± 3.5	Zircon LA-ICPMS U-Pb	(Yue et al., 2013)
Sederi	dolerite	417 ± 1	Zircon LA-ICPMS U-Pb	(Yue et al., 2017)
Haerguole	gabbro from ophiolite	332.8 ± 3.1	Zircon LA-ICPMS U-Pb	(Liu et al., 2011)
Xiadawu	gabbro from ophiolite	345.3 ± 7.9	whole rock Ar-Ar	(Chen et al., 2001)

REFERENCES

Chen, L., Sun, Y., Pei, X.Z., Gao, M., Tao, F., Zhang, Z.Q., Chen, W., 2001, Northernmost Paleo-Tethyan oceanic basin in Tibet:

geochronological evidence from 40Ar/39Ar age dating of Dur'ngoi ophiolite: Chinese Science Bulletin, v. 46, p. 1203-1205.

Li, R.B., Pei, X.Z., Li, Z.C., Sun, Y., Pei, L., Chen, G.C., Chen, Y.X., Liu, C.J., Wei, F.H., 2013, Regional tectonic transformation in East

Kunlun Orogenic Belt in Early Paleozoic: constraints from the geochronology and geochemistry of Helegangnaren alkali-feldspar granite:

Acta Geologica Sinica, v. 87, p. 333-345.

Xiong, F.H., Ma, C.Q., Jiang, H.A., Liu, B., Huang, J., 2014, Geochronology and geochemistry of Middle Devonian mafic dykes in the East

Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny: Chemie der Erde -Geochemistry, v. 74, p. 225-235.

Zeng, Q.T., McCuaig, T.C., Hart, C.J.R., Jourdan, F., Muhling, J., Bagas, L., 2012, Structural and geochronological studies on the Liba goldfield of the West Qinling Orogen, Central China: Mineralium Deposita, v. 47, p. 799-819.

Zhang, J.Y., Ma, C.Q., Li, J.W., Pan, Y.M., 2017, A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, western China: Ore Geology Reviews, v. 81, Part 1, p. 342-357.

Bai, Z., 1996, Genesis of the Huachanggou gold deposit in Shanxi Province: Mineral Resources and Geology, v. 10, p. 108-113 (in Chinese with English abs.).

Chen, J., Xie, Z.Y., Li, B., Tan, S.X., Ren, H., Zhang, Q.M., Li, Y., 2013, Petrogenesis of Devonian intrusive rocks in Lalingzaohuo area,

Eastern Kunlun, and its geological significance: Journal of Mineralogy and Petrology, v. 33, p. 26-34 (in Chinese with English abs.).

Chen, H.W., Luo, Z.H., Mo, X.X., Zhang, X.T., Wang, J., Wang, B.Z., 2006, SHRIMP ages of Kayakedengtage complex in the East Kunlun

Mountains and their geological implications: Acta Petrologica Et Mineralogica, v. 25, p. 25-32 (in Chinese with English abs.).

Feng, C.Y., 2002, Multiple orogenic processes and mineralization of orogenic gold deposits in the East Kunlun Orogen, Qinghai province: Ph.D.

thesis, Beijing, Chinese Academy of Geological Sciences, 104p (in Chinese with English abs.).

Gao, Y.B., 2013, The intermediate-acid intrusive magmatism and mineralization in Oimantag, East Kunlun Mountains: Ph.D. thesis, Xi'an, Chang'an University, 1-245p (in Chinese with English abs.).

Gao, Y.B., Li, W.Y., Qian, B., Li, K., Li, D.S., He, S.Y., Zhang, Z.W., Zhang, J.W., 2014, Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China: Acta Petrologica Sinica, v. 30, p. 1647-1665 (in Chinese with English abs.).

Guo, T.Z., Liu, R., Chen, F.B., Bai, X.D., Li, H.G., 2011, LA-MC-ICPMS zircon U-Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantag Mountain of Qinghai and its geological significance: Geological Bulletin of China, v. 30, p. 1203-1211 (in Chinese with English abs.).

He, C., 2015, Geological characteristics, genesis and geological significance of granite intrusion in Halasen area, Qinghai Province: master thesis, Wuhan, China University of Geosciences (Wuhan), 1-46p (in Chinese with English abs.).

Li, G.C., Feng, C.Y., Wang, R.J., Ma, S.C., Li, H.M., Zhou, A.S., 2012, SIMS zircon U-Pb age, petrochemistry and tectonic implications of granitoids in northeastern Baiganhu W-Sn orefield, Xinjiang: Acta Geoscientica Sinica, v. 33, p. 216-226 (in Chinese with English abs.).

- Li, J.C., Kong, H.L., Su, Y.Z., Namkha, N., Jia, Q.Z., Guo, X.Z., Zhang, B., 2017, Ar-Ar age of altered sericite, zircon U-Pb age of quartz diorite and geochemistry of the Naomuhun Gold deposit, East Kunlun: Acta Geologica Sinica, v. 91, p. 979-991 (in Chinese with English abs.).
- Li, X., Yuan, W.M., Hao, N.N., Duan, H.W., Chen, X.N., Mo, X.X., Zhang, A.K., 2014, Characteristics and tectonic setting of granite in Wulonggou area, East Kunlun Mountains: Global Geology, v. 33, p. 275-288 (in Chinese with English abs.).
- Liu, B., Ma, C.Q., Guo, P., Zhang, J.Y., Xing, F.H., Huang, J., Jiang, H.A., 2013, Discovery of the Middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications: Earth Science-Journal of China University of Geosciences, v. 38, p. 947-962 (in Chinese with English abs.).

Liu, B., Ma, C.Q., Zhang, J.Y., Xiong, F.H., Huang, J., Jiang, H.A., 2012, Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes: Actor Petrologica Sinica, v. 28, p. 1785-1807 (in Chinese

with English abs.).

Liu, Y.H., Liu, H.L., Huang, S.F., Gao, H.X., Zhang, Y.Q., Li, Z.G., Zheng, X.Z., 2011, Metallogenic epoch and geological features of Suishizi porphyry gold deposit in Liziyuan area, west Qinling mountain: Gold, v. 32, p. 12-18 (in Chinese with English abs.).
Liu, Z.Q., Pei, X.Z., Li, R.B., Li, Z.C., Zhang, X.F., Liu, Z.G., Chen, G.C., Chen, Y.X., Ding, S.P., Guo, J.F., 2011, LA-ICP-MS zircon U-Pb geochronology of the two suites of ophiolites at the Bugingshan area of the A'nyemagen Orogenic Belt in the southern margin of East

Kunlun and its tectonic implication: Acta Geologica Sinica, v. 85, p. 185-194 (in Chinese with English abs.).

Mao, J.W., Zhang, Z.H., Yang, J.M., Wang, Z.L., 2000, Fluid inclusions of shear zone type gold deposits in the western part of North Qilian Mountain: Mineral Deposits, v. 19, p. 9-16 (in Chinese with English abs.).

Qi, J.Z., Li, L., Yuan, S.S., Liu, Z.J., Liu, D.Y., Wang, Y.B., Li, Z.H., 2005, A SHRIMP U-Pb chronological study of zircons from quartz veins of Yangshan gold deposit, Gansu Province: Mineral Deposits, v. 24, p. 141-150 (in Chinese with English abs.).

Qi, S.S., Deng, J.F., Ye, Z.F., Liu, R., Wang, G.L., 2013, LA-ICP-MS zircon U-Pb dating of Late Devonian diabase dike swarms in Qimantag

area: Geological Bulletin of China, v. 32, p. 1385-1393 (in Chinese with English abs.).

Shao, S.C., Wang, D.B., 2001, 39Ar-40Ar dating of the three typical gold deposits and its geological significance in the southern Qinling region:

Acta Geologica Sinica, v. 75, p. 106-110 (in Chinese with English abs.).

Tian, G.K., Meng, F.C., Fan, Y.Z., Liu, Q., Duan, X.P., 2016, The characteristics of Early Paleozoic post-orogenic granite in the East Kunlun

orogen: A case study of Dagangou granite: Acta Petrologica et Mineralogica, v. 35, p. 371-390 (in Chinese with English abs.).

Wang, G., Sun, F.Y., Li, B.Y., Li, S.J., Zhao, J.W., Yang, Q.A., Ao, Z., 2013, Zircon U-Pb geochronology and geochemistry of the Early

Devonian syenogranite in the Xiarihamu ore district from East Kunlun, with Implications for the geodynamic setting: Geotectonica et Metallogenia, v. 37, p. 685-697 (in Chinese with English abs.).

Wang, T., 2015, Study of the geological characteristics and genesis of Wulonggou gold deposit, Qinghai province: master thesis, China University of Geosciences (Beijing), 84p (in Chinese with English abs.).

Wu, S.P., Wu, C.L., Chen, Q.L., 2007, Characteristics and tectonic setting of the Tula aluminous A-type granite at the south side of the Altyn Tagh fault, NW China: Geological Bulletin of China, v. 26, p. 1385-1392 (in Chinese with English abs.).

Xi, R.G., Xiao, P.X., Wu, Y.Z., Dong, Z.C., Guo, L., Gao, X.F., 2010, The geological significances, composition and age of the monzonitic

granite in Kendekeke iron mine: Northwestern Geology, v. 43, p. 195-202 (in Chinese with English abs.).

Xiao, Y., Feng, C.Y., Li, D.X., Liu, J.N., 2014, Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai province: Acta

Geologica Sinica, v. 88, p. 895-902 (in Chinese with English abs.).

Xiong, F.H., 2014, Spatial-temporal pattern, petrogenesis and geological implications of Paleo-Tethyan granitoids in the East Kunlun Orogenic

belt (eastern segment): Ph.D. thesis, Wuhan, China University of Geosciences, 1-191p (in Chinese with English abs.).

Yan, W., Qiu, D.M., Ding, Q.F., Liu, F., 2016, Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite

of Wulonggou area in Eastern Kunlun Orogen: Journal of Jilin University (Earth Science Edition), v. 46, p. 443-460 (in Chinese with English abs.).

Yang, J.G., Yang, L.H., Ren, Y.X., Li, Z.P., Song, Z.B., 2005, Isotopic Geochronology of the ore-forming process in the Hanshan gold deposit of the North Qilian Mountains: Acta Geoscientica Sinica, v. 26, p. 315-320 (in Chinese with English abs.).

Yin, L.J., Liu, H.J., Yang, L.G., Liu, W.M., 2013, Geochronology, geochemistry and geological significance of granites from the Baishiya skarn iron-polymetallic deposit, Dulan, Qinghai Province: Xinjiang Geology, v. 31, p. 248-255 (in Chinese with English abs.).

Yue, W.H., Gao, J.G., Zhou, J.X., 2013, LA-ICP-MS Zircon U-Pb Ages and Lithogeochemistry of Basic Dykes in the Guoluolongwa gold ore

Field, Qinghai Province, China: Journal of Mineralogy and Petrology, v. 33, p. 93-102 (in Chinese with English abs.).

Yue, W.H., Zhou, J.X., Gao, J.G., Huang, Y.H., Jia, F.J., 2017, Geochemistry, zircon U-Pb chronology and geological implications of Sederi

diabase, Dulan county, Qinghai province: Bulletin of Mineralogy, Petrology and Geochemistry, v. 36, p. 270-278 (in Chinese with English abs.).

Zhang, D.Q., Dang, X.Y., She, H.Q., Li, D.X., Feng, C.Y., Li, J.W., 2005, Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance: Mineral Deposits, v. 24, p. 87-98 (in Chinese with English abs.).

Zhao, L.Q., Chen, X., Zhou, H., Li, X.M., 2001, Metallogenic epoch of Jinlongshan micro-fine disseminated gold deposit, south Qinlin

Mountain: Chinese Journal of Geology, v. 36, p. 489 (in Chinese with English abs.).