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14 Abstract

15 The Gouli goldfield (>110 t Au), located in the East Kunlun Orogen, western Central 

16 Orogenic Belt of China, is one of the most important goldfields in this area. In the last 

17 decade, a number of orogenic gold deposits (e.g., Guoluolongwa and Annage) have been 

18 shown to be hosted by rock units of different lithology and ages. Rhenium-osmium (Re-Os) 

19 geochronology of sulfides from gold-bearing veins was performed to define the chronologic 

20 relationships between gold mineralization present in the metamorphic rocks (Proterozoic and 

21 Silurian) of the East Kunlun Orogen. Sulfides (pyrite and chalcopyrite) from pyrite-quartz 

22 vein and polymetallic sulfides-quartz vein in the Guoluolongwa gold deposit yield Re-Os 

23 isochron dates of 374 ± 15 Ma (MSWD = 4.6; initial 187Os/188Os ratio (Osi) = 0.06 ± 0.22) 

24 and 354 ± 7 Ma (MSWD = 0.18; Osi = 0.13 ± 0.01), respectively. Similar ages are also 

25 revealed by the pyrite mineral separates from the Annage gold deposit (383 ± 8 Ma and 349 ± 

26 6 Ma). These ages are interpreted to record the timings of the formation of the two vein types 

27 in these deposits, which are nominally separated by ~20 Ma.

28 The new Re-Os ages presented here identify the first two Late Paleozoic (Devonian and 

29 Early Carboniferous) gold-mineralizing events in the East Kunlun Orogen and thus indicate 

30 at least two mineralization epochs in this area given ages (Late Triassic) of other gold 

31 systems and field observations. Considering the geological background and temporal 

32 distribution of gold deposits in adjacent areas (western Qinling and Qaidam-Qilian), we 

33 suggest that gold deposits in the western Central Orogenic Belt were formed in 

34 collisional/post-collisional settings being controlled by common tectonic-magmatic activities 
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35 related to the evolution of both the Prototethys Ocean (Proterozoic – Paleozoic) and 

36 Paleotethys Ocean (Paleozoic – Early Cenozoic).

37 Further, the initial Os (Osi) obtained from the Re-Os isochron suggest that for the two vein 

38 types in the Guoluolongwa gold deposit the Os and by inference the ore metal (Au) were 

39 derived from a mantle-like source (Osi values = ~0.12 – 0.13), which should be related to the 

40 contemporaneous mantle-like magmatism. In contrast, the pyrite-quartz vein in the Annage 

41 gold deposit possesses a significantly radiogenic Osi value (3.65 ± 0.51). Given the similar 

42 timing of mineralization between the Guoluolongwa and Annage deposits, it is considered 

43 that the ore metal likely has a similar origin, i.e., a mantle-like source, however at Annage the 

44 hydrothermal fluid interacted with the Proterozoic metamorphic host rocks and leached 

45 radiogenic Os that masks any evidence of a mantle-like source. 

46

47 Keywords: Gold deposit; Paleozoic mineralization; Re-Os isotopic dating; East Kunlun 

48 Orogen
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49 1. Introduction

50 The East Kunlun Orogen, comprising the western part of the Central Orogenic Belt of China 

51 (Fig. 1A), records two stages of orogenesis that correspond to the evolution of the 

52 Neoproterozoic–Late Paleozoic Prototethys Ocean and Late Paleozoic–Triassic Paleotethys 

53 Ocean in this area (Fig. 1B; Ma et al., 2015). During the last ten years, in the East Kunlun 

54 Orogen, a number of gold deposits/fields, such as the Wulonggou (>70 t Au; unpublished 

55 report; Zhang et al., 2017) and Gouli (>110 t Au; unpublished report) goldfields, and the 

56 Balong and Kaihuangbei gold deposits, have been discovered (Fig.1C; Zhao, 2004 and 

57 references therein). Most of the gold deposits/fields exhibit quartz-vein type or fracture-

58 hosted pervasive alteration type mineralization and are spatially controlled by brittle-ductile 

59 shear zones and, in turn, have been regarded to be orogenic gold deposits (Feng, 2002; Zhao, 

60 2004). A Silurian–Devonian timing, coincident with that of the evolution of Prototethys, has 

61 been proposed to be responsible for the formation of these deposits based on the conclusion 

62 that the ore-controlling structures were formed during the Silurian-Devonian tectonic 

63 deformation (e.g., Zhang et al., 2001; Feng, 2002 and references therein). However, reported 

64 Ar-Ar dating of sericite or muscovite from gold deposits in the East Kunlun Orogen revealed 

65 a Triassic age population (Feng, 2002; Zhao, 2004; Zhang et al., 2005; Xiao et al., 2014; 

66 Zhang et al., 2017). This, together with the close spatial relationship between some gold 

67 deposits and ubiquitous Late Permian-Triassic granitoids (Li et al., 2012; Zhang et al., 2017) 

68 is taken to suggest that the Triassic gold-mineralizing dominated the formation of these 

69 deposits, although the gold deposits in this area are hosted by different geological units of 
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70 various ages (from Paleozoic to Mesozoic). The lack of a temporal record of Paleozoic “gold 

71 mineralization” may be due to: (1) an early Paleozoic mineralization event did not occur, and 

72 (2) post-ore thermal events, such as Triassic mineralization or extensive magmatism, have 

73 reset the Ar-Ar systems in micaceous minerals due to the susceptibility of this system to 

74 hydrothermal overprint (Selby et al., 2002). The ambiguity of the timing of the early and late 

75 “gold-mineralizing events” not only hampers our understanding of the origin of these gold 

76 deposits but also exploration. As such, a more robust dating method is required.

77 Recently, rhenium-osmium (Re-Os) isotopic dating of sulfide minerals (e.g., pyrite, 

78 chalcopyrite, and molybdenite) has been applied to several types of hydrothermal deposits. 

79 Among these sulfide minerals, molybdenite is particularly suitable for Re-Os geochronology, 

80 given its high abundance of Re (typically ppm levels) and negligible common Os (Stein et al., 

81 2003; Selby and Creaser, 2004). However, molybdenite is commonly absent in many gold 

82 deposits, nevertheless other sulfides, e.g. pyrite (Stein et al., 2000), arsenopyrite (Morelli et 

83 al., 2005; Morelli et al., 2007), chalcopyrite (Lawley et al., 2013), bornite (Selby et al., 2009) 

84 and even pyrrhotite (Wang et al., 2008) can be utilized to delineate the timing of gold 

85 mineralization. In this contribution, we present Re-Os geochronology on gold-related pyrite 

86 and chalcopyrite from two deposits in the Gouli goldfield located in the eastern East Kunlun 

87 Orogen, western Central Orogenic Belt to pinpoint the timing of gold mineralization and 

88 constrain the sources of ore-forming materials. We demonstrate that at least two gold 

89 mineralizing epochs (Late Paleozoic and Late Triassic) exist in the East Kunlun Orogen and 
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90 possibly wider west of Central Orogenic Belt and that the ore metal (Au) exhibit a mantle-

91 like derived origin.

92 2. Regional and deposit geology

93 The East Kunlun Orogen is located in the northern Tibet and is bounded by the Qaidam Basin 

94 to the north, the Qinling Orogen to the east, the Bayan Har Terrane to the south and the Altyn 

95 Tagh fault to the west (Fig. 1B). The East Kunlun Orogen is composed of the Northern East 

96 Kunlun Terrane and the Southern East Kunlun Terrane, which are separated by the Central 

97 East Kunlun Suture Zone (Fig. 1C). Two regional suture zones, the Central East Kunlun 

98 Suture Zone and Southern East Kunlun Suture Zone, which correspond to the evolution of the 

99 Prototethys Ocean (Proterozoic–Early Paleozoic) and Paleotethys Ocean (Late Paleozoic – 

100 Mesozoic), respectively, traverse the East Kunlun Orogen (e.g., Yang et al., 1996). The 

101 basement rocks in the East Kunlun Orogen are composed of Proterozoic intermediate – high -

102 grade metamorphic rocks that are mainly exposed in the Northern East Kunlun Terrane 

103 (Meng et al., 2013; He et al., 2016; Wei et al., 2016). Overlying these basement rocks are the 

104 Early Paleozoic low-grade metamorphic sedimentary and volcanic rocks (e.g., Chen et al., 

105 2013; Chen et al., 2014) that are unconformably overlain by the Devonian Maoniushan 

106 Formation (molasse) (e.g., Zhang et al., 2010). Carboniferous–Middle Triassic marine facies 

107 rocks mainly occur in the Southern East Kunlun Terrane. Magmatic rocks in the East Kunlun 

108 Orogen consist of granitoids with minor mafic-ultramafic rocks (Fig. 1C). The mafic-

109 ultramafic rocks occur mainly along the Central East Kunlun Suture Zone and Southern East 

110 Kunlun Suture Zone. The mafic-ultramafic rocks from the Central East Kunlun Suture Zone 
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111 are dated as Cambrian-Ordovician with ages that range from 537 Ma to 467 Ma (Zhu et al., 

112 2000; Bian et al., 2004; Li et al., 2013; Wei, 2015; Qi et al., 2016). The mafic-ultramafic 

113 units from the Southern East Kunlun Suture Zone exhibit both Cambrian-Ordovician (555–

114 516 Ma; Li, 2008; Liu et al., 2011) and Carboniferous ages (345–332 Ma; Chen et al., 2001; 

115 Liu et al., 2011). The granitoids yield dates mainly concentrated in Ordovician-Devonian 

116 (470–390 Ma) and Permian-Triassic (260–220 Ma) (Mo et al., 2007). Granitoids in both age 

117 groups show time-varying lithology from early calc-alkaline granodiorites to late 

118 monzogranites and syenogranites (e.g., Lu et al., 2013; Zhang et al., 2014; Chen et al., 2016; 

119 Chen et al., 2017). Succeeding the Ordovician-Devonian massive intrusion of granitoids were 

120 widespread volcanic activities, which are evidenced by bimodal volcanic rocks from the 

121 Maoniushan Formation (Zhang et al., 2010; Liu et al., 2016).

122 2.1 Geology of the Gouli goldfield

123 The Gouli goldfield is located in the east end of the East Kunlun Orogen (Fig. 1C). The 

124 Central East Kunlun Suture Zone, which is evidenced by the ophiolites, traverses the central 

125 part of this area (Fig. 2). Proterozoic middle–high-grade metamorphic basement rocks occur 

126 across the entire area. Overlying the basement rocks are the Ordovician-Silurian low-grade 

127 metamorphic rocks from the Naij Tai Group, Devonian Maoniushan Formation and the 

128 Carboniferous–Triassic sedimentary and volcanic rocks. The lithology of magmatic rocks 

129 varies from mafic-ultramafic intrusions/dikes to felsic granitoids. The mafic-ultramafic rocks 

130 exhibit Cambrian and Devonian-Carboniferous ages (Yang et al., 1996; Chen et al., 2001; 

131 Feng et al., 2010), with the felsic granitoids mainly defining two age groups, Ordovician-
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132 Devonian and Permian-Triassic (Fig. 2). A number of gold deposits have been discovered in 

133 this field, including the Guoluolongwa (>40 t Au), Annage (>8 t Au), Asiha (>6 t Au), 

134 Walega (>12 t Au) and Delong (>5 t Au) (unpublished report). These deposits can be divided 

135 into two groups according to their host rocks, ore-controlling structure, mineralization styles, 

136 and alteration. Group one, represented by the Guoluolongwa and Annage, is hosted in 

137 metamorphic rocks （Proterozoic for Annage and Silurian for Guoluolongwa） (Figs 2–4; 

138 Ding et al., 2013; Tao, 2014), mainly controlled by EW-trending brittle-ductile shear zone, 

139 which contrast to the Group two deposits (represented by the Walega and Asiha) being hosted 

140 in Silurian (Fig. 2; 431–440 Ma; our unpublished data) or Triassic (238–244 Ma; Fig. 2; Li et 

141 al., 2012; Li et al., 2014) felsic intrusions and mainly controlled by NW or NE-trending 

142 brittle fractures (Chen, 2018) . The gold mineralization of both groups is mainly associated 

143 with quartz veins and subordinate associated with pervasively altered fracture zones. 

144 However, the mineral assemblages of the two groups are distinct, with group one showing 

145 sulfides dominated by pyrite and those of group two dominated by arsenopyrite (Chen, 2018). 

146 The close spatial relationship of these deposits makes researchers consider that these deposits 

147 were formed by a common mineralization event during Triassic after the emplacement of the 

148 youngest host (Asiha quartz diorite) (Yue, 2013). 

149 2.2 Geology of the Guoluolongwa and Annage gold deposits

150 In the Central East Kunlun Suture Zone, the Guoluolongwa gold deposit is the largest gold 

151 deposit in the Gouli goldfield. The ore deposit is structurally controlled by the Silurian–

152 Devonian formed (427–408 Ma; Wang et al., 2003), EW-trending thrust zone. In the north of 
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153 the deposit is the oldest rock unit, Proterozoic aged schist (Fig. 3). In the center of the deposit 

154 are the Ordovician-Silurian Naij Tal Group metamorphic rocks, which have zircon U-Pb ages 

155 of 479.1 ± 2.4 and 479.7 ± 5.6 Ma, indicating that the sedimentary and volcanic protoliths 

156 were formed no later than 479 Ma. (Fig. 3A; our unpublished data). In the south of the 

157 deposit are conglomerates of the Devonian Maoniushan Formation (e.g., Lu et al., 2010). 

158 Magmatic rocks in this area include mylonitic diorite (~ 477 Ma; our unpublished data) and 

159 gabbro (416 Ma; Yue et al., 2013). 

160 Six gold orebodies (Ι – Ⅵ) have been delineated in the Guoluolongwa gold system (Fig. 

161 3). All of the orebodies show an EW trend (Fig. 3A) and high angle dips (50 – 80o) towards 

162 the south (180o; Fig. 3B). The gold grades vary from 1 g/t to hundreds g/t, with an average 

163 grade at 6.75 g/t (Fig. 3B; unpublished geological report). The gold mineralization is mainly 

164 associated with quartz veins that cross cut the Devonian gabbro (Yue et al., 2013), with 

165 subordinate pervasively altered fracture-hosted mineralization occurring in the north of the 

166 deposit area (Xiao et al., 2014). 

167 Three stages of mineralization are defined at the Guoluolongwa based on mineral 

168 assemblages and crosscutting relationships (Figs. 5–6). The first stage is characterized by 

169 coarse milky quartz with sparse coarse pyrite (up to 5 mm) (stage Ι vein), which is cross-cut 

170 by the disseminated-massive pyrite-quartz vein of the second stage (stage Ⅱ vein). Both 

171 coarse and fine grain pyrite can be observed in the stage Ⅱ vein (Fig. 5H) that are cut cross 

172 by the polymetallic stage Ⅲ quartz vein (Figs. 5D and H). Minerals in the stage Ⅲ quartz 

173 vein mainly include pyrite, sphalerite, galena, chalcopyrite and quartz (Figs. 5D and I). 
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174 Native gold can be found in fractures of pyrite and between grains of sulfide and quartz (Figs. 

175 5D and E) or as inclusions enwrapped in pyrite and quartz (Yang et al., 2006). High-grade 

176 gold ores are found associated with both stage Ⅱ and Ⅲ veins.

177 The Annage gold deposit is located to the immediate northwest (<3km) of the 

178 Guoluolongwa deposit (Fig. 2). As such the local geology is very similar to that of the 

179 Guoluolongwa deposit. But in contrast, the ore bodies are hosted by Proterozoic metamorphic 

180 mica-quartz schist, amphibolite and marble units (Fig. 4). Most of the Annage orebodies (Ι, 

181 Ⅱ, Ⅴ, and Ⅵ; Fig. 4) strike east-west and dip 50 – 85o to south-southwest (Fig. 4). The 

182 orebodies as a whole show identical mineralization stages and mineral assemblages to those 

183 of the Guoluolongwa system (Chen, 2014; Tao, 2014), suggesting that the two gold deposits 

184 should have a common origin. However, some orebodies at Annage (e.g., orebody Ι; Figs. 4 

185 and 5J-I) are dominated by stage Ⅱ vein (gold grade averaging at 5.18 g/t) with the stage Ⅲ 

186 polymetallic sulfides-quartz vein mineralization poorly developed. The ore grades vary 

187 widely (grades of different ore bodies average between 1.06 and 43.51 g/t), with the highest 

188 grade being 156 g/t.

189 3. Sampling and analytical methods

190 To define the timing of sulfide (± gold) mineralization by application of the Re-Os 

191 chronometer, fourteen samples from the quartz vein orebodies (seven from the stage Ⅱ veins 

192 and seven from the stage Ⅲ veins) of the Guoluolongwa system and 10 samples from the 

193 pyrite-quartz veins (orebody Ι; Fig. 5E) of the Annage gold deposit were selected. For the 

194 Guoluolongwa system, samples are all collected from the underground tunnel of orebodies Ι 
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195 and Ⅵ (Fig. 3). Samples for the stage Ⅱ quartz veins were collected from the massive or 

196 veinlet ores (Figs. 5A and B), both of which crosscut the stage Ι milky quartz veins. Samples 

197 for the stage Ⅲ quartz veins were collected from dense disseminated ores that are mainly 

198 composed of galena, sphalerite, chalcopyrite, pyrite and quartz (Fig. 5C). In total, seven 

199 pyrite mineral separates from the stage Ⅱ veins, and four pyrite and three chalcopyrite 

200 mineral separates from the stage Ⅲ veins were prepared for the Guoluolongwa gold deposit. 

201 For the Annage deposit, the samples were all collected from the open mining pit of orebody Ι 

202 (Fig. 4) that is mainly composed of Stage Ⅱ pyrite-quartz vein (Figs. 5J and K). In total, ten 

203 pyrite mineral separates were prepared. The mineral separates were obtained using traditional 

204 isolation methods (e.g., crushing, heavy liquids separation and handpicking). 

205 The Re-Os analyses were conducted at the Source Rock and Sulfide Geochronology and 

206 Geochemistry Laboratory at Durham University. The analytical method is described below. 

207 The purified mineral separate of about 400 mg was accurately weighed and loaded into a 

208 Carius tube with a known amount of mixed Re-Os tracer solution containing 185Re and 190Os, 

209 and a mixture of 11 N HCl (3 ml) and 15.5 N HNO3 (6 ml) (inverse aqua regia). The Carius 

210 tube was sealed and then placed into an oven at 220 oC for 24 h to permit sample and tracer 

211 digestion and equilibration. Osmium was isolated from the inverse aqua regia using solvent 

212 extraction (CHCl3) method and purified by microdistillation, and rhenium was isolated using 

213 solvent extraction (NaOH-acetone) followed by anion column chromatography methods 

214 (Selby et al., 2009; Cumming et al., 2013). The purified Re and Os were loaded onto 

215 outgassed Ni and Pt filaments with corresponding activators (barium nitrate and sodium-
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216 barium hydroxide), respectively (Selby et al., 2009). The Re and Os isotope compositions 

217 were measured using negative thermal ionization mass spectrometry on a Thermo Scientific 

218 TRITON mass spectrometer using static Faraday collection for Re and secondary electron 

219 multiplier in peak–hopping mode for Os. Total procedural blanks of this study for Re and Os 

220 were 2.3 +/- 0.2 and 0.08 +/- 0.02 pg, with an average 187Os/188Os value of 0.25 ± 0.05 (n = 

221 3). All uncertainties are calculated by error propagation of uncertainties in Re and Os mass 

222 spectrometer measurements, blank abundances and isotopic compositions, spike calibrations, 

223 sample and spike weights, and reproducibility of standard Re and Os isotope values. The 

224 operational conditions of the mass spectrometer were monitored by solution reference 

225 materials which yielded values of 0.16087 ± 0.00026 for DROsS and 0.5993 ± 0.0006 (1SD, 

226 n=9) for the Re standard. These values are in agreement with those reported previously (e.g., 

227 Selby, 2007; Nowell et al., 2008). The Re-Os isochron age, 187Re-187Osr isochron age, and 

228 weighted mean age were determined using Isoplot/Ex_version 3.75 (Ludwig, 2012).

229 4. Results

230 The Re-Os data are presented in Table 1 and Figures 7 – 10. The Re and Os abundances in 

231 the pyrite from the stage Ⅱ vein in the Guoluolongwa gold deposit varies widely, from 0.06 

232 to 0.57 ppb and 1.5 to 228.8 ppt, respectively. The 187Re/188Os (4.57 – 4917.48) and 

233 187Os/188Os (0.15 – 31.19) ratios display highly variable values and yield a Re-Os isochron 

234 Model 3 date of 374 ± 15 Ma (MSWD = 4.6) and initial 187Os/188Os (Osi) of 0.06 ± 0.22. 

235 Using the Osi value from the isochron, with the exception of Au4-1, the sample set possesses 

236 ≥ 93 % radiogenic 187Os (187Osr) and are therefore characterized as low level highly 
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237 radiogenic sulfides  (LLHR, Stein et al., 2000) . In contrast, sample Au4-1 exhibits a high 

238 abundance of common Os (192Os = 94.2 ppt). Individually, the six LLHR samples yield Re-

239 Os model dates of 353 – 394 Ma (Table 1 and Fig. 7C), with a weighted mean age of 375 ± 

240 11 Ma (MSWD = 0.60; Fig. 7C) and 187Re-187Osr isochron date of 373 ± 17 Ma (Fig. 7B; 

241 MSWD = 0.68; initial 187Osr = 0.01 ± 0.05). For the sample Au4-1, calculation of model age 

242 using the Osi from the isochron yields a highly imprecise and inaccurate date (1147 ± 5724 

243 Ma; Table 1). Further, the weighted average (375 ± 11 Ma; MSWD = 0.51) and 187Re-187Osr 

244 isochron date (373 ±17 Ma; MSWD = 0.56; initial 187Osr = 0.01 ± 0.06) is not appreciably 

245 affected including data of the sample Au4-1. 

246 Using a date of 375 Ma, the six LLHR samples yield either positive or negative Osi values 

247 with significant uncertainties (Table 1), with the non-radiogenic sample, Au4-1, yielding an 

248 Osi value of 0.12 ± 0.01 (Table 1 and Fig. 10). Based on this Osi value, model dates for all 

249 samples are recalculated, which yield a weighted mean date of 365 ± 16 Ma (all samples; 

250 MSWD = 3.70; Fig. 7C) and 365 ± 19 Ma (excluding sample Au4-1; MSWD = 4.4; Fig. 7C).

251 The Re and Os abundances in pyrite from the stage Ⅲ vein of the Guoluolongwa gold 

252 deposit are 0.17 – 0.62 ppb and 1.4 – 3.7 ppt, respectively. The chalcopyrite mineral 

253 separates display much lower Re abundances (0.01 –0.06 ppb) and wide range of Os contents 

254 (0.8 – 322.2 ppt). As a whole, the 187Re/188Os (0.24 – 2809.52) and 187Os/188Os (0.13 – 16.91) 

255 data from the four pyrites and the three chalcopyrites yield a Model 1 Re-Os isochron date of 

256 354 ± 7 Ma (MSWD = 0.18; Fig. 8A), with non-radiogenic Osi value of 0.13 ± 0.01. Based 

257 on the Osi value defined by the Re-Os isochron, five samples possess > 93% 187Osr and two 
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258 samples show a high abundance of common Os (192Os = 16.5 and 132.9 ppt). Individually, 

259 the LLHR samples yield Re-Os model dates between 349 and 407 Ma, with the two non-

260 radiogenic samples possessing large uncertainties (Table 1 and Fig. 8C). The 187Re-187Osr 

261 isochron date based on the five LLHR samples (355 ± 11 Ma; MSWD = 0.16; initial 187Osr = 

262 0.00 ± 0.02; Fig. 7B) and all samples (355 ± 11 Ma; MSWD = 0.10; initial 187Osr = 0.00 ± 

263 0.01; Fig. 7B), are identical and so are the weighted mean dates (354 ± 7 Ma; Fig. 7C). The 

264 Osi values of individual samples calculated based on the weighted mean date vary from 0.05 

265 to 0.32, with the LLHR samples showing significant uncertainties. (Table 1 and Fig. 10)

266 The Re and Os abundances of pyrite from the Stage II quartz vein of the Annage gold 

267 deposit range from 2.4 to 7.6 ppb and 21.9 to 105.1 ppt, respectively (Table 1). The 

268 187Re/188Os (299.13 – 28139.20) and 187Os/188Os (5.53 – 145.66) ratios vary greatly and yield 

269 a Re-Os isochron date of 369 ± 18 Ma (MSWD = 24), with radiogenic Osi value of 3.9 ± 2.4 

270 (Fig. 9A). Discarding the sample CK003 that deviates the isochron, the remaining nine 

271 samples yield an isochron date of 382.6 ± 8.0 Ma, with a much more precise Osi value (3.65 

272 ± 0.51) and smaller MSWD (6.6; Fig. 9B), indicating that sample CK003 is the cause of the 

273 scatter in the linear regression analysis. Using the Osi value of 3.65 ± 0.51, the Re-Os model 

274 dates of the nine samples range from 370 to 460 Ma (Table 1 and Fig. 9D). A 187Re-187Osr 

275 isochron date of 396 ± 28 Ma (initial 187Osr = -0.8 ±1.5; MSWD = 0.42) and a weighted mean 

276 age of 383 ± 6 Ma (MSWD = 0.57) is determined based on the nine samples. Further, using 

277 the Osi value of 3.65 ± 0.51, the outlier sample, CK003, yields a model age of 349 ± 6 Ma 

278 that approach the isochron age of stage Ⅲ veins of the Guoluolongwa gold deposit (Table 1).
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279 5. Discussion

280 5.1 Evaluation of the Re-Os dates and Osi values

281 The Re-Os isochron date (Fig. 7A; 375 ± 15 Ma) and the 187Re-187Osr isochron date (Fig. 7B; 

282 373 ± 17 Ma) determined from the stage Ⅱ veins in the Guoluolongwa gold deposit are 

283 identical including uncertainty. The weighted mean of the Re-Os model dates based on the 

284 Osi value from the Re-Os isochron (0.06 ± 0.22) is in agreement with the age based on the 

285 Osi value calculated for the non-radiogenic sample Au4-1 (0.12 ± 0.01) within uncertainty. 

286 However, the Re-Os model dates determined based on an Osi value of 0.12 ± 0.01 are 

287 nominally younger than the date obtained from that based on Osi value of 0.06 ± 0.22 (365 

288 vs. 375 Ma; Fig. 7) and show much higher MSWD (3.7 and 4.4 vs. 0.5 and 0.6; Fig. 7C). The 

289 reason for this is the greater precision in the model Re-Os dates determined using an Osi 

290 value of 0.06 ± 0.22 relative to 0.12 ± 0.01. Regardless, all Re-Os date determinations 

291 indicate that stage II mineralization at the Guoluolongwa occurred at ~370 Ma suggesting the 

292 interval of mineralization occurred between the Latest Devonian and Earliest Carboniferous. 

293 The Osi value from the Re-Os isochron and the LLHR samples show significant 

294 uncertainties (Fig. 7A and Table 1), making the geological significance of these Osi values 

295 ambiguous. However, the Re-Os data for the non-radiogenic sample (Au4-1) yields a highly 

296 precise Osi value (0.12 ± 0.01). Considering the much higher common Os of this sample 

297 (Au4-1) than those for the LLHR samples, the 188Os determination of this sample is more 

298 reliable and so is the Osi value (Stein et al., 2000). Consequently, we take 0.12 ± 0.01 to 
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299 represent the best estimate of Osi composition of these samples, which is almost identical to 

300 Osi values of the stage Ⅲ vein in the Guoluolongwa gold deposit (discussed below). 

301 The Re-Os isochron date (354 ± 7 Ma), 187Re-187Osr isochron date (355 ± 11 Ma) and 

302 weighted mean dates (354 ± 7 Ma) based on all samples from the stage Ⅲ vein in the 

303 Guoluolongwa gold deposit are identical, with the MSWD values corresponding to these 

304 dates being < 0.3, indicating that the degree of scattering in the data set is almost entirely 

305 analytical. As such the timing of the stage III mineralization is taken to be ~355 Ma (±7 - 11). 

306 The Osi values from the Re-Os isochron and the non-radiogenic samples are consistent, at 

307 0.13 ± 0.01, which are taken to represent the best estimate of the Osi composition of the stage 

308 III mineralization.

309 The two Re-Os isochron dates (369 ± 18 Ma (all samples) and 383 ± 8 Ma (excluding 

310 sample CK003)) from the stage II quartz veins in the Annage gold deposit are similar 

311 including the uncertainty. However, the uncertainty of the age 369 Ma is much larger (18 vs. 

312 8 Ma) and so is the uncertainty in the corresponding Osi (2.4 vs. 0.5) and degree of scatter 

313 about the best fit of the data (MSWD = 24 vs. 6.6). The scatter coupled with the obvious 

314 deviation of the CK003 from the best fit of all the Re-Os data (Fig. 9A) indicate the CK003 

315 could relate to a different stage of mineralization from that of the stage Ⅲ mineralization 

316 and/or its Re-Os systematics are slightly disturbed. The model Re-Os date for sample CK003 

317 is much younger than those of other samples (349 ± 6 Ma). As such, we regard the Re-Os 

318 isochron date determined from all samples with the exception of CK003 (383 ± 8 Ma) as the 

319 best estimate of the timing of the stage Ⅱ veins at Annage. This age is consistent with the 
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320 weighted mean date of the Re-Os model dates (383 ± 6 Ma) and within the uncertainty of the 

321 187Re-187Osr isochron date (396 ± 28 Ma). Interestingly, the Re-Os model date of the sample 

322 CK003 (349 ± 6 Ma) is consistent with that of stage Ⅲ veins in the Guoluolongwa gold 

323 deposit, indicating that a common Carboniferous event may occur in the two deposit. The Osi 

324 value from the Re-Os isochron (3.65 ± 0.51) is similar to those calculated for each sample 

325 (~2.9 to 4.3 excluding CK003) and could be taken to represent the initial compositions of 

326 these samples.

327 5.2 Multiple gold-mineralizing events in the East Kunlun Orogen

328 Muscovite collected from the gold-bearing vein in the Guoluolongwa yields a Late Triassic 

329 40Ar/39Ar plateau age that was interpreted as the timing of gold mineralization (202.7 ± 1.5 

330 Ma; Xiao et al., 2014). Although, no detailed paragenesis between the muscovite and 

331 gold/gold-bearing minerals are reported (Xiao et al., 2014), it is considered that the 

332 Guoluolongwa gold deposit, and even all gold deposits in the Gouli goldfield, are Triassic in 

333 age, similar to many other gold deposits/fields in the East Kunlun Orogen and adjacent areas, 

334 e.g., Wulonggou (sericite Ar-Ar, 236.5 ± 0.5 Ma; Zhang et al., 2005), Shuizhadonggou 

335 (deposit in the Wulonggou gold field; sericite Ar-Ar, 237-231 Ma; Zhang et al., 2017) and 

336 Dachang (sericite Ar-Ar, 218.6 ±3.2 Ma; Zhang et al., 2005). However, the Re-Os data 

337 obtained from directly analyzing of sulfides (pyrite and chalcopyrite) from the Guoluolongwa 

338 and Annage yield much older ages (Late Devonian and Early Carboniferous) and thus it is 

339 necessary to re-evaluate the Triassic age gained from Ar-Ar dating and timing of gold 

340 mineralization of these deposits in the East Kunlun Orogen. 
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341 Crosscutting relationships of different geological units can offer the first-order constraint 

342 on the timing of the gold mineralizing events. In the Guoluolongwa gold deposit, field 

343 observations indicate that the hydrothermal veins related to gold mineralization cut cross the 

344 gabbro (416.2 ± 3.5 Ma; Yue et al., 2013) and the stage Ⅱ pyrite-quartz vein are crosscut by 

345 the stage Ⅲ polymetallic sulfides-quartz veins (Fig.5 A). Thus, both types of gold-bearing 

346 veins should be emplaced after ~416 Ma and the stage Ⅱ pyrite-quartz vein must be older 

347 than the stage Ⅲ polymetallic sulfides-quartz vein. These conclusions are consistent with our 

348 data (375 ± 11 Ma and 354 ± 7 Ma, respectively), but cannot explain the contradictory results 

349 between our Re-Os dates and the previously reported muscovite Ar-Ar age (202.7 ± 1.5 Ma; 

350 Xiao et al., 2014). Two possible models are: (1) the Paleozoic ages obtained from the Re-Os 

351 data of the sulfides represent the timing of gold mineralization, with the 40Ar/39Ar plateau age 

352 from muscovite being a product of a late thermal/hydrothermal overprint; (2) the 40Ar/39Ar 

353 plateau age represent the timing of gold mineralization, while sulfides were contaminated by 

354 old rocks during fluid migration leading to inhomogeneous initial 187Os/188Os compositions 

355 of sulfide samples and thus result in an errorchron or pseudochron (Yang et al., 2008). A 

356 valid method to test the two models is to plot initial 187Os/188Os against 1/192Os (Faure and 

357 Mensing, 2005). If model two is correct, a linear relationship between the initial 187Os/188Os 

358 and 1/192Os should be expressed by the data. However, our data from both the two stages of 

359 mineralization (stage II and III) are randomly distributed in 187Os/188Os vs. 1/192Os space 

360 (Figs. 11a and b), which means the isochrons we obtain represent the best estimate of the 

361 timing of gold mineralization, thus indicating Devonian and Carboniferous gold 
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362 mineralization. In addition, samples from the stage Ⅱ vein in the Annage gold deposit yield a 

363 Devonian age of 383 ± 8 Ma, which is consistent with the age of the stage Ⅱ vein of the 

364 Guoluolongwa gold deposit within uncertainty. The random distribution of the data in 

365 187Os/188Os vs. 1/192Os space (Fig. 11C) indicate the isochron of the Annage gold deposits 

366 should also not be an errorchron or pseudochron (Faure and Mensing, 2005; Yang et al., 2008) 

367 and thus the isochron age should represent the formation age of the stage Ⅱ vein of this 

368 deposit, which support the Devonian gold mineralizing event occurred in the Gouli area. The 

369 Re-Os model date of the sample CK003 (349 ± 6 Ma) from the Annage gold deposit, is 

370 identical with the Carboniferous age of stage Ⅲ veins in the Guoluolongwa gold deposit, 

371 which further implies that this gold mineralizing event occurred in the Gouli gold field during 

372 the Early Carboniferous. Furthermore, the contemporaneous Devonian gold-mineralizing 

373 event has been revealed to the north of the East Kunlun Orogen (Qilian-Qaidam; Sericite Ar-

374 Ar, 409-372 Ma; Yang et al., 2005; Zhang et al., 2005), indicating the existence of a 

375 Devonian gold-mineralizing event regionally. Consequently, we interpret the two episodes 

376 recorded by our Re-Os data from both the Guoluolongwa and Annage gold deposits as the 

377 formation ages of stage Ⅱ and Ⅲ veins in the Gouli gold field, respectively. In this context, 

378 the early reported muscovite Ar-Ar age is considered to represent a later 

379 thermal/hydrothermal activity that may be related to the pervasive Permian-Triassic 

380 magmatic event in the East Kunlun Orogen (Chen et al., 2017). Whether this later 

381 thermal/hydrothermal activity contribute gold to the two deposits deserve further study. 

382 Based on the present evidence, we prefer that the later thermal/hydrothermal activity 
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383 (Triassic) is unlikely to contribute significant gold to the two deposits, since a later gold-

384 bearing fluid should affect the Re-Os system of the dating mineral formed early or form new 

385 dating mineral (such as gold-bearing pyrite) which is closely relate to gold in the studied area. 

386 Our Re-Os data do not record any information of this Triassic event and no new gold-bearing 

387 assemblage or vein has been found by field observation. 

388 From a regional perspective, with the exception of the Guoluolongwa and Annage gold 

389 deposits that occur in Proterozoic or Ordovician-Silurian metamorphic rocks, the three other 

390 gold deposits in the Gouli goldfield crosscut Triassic (Asiha and Delong) or Silurian 

391 (Walega) aged intrusions (Fig. 2) and show distinct mineralization styles from those of 

392 Guoluolongwa and Annage (Li et al., 2012; Chen, 2018), indicating different gold-

393 mineralizing events forming these deposits. Thus at least one Triassic or post-Triassic gold-

394 mineralizing event occurred in the Gouli goldfield based on the cross-cutting relationship 

395 between orebodies and Triassic intrusion (Li et al., 2014), which is likely to be the same 

396 Triassic event leading to the formation of the Wulonggou goldfield to the west of the Gouli 

397 (Zhang et al., 2017). Consequently, together with the Late Paleozoic (Devonian and 

398 Carboniferous) mineralization revealed by our Re-Os data, there are at least two gold-

399 mineralizing epochs (Late Paleozoic and Late Triassic) in the Gouli goldfield.

400 5.3 Source of ore-forming materials and implications on the genetic model

401 The geochronological data presented above improve the framework of the temporal 

402 relationships between gold mineralization and tectonic-magmatic activities (discussed below) 

403 that may directly contribute to the formation of the gold deposits. However, timing constraint 

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180



404 alone does not distinguish between rock types or reservoirs that may have contributed to the 

405 formation of these gold deposits. In this regard, the Osi values of the sulfides from the Gouli 

406 goldfield can provide a unique insight into the ore-forming process (e.g., Morelli et al., 2007; 

407 Morelli et al., 2010). 

408 As discussed above, the non-radiogenic Osi values of the stage Ⅱ (0.12 ± 0.01) and Ⅲ 

409 (0.13 ± 0.1) veins in the Guoluolongwa gold deposit are consistent, similar to that of the 

410 mantle (Fig. 10; ~0.12–0.13; Shirey and Walker, 1998), indicating mantle or extremely 

411 juvenile crustal source of Os, by inference the ore metal (Au). This also excludes the wall 

412 rocks of the Naij Tal Group or possibly the concealed Proterozoic metamorphic basement 

413 rocks as the sources of the ore-forming materials (Fig. 10). Considering the contemporaneous 

414 mantle-derived mafic rocks in the East Kunlun Orogen (345 – 380 Ma; Chen et al., 2001; Bao 

415 et al., 2013), we contend that the ore metals of the two vein types of the Guoluolongwa gold 

416 deposit were derived from partial melting of the mantle. As to the ore-forming fluids, 

417 previously reported H-O isotopes (e.g., Wang, 2012; Yue, 2013; Xiao et al., 2014) indicate 

418 they were derived mainly from magmatic sources (Fig. 12) (Chen, 2018). The δ34S of the 

419 Guoluolongwa gold deposit shows a range of -6‰ – 5.2‰ (Chen, 2018 and references 

420 therein), a much wider range than that of mantle-derived sulfur (δ34S=0±3‰), indicating 

421 crustal sulfur may also contribute to the mineralization. Taker together, the origin of the 

422 Guoluolongwa gold deposit is different to that of typical orogenic gold deposits whose ore 

423 metal and fluids are considered to be derived from old metamorphic rocks (Goldfarb et al., 

424 2005 and references therein). It is also noteworthy that there is a nominally ~20 Ma age gap 
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425 between the formations of the two gold-bearing vein types. Such a large age gap is likely to 

426 imply two separately magmatic events contributing to the formation of the two vein types 

427 instead of a continuous hydrothermal activity, which could also explain the different mineral 

428 assemblages between the two vein types. In summary, the Guoluolongwa gold deposit is 

429 considered to be of magmatic origin and formed in relation to multiple magmatic events.

430 For the Annage gold deposit, considering the close spatial relationship (<3km), 

431 contemporaneous mineralization (Figs. 7 – 10), identical mineralization styles and mineral 

432 assemblages (Figs. 5 – 6), and consistent H-O isotope compositions (Fig. 12) between the 

433 Guoluolongwa and Annage deposits, we contend that the two deposits should have similar 

434 origin, which suggests that mantle-derived fluids and metals contributed to the formation of 

435 the Annage deposit. However, the Osi values of the sulfides from this deposit are much 

436 higher than that of the mantle (~0.12 – 0.13; Shirey and Walker, 1998), indicating another 

437 radiogenic source supplied the Os of this deposit. Considering the specific geological 

438 background of the two deposits, wall rocks, i.e. the Ordovician-Silurian (Naij Tal Group) and 

439 Proterozoic metamorphic rocks (Figs. 3 and 4), are likely candidates leading to the high Osi 

440 values of the stage Ⅱ gold-bearing veins. The protoliths of the Ordovician-Silurian 

441 metamorphic rocks are mudstone and volcanic rocks that were formed in the marine 

442 environment (Chen et al., 2013; Chen et al., 2014). Thus, the mudstone should have a similar 

443 initial 187Os/188Os ratio with that of the Ordovician-Silurian sea water (0.28-1.08; 449 Ma; 

444 Finlay et al., 2010). Considering ~70 Ma (time gap between 449 Ma and 383 Ma) of 187Os 

445 ingrowth from 187Re decay, the 187Os/188Os ratio of the Ordovician-Silurian black shale (0.6 
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446 to 1.9; Fig. 10) is much lower than the Osi value of the stage Ⅱ veins, indicating that the 

447 mudstone is likely not be the sole source of the Os in the stage Ⅱ veins. Further, the volcanic 

448 rocks of the Naij Tal Group that formed at 429 Ma had a similar initial 187Os/188Os (429 Ma) 

449 ratio with that of the mantle (Feng et al., 2009). Taking into account of the mantle-like initial 

450 187Os/188Os ratios and Os accumulation due to 187Re decay, our calculation indicates that the 

451 volcanic rocks must have 187Re/188Os > 4600 to gain high 187Os/188Os ratio of 3.65 at 383 Ma, 

452 which is unlikely to be true (Shirey and Walker, 1998). Taken together, the Ordovician-

453 Silurian metamorphic rocks (the host rocks of the Guoluolongwa gold deposit) are unlikely to 

454 be the main Os source of the stage Ⅱ vein in the Annage gold deposit, which is consistent 

455 with the low initial 187Os/188Os ratios of the Guoluolongwa gold deposit. The reported age for 

456 the Proterozoic metamorphic rocks in the Gouli area is 904 Ma that represents the age of the 

457 protoliths (Fig. 2; Chen et al., 2006). If these rocks are the source of the Os, the Proterozoic 

458 metamorphic rocks would have 187Re/188Os values between 300 and 500 to produce the 

459 observed Osi of the sulfides (Fig. 10). Geological units that have such high 187Re/188Os could 

460 be basalts or black shales (Shirey and Walker, 1998) that are possible protoliths of the 

461 Proterozoic metamorphic rocks given these rocks contain amphibolite and schist (Fig. 4). 

462 Thus, it is likely that the Proterozoic metamorphic rocks are the main source of the Os 

463 associated with stage Ⅱ veins, which is supported by that the host rocks of orebody I, where 

464 the samples collected, are Proterozoic metamorphic rocks (Fig. 4). Consequently, in addition 

465 to the same mineralizing process in the Guoluolongwa gold deposit, the ore-forming fluids of 

466 the Annage gold deposit likely reacted with the Proterozoic metamorphic wall rocks that 
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467 released leached radiogenic Os to the fluids and changed the initial non-radiogenic Os 

468 compositions (0.12 – 0.13) to a radiogenic composition (3.65). However, whether this 

469 process added crustal ore metal (Os and Au) to the Annage gold deposit need further study.

470 5.4 Relationships between gold mineralization and tectonic-magmatic activities and 

471 significance on regional exploration

472 Regionally, two gold-mineralizing epochs are revealed from our Re-Os data (Late Devonian 

473 and Early Carboniferous), published Ar-Ar dating and field observations (Triassic; e.g., 

474 Zhang et al., 2017). Interestingly, all the gold mineralizing events overlap with emplacement 

475 of A-type granites and mafic rocks (Fig. 13), which indicate the extensional regime within the 

476 East Kunlun Orogen. Considering the geological background of the East Kunlun Orogen 

477 (Chen et al., 2017), the two gold-mineralizing epochs should occur during the post-collisional 

478 stages related to the evolution of the Prototethys Ocean and Paleotethys Ocean, respectively 

479 (Fig. 13), with the ore-forming fluids being derived from a juvenile magma (Fig. 12). In this 

480 context, gold mineralization in the East Kunlun Orogen should be genetically related to post-

481 collisional magmatism that supplied auriferous fluids.

482 From a more regional perspective, a number of gold deposits have been reported in the 

483 adjacent western Qinling (to the immediate west of the East Kunlun Orogen; Figs. 1A and B) 

484 (Liu et al., 2015) and Qilian-Qaidam (to the north of the East Kunlun Orogen; Figs. 1 A and 

485 B) (Zhang et al., 2005). In these areas, both lode and disseminated gold deposits are present 

486 and most of these gold deposits are hosted in Proterozoic – Early Paleozoic (Qilian-Qaidam) 

487 (Zhang et al., 2005) and Devonian (western Qinling) (Liu et al., 2015) (metamorphic) 
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488 volcanic-sedimentary rocks, similar to those of gold deposits in the East Kunlun Orogen. 

489 Many of these gold deposits exhibit similar H-O isotopes with those in the East Kunlun 

490 Orogen (Fig. 12), indicating magmatic fluids with minor meteoric water played an important 

491 role in the mineralizing process (e.g., Fan et al., 2008; Liu et al., 2015; Zhang et al., 2017). In 

492 addition, the currently reported ages of these gold deposits display two peaks (Late Paleozoic 

493 and Triassic) of gold mineralization (Fig. 13). These ages, integrated with the geological 

494 background, indicate that most of these gold deposits were formed in collisional or post-

495 collisional regime related to the evolution of the Prototethys Ocean and Paleotethys Ocean 

496 (Fig. 13). In summary, it is likely that common tectonic-magmatic activities controlled the 

497 formation of gold deposits from the East Kunlun Orogen, Qilian-Qaidam and western 

498 Qinling, all of which are located in the west of the Central Orogenic Belt (Fig. 1A) that are 

499 controlled by the evolution of the Prototethys Ocean and Paleotethys Ocean (Qiu and 

500 Wijbrans, 2008; Wu and Zheng, 2013). Thus, considering the common geological 

501 background and the gold ore-forming potential of the whole western Central Orogenic Belt, it 

502 is possible that more Late Paleozoic gold deposits may be revealed in these areas, especially 

503 in the western Qinling where multiple magmatic activities developed, but only indirect dating 

504 methods (e.g., Ar-Ar dating of micaceous minerals) have been applied (Fig. 13 and related 

505 references).

506 7. Conclusions

507 Pyrites and chalcopyrites from gold-bearing ores in the Guoluolongwa gold deposit in the 

508 Gouli goldfield yield Re-Os ages of 375 ± 11 Ma for the stage II pyrite-quartz vein and 354 ± 
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509 7 Ma for the stage III polymetallic sulfides-quartz vein, which are also recorded by the stage 

510 II pyrites from the adjacent Annage gold deposit (383 ± 6 Ma and 349 ± 6 Ma). These data, 

511 together with field observations indicate that at least three gold mineralizing events (two in 

512 Late Paleozoic and one in Late Triassic) occurred in the Gouli goldfield. The Osi values of 

513 sulfides indicate that Os and by inference, the ore metal (Au) of the Guoluolongwa deposits 

514 were derived from mantle-derived magma. A common ore metal source is also recommended 

515 for the Annage gold deposit, but the Os of this deposit is considered to be derived from both 

516 the mantle and Proterozoic wall rocks. Results from this study together with previously 

517 reported ages of gold mineralization in the East Kunlun Orogen and adjacent areas, indicate 

518 that there are two gold-mineralizing epochs (Late Paleozoic and Late Triassic) in the west of 

519 the Central Orogenic Belt (included western Qinling, East Kunlun Orogen and Qaidam-

520 Qilian) and all gold mineralizing events occurred in collisional or post-collisional setting 

521 related to Tethyan evolution that controlled the whole Central Orogenic Belt. Thus, we infer 

522 that more Late Paleozoic gold deposits may be present in the west of Central Orogenic Belt.
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827 Figure captions

828 Fig. 1 (A) Tectonic map of China showing the location of Central Orogenic Belt and 

829 significant gold producing areas (after Li et al., 2015). (B) Tectonic divisions of the Qinghai-

830 Tibetan plateau showing the location of the East Kunlun Orogen (after Xia et al., 2015). (C) 

831 Simply Geological map of the East Kunlun Orogen showing the main gold deposits/fields 

832 (after Xia et al., 2015).

833

834 Fig. 2 Geological map of the Gouli goldfield showing the distribution of the main gold 

835 deposits (after unpublished geological report). Ages labeled on the map are zircon U-Pb ages 

836 and the related references are as follows: (1) (Chen et al., 2012); (2) (Liu et al., 2002); (3) 

837 (J.J. Chen et al. in prep.); (4) (Ying and Zhang, 2003); (5) (our unpublished data); (6) (Chen 

838 et al., 2016); (7) (our unpublished data); (8) (Li et al., 2012); (9) (Yue et al., 2017); (10) 

839 (Chen et al., 2006).

840

841 Fig. 3 (A) Geological map of the Guoluolongwa gold deposit showing the locations of the 

842 main gold orebodies and the profile A-B. (B) Representative cross-section in the 

843 Guoluolongwa gold deposit (after unpublished geological report). Ages in (A) are zircon U-

844 Pb ages from our unpublished data and Yue et al. (2013).

845

846 Fig. 4 (A) Geological map of the Annage gold deposit showing the distribution of the main 

847 gold orebodies and the location of profile A-B (after Chen, 2014). (B) Representative cross-
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848 section in the Annage gold deposit (after unpublished geological report). Age of diorite in (A) 

849 is zircon U-Pb age from Kong et al. (2014).

850

851 Fig. 5 Photographs and photomicrographs showing representative veins and minerals in the 

852 Guoluolongwa (A-I) and Annage (J-L) gold deposits. (A) Crosscutting relationship of the 

853 pyrite-quartz vein, polymetallic sulfides-quartz vein, gabbro, and phyllite. (B) Pyrite-quartz 

854 vein cutting cross early quartz vein. (C) Polymetallic sulfides-quartz ore. (D) Native gold-

855 chalcopyrite-sphalerite vein filling the crack of pyrite. (E) Native gold occurring between 

856 sphalerite and quartz grains. (F) Chalcopyrite-galena vein; (G) Eutectoid of sphalerite and 

857 chalcopyrite. (H) Polymetallic sulfides-quartz vein cut cross early pyrite-quartz vein. (I) 

858 Polymetallic sulfides-quartz vein. (J) Pyrite-quartz vein with local massive pyrite. (K) Pyrite-

859 quartz ore. (L) Coarse pyrite.

860

861 Fig. 6 Mineral paragenetic sequence of Guoluolongwa and Annage deposits.

862

863 Fig. 7 Re-Os plots of stage Ⅱ pyrite-quartz vein in the Guoluolongwa gold deposit: (A) 

864 187Re/188Os vs. 187Os/188Os plot; (B) 187Re vs. 187Osr plot; (C) Weight average of Re-Os model 

865 dates. 

866

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537



867 Fig. 8 Re-Os plots of stage Ⅲ polymetallic sulfides-quartz vein in the Guoluolongwa gold 

868 deposit: (A) 187Re/188Os vs. 187Os/188Os plot; (B) 187Re vs. 187Osr plot; (C) Weight average of 

869 Re-Os model dates. 

870

871 Fig. 9 Re-Os plots of stage gold-bearing vein in the Annage gold deposit: (A) 187Re/188Os vs. 

872 187Os/188Os plot; (B) 187Re vs. 187Osr plot; (C) Weight average of Re-Os model dates. 

873

874 Fig. 10 Initial 187Os/188Os vs. T (Ma) of sulfides from the Guoluolongwa (A, B) and Annage 

875 (C) gold deposits. The number “48” overriding the grey lines is the present-day continental 

876 crustal 187Re/188Os value used for calculating evolution lines of crust with different ages 

877 (Esser and Turekian, 1993). The numbers 300 and 500 overriding orange lines are assumed 

878 present-day 187Re/188Os values used for calculating corresponding crustal evolution lines. 

879 Present-day 187Os/188Os and 187Re/188Os values used for calculating the primitive upper 

880 mantle evolution line are 0.1290 and 0.428, respectively (Meisel et al., 1996). Os 

881 composition of the Ordovician black shales is also shown for comparison (Finlay et al., 

882 2010). The initial 187Os/188Os ratios present here are from samples with %187Osr < 90 %.

883  

884 Fig. 11 initial 187Os/188Os vs. 1/Os of sulfides from Guoluolongwa (A, B) and Annage (C) 

885 gold deposits. The initial 187Os/187Os ratios used were calculated back to 202.7 Ma (Xiao et 

886 al., 2014).
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888 Fig. 12 H-O isotopic characteristics of Guoluolongwa and Annage gold deposits. The H-O 

889 isotopic data of the Guoluolongwa and Annage gold deposit are from Yue (2013), Xiao et al. 

890 (2014), Wang (2012), Hu (2008) and Tao (2014). H-O isotopic data of gold deposits from the 

891 East Kunlun Orogen (Feng et al., 2004; Zhao, 2008; Li et al., 2012; Tao, 2014), western 

892 Qinling (Liu et al., 2015 and references therein) and Qaidam-Qilian (Mao et al., 2000; Li et 

893 al., 2003; Fan et al., 2006; Ding, 2007) are also shown for comparison. GLLW- 

894 Guoluolongwa gold deposit; ANG- Annage gold deposit; EKO- East Kunlun Orogen.

895

896 Fig. 13 Temporal distribution of gold deposits from East Kunlun Orogen, western Qinling 

897 and Qaidam-Qilian. A-type granites and related mafic rocks from East Kunlun Orogen are 

898 also shown indicating post-collisional extensional setting for gold deposits. The period of 

899 collision/post-collision of the East Kunlun Orogen (Chen et al., 2017 Chen et al., in 

900 preparation), western Qinling (Liu et al., 2016; Zhou et al., 2016) and Qaidam-Qilian (Song 

901 et al., 2014) are also marked. The sources of ages of gold deposits, A-type granites, and 

902 related mafic rocks are summarized in the appendix. 
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Appendix table A1 Typical gold deposits in the west of the Central Orogenic Belt of China

deposit
resources 

(t)
Tectonic terrain mineralization age (Ma) mineral and method reference

Hanshan Qilian 372 ± 8; 213.9 ± 3.1
Quartz, Rb-Sr; Sericite, K-

Ar
(Mao et al., 2000; Yang et al., 

2005)
Yeluotuoquan Qaidam 246 ± 3 Sericite, Ar-Ar (Zhang et al., 2005)
Tanjianshan Qaidam 284 ± 3; 401 Sericite and biotite, Ar-Ar; (Zhang et al., 2005)
Qinglonggou Qaidam 409.4 ± 2.3 Sericite, Ar-Ar (Zhang et al., 2005)

Saibagou Qaidam 425.5 ± 2.1 Sericite, Ar-Ar (Zhang et al., 2005)
Wulonggou 72.93 East Kunlun Orogen 236.5 ± 0.5 Sericite, Ar-Ar (Zhang et al., 2005)

Shuizhadonggou
Huanglonggou

45.00 East Kunlun Orogen 230.8 ± 1.7; 237 ± 2 Sericite, Ar-Ar (Zhang et al., 2017)

Guoluolongwa 40.00 East Kunlun Orogen 202.7 ± 1.5 Sericite, Ar-Ar (Xiao et al., 2014)
Dachang 220.00 East Kunlun Orogen 218.6 ± 3.2; 220.3 ± 3.2 Sericite, Ar-Ar (Feng, 2002; Zhang et al., 2005)

Naomuhun East Kunlun Orogen 227.84 ± 1.13 Sericite, Ar-Ar (Li et al., 2017)
Guoluolongwa 40.00 East Kunlun Orogen 202.7 ± 1.5; 375 ± 11; 354±7 Pyrite, Re-Os (Xiao et al., 2014; This study) 

Annage East Kunlun Orogen 383 ± 6 Pyrite, Re-Os This study

Baguamiao 106.00 western Qinling
232.58 ± 1.59; 131.9 ± 0.98; 131.91 ± 

0.89
Quartz, Ar–Ar (Shao andWang, 2001)

Xiaogouli western Qinling 197.45 ± 1.13 Quartz, Ar–Ar (Shao andWang, 2001)
Shangjiagou western Qinling 161.59 ± 0.56 Quartz, Ar–Ar (Shao andWang, 2001)

Liziyuan western Qinling 206.8 ± 1.6 Sericite, K–Ar (Liu et al., 2011)

Liba 80.00 western Qinling 216.4 ± 1.5
Muscovite and biotite,

Ar–Ar
(Zeng et al., 2012)

Huachanggou 10.00 western Qinling 215 ± 0.5 Fuchsite, K–Ar (Bai, 1996)
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Jinlongshan >150 western Qinling 232.7 ± 6.9 Sericite, Ar–Ar (Zhao et al., 2001)
Yangshan >300 western Qinling 197.6 ± 1.7 Zircon, U-Pb (SHRIMP) (Qi et al., 2005)

Appendix table A2 A-type granites and related mafic rocks in the East Kunlun Orogen
Location lithology age (Ma) method references
Yugouzi A-type granite 210 ± 0.6 Zircon LA-ICPMS U-Pb (Gao, 2013)
Yemaquan A-type granite 213 ± 1 Zircon LA-ICPMS U-Pb (Gao et al., 2014)
Kendekeke A-type granite 230.5 ± 4.2 Zircon LA-ICPMS U-Pb (Xi et al., 2010)
Baishiya A-type granite 238 ± 1 Zircon LA-ICPMS U-Pb (Yin et al., 2013)
Halashan A-type granite 239.2 ± 1.7 Zircon LA-ICPMS U-Pb (He, 2015)
Tula A-type granite 385.2 ± 8.1 Zircon SHRIMP U-Pb (Wu et al., 2007)
Wulanwuzhuer A-type granite 388.9 ± 3.7 Zircon LA-ICPMS U-Pb (Guo et al., 2011)
Binggou A-type granite 391 ± 3 Zircon LA-ICPMS U-Pb (Liu et al., 2013)
Xiarihamu A-type granite 391 ± 1 Zircon LA-ICPMS U-Pb (Wang et al., 2013)
Dagangou A-type granite 392 ± 2 Zircon LA-ICPMS U-Pb (Tian et al., 2016)
Lalingzaohuo A-type granite 396 ± 2 Zircon LA-ICPMS U-Pb (Chen et al., 2013)
Shuizhadonggou A-type granite 404.6 ± 5.2 Zircon LA-ICPMS U-Pb (Wang, 2015)
Shuizhadonggou A-type granite 409.3 ± 2.8 Zircon LA-ICPMS U-Pb (Wang, 2015)
Dacaigou A-type granite 416 ± 3 Zircon LA-ICPMS U-Pb (Wang, 2015)
Huanglonggou A-type granite 416.9 ± 1.3 Zircon LA-ICPMS U-Pb (Li et al., 2014)
Houtougou A-type granite 419 ± 1.9 Zircon LA-ICPMS U-Pb (Yan et al., 2016)
Baiganhu A-type granite 421 ± 3.7 Zircon SHRIMP U-Pb (Li et al., 2012)
Baiganhu A-type granite 422 ± 3 Zircon SHRIMP U-Pb (Li et al., 2012)
Helegangnaren A-type granite 425 ± 6.7 Zircon LA-ICPMS U-Pb (Li et al., 2013)

Zongjia basic dike 218±2 Zircon LA-ICPMS U-Pb (Xiong, 2014)
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Binggou basic dike 226±3 Zircon LA-ICPMS U-Pb (Xiong, 2014)
Qimantage dolerite 380.3 ± 1.5 Zircon LA-ICPMS U-Pb (Qi et al., 2013)
East of Yuejinshan hornblende gabbro 393.1 ± 1.6 Zircon LA-ICPMS U-Pb (Xiong et al., 2014)
Xiarihamu gabbro 394 ± 3 Zircon LA-ICPMS U-Pb (Li et al., 2012)
Geyakedengtage gabbro 403.3 ± 7.2 Zircon SHRIMP U-Pb (Chen et al., 2006)
Yuejinshan gabbro 406 ± 3 Zircon LA-ICPMS U-Pb (Liu et al., 2012)
Guoluolongwa lamprophyre 416.3 ± 3.5 Zircon LA-ICPMS U-Pb (Yue et al., 2013)
Sederi dolerite 417 ± 1 Zircon LA-ICPMS U-Pb (Yue et al., 2017)
Haerguole gabbro from ophiolite 332.8 ± 3.1 Zircon LA-ICPMS U-Pb (Liu et al., 2011)
Xiadawu gabbro from ophiolite 345.3 ± 7.9 whole rock Ar-Ar (Chen et al., 2001)
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