
Enclave Tasking for DG Methods on Dynamically

Adaptive Meshes

D.E. Charrier B. Hazelwood T. Weinzierl∗

February 25, 2020

Abstract

High-order Discontinuous Galerkin (DG) methods promise to be an excellent dis-
cretisation paradigm for hyperbolic differential equation solvers running on supercom-
puters, since they combine high arithmetic intensity with localised data access, since
they straightforwardly translate into non-overlapping domain decomposition, and since
they facilitate dynamic adaptivity without the need for conformal meshes. An efficient
parallel evaluation of DG’s weak formulation in an MPI+X setting however remains
non-trivial as dependency graphs over dynamically adaptive meshes change with each
mesh refinement or coarsening, as resolution transitions yield non-trivial data flow de-
pendencies, and as data sends along MPI domain boundaries have to be triggered in the
correct order. Domain decomposition (MPI) alone starts to become insufficient if the
mesh changes very frequently, if mesh changes cannot be predicted, and if limiters and
nonlinear per-cell solves yield unpredictable cost per cell. We introduce enclave tasking
as task invocation technique for shared memory and MPI+X: It does not assemble any
task graph; instead the mesh traversal spawns ready tasks directly. A marker-and-cell
approach ensures that tasks feeding into MPI or triggering mesh modifications as well as
latency-sensitive or bandwidth-demanding tasks are processed with high priority. The
remaining cell tasks form enclaves, i.e. groups of tasks that can be processed in the
background. Enclave tasking introduces high concurrency which is homogeneously dis-
tributed over the mesh traversal, it mixes memory-intensive volumetric DG calculations
with compute-bound Riemann solves, and it helps to overlap communication with com-
putations. Our work focuses on ADER-DG and patch-based Finite Volumes. Yet, we
discuss how the paradigm can be generalised to the whole DG family and Finite Volume
stand-alone solvers.

1 Introduction

Higher-order Discontinuous Galerkin (DG) techniques contribute towards the success story
of many solvers for hyperbolic partial differential equations (PDEs) on supercomputers. DG
methods are considered to be guarantors for computational efficiency. While they fit to
dynamically adaptive (block-structured) grids [12]—no conformity constraints are imposed
conceptually—DG’s HPC selling point is that they combine high arithmetic intensity with
localised data access. Its computations per mesh cell are arithmetically intense, which is
a property they share with many higher-order methods [25]. At the same time, DG’s data
access pattern however is very localised [11]—this helps to reduce the memory access stress
[8, 17, 20, 24, 27]—and its exchange between cells along their connecting faces is conceptually
simple. A combination of these two properties—high intensity to exploit vector units and
dynamic AMR to invest where it pays off most—is a fit to predictions what exascale software
will have to look like [10].

∗Department of Computer Science, Durham University, Lower Mountjoy South Road, Durham DH1 3LE,
United Kingdom ({tobias.weinzierl@durham.ac.uk})

1

ar
X

iv
:1

80
6.

07
98

4v
3

 [
cs

.M
S]

 2
4

Fe
b

20
20

DG’s localised data exchange is a fit to distributed memory, message-based (MPI) par-
allelisation as it is predominant in supercomputing. Delivering scaling algorithm implemen-
tations per node as well as upscaling MPI+X yet remain far from trivial. DG traverses the
grid to evaluate its algorithmic steps. Such traversals can be read as task graph traversals:
The computational grid spans the graph whereas the particular DG scheme defines the task
type per mesh entity. DG in its basic form distinguishes two tasks: tasks working on cells
and tasks working on faces (Riemann solves) [9, 24]. Mapping the task types onto separate
mesh traversals makes steps piping data through the cores (Riemann) take turns with the
computationally demanding volumetric evaluations. While the latter scale, the other steps
tend to be bandwidth- or latency-bound. Furthermore, they couple cells and thus demand
for data exchange. They are thus typically incapable to exploit all cores, hinge on inter-
connect capabilities, and their scalability potential is limited. High polynomial degrees and
static adaptivity with a volumetric coupling of cells allow the cost for the cell operations to
marginalise the cost for data exchange, Riemann solves and so forth [9, 19]. Overlapping
domain decomposition with volumetric coupling is not studied here. Nevertheless, cheap task
phases continue to introduce a low concurrency workload fraction in an Amdahl sense and
thus constrain the scalability.

Most codes that achieve high performance focus on particular DG subcategories and mas-
ter the challenges above by exploiting the subcategories’ particular characteristics: If we study
classic Finite Volume (FV) schemes, the Riemann solve and the volume integral can be run
in parallel [17, 24], i.e. we can hide the former behind the expensive volumetric computation.
If we study linear PDEs, the cost per cell is known a priori, as all cell and face operators are
small matrices [19, 24, 42]. This simplifies the decomposition and scheduling of operations
[7]. From a task point of view, static on-node scheduling then is sufficient. If we study static
adaptive meshes, we know prior to each time step where computationally intense interpola-
tions and restrictions arise that feed into other tasks. We in particular know which face data
are to be exchanged via MPI which enables us to prioritise the handling of the underlying
computations appropriately such that they are sent out while we continue to work locally
[16, 17, 19, 20, 25, 32]. We can even design hardware topology-aware domain splits [39]. If we
furthermore stick to conformal meshes plus global time stepping or even regular grids, such
operations disappear completely [13, 19, 42]. These success stories show that DG has great
upscaling potential. They also show that it is reasonable to reorder and intermix the tasks
to obtain high performance.

Any rearrangement or parallelisation of the task execution requires care as inter-grid
transfer operations along mesh resolution boundaries have to be performed in the correct
order. We typically interpolate the coarser data representation, solve Riemann problems then,
and finally restrict the outcome. Furthermore, tasks sending and receiving MPI messages
have to stick to a specific order. The fact that there are “cheap” tasks, i.e. tasks with low
arithmetic intensity, further implies that MPI sends have to be issued early to allow the
message transfer to hide behind the expensive tasks or many cheap ones. Finally, memory-
intense tasks such as mesh refinement or the Riemann solves shall continuously trickle through
the system to avoid memory access bursts. Assembling the whole task graph or fractions of
it and then deriving a tailored/optimised schedule without assembly penalty is difficult if
totally dynamic, unconstrained AMR may change the graph in each and every time step and
(almost) any location in the computational domain. The above paragraph gives examples of
successful strategies if we constrain the AMR. Some sophisticated DG variants furthermore
employ techniques such as (a posteriori) limiting [15], optimistic time stepping with on-the-fly
CFL analysis which occasionally require roll backs, or solve nonlinear equation systems locally
with dynamic termination criterion controlling the nonlinear solve. The cost per volume is
not known a priori. Local time stepping is beyond scope in the present work yet can be seen
as technique which amplifies all task balancing and scheduling difficulties.

We propose a grid traversal and task invocation scheme called enclave tasking. It works
without any task graph assembly, and it makes no assumption about the grid topology. We
introduce it by means of dynamically adaptive meshes as they result from octrees as well as

2

generalisations—we call them spacetrees—of those [44, 45], and by means of ADER-DG [13],
an explicit time stepping scheme for hyperbolic equation systems. The spacetree is traversed
cell-wisely. This allows for many efficient storage and traversal schemes [12, 18, 45, 44].
Enclave tasking maps each DG time step onto a pair of mesh traversals. The primary mesh
traversal runs over all mesh cells and spawns one task per cell. Work stealing then distributes
these computationally intense tasks among idle threads. We realise a producer-consumer
pattern. Additionally, the traversal launches the computationally cheap Riemann solves ad
hoc, i.e. per face read: it waits for the tasks of the adjacent cells to terminate, and then
it immediately runs the bandwidth-demanding computations. Where required, the primary
mesh traversal processes a temporarily shifted task graph [9]: It runs the Riemann solves,
and then immediately issues the cell tasks of the subsequent time step. Cell tasks update
the solution within their cell, which implies a change of the solution representation along the
cell faces. In our non-overlapping domain decomposition, these face data have to be sent
out in a deterministic, consistent order to neighbouring ranks, as the subsequent primary
mesh traversal on the neighbouring rank feeds its local data plus the remote counterpart
data as input to the Riemann solves. We thus classify the aforementioned cell tasks into high
priority and background tasks, and we introduce a secondary (partial) mesh traversal. It takes
turns with the primary traversal. Whenever the secondary traversal accesses a cell along a
domain boundary, it waits for its local adjacent task to complete and then passes the outcome
immediately to MPI. Tasks of cells adjacent to MPI boundaries are issued with high priority.
Furthermore, we assume that dynamic adaptivity spreads along existing grid transitions most
of the time. It tends to evolve smoothly in space and time. Therefore, we also make cell tasks
along refinement transitions have high priority if they feed into a mesh interpolation. Their
outcome is processed by the secondary mesh traversal, too. This means that information from
interpolation along resolution boundaries becomes available early. Other cells are skipped by
the secondary traversal. As our mesh traversals itself are parallelised, too, we end up with
three different types of tasks spread over two different types of mesh traversals: Memory-
intense tasks tied to the (parallel) mesh traversals, high priority cell tasks and background
cell tasks. The high priority tasks stem from cells adjacent to MPI boundaries and adaptivity.
They form skeletons. The remainder cells form enclaves. They are tasks that are handled in
the background of all communication- and bandwidth-critical operations. They deliver the
scalability.

The whole paper describes a geometrically inspired multitasking scheme which exploits
mesh regularity and the fact that meshes typically do not change dramatically all over the
domain within a short time interval. The idea to process “communicating cells” prior to
others is, notably in the context of DG and accelerators, not new [2, 20, 25, 39], and many
of the present ideas, per se, are well-known. To the best of our knowledge, there’s how-
ever no work that combines all of the following features into one formalism. Our work (i)
derives and updates regularity information—the skeletons—on-the-fly, and thus imposes no
constraints on the dynamic adaptivity. In our code, the adaptivity along subdomain bound-
aries can change in each and every grid sweep; (ii) does not make any assumptions about the
grid structure/topology or restricts itself to particular subgrid regions/enclaves [25, 37, 39];
(iii) works without any assembly of a task graph which becomes expensive if dynamic adap-
tivity makes this graph change in each and every grid sweep [26, 27, 37] and yet supports
very inhomogeneous, unpredictable cost-per-cell distributions; (iv) mixes tasks with different
compute characteristics and thus avoids memory access bursts. (v) Enclave tasking finally
is MPI-oblivious: As MPI data aligns along the mesh skeleton, MPI data is sent out while
prediction tasks still might queue in the background. Therefore, sends are overlapped with
computation. Notably, enclave tasking does not have to know the MPI communication pat-
tern a priori, which would be a showstopper for totally free dynamic adaptivity. While our
discussion focuses on ADER-DG, a particular flavour of explicit time stepping DG schemes,
we sketch that our techniques impact many matrix-free DG methods and notably all Finite
Volume schemes, too. While our discussion focuses on spacetrees, the extensions to forests
[3, 23, 36] is straightforward if we classify all tree, i.e. inter-forest boundaries as skeletons.

3

The remainder is organised as follows: We sketch ADER-DG and the operators, i.e. tasks
of interest (Sect. 2), before we introduce enclave tasking in Sect. 3. Section 4 next describes
how we tailor the tasking runtime and use MPI. In Sect. 5, we generalise all patterns to
other DG approaches and Finite Volumes (FV), and then provide measurements (Sect. 6)
that demonstrate the potential of our ideas. A conclusion summarises the main findings and
sketches future work as well as shortcomings.

2 ADER-DG on Cartesian meshes

We study first-order hyperbolic systems

∂Q

∂t
+∇ · F (Q) = S(Q) +

∑
δ with Q : Rd+1 7→ Rm, d ∈ {2, 3}. (1)

F is a conservative flux, S a volumetric source term, and δ denotes the impact of point sources.
S and δ usually depend on time and space. Q is the solution over a d-dimensional computa-
tional domain. It has m components and changes over time. The system is complemented by
well-suited initial and boundary conditions.

Among DG techniques for (1), ADER-DG [14, 15] has grown into a popular approach.
ADER-DG relies on particularly expensive volumetric cell operators, as it solves the PDE
per mesh cell per time step through a weak space-time formulation. For nonlinear PDEs,
this even requires a nonlinear equation system solve. Space-time solves are computationally
feasible as the mesh cells are handled independently of each other. The solve, however, is
only a space-time predictor which feeds into a follow-up, explicit-in-time Riemann phase. It
solves the Riemann problems arising from the discontinuous, predicted solution along the
mesh faces. Eventually, both solve outcomes are merged into the next time step’s solution.
This step is labelled corrector. ADER-DG exhibits high-order behaviour in both space and
time, and it is arithmetically intense per cell, although it requires only one data exchange
between adjacent cells per time step.

2.1 ADER-DG sketch

We study (1) over a computational domain Ωh discretised by a mesh that consists of cuboid
cells c. Each cell carries an Q approximation Qh(x, t) as linear combination of Lagrangian
polynomial shape functions over Gauß-Legendre points. The polynomials are continuous
inside the cells, but they induce jumps along the faces between cells. Our derivation of the
algorithmic steps and computational tasks—each step consists of tasks which are atomic work
units independent of all other tasks—derives from [13].

ADER-DG starts from a weak formulation of (1) both in space and in time. Let (T, T+∆T)
span one time step. We obtain a continuous, weak formulation∫

Ω×(T,T+∆T)

(
∂Q

∂t
+∇ · F (Q)

)
v̂ d(x, t) =

∫
Ω×(T,T+∆T)

(
S(Q) + . . .

)
v̂ d(x, t) (2)

where we replace Q(·, T) by the linear combination of shape functions Qh, and where we vary a
space-time test polynomial v̂. To develop Qh in time, we multiply it with a polynomial in time
[14]. The same Lagrangian polynomial order as for the spatial representation is used. With
cubes as mesh cells, this is a tensor product approach for the space-time solution. It describes
a space-time polynomial Q̂h approximating the development of the real solution Q over time
and space. v̂ uses the same ansatz, i.e. we express Qh(x, t) or Q̂h(x, t), respectively, from (2)
by a weak, discretised space-time Ritz-Galerkin problem with space-time test functions v̂h.

Following [13], we separate the time derivative from the remainder integrals in (2). Partial
integration in time for the term comprising ∂Q

∂t , and partial integration in space for all other
terms gives us two computational/implementational advantages. (i) It injects the known
solution Qh(·, T) into the system and yields an explicit expression for Qh(·, T + ∆T), as we

4

roll over the time derivative to the test function. (ii) It removes the divergence operator ∇·
from F as it transfers to the test function. F evaluations for applications are straightforward—
they typically describe the physics directly—while a derivative computation can be tedious.
The two advantages are accompanied by two disadvantages: (i) The overall scheme is high
order in time but describes a globally implicit setup which is usually infeasible to solve. (ii)
We inherit jump terms from the partial integration in space. ADER-DG addresses these two
disadvantages numerically.

The first step of ADER-DG is the space-time predictor (STP). It develops Q̂h(x, t) by
solving the weak, discretised space-time Ritz-Galerkin problem. Yet, it drops all jump terms
when it integrates∫

c×(T,T+∆T)

(
∂Qh

∂t

)
v̂ d(x, t) +

∫
c×(T,T+∆T)

(
∇ · F (Qh)

)
v̂ d(x, t) = . . .

by parts. With
⋃
c = Ωh tessellating the computational domain, the arising STP decouples

the individual cells from each other. We ignore the neighbours of any cell c. For a given
Qh(·, T), this yields a space-time Q̂∗

h through Picard iterations.

As Qh, Q̂h, Q̂
∗
h all are represented by polynomials with compact support that are allowed

to be discontinuous along cell faces, no continuity constraints between cells are built into
Q̂∗

h. Jumps arise if we extrapolate the STP Q̂∗
h from left and right to the faces between

neighbouring cells. Such projections are labelled Q̂∗±
h in DG—one projection from the right

and one from the left along a coordinate axis. As Q̂∗±
h is a space-time polynomial, the

extrapolation is a space-time expression, too. To make ADER-DG an explicit time stepping
scheme, we replace all Q̂h entries in the “jump” terms arising from partial spatial integration
of (2) with our predicted Q̂∗

h. These face interface states then are plugged into a Riemann
solver. This is the second step of the ADER-DG scheme. We solve the Riemann problems.

In the third and final step of ADER-DG, we plug both Q̂∗
h(·, T + ∆T) and the time

integral over the Riemann solution into (2), integrate in time and solve the remaining weak
formulation. It degenerates to a spatial problem over Ωh. This step can be read as a correction
to the predicted Q̂∗

h(·, T + ∆T). It is thus called corrector.

2.2 A task language

Let CSTP denote
Q̂∗

h = CSTPQh(·, T). (3)

In (3), we use the symbol CSTP as global operator applied to the solution over the whole
computational domain. However, the STP’s construction implies that CSTP decomposes
over the cells. Consequently, we use CSTP synonymously for a computational task which
advances the solution over one cell: Q̂∗

h|c = CSTP · Q(·, T)|c. We omit |c from hereon. As
a result, the global CSTP evaluation results from the application of a set of cell-wise CSTP

tasks to all c ∈ Ωh. Though CSTP formally spawns the whole STP, follow-up steps use solely
Q∗

h(·, T + ∆T) = id|T+∆T · Q̂∗
h and the two projections id|∂c · Q̂∗

h of the STP onto each face
between any two cells. It is convenient only to store these results [9], i.e. to extrapolate—if
we employ Gauss-Legendre points, no sample points coincide directly with the faces—and to
integrate over time immediately.

Let FR denote the operator that runs over all faces. It represents the Riemann solves.
For global time stepping, where all cells advance in time with the same time step size ∆T ,
it is convenient to make it comprise the time integral over the result, too. Along the lines of
(3), we observe that FR decomposes over the mesh faces. FR consequently describes a set of
compute tasks over all faces. They accept input from the CSTP tasks.

The corrector finally yields a set of cell-wise CCorr tasks. We end up with

Qh(·, T + ∆T) = CCorr ◦ FR ◦ id|∂c ·Q∗
h + id|T+∆T ·Q∗

h

= (CCorr ◦ FR ◦ id|∂c + id|T+∆T) ◦ CSTP ·Qh(·, T)

5

for one ADER-DG time step. Alternatively, we may distinguish the data stored inside the
cell from the data held for the faces by writing them as entries of a vector:

(
Qh

·

)
(T + ∆T) =

(
1 CCorr

0 0

)
︸ ︷︷ ︸

corrector (cell-wise)

(
1 0
0 FR

)
︸ ︷︷ ︸

Riemann (face-wise)(
id|T+∆T

id|∂c

)
CSTP

(
1 0

)
︸ ︷︷ ︸

STP (cell-wise)

(
Qh

·

)
(T). (4)

Face data here is used as temporary data storage and thus does not determine the solution
at particular time stamps. Once we are given a mesh, (4) describes the arising ADER-DG
task graph. Alternatively, this ADER-DG blueprint maps onto a plain realisation employing
three loops (Algorithm 1) each issuing independent tasks.

Algorithm 1 Pseudo-code of ADER-DG split up into three phases. We highlight what we
refer to as C and F tasks. Some technical details (projections and temporary variables)
from this algorithm are omitted in the text for clarity. Without local time stepping, time
integration and Riemann solve FR can be switched, i.e. we can collapse Riemann solves over
time into one spatial Riemann problem.

1: function AderDGTimeStep(∆T)
2: for all cells c ∈ Ωh do . Space-time predictor phase
3: startTask
4: CSTP(c) . Run predictor on cell. CSTP is parameterised with ∆T
5: id∂c(c) . Project result to 2d faces of c, keep outcome at T + ∆T ,
6: . too, but throw away intermediate time solutions
7: endTask
8: end for
9: for all faces f ∈ Ωh do . Riemann phase

10: startTask
11: Read id|∂c outcome from f ’s adjacent cells . Q∗±

h in DG literature
12: FR(f) . Riemann solves over the whole (T, T + ∆T) time span
13: Integrate Riemann outcome in time
14: endTask
15: end for
16: for all cells c ∈ Ωh do . Correction phase
17: startTask
18: Read FR outcome of 2d adjacent cells . Project Riemann solve
19: CCorr(c) . outcomes back to cell, and fuse with predicted data
20: endTask
21: end for
22: end function

2.3 Dynamic adaptivity

While adaptive mesh refinement (AMR) minimises computational work, it adds complexity
to the task graph. For ADER-DG, we are however able to exploit the discontinuities build
inherently into the numerical scheme to bring down AMR implementation complexity from
a parallelisation point of view. We do not impose any balancing conditions [40]. Yet, we do
assume that we have a grid topology which is common to many software packages:

Assumption 1 Let our grids result from a conformal grid. We assign this grid the level
`min. From `min on, we construct a finer, adaptive grid by subdividing each cell that we want

6

to refine a fixed number of times such that the subdivisions along two adjacent cells that are
refined match. This new grid has level `min + 1. We continue recursively but independently
for each cell. When the recursion has terminated, all cells that are not subdivided further
form an adaptive mesh Ωh. Each cell c ∈ Ωh belong to a unique level.

The purest grids of this type are quadtrees and octrees. They start from one square or cube,
i.e. a trivial `min mesh, and subdivide this base cell along each coordinate axis once per
refinement step. They eventually yield an adaptive Cartesian mesh where all cuboids of one
level have exactly the same size. Our grid assumption includes forest of trees where we start
from a conformal mesh and embed octrees into its cells. The extension to more sophisticated
subdivision or boundary-fitted meshes is straightforward. The hyperbolic ecosystem around
[4] imposes a grid topology suiting our assumption, too. For our experiments, we stick to sole
trees. Different to the traditional bipartitioning, we use three-partitioning [44, 45].

Along each resolution transition of the resulting fine grid Ωh, we can uniquely identify
cells of the coarse and the fine resolution. AMR now becomes a strict extension not altering
any building blocks introduced so far: As the STP and the correction are tied to cells, they
are agnostic of AMR. For the Riemann problems, we first introduce virtual cells. Virtual cells
are subcells of real cells which have the same size, i.e. face lengths, as their adjacent real cells.
No virtual cell overlaps two real cells by construction. To obtain the Riemann preimage for
the child face, we interpolate Q̂∗

h from the coarser cell into its virtual cells. The virtual cell
then extrapolates its “inherited” STP through id|∂c onto the face, where it complements the
data from the real cell. Interpolation is realised from coarse to fine cell resolutions, prior to
the respective Riemann solves. The concept to use virtual cells to remove hanging faces
temporarily, i.e. from a solver’s point of view, is well-established in the (block-)structured
world, where it is also known under the term ghost cells [5, 29] or halo layer [36].

The Riemann outcome along the interface of a coarse and fine cell affects the coarse cell’s
corrector. Here, we switch from a compute-Riemann to an accumulate-Riemann approach.
Let a face along a resolution transition be a parent face it belongs to the coarser fine grid level.
Let the term child face refer to a segment of this parent face which coincides with the face of
one adjacent finer cell. Where a face is parent to other faces, no Riemann solve is applied to
the parent, i.e. the coarse face. Instead, Riemann solves along resolution transitions are always
computed along their finest resolution. Every time we determine the Riemann outcome along
a child face, we accumulate it back into the parent face. This is a restriction (the transpose
of the interpolation). For it, we traverse the adaptive mesh starting from the finest cells.

Adaptive meshes require us to introduce two additional tasks to (4): Interpolation and
restriction. The volumetric interpolation of Q̂∗

h can be subject of optimisation—only the
projections onto the virtual cells’ faces are required. The important observation however is
that the interpolation is a pure preprocessing step to the Riemann solves that squeeze in-
between CSTP and FR. Interpolation incorporates resolution logic, but it does not impose
additional partial order constraints on either the STP or the Riemann solves. An analogous
observation is to be made for the restriction of the Riemann solves’ outcome.

Dynamic adaptivity adds further tasks. We focus on feature-based refinement criteria
and assume that codes decide cell-wisely whether to refine or coarsen. They read the solution
Qh(·, T+∆T) and study the solution’s character. They thus introduce an epilogue to CCorr. If
the criterion triggers a refinement, new cells are created, i.e. volumetric data are interpolated,
and the algorithm updates the virtual cells. This has to complete prior to any STP task in
the affected part of the computational domain. If the coarsen criterion identifies a cluster of
cells which can be coarsened into one bigger cell, we trigger an analogous workflow. Since
the analysis of the cell-wise refinement/coarsening criterion is strictly element-wise, all tasks
thus can run in parallel. The update of the virtual cells and the merger of small cells into
a bigger one induce causal dependencies which however are localised and simple to integrate
into the task graph.

7

2.4 Computational character

As both correction and Riemann tasks in (4) rely on the same PDE terms—through the partial
integration on (2) the lion’s share of the compute load results from F evaluations in (1)—their
abstract arithmetic intensity [46], i.e. their sole computations-per-double ratio, is comparable.
This statement holds if the employed Riemann solver—we use Rusanov here—only requires
F and few additional data such as an estimate of the biggest eigenvalue.

CSTP however integrates over polynomials in space and time. They are typically stored
in small continuous array blocks per cell. If the STP is an iterative solve, this solve plus the
time integration lead to a high intensity relative to the caches [22]: The arithmetic intensity
given as ratio of operations to loads from the main memory into the registers or a reasonably
close cache is expected to be relatively high. If we study a linear variant of (1), we integrate
the cell with the Cauchy-Kowalesvki procedure [14]. Here, the STP is significantly cheaper
though it still yields localised data access [8]. The time integration following the STP allows
us to reuse the outcome data structure for all intermediate-in-time results.

In contrast, the Riemann solves are cheap and explicit. With the volumetric terms in (1),
i.e. sources and point terms, disappearing, an Riemann tasks loads in the predicted solution
and writes back its result to the respective face. The corrector finally is of similar simplicity,
as it takes two input data streams and yields Qh(T + ∆T). The remaining volumetric in-
tegration is simplistic. Also interpolation and restriction tasks are neither sophisticated nor
computationally demanding as they are based upon the polynomials.

Finally, all refinement criteria we encounter in our code base are conceptually simple.
We study the first or second order derivatives of the solution and make our refinement or
coarsening decision from there. With an explicit polynomial representation of Qh being
available, these tasks therefore are of low computational intensity. They however have to
read the whole volumetric data, and the subsequent refinement or coarsening might induce
further memory accesses and allocations.

Assumption 2 We assume that the STP, i.e. the volumetric task is computationally heavier
than all other tasks. In particular the face task (the Riemann solve) tends to be memory
bandwidth- and latency-bound. It brings together data from adjacent cells scattered in memory
but does not yield a high number of floating point operations.

Riemann

Riemann

Corrector

STP

Corrector

l = 0:

l = 1:

l = 2:

Figure 1: Left: Schematic illustration of task graph with some dependencies for two-
dimensional setup: Cells within a regular grid region (filled) combine the local DG solution
with the result of 2d Riemann solves. Cells adjacent to grid refinement (empty) require input
from more or less Riemann solves if they run the corrector. Middle: Schematic illustration
of various spacetree (quadtree) nodes when a tree is used to host an enclave/skeleton mesh.
Dark tree nodes are fine grid nodes. They can be refined (` = 0) or unrefined (` ∈ {1, 2}).
Nodes with hatching are (unrefined) virtual nodes. White nodes are supplemental. They
complete the tree but they do not carry data. Right: Sketch of the LOH.1 benchmark: It
is a simplified earthquake setup, where the cubic domain consists of two types of material
(layers) and a point source stimulus induces the elastic wave propagation.

8

2.5 Task graph structure

ADER-DG’s task graphs are conceptually simple (Fig. 1): There are cell tasks, face tasks and
AMR tasks. For simplicity, we omit an explicit discussion of tasks tied to dynamic and static
adaptivity for the remainder of this section where appropriate. We note that (i) the STP
decomposes into one task per cell. (ii) The individual CSTP tasks are independent of each
other. Operator FR decomposes into one task per grid face. (iii) Finally, the individual FR

tasks are independent of each other. While each FR task requires input from the CSTP tasks
from its adjacent cells, each CCorr task requires input from the 2d FR tasks of the adjacent
faces.

Our task types translate into two grid traversal types: One over cells, one over faces.
Per type, all task evaluations are independent of each other. Task assembly-free processing
thus is possible if we run over the grid three times. A first traversal issues all CSTP tasks
and eventually waits for them to complete before a second traversal issues all FR tasks. A
final sweep corrects the solution and thus yields the subsequent time step’s solution. Such
an assembly-free approach describes a producer-consumer pattern: One or few main threads
traverse the grid and produce tasks, all other threads consume these.

We assume that our grid changes frequently. A näıve realisation with grid sweeps exhibits
disadvantageous properties:

1. We employ a non-overlapping domain decomposition and solve the Riemann problems
redundantly on both adjacent ranks. A STP adjacent to an MPI domain boundary thus
has to send its face data over to neighbouring ranks, such that all ranks can run their
FR tasks autonomously. Data exchange in MPI has to be deterministic. We may not
simply spawn CSTP tasks and make them send their outcome.

2. Modern multicore chips are equipped with memory controllers that cannot keep all
cores busy. Algorithms have to avoid that all tasks access the main memory controllers
concurrently and thus become bandwidth-bound [31, 46]. Fire-and-forget of FR tasks
by the sweeps however yields a large set of memory-sensitive tasks in one rush.

3. Cache-efficient codes perform as many operations as possible on data before these are
moved out into the main memory again. With one sweep per phase, we have to assume
that the outcome of a Riemann solve does not reside inside the cache long enough for
the next corrector. A similar consideration holds for the outcomes of the STP.

4. Adaptive grids require us to project the solution along resolution transitions onto the
finest grid, then to solve the formulation there, and finally to restrict the Riemann
solve’s outcome again [4]. AMR injects dependencies into the Riemann solve phase.

5. For high flop/s rates, it is important that no phase of the solve exhibits low concurrency,
has high bandwidth demands or synchronises the other tasks. Mesh cells that dynam-
ically refine run risk to do so: If they are processed late throughout the sweep, they
allocate memory, initialise data structures, and then invoke the actual computations,
while the other threads might already have run out of tasks.

3 Enclave tasking

Our solution to the aforementioned challenges is a technique we label as enclave tasking. It
relies on our topological assumption on the DG grid plus one assumption on typical refinement
patterns:

Assumption 3 We assume that mesh refinement criteria typically refine and coarsen the
mesh along resolution transitions: A cell belonging to grid level ` might be refined if at least
one adjacent cell has a level ˆ̀> `, i.e. is finer. A cell belonging to a grid level ` might be
coarsened if at least one adjacent cell has a level ˆ̀< `, i.e. is coarser. Cells surrounded by
cells of the same grid level are typically neither refined nor coarsened.

9

Figure 2: Left: An adaptive Cartesian mesh where the Riemann solves along adaptivity
boundaries are denoted by arrows. Cells adjacent to cells of a finer resolution describe a
skeleton while the filled cells form enclaves. Right: Simulation snapshot of an Euler sim-
ulation. The code uses patch-based FV along the shock (coloured areas) and ADER-DG
with order p = 7 everywhere else. The gaps in the visualisation are a direct result of the
discontinuous shape functions.

Explicit time stepping schemes for hyperbolic equation systems render our assumptions on
refinement and coarsening reasonable as the CFL condition ensures that information does
not propagate more than one cell at a time. The assumption does not hold globally for
strongly nonlinear equations where areas of interest for a refinement criterion can “pop up”
as shocks develop out of smooth solutions. It furthermore breaks down for setups with
time-dependent boundary conditions or source terms that stimulate a wave throughout the
simulation. Finally, it does not anticipate that wave spreading can yield large regularly
refined regions which eventually should make the mesh thin out, i.e. coarsen over a whole
subdomain.

Yet, it seems that this happens rarely or locally. In the following, we do not make
any semantic modifications to the cell treatment. We only optimise using the assumption.
Whenever and where it does not hold, our code does not benefit from the optimisations as
proposed.

Let a skeleton grid of a given adaptive mesh comprise those mesh cells that are either
adjacent to a domain decomposition boundary or are adjacent to at least one cell of a finer
level. The remaining cells form cell enclaves (Fig. 2).

3.1 Algorithmic blueprint

Enclave tasking maps each ADER-DG time step onto two types of mesh traversals. We refer to
them as primary mesh traversal and secondary mesh traversal. They take turns. Furthermore,
enclave tasking assigns each cell in the mesh a boolean marker STPcomplete ∈ {⊥,>}. At
construction STPcomplete(c) = > ∀c ∈ Ωh.

Primary mesh traversal The primary mesh traversal runs through the mesh. It satisfies
the following properties:

P.1 All primary mesh traversals on the parallel computer are deterministically reading the
faces along MPI boundaries.

P.2 A primary mesh traversal reads all 2d adjacent faces to any cell before it reads the cell
itself.

P.3 A virtual cell is read before the spatially overlapping real cell is read.

The primary mesh traversal for ADER-DG triggers the following steps:

10

1. Whenever the traversal reads a face for the first time that is adjacent to an MPI bound-
ary, we receive Riemann solver input data from the neighbouring rank. As a result, all
data feeding into a Riemann solve is available locally.

2. For each face read, we check that STPcomplete = > for all adjacent real cells of the
same resolution that are held on the same rank. If one flag is not set, i.e. equals ⊥,
the traversal is suspended. We yield. The runtime thus gets the opportunity to process
other tasks. Upon return, we re-check the condition.

3. For each face that is not subdivided further, the traversal computes FR.

4. For each child face, the Riemann result is immediately restricted.

5. For each cell c that we read,

(a) we run the corrector,

(b) we evaluate the dynamic adaptivity plus limiter criteria [15],

(c) we reset the completion flag STPcomplete(c)← ⊥, and

(d) we spawn a new STP task CSTP if the subsequent time step size is known already
[9].

The traversal studies the cell’s adjacent faces upon its load. If the cell is adjacent to a
resolution transition or adjacent to the MPI domain boundary, the cell is a skeleton cell.
Otherwise, it is an enclave cell. For enclaves, the spawned CSTP task goes to a standard task
queue. We prioritise this queue lower than the actual tree traversal and label it background
queue. Contrary, the task goes into a high priority queue for skeletons.

The primary mesh traversal is a task producer that supplies the task runtime with ready
tasks. The traversal itself can run in parallel. Semaphores on the faces—which we did
not discuss explicitly—ensure that no race conditions arise from Step 4. If we know all
admissible time step sizes and hence can implement Step (5d), enclave tasking logically shifts
compute steps, i.e. brings some tasks forward [9]: The primary traversal runs the Riemann
solve plus the two subsequent volumetric tasks. The STP among them logically belongs
into the next time step. If this is not possible, we have to run through the grid once more
after each primary sweep and issue the follow-up STPs. This is an “unproblematic” activity
from a performance point of view, as STPs are arithmetically intense. All CSTP tasks are
straightforward realisation of CSTP from (4). Upon a task’s termination, it sets its marker
STPcomplete(c)← >.

Secondary mesh traversal The secondary mesh traversal runs through the mesh. It
satisfies the following properties:

S.1 All secondary mesh traversals on the parallel computer are deterministically reading
the faces along MPI boundaries. If a face separates domain Ω1 from Ω2, both ranks r1

and r2 owning the respective domains hold a copy.

S.2 A secondary mesh traversal reads a cell before it reads/studies any of its 2d adjacent
faces.

S.3 A virtual cell is loaded after the spatially overlapping real cell has been read.

The secondary mesh traversal for ADER-DG triggers the following steps:

1. For each cell read that belongs to the skeleton, we check whether STPcomplete = >. If
not, we yield before we check again.

2. For each virtual cell that is loaded, we interpolate from its parent and we project the
interpolated data onto the virtual cell’s faces.

11

3. If a face coincides with the MPI domain boundary, we send the Q∗
h projection from the

local adjacent cell to the neighbouring rank.

The secondary grid sweep is a degenerated grid traversal traversing only the skeleton.

3.2 Relation to trees and forests as well as space-filling curves

Tree discretisations and traversals fit seamlessly to enclave tasking and its traversal. Any
coarse to fine traversal [44] allows us to realise it. If the traversal is realised through a (depth-
first) push-back automaton, i.e. a recursive function, we embed all routines from the secondary
traversal into the recursive function’s preamble before we recurse further (pre-order), while we
realise the primary traversal’s steps in the post-order, i.e. when we backtrack. For breadth-
first, enclave tasking’s primary traversal runs through the grids from fine to coarse. The
secondary traversal starts with the coarsest resolution.

In a tree world, it is convenient to make the spacetree accommodate both real cells and
virtual cells. For this, the nodes of the tree are classified as follows: Inner nodes are refined
tree nodes which do not carry an ADER-DG discretisation but parent further inner or fine
grid nodes. An unrefined fine grid node carries a polynomial from Qh, but is not refined
further. This is a node that spans a cell of the ADER-DG mesh. A refined find grid node
carries a polynomial, too, but is refined. It parents virtual or supplemental nodes but hosts
a cell of the ADER-DG mesh, too, even though it is refined. A virtual node is unrefined
and supports our AMR implementation. It does not carry a real solution but temporarily is
subject to Q̂∗

h writes. Supplemental nodes can be refined—along their descendant then are
solely supplemental or virtual nodes—or unrefined. Their purpose is to complete the tree
language (Fig. 1).

In our non-overlapping domain decomposition, ranks compute the Riemann solutions re-
dundantly. If a face separates domain Ω1 from Ω2, both rank r1 and r2 owning the respective
domains have a copy of this face. Our scheme assumes that the secondary traversal sends
out data. These data thus are become available in the subsequent primary sweep on the
destination rank. To avoid resorting boundary data, it is convenient to make both r1 and r2

traverse their shared faces in the same order or to inverse the order after each sweep [44]. In
these cases, queues or stacks can be used for all boundary data exchange.

3.3 Properties

With enclave tasking, the individual ADER-DG steps are not synchronised among different
cells: Some might still “wait” for their Riemann solves and correctors

(id|T+∆T ◦ CSTP ·Qh(T), id|∂c ◦ CSTPQh(T))
T
,

while others have already issued CSTPQh(T + ∆T). The producer-consumer pattern of our
traversal ejects ready tasks which can be ran immediately once cores become available. The
task markers resolve task dependencies. This is the reason we can work completely task graph
assembly free.

A high prioritisation of the skeleton STPs implies that tasks that yield MPI messages
are processed early. The secondary mesh traversal then can issue MPI sends, while many
remaining enclave STPs still linger in the ready queue. We thus give MPI the opportunity to
overlap computation and communication and reduce the risk of a late sender pattern [30].

Expensive inter-resolution transfer operators (restriction and prolongation) are either ex-
plicitly hidden behind enclave STPs, too, or they are intermixed into the primary mesh
traversal where we may assume that many STP spawns prelude the first interpolations. We
thus hide their memory-intense operations behind computations. Also bandwidth-demanding
Riemann solves and correctors mix with computationally heavy STPs.

Neither the MPI-oblivious behaviour nor the orchestration of task with different char-
acteristics are constrained by dynamic AMR. Grids can change in each and every primary

12

sweep. All skeleton markers are computed on-the-fly. As mesh refinement is only one substep
of the primary traversal, and as the primary traversal both produces new STP tasks and does
not wait for all STP tasks from the previous time step to complete before it kicks off, it is fair
to assume that expensive memory allocations, which furthermore typically struggle to run in
parallel, hide behind computations of further STPs.

The advantageous AMR-agnostic characteristics of enclave tasking require two assump-
tions to hold: On the one hand, the runtime has to get the prioritisation right. If the secondary
mesh traversal waits for STPs too long and too many non-critical (enclave) tasks are pro-
cessed instead, then we will run into close-to-serial phases in the subsequent primary sweep.
On the other hand, the individual STPs have to be expensive relative to other algorithmic
steps as well as the task production.

4 Tailoring the task runtime system

Modern task systems are designed to handle millions of small tasks with dependencies. For
enclave tasking, the latter feature is not required. Contrary, constructing a dependency
graph on-the-fly—the grid might change every time step—would induce algorithmic over-
head/latency that postpones the processing of the first task. The spawned STP tasks are
ready by construction. If the grid traversal is deterministic and, besides the AMR grid al-
terations, always the same, first-in, first-out (FIFO) task processing delivers an optimal task
execution order as long as all skeleton tasks are ran prior to the enclaves.

Algorithm 2 Blueprint of the consumer task. It accepts the queue q filled with STPs. These
are logical tasks not queued into the actual runtime, while the consumer task itself is a real
task in a multithreading/-tasking sense.

1: function runConsumerTask(task queue q)
2: C ← fetch and decrement(#consumer tasks)
3: if C < size(q)/Nmin then
4: #consumer tasks ← fetch and increment(#consumer tasks)
5: spawn new consumer task(q)
6: reenqueue← >
7: else if (C ≤ 1) ∨ not empty(q) then
8: reenqueue← >
9: else

10: reenqueue← ⊥
11: end if
12: process up to Nmax tasks(q)
13: if reenqueue then
14: #consumer tasks ← fetch and increment(#consumer tasks)
15: spawn new consumer task(q) . requeue/re-spawn of the present task
16: else
17: terminateTask . starve one consumer
18: end if
19: end function

Our realisation wraps around Intel’s Threading Building Blocks (TBB) [34]. We modify
this tasking runtime to accommodate our needs. Three variants are available. Our basic
variant maps both enclave and skeleton tasks onto native TBB tasks. The second variant
puts the logical tasks into a queue. It then spawns a number of consumer tasks which dequeue
these (logical) tasks and process them. In our realisation, consumer tasks are the real tasks in
the TBB sense. Enclave and skeleton tasks are the work items processed by these consumers
(Algorithm 2). A third variant switches from a plain FIFO queue to a priority queue as
provided by the TBB library. The high priority/low priority concept of skeletons vs. enclaves
is realised through priorities (integers) attached to the enqueued items.

13

4.1 Task prioritisation and orchestration

The efficiency of the task runtime for enclave’s producer-consumer pattern depends on the
balancing of task production and task processing. If the traversal fails to produce enough
tasks to keep other cores busy, performance decreases. If the processing of heavy STP tasks
constrains the traversal, it runs risk to decrease the performance, too, as the system might
run out of ready tasks later down the line.

Our code thus is parameterised through an Nmin. Unless we wait for a termination flag
of a STP to be set, the grid traversal issues at most one consumer task. Consumer tasks in
turn fork into more consumer tasks if the ready queue is reasonable big, i.e. if each consumer
will have at least Nmin work items. If the ready queue starts to empty, the consumers starve.
Besides ensuring that there are always enough cores for the tree traversal, such an approach
also spawns new consumer tasks in a binary tree fashion. The task creation is done by the
master thread only for the first consumer. The counterpart parameter Nmax ensures that no
consumer grabs too many tasks in a row before it reevaluates the starvation/forking criteria
again.

4.2 MPI progression and MPI buffer layout

Algorithm 3 The subroutine used to wait for a predictor task to finish.

1: function waitForSTP(x)
2: while x not set do
3: if MPI Probe(any message) then . MPI progression
4: MPI Recv . Only one/few messages at a time
5: end if
6: process up to Nmax tasks(task queue q)
7: end while
8: end function

Overlapping communication and computations is important to ensure scalability. MPI
provides non-blocking routines to this end. Our secondary grid sweep can trigger non-
blocking sends. The symmetry of the communication—every send out of a face it matched
by a receive—implies that the communication scheme is conceptionally simple. MPI imple-
mentations nevertheless struggle to make the data transfer, the data progression, run in the
background [21, 38], and instead require the user code to poll the MPI subsystem regularly.
This gives MPI a hook in point to manage the actual data transfer. There are two solutions
to realise this polling: Either a dedicated progress thread (PT) is deployed, or the user code
itself calls MPI routines himself. The latter has to compromise between frequent calls and
call overhead, while most applications do not want to sacrifice a whole thread for MPI pro-
gression only. With enclave tasking, we can plug into the STPcomplete = > checks to progress
MPI. Our main task acts as progression tasks when it runs into a semaphore (Algorithm 3).
Besides the MPI progression, it also processes some tasks, i.e. helps out on the consumer side.
It inherently overlaps data exchange and computations.

Many MPI codes aggregate MPI data in dedicated buffers before they send them out. Each
send induces some overhead. Message aggregation reduces this overhead. With enclaves, we
however benefit from small messages: Enclave partitioning ensures that partition domain
boundary data are sent out early compared to work done in the interior. Throughout waits
for STP results, we receive Riemann input data chunk by chunk. Exchanging small chunks of
non-aggregated per-face data ensures that no single receive of a very large message delays the
simulation progress. As we ensure that all MPI data are received in the right order [6, 44],
and thus avoid both resorting overhead and too many unexpected messages.

14

5 Generalisation of enclave tasking

ADER-DG is a peculiar explicit time stepping scheme. We use it as showcase for enclave
tasking. However, the enclave concept applies to a variety of DG approaches for a variety of
problems.

5.1 Explicit Runge-Kutta DG schemes

For traditional explicit DG schemes including Runge-Kutta, the weak formulation of (1) yields
operations where neither the volumetric integrals (tasks) feed into the Riemann solves nor
the other way round. We however have to bring together the Riemann and volume integrals
outcomes to construct a subsequent time step Qh(·, T + ∆T) = (FR + CDG)Qh(·, T) or an
intermediate step in the Runge-Kutta tableau. We therefore propose to make the Riemann
solves feed logically into the volumetric kernels: A volumetric kernel computes the weak
formulation over the cell, but it also accepts the outcome of the 2d adjacent Riemann solves
and immediately merges them into the result.

In such a setup, enclave tasking requires two grid sweeps: A primary traversal computes
all Riemann problems. It also issues all cell tasks bringing the ingredients together. As a
cell is read after its 2d adjacent faces have been read, all cell tasks are by definition ready.
The secondary traversal degenerates. It does not compute anything anymore, but projects all
updated solutions onto the faces immediately such that they are sent out to adjacent ranks
and available there in the next primary sweep.

5.2 Finite Volumes

Finite Volumes for explicit time stepping schemes choose piece-wise constant shape functions
for Qh. They thus can be read as ADER-DG scheme with a degenerated STP. Solely the
Riemann outcome determines a subsequent time step Qh(·, T + ∆T) = (FR + id)Qh(·, T).
Enclave tasking relies on reasonably expensive STPs such that grid traversal and Riemann
solves disappear behind all the volumetric tasks. Straightforward FVs are a bad fit to enclave
tasking.

Yet, all depends on the realisation of the Riemann solve. Many advanced FV solvers rely
on a sophisticated reconstruction of the solution that they feed into the Riemann solver. If
such a construction decomposes into a “left” and “right” contribution that we can compute
independently of each other, these reconstruction steps can be outsourced as volumetric ker-
nels: Each cell task computes the respective reconstructions for 2d Riemann solves on its
adjacent faces. If such outsourcing is possible, enclave tasking can help: A primary sweep
triggers all reconstructions, a secondary sweep ensures that reconstructed data is sent over
the network and AMR is handled properly, and the subsequent final primary sweep—which
we might combine with the next time step [9]—then issues the actual Riemann solve.

5.3 Block-structured methods

It is this discussion of volumetric cost vs. face tasks that implies that block-structured AMR
[12] and enclave tasking fit together. In block-structured AMR, blocks or patches—typically
regular Cartesian grids—are embedded into the cells. They communicate with their neigh-
bours through halo layers. In such a scheme, the Riemann tasks FR becomes a halo layer
exchange task and we end up with the situation described before where the face tasks feed
into the volumetric updates. As long as the halo updates are cheap compared to the patch
updates, enclave tasking is of value.

We use block-structured FV in our own ADER-DG code as limiter [15]: Our code deter-
mines the solution update through ADER-DG. If the resulting solution is physically wrong—if
they yield negative densities, e.g.—or if the solution exhibits oscillations, we roll back ADER-
DG on the respective cell and replace the time step for this particular cell with a FV scheme.
To match the ADER-DG time step for a polynomial ansatz p with the FV time steps, the

15

patches per cell have dimension (2 p+ 1)d. Though this solver hybrid validates the claim that
(block-structured) FV benefits from enclave tasks, another pro-enclave argument has to be
read with care: Enclave tasking for DG ensures that the bandwidth- and latency-sensitive
face tasks dribble through the system and that the runtime orchestrates compute-heavy volu-
metric tasks around them. In an FV world, patch updates tend to be bandwidth-bound. The
orchestration argument collapses for a pure FV approach. It continues to hold for ADER-DG
where the FV is an a posteriori limiter. Here, we may assume that only few cells from the
domain are limited, i.e. classic ADER-DG cells remain and their volumetric kernels now mix
with Riemann solves, traversal tasks and the patch-based FV updates.

5.4 Implicit schemes and linear equation system solves

Iterative linear equation system solves for DG as they arise for elliptic problems and implicit
time stepping schemes typically rely on matrix-vector products over (1). They thus resemble
the situation of Runge-Kutta schemes from Section 5.1. Enclave tasking thus can be of value
if we work matrix-free [43]. Particular appealing is the combination with multiplicative hp-
multigrid. Here, the fine grid smoothing and, hence, residual computation is the dominant
step. If we run multiple smoothing steps in a row which are followed by a final residual
computation that feeds into a restriction, enclave tasking unfolds its full potential to hide the
Riemann solves behind the volumetric kernels.

For many elliptic (sub-)problems, codes start with initial meshes that resolve sources of
interesting behaviour—typically material transitions or complex boundaries—accurately right
from the start. The areas of interest are known, and the code develops the AMR mesh from
there. Errors from “problematic” regions decay from there according to their fundamental
solution, i.e. the finer grids of an appropriate mesh follow this decay. They spread from the
problematic region. Refinement criteria can be throttled to refine at most one additional layer
around a given region of interest per iterate. This makes a dynamic refinement pattern fit to
our AMR assumption.

5.5 2:1 balancing and k-partitioning

Many codes or numerical implementations require 2:1 balancing [40], while many refinement
criteria yield reasonably balanced grids automatically. Our definition of enclaves and skeletons
does not rely on a 2:1 balancing property. It is agnostic of resolution balancing.

If grids are balanced plus feature large resolution transitions, we observe a higher skeleton-
to-enclave cell ratio than for a mesh with the same resolution difference yet no balancing
at all. In balanced meshes, refined regions spread out gradually—they “ripple” through
the domain—where other codes would feature massive resolution jumps over ∆` grid levels.
Where the latter exhibit one fine–coarse transition manifold, a balanced grid features ∆` of
these transitions hosting skeleton cells. Bipartitioning amplifies this skeleton impact. With
bipartitioning, whole transition regions can become skeletons. For grids featuring k ≥ 3-
subdivision [45, 44], transition skeletons are always interrupted by enclaves.

We hence may assume that bipartioning and balancing diminish the performance gain
through enclave tasking. Unbalanced grids with k ≥ 3-subdivision benefit more from it. The
analysis and validation of this hypothesis is however out of scope here.

6 Experimental results

We benchmark our algorithm and our code on SuperMUC-NG at the Leibniz Supercomputing
Centre (LRZ). Its nodes are two-socket systems, i.e. each node hosts two 24-core Intel Xeon
8174 (Skylake) CPUs. They have been clocked at 2.3 GHz and are connected through Intel
Omni-Path. We have 96 GB main memory available on each node.

Enclave tasking is a generic concept within the ADER-DG mindset but applies to FV as
special case of DG schemes, too. We integrated our ideas into the ExaHyPE [1, 33] engine

16

where they support ADER-DG for orders p ∈ [3, . . . , 9] but also a patch-based Finite Volume
scheme which is used by ExaHyPE1 for a-posteriori limiting [15]. All results are thus obtained
with applications built upon ExaHyPE.

We study the enclave impact for two applications with different character. One application
is a seismic wave code that solves the LOH.1 benchmark. The cuboid domain used in this
benchmark consists of two material layers. Wave propagation is initiated by a point source
that is placed just below the upper layer. Due to the material transition, an interesting wave
pattern emerges (Fig. 1).

This well-known benchmark is governed by a linear variant of (1). However, we translate
it into a nonlinear variant where the material enters the equation as an additional scalar
PDE over α(t) following the trivial rule ∂tα = 0. It does not move. Such an immersed
boundary approach allows us to handle a material transition which is not grid aligned [41]:
Wherever the code encounters a transition, we cover it with an FV patch. Some distance away
from the boundary, these FV patches are coupled with ADER-DG cells. In the majority of
the domain, we thus use ADER-DG. Though phrased overall as nonlinear PDE—the α term
injects this nonlinearity—the code’s high-order ADER-DG degenerates to a linear case within
the majority of the domain. The STP thus is directly solved through Cauchy-Kowalevski.
Only on the FV patches along the material transition, we solve the original nonlinear PDE.
The material plus the nonlinear PDE require us to store 13 doubles per degree of freedom.

Our second benchmarks is prescribed by the compressible Euler equations [28]. Compared
to the seismic setups, this setup has only five unknowns (a scalar material density and a scalar
energy which closes the system plus the vector of velocities). However, it is a nonlinear variant
of (1), which does generally not degenerate to a linear case and thus requires an expensive
nonlinear STP where we do not know the number of internal Picard iterations a priori. This
solver switches to FV as a posteriori limiter if shocks are encountered: the solver uses ADER-
DG with high order in the majority of the domain but employs a patch-based FV scheme
along discontinuities [15]. Different to our immersed boundary setup, the FV regions travel
this time. We always refine the DG solution down to the FV level close to the shocks and
then glue ADER-DG and FV together volumetrically. This implies that no adaptivity cuts
through the FV subdomains, and FV cells by definition thus are enclave cells.

We ran all experiments in 3d. The timings are given per time step, i.e. we freeze particular
adaptivity patterns throughout the measurements. Efficient variants of tree modifications
including fast balancing—if required—are known [23, 40] and suggest that the total time-to-
solution character of a simulation does not change dramatically. Alternatively, any remeshing
as well as propagation of the limiter within the mesh can be integrated into the actual time
stepping along the lines of [9, 43]. With dedicated remeshing phases, enclave tasking does
not impact these phases’ runtime, while Assumption 3 holds in a hard sense, i.e. we can omit
the phrases typically : Throughout the time steps, the skeleton labels never change. We can
determine the skeleton vs. enclave classification once throughout the mesh adaption and then
keep them until the mesh changes again. With a merger of time stepping and AMR, enclave
tasking might deteriorate locally and we have to update the markers on-the-fly for each and
every time step.

6.1 Computational characteristics

Prior to algorithmic studies, we benchmark how much time we have to invest into one degree of
freedom time step update. This cost is broken down into the ADER-DG or FV cost (Table 1).
For our hybrid codes combining ADER-DG and FV, the solver in practice will yield a mixture
of the two characteristics as both codes run concurrently. We furthermore emphasise that the
total runtime cost of a simulation will comprise grid management and parallelisation overhead
as well as adaptive meshing cost. The latter comprises the evaluation of refinement and
coarsening criteria, interpolation and restriction. Refinement criteria evaluation and inter-
resolution transfer operators are fused with the correction steps in our code. The remaining

1www.exahype.org [1].

17

www.exahype.org

Table 1: Serial runtime in seconds per ADER-DG solution degree of freedom per time step
per task type for polynomial orders p ∈ {3, 5, 7}.

Seismic Euler
ADER-DG FV ADER-DG FV

p = 3, CSTP 1.22 · 10−6 – 2.72 · 10−7 –
p = 3, FR 2.42 · 10−8 – 3.59 · 10−9 –
p = 3, CCorr 6.98 · 10−8 6.89 · 10−5 2.74 · 10−7 2.76 · 10−5

p = 5, CSTP 1.75 · 10−6 – 3.42 · 10−7 –
p = 5, FR 1.76 · 10−8 – 2.04 · 10−9 –
p = 5, CCorr 8.06 · 10−8 6.48 · 10−5 1.63 · 10−7 2.70 · 10−5

p = 7, CSTP 2.79 · 10−6 – 6.07 · 10−7 –
p = 7, FR 1.20 · 10−8 – 1.29 · 10−9 –
p = 7, CCorr 8.80 · 10−8 6.23 · 10−5 1.70 · 10−7 2.65 · 10−5

overheads are negligible.
We clearly see that the two ADER-DG solvers have different solver characteristics: The

ratio between STP and Riemann solve is comparable, but the dynamic AMR is expensive. As
we merge the latter into the STP in our code, Euler’s cell tasks are significantly more expensive
relative to the Riemann solves than the seismic cell tasks. In contrast, the FV patch updates
are by magnitudes more expensive than all the ADER-DG cells. For all setups, the ratio
of the STP cost to the remaining tasks shifts towards the STP with rising p. We conclude
the data interpretation with a remark that our ADER-DG scheme is aggressively optimised
towards Intel architectures, whereas the FV scheme is relatively straightforward. For many
applications, it might be possible to reduce its cost per degree of freedom. This fact is beyond
scope here.

With these results, we expect the genuine nonlinear PDE (Euler) to benefit more signif-
icantly from enclave tasking than the seismological application which is effectively linear in
the majority of the domain. In general, we expect the impact of enclave tasking to become
more significant as we increase the polynomial order. It is clear that enclave tasking should
notably become very important once we have very expensive enclave tasks. This is the case
for our FV cells. It is however not clear how their non-predictability (we do not know a prior
where limiting is required) affects the runtime and performance of the scheme.

Our code employs relatively simple Riemann solvers. More expensive solvers shift the
emphasis away from the STPs and thus diminish the impact of enclave tasking, unless the
Riemann solve is thinned out: For many solver variants, only the reconstruction step bringing
data from the adjacent cells together has to be realised within the face-associated compute
kernels, while the actual Riemann solve can be outsourced to the corrector. Such an imple-
mentation breaks the logical face operation up into a face part and a volumetric computation.
The latter can be merged into the corrector (see the discussion on lifting [24] in the FV con-
text). It is an open question to which degree the arising increase of compute load—in many
cases computations of the volumetric part of the Riemann solve will run redundantly on both
adjacent cells of a face—is compensated by an increase of the efficiency of the enclave tasking
as well as by the increase of data access locality due to the merger of Riemann operations
and correction.

6.2 Impact of the task runtime parameters

A second assessment studies the behaviour of our tasking system, i.e. it benchmarks the
tasking runtime’s tailoring against native TBB. All tests are run for the two-dimensional
Euler equations simulating a circular explosion. We employ a 729 × 729 base grid. If we
activate dynamic AMR, this setup yields rather aggressive, time-dependent mesh adoptions.

Our first set up tests fixes the quantities Nmin = Nmax = 8, i.e. whenever a thread
processes STP tasks, it tries to process eight tasks in a row. The experiments use one socket
of the two-socket system to exclude NUMA phenomena. They start from a regular grid and

18

∆` = 0 ∆` = 1 ∆` = 2∆` = 2 ∆` = 3
0

1

2

3
·10−7

Ti
m

e
pe

rD
O

F
Up

da
te

(s
) TBB

priorities + process same priority
priorities + process any priority

∆` = 0 ∆` = 1 ∆` = 2∆` = 2 ∆` = 3
0

1

2

3
·10−7

Ti
m

e
pe

rD
O

F
Up

da
te

(s
)

Figure 3: Impact of different task processing strategies for p = 5 (left) and p = 9. All
strategies except TBB use Nmin = Nmax = 8. ∆` = 0 denotes a regular grid, ∆` otherwise
denotes the maximum number of added AMR mesh levels. One socket is used.

add up to three levels of dynamic AMR. We benchmark native TBB where every STP task
is spawned as a real TBB task against implementations that put these STPs into a priority
queue and create TBB (consumer) tasks which grab them from there. Skeleton tasks have
higher priority than enclave tasks.

Our data (Fig. 3) suggest that the queue wrap-around induces a non-negligible overhead.
Plain TBB is thus faster than any modifications if the computational load per STP is suf-
ficiently low. However, aggressive AMR or high relative STP cost imply that an anarchic
spawning of native TBB tasks leads into situations where either the main thread becomes
idle as it waits for an STP to finish, or where the tasking system unfortunately processes
the wrong, i.e. enclave, tasks, or where the main traversals tasks yield, their threads pick up
other enclave tasks and eventually return too late to the actual traversal such that we face
delays or work starvation later down the line. The grid traversal threads should process STPs
themselves whenever they wait for an STP outcome. If they do so, they naturally prioritise
skeleton tasks. If no more skeleton tasks are ready and the STPs are heavy, it is advantageous
to switch to enclave tasks. This happens if all skeleton tasks are currently processed. If the
STPs are not that heavy, it is however better to make a thread wait for STP outcomes, i.e. to
actively poll the completion, whenever no enclave tasks are remaining. Again, actively joining
the STP computations for enclaves introduces delays down the line.

Further experiments (not shown) demonstrate that a switch to three dimensions, other
polynomial orders or other applications does not alter our observations qualitatively: It is
the presence of dynamic AMR and the relative cost of the STPs that determine which task
processing strategy is the fastest. Yet, switching to three dimensions or the activation of a
limiter increases this relative cost and thus moves the turnover points. Experiments with
various Nmax and Nmin values support the statements on the overhead. With the best-case
processing strategy from above, the two magic parameters make a difference for relatively
cheap STPs; that is low polynomial order p for Euler. Here, it is advantageous to choose
reasonably big Nmin ≈ 8. A value of eight logically fuses tasks and thus reduces overhead.
Nmax plays no major role for regular meshes. Yet if we tackle a rather adaptive mesh, it is
better to have an Nmax close to Nmin to allow the task processing to re-evaluate the queue
often. For high relative STP cost, Nmax and Nmin seem to play no role.

Our data suggest that fine-granular prioritisation is an important feature of (future) task
systems and that this prioritisation—different to our manual approach—should come along
with low overhead. It is obvious that the impact of prioritisation depends on the relative cost
of tasks: It is this cost that might render non-prioritised, i.e. less sophisticated, scheduling
superior. Future task systems will have to investigate into a balancing of overhead vs. opti-
mality. The other interesting balancing observation is that the best-case scheduling seems to
depend on the grid regularity. A homogeneous task spawn pattern asks for a different task
processing than a strongly irregular pattern resulting from dynamic AMR. This effect is also
worth studying from a task system’s point of view. As high-order, three-dimensional setups

19

that utilise AMR are of primary interest to us in this study, we stick to our custom-made
tasking with prioritisation and process-tasks-if-you-wait strategy from hereon. Low order
schemes are typically only used in our setups when we strive for very aggressive AMR. We
thus set Nmax = Nmin = 8.

6.3 Shared memory scaling

Enclave tasking can be read as on-the-fly sorting of tasks while they drop in, where the sort
heuristic is guided by the grid adaptivity pattern and the parallelisation. It brings time-
critical tasks forward.

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

p = 3, priorities
p = 5, priorities
p = 7, priorities
p = 3, pfors
linear

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores
S
p
ee
d
u
p

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

Figure 4: Shared memory scaling for regular mesh, i.e. without any adaptivity (strong
scaling). Top row: We compare ADER-DG Euler with smooth initial conditions (left) against
FV (right). Bottom row: ADER-DG with a FV limiter simulating Euler with shocks (left)
against the immersed boundary method of the seismic simulation (right). All plots study
three different polynomial orders p (circle, triangle, square) and benchmark classic parallel
for-based parallelism against our enclave tasking with priorities (red vs. blue).

We benchmark our code first on a regular grid in shared memory mode (Fig. 4). Our
baseline is compiled without TBB. For Euler, we distinguish between smooth and non-smooth
initial conditions, and we benchmark ADER-DG and limiting ADER-DG against patch-based
FV. It is only for non-smooth initial conditions (with shocks) that ADER-DG for Euler uses
FV as limiter. In this case, the scheme becomes a hybrid of both solvers. With smooth initial
conditions, no limiter is required. It remains sole ADER-DG. Whenever FV is used, our patch
size is chosen as (2 p+ 1)d relative to the corresponding ADER-DG scheme. This guarantees
that the CFL condition yields time step sizes of matching magnitude. Different to Euler, the
immersed boundary approach uses a limiter always, yet only along the immersed boundary.
Its limited region stays in place, while the Euler equations move the limited regions along
the shock. For all tests, a regular grid allows us to compare our enclave implementation
to a straightforward implementation with parallel fors. The latter realises ADER-DG as a
sequence of three loops triggering STP, Riemann solve and corrector.

All setups besides the one with the very low relative STP cost scale reasonably if we use

20

parallel for loops (pfors). We omit two-core results for TBB’s parallel for, as TBB sacrifices
one hyperthread for the scheduling of the loop. This kick-off penalty plays no major role for
higher core counts. One-to-two overheads do not arise for enclave tasking.

Enclave tasking is robustly faster than loop-based parallelism. This difference is more
significant if the limited region changes over time. If we use high orders which implies that
the limited region within the grid changes infrequently relative to the time steps or if we use
expensive cell updates (FV or high orders), both parallel for and enclave tasking play in the
same league.

On a regular grid, the loop-based parallelism scales excellently for the STPs. The arith-
metic intensity for the two subsequent steps however is not high. It diminishes the overall
scalability. If we run high orders, the runtime of the STP becomes so dominant that the im-
pact of these other steps disappear. For smaller orders, it is significant. With enclave tasking,
this effect however is hidden behind the STPs: Our approach to orchestrate the tasks such
that Riemann solves and STPs overlap and the Riemann solves dribble through the system
with restricted concurrency pays off.

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p

ee
d
u
p

p = 3 (∆` = 1)

p = 5 (∆` = 1)

p = 7 (∆` = 1)

p = 3 (∆` = 2)
linear

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

Figure 5: Shared memory scaling with dynamically adaptive meshes. We present data for
Euler with smooth initial conditions (left) and Euler with shocks and, hence, limiting (middle)
as well as immersed boundary data for the seismic setup (right). Different symbols are used
for different polynomial orders p. The smaller symbol size represents a “more adaptive” mesh
featuring resolution transitions of ∆` = 2 levels. All three diagrams follow the same symbol
semantics.

We continue with adaptive meshes. The adaptivity for the immersed boundary method
is static, while the adaptive pattern moves along the waves for Euler. Our adaptivity thus
is two-fold: there is adaptivity in space and adaptivity in the solver. Since a loop-based
parallelisation of dynamically adaptive meshes is not trivial, we omit comparisons to parallel
loops.

The seismic setup’s static adaptivity does not pose any problems to enclave tasking. In
line with the regular grid tests, the p = 3 tests with only one adaptivity level are the only ones
which fail to yield an arithmetic intensity that leads to close-to-linear speedups. Experiments
with p > 3 plus more than one level of adaptivity are impossible due to memory restrictions,
but all remaining data are more or less AMR-agnostic. For a sole ADER-DG run, i.e. Euler
without any limiter, the scalability curve exhibits classic strong scaling behaviour. Low
core counts yield speedups, but the performance stagnates for bigger counts. The lower the
polynomial order, i.e. the cheaper the tasks, the earlier we enter the stagnation regime. Our
adaptivity criterion dynamically refines towards the shock or wave gradient. This induces a
critical path along the refinement fronts which consists of inter-grid transfer operators and
the actual refinement criterion. If the STP tasks are heavy, we succeed in hiding all this
path. Limiting ADER-DG cures this strong order-dependence as the FV cells yield very
heavy tasks.

21

6.4 MPI+X scaling

We close this section with MPI+X scaling tests. To obtain unbiased comparisons, we bench-
mark against shared-memory parallelisation only as long as we stay on one compute node.
Shared-memory experiments lack MPI overhead. Furthermore, we disable all dynamic load
balancing, i.e. we determine a reasonable domain decomposition pattern prior to the mea-
surements’ start and stick to this splitting from thereon. The splitting uses a uniform cost
model, i.e. cost per cell, which does not take imbalances into account that arise when we solve
nonlinear PDEs such as the Euler equations with ADER-DG or when we apply a localised
limiter in the immersed boundary tests. It is a sole geometric decomposition following the
Peano space-filling curve [6, 44].

The data in Table 1 highlight that a uniform cost model is a particular crude approxima-
tion for the limited ADER-DG setup, i.e. the immersed boundary case, since the limiter’s FV
scheme is by at least one order of magnitude more expensive than sole ADER-DG. Conse-
quently, we may assume that the load decomposition here is unbalanced. Our results however
do not suffer qualitatively from this, as we use, per experiment, a fixed number of up to
82 MPI ranks, determine a reasonably balanced static domain decomposition first, and then
increase the number of cores per rank to increase the total core count. Furthermore, we only
benchmark across few time steps, i.e. the load distribution does not shift drastically. The
limiter however does stress enclave tasking, as almost all runtime is spent on the FV cells.
They cover only a small subset of the domain. Enclave tasking thus has only limited freedom
to exploit and hide enclave work.

Both the seismic and the Euler (Fig. 6) runtimes suffer from the switch from a shared
memory experiment to an MPI+X run. Each individual problem size yields a strong scaling
curve, i.e. a curve that starts to stagnate or even deteriorate from a certain core count on,
while we cannot really make a statement alike “AMR scales less reasonable than its regular
counterpart”. For all solvers, the switch to a finer mesh improves the throughput. Though
higher order computations yield more science per degree of freedom, the rough cost per degree
of freedom update is indistinguishable from a low-order counterpart.

The MPI+X executable suffers from overhead, such as MPI polling cost or global time
step synchronisation, compared to its single-node cousin. We consequently see a performance
drop once we leave the single node. It is difficult to reconstruct where the other non-smooth
effects come from, but it is reasonable to assume that it stems partially from ill-balancing.
This comprises not only ill-balancing as discussed above but also certain core/node counts
that do not map perfectly to a given mesh. The deterioration for too high core counts and
the otherwise good scaling highlight that enclave tasking automatically hides communication
behind computation. If the amount of work on a node becomes too small, hiding fails. The
break even point is reached quickly: Cells adjacent to the MPI boundary are skeletons and
the enclave size thus tends to shrink drastically relative to the skeleton cardinality once we
make the subdomains smaller. Besides standard overhead arguments—we obviously also have
to invest compute resources into the mesh management and traversal—this relative growth
of skeleton vs. enclave size explains why the throughput improves drastically whenever we
increase the mesh resolution. If we compare a regular mesh to an AMR mesh, our AMR
results are qualitatively similar to the regular mesh data in most cases. This emphasises that
we hide both data exchange and AMR inter-resolution projections successfully behind the
enclave work. Overall, we have successfully transferred the advantageous characteristics of
enclave tasking from the shared-memory into the MPI+X domain.

7 Conclusion

Enclave tasking is a powerful technique to equip DG codes with high concurrency and advan-
tageous communication characteristics. It removes multicore synchronisation points, over-
laps computation and communication, and it implicitly orchestrates a well-blended mix of
compute-intense and memory-intense tasks. This makes it a powerful tool in particular in

22

100 101 102 103 104
104

105

106

107

108

109

D
O

F
U

p
d

at
es

/
s

73

73 (∆` = 1)

73 (∆` = 2)
linear trend

100 101 102 103 104
104

105

106

107

108

109

D
O
F
U
p
d
at
es

/
s

100 101 102 103 104
105

106

107

108

109

1010

Cores

D
O

F
U

p
d

a
te

s
/

s

253

253 (∆` = 1)

253 (∆` = 2)

793

793 (∆` = 1)

2433

linear trend

100 101 102 103 104
105

106

107

108

109

1010

Cores

D
O
F
U
p
d
a
te
s
/
s

Figure 6: MPI+X scaling for the seismic setup (top) and the Euler ADER-DG solver without
limiter. We study p = 5 (left) and p = 7 (right). Each individual connected line represents
one strong scaling experiment.

the context of dynamic AMR. Here, it it provides an orthogonal technology to domain de-
composition that increases the parallelism in an MPI+X environment.

There are conceptional and implementation shortcomings of the present approach. It
firstly performs best in cases where the adaptivity is localised and the regular subdomains
host a sufficient number of cells. For extremely high order codes which often host only few
cells per node, this might not hold. Secondly, our data showcases that it relies on a code
where cell tasks are significantly more expensive than all other tasks. For some setups, this
is only the case for large polynomial orders, for nonlinear solves within the ADER-DG cells,
and for simplistic Riemann solves. Thirdly, our “fire-and-forget” strategy for skeleton and
enclave STP tasks is appropriate for explicit time stepping where the admissible time step
size is well-known or can be estimated. An extension to local time stepping, implicit time
stepping or elliptic problems where equation systems are solved is beyond scope here. It
certainly requires further work. Fourthly, our case studies do not invest into performance
engineering or load balancing. Proper application of these techniques certainly will change
all outcomes quantitatively.

Enclave tasking’s success hinges on the task system. Our realisation manually adds priori-
ties to Intel’s TBB as we found TBB’s native priority scheduling insufficient. It also manually
polls MPI—to allow the message exchange to make progress—and it throttles the number
of background tasks. The processing of enclaves thus never grabs too many cores from the
actual main traversal unless there is an enormous number of STP tasks ready. We expect the
next generation of task runtimes to provide appropriate support for priorities. This flavour of
our wrapper thus will become obsolete. All other features are, to the best of our knowledge,
not yet on any task runtime’s roadmap. Moreover, our experience suggest that it might be
reasonable to equip tasks with meta flags indicating whether they are bandwidth or compute
intense. A good runtime then can ensure that the bandwidth-intense tasks dribble through
the system, yet, that never too many of these bandwidth-demanding tasks are executed at the
same time. We have made good experience with fusing our cheap Riemann solves with the

23

traversal. Memory-expensive inter-grid transfer tasks along resolution boundaries however do
not yet benefit from parallelisation—we mangle them into the traversal, too—even though
we have learned that they tend to align along the critical path.

There are natural follow-up steps and follow-up questions worth further investigation:
First, enclave tasking is a promising candidate to be used in connection with accelerators
[11, 16, 17, 19, 25, 32, 24]. Our terminology is inspired by the work of Sundar and Ghattas [39]
who use enclaves to ensure that accelerators processing an enclave do not have to communicate
with other accelerators directly. The enclaves are separated by skeleton cells. Our background
tasks are perfect candidates to be deployed to accelerators, too. Their data transfers can
be hidden behind computation, and the construction of the skeleton mesh ensures that no
accelerator has to exchange DG jumps with another enclave. Second, enclave tasking alters
the scaling behaviour of the code base and makes it depend on the grid topology. Future work
will have to study whether grid refinement criteria should anticipate this scaling behaviour.
It is reasonable to assume that sophisticated criteria optimise both towards an as small as
possible grid and a scaling grid topology. Their interaction with dynamic load balancing
beyond the simple space-filling curve cuts employed here [6] however is not obvious. It is
also not clear to which degree generic load balancing strategies can succeed or whether good
strategies have to incorporate application specifics and knowledge. Finally, enclave tasking
has to be studied in the context of single-sided MPI or distributed shared memory systems
where much of the MPI progression pain fades away. It is a particularly fascinating idea
to study the deployment of enclave tasks to remote nodes rather than only local cores. As
enclave tasking adds an additional dimension of concurrency to classic domain decomposition,
this idea adds an orthogonal dimension to classic load balancing. First studies along these
lines are promising [35].

Acknowledgements

The authors appreciate support received from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 671698 (ExaHyPE). Our development
made use of the facilities of the Hamilton HPC Service of Durham University. Thanks are
due to all members of the ExaHyPE consortium. All underlying software is open source [1].

References

[1] M. Bader, M. Dumbser, A.-A. Gabriel, H. Igel, L. Rezzolla, and T. Weinzierl.
ExaHyPE—an Exascale Hyperbolic PDE solver Engine, 2019. http://www.exahype.org.

[2] A. Baggag, H. Atkins, C. Özturan, and D. Keyes. Parallelization of an Object-oriented
Unstructured Aeroacoustics Solver. In Ninth SIAM Conference on Parallel Processing
for Scientific Computing, pages 22–24, 1999.

[3] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data
structures for massively parallel generic adaptive finite element codes. ACM Trans.
Math. Softw., 38(2), 2011.

[4] M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 82:64–84, 1989.

[5] M.-J. Berger and R. J. LeVeque. Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM Journal on Numerical Analysis, 35(6):2298–
2316, 1998.

[6] H.-J. Bungartz, M. Mehl, and T. Weinzierl. A parallel adaptive cartesian pde solver using
space–filling curves. In W. E. Nagel, W. V. Walter, and W. Lehner, editors, Euro-Par
2006, volume 4128 of LNCS, pages 1064–1074, Berlin, Heidelberg, 2006. Springer-Verlag.

24

[7] C. Burstedde, M. Burtscher, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox. Alps:
A framework for parallel adaptive pde solution. Journal of Physics: Conference Series,
180, 2009.

[8] D. E. Charrier, B. Hazelwood, E. Tutlyaeva, M. Bader, M. Dumbser, A. Kudryavtsev,
A. Moskovsky, and T. Weinzierl. Studies on the energy and deep memory behaviour of
a cache-oblivious, task-based hyperbolic PDE solver. The International Journal of High
Performance Computing Applications, 33(5):973–986, 2019.

[9] D. E. Charrier and T. Weinzierl. Stop talking to me—a communication-avoiding ADER-
DG realisation. 2018. arXiv:1801.08682 (in preparation).

[10] J. Dongarra, J. Hittinger, et al. Applied Mathematics Research for Exas-
cale Computing, 2014. DOE ASCR Exascale Mathematics Working Group:
http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-
report.pdf.

[11] S. Dosopoulos, J. D. Gardine, and J. F. Lee. An MPI/GPU parallelization of an interior
penalty discontinuous Galerkin time domain method for Maxwell’s equations: MPI/GPU
FOR IP-DGTD. Radio Science, 46(3):n/a–n/a, 2011.

[12] A. Dubey, A. S. Almgren, J. B. Bell, M. Berzins, S. R. Brandt, G. Bryan, P. Colella, D. T.
Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. van Straalen, and K. Weide.
A survey of high level frameworks in block-structured adaptive mesh refinement packages.
CoRR, 74(12):3217–3227, 2016.

[13] M. Dumbser, F. Fambri, M. Tavelli, M. Bader, and T. Weinzierl. Efficient Implementa-
tion of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine.
Axioms, 7(3), 2018.

[14] M. Dumbser and M. Käser. An arbitrary high-order discontinuous Galerkin method for
elastic waves on unstructured meshes - II. The three-dimensional isotropic case. Geo-
physical Journal International, 167(1):319–336, 2006.

[15] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. A posteriori subcell limiting of the
discontinuous Galerkin finite element method for hyperbolic conservation laws. Journal
of Computational Physics, 278:47–75, 2014.

[16] C. R. Ferreira and M. Bader. Load Balancing and Patch-Based Parallel Adaptive Mesh
Refinement for Tsunami Simulation on Heterogeneous Platforms Using Xeon Phi Copro-
cessors. pages 1–12. ACM Press, 2017.

[17] N. Gödel, N. Nunn, T. Warburton, and M. Clemens. Scalability of Higher-Order Dis-
continuous Galerkin FEM Computations for Solving Electromagnetic Wave Propagation
Problems on GPU Clusters. IEEE Transactions on Magnetics, 46(8):3469–3472, 2010.

[18] M. Griebel and G. Zumbusch. Hash–storage techniques for adaptive multilevel solvers
and their domain decomposition parallelization. In Proceedings of Domain Decomposition
Methods 10, DD10, volume 218 of Contemporary Mathematics, pages 279–286, 1998.

[19] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode,
W. Barth, X.-K. Liao, K. Vaidyanathan, M. Smelyanskiy, and P. Dubey. Petascale High
Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In
SC ’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 3–14. IEEE, 2014.

[20] F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, and C.-D. Munz.
Explicit discontinuous galerkin methods for unsteady problems. Computers and Fluids,
(61):86–93, 2012.

25

[21] T. Hoefler and A. Lumsdaine. Message progression in parallel computing - to thread or
not to thread? In 2008 IEEE International Conference on Cluster Computing, pages
213–222, 2008.

[22] A. Ilic, F. Pratas, and L. Sousa. Cache-aware roofline model: Upgrading the loft. IEEE
Computer Architecture Letters, 13(1):21–24, 2014.

[23] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas. Recursive algorithms for dis-
tributed forests of octrees. SIAM J. Sci. Comput., 37(5):C397–C531, 2015.

[24] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous galerkin
methods on graphics processors. Journal of Computational Physics, 2009.

[25] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster. Journal of Com-
putational Physics, 229(20):7692–7714, 2010.

[26] K. Kormann and M. Kronbichler. Parallel Finite Element Operator Application: Graph
Partitioning and Coloring. In Proceedings of the 2011 IEEE Seventh International Con-
ference on eScience, ESCIENCE ’11, pages 332–339, Washington, DC, USA, 2011. IEEE
Computer Society.

[27] M. Kronbichler, K. Kormann, I. Pasichnyk, and M. Allalen. Fast Matrix-Free Discontin-
uous Galerkin Kernels on Modern Computer Architectures. In J. M. Kunkel, R. Yokota,
P. Balaji, and D. Keyes, editors, High Performance Computing, volume 10266, pages
237–255. Springer International Publishing, Cham, 2017.

[28] R. J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2002.

[29] R. J. LeVeque, D. L. George, and M. J. Berger. Tsunami modelling with adaptively
refined finite volume methods. Acta Numerica, 2011.

[30] G. Mao, D. Böhme, M.-A. Hermanns, M. Geimer, D. Lorenz, and F. Wolf. Catching
Idlers with Ease: A Lightweight Wait-State Profiler for MPI Programs. In Proceedings of
the 21st European MPI Users’ Group Meeting on - EuroMPI/ASIA ’14, pages 103:103–
103:108, Kyoto, Japan, 2014. ACM Press.

[31] J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, 1995.

[32] D. Mu, P. Chen, and L. Wang. Accelerating the discontinuous Galerkin method for seis-
mic wave propagation simulations using multiple GPUs with CUDA and MPI. Earth-
quake Science, 26(6):377–393, 2013.

[33] A. Reinarz, D. E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri, A.-
A. Gabriel, J.-M. Gallard, S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla, P. Samfass,
M. Tavelli, and T. Weinzierl. ExaHyPE: An Engine for Parallel Dynamically Adaptive
Simulations of Wave Problems. 2019. arXiv: 1905.07987 (submitted).

[34] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., first edition,
2007.

[35] P. Samfass, T. Weinzierl, D. E. Charrier, and M. Bader. Lightweight task offloading
exploiting mpi wait times for parallel adaptive mesh refinement. (submitted), 2019.

[36] A. Sasidharan and M. Snir. Miniamr—a miniapp for adaptive meshrefinement. Technical
report, Institution, 2016. https://www.ideals.illinois.edu/handle/2142/91046.

26

[37] M. Schreiber, T. Weinzierl, and H. J. Bungartz. Cluster Optimization and Parallelization
of Simulations with Dynamically Adaptive Grids. In F. Wolf, B. Mohr, and D. Mey,
editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in Computer
Science, pages 484–496. Springer, 2013.

[38] M. Sergent, M. Dagrada, P. Carribault, J. Jaeger, M. Pérache, and G. Papauré. Effi-
cient communication/computation overlap with mpi+openmp runtimes collaboration. In
M. Aldinucci, L. Padovani, and M. Torquati, editors, Euro-Par 2018: Parallel Processing,
Lecture Notes in Computer Science, pages 560–572, 2018.

[39] H. Sundar and O. Ghattas. A nested partitioning algorithm for adaptive meshes on
heterogeneous clusters. In Proceedings of the 29th ACM on International Conference on
Supercomputing, ICS ’15, pages 319–328, New York, NY, USA, 2015. ACM.

[40] H. Sundar, R. S. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refine-
ment of linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675–
2708, 2008.

[41] M. Tavelli, M. Dumbser, D. E. Charrier, L. Rannabauer, T. Weinzierl, and M. Bader. A
simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave
equations with complex topography. Journal of Computational Physics, 386:158–189,
2019.

[42] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich, S. Wollherr, and A. A.
Gabriel. Extreme scale multi-physics simulations of the tsunamigenic 2004 sumatra
megathrust earthquake. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’17, pages 21:1–21:16, New
York, NY, USA, 2017. ACM.

[43] M. Weinzierl and T. Weinzierl. Quasi-matrix-free hybrid multigrid on dynamically adap-
tive cartesian grids. ACM Transactions on Mathematical Software, 44(3):32:1–32:44,
2018.

[44] T. Weinzierl. The Peano software - parallel, automaton-based, dynamically adaptive
grid traversals. ACM Transactions on Mathematical Software, 45(2):14:1–14:41, 2019.

[45] T. Weinzierl and M. Mehl. Peano – A Traversal and Storage Scheme for Octree-Like
Adaptive Cartesian Multiscale Grids. SIAM J. Sci. Comput., 33(5):2732–2760, 2011.

[46] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM, 52(4):65–76, 2009.

27

	1 Introduction
	2 ADER-DG on Cartesian meshes
	2.1 ADER-DG sketch
	2.2 A task language
	2.3 Dynamic adaptivity
	2.4 Computational character
	2.5 Task graph structure

	3 Enclave tasking
	3.1 Algorithmic blueprint
	3.2 Relation to trees and forests as well as space-filling curves
	3.3 Properties

	4 Tailoring the task runtime system
	4.1 Task prioritisation and orchestration
	4.2 MPI progression and MPI buffer layout

	5 Generalisation of enclave tasking
	5.1 Explicit Runge-Kutta DG schemes
	5.2 Finite Volumes
	5.3 Block-structured methods
	5.4 Implicit schemes and linear equation system solves
	5.5 2:1 balancing and k-partitioning

	6 Experimental results
	6.1 Computational characteristics
	6.2 Impact of the task runtime parameters
	6.3 Shared memory scaling
	6.4 MPI+X scaling

	7 Conclusion

