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1. Introduction

Let (M, g) be a smooth, compact, Riemannian manifold of dimension n ≥ 2 with smooth boundary Σ. 
The Steklov eigenvalues of M are the real numbers σ for which there exists a non-zero harmonic function 
f : M → R that satisfies ∂νf = σf on Σ. Here and in what follows, ∂ν denotes the outward-pointing normal 
derivative on Σ. It is well known that the Steklov eigenvalues can be written in a non-decreasing sequence

0 = σ0(M) ≤ σ1(M) ≤ σ2(M) ≤ · · · ,

where each eigenvalue is repeated according to its multiplicity, and the only point of accumulation is +∞. 
The Steklov eigenvalues satisfy the following asymptotic formula
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σk(M) = 2π
(

k

ωn−1|Σ|

)1/(n−1)

+ O(1), k → ∞, (1)

where ωn−1 is the volume of a ball of radius 1 in Rn−1 and |Σ| is the (n −1)-dimensional Hausdorff measure 
of Σ, see for example [12] and references therein.

In recent years, the interplay between the Steklov eigenvalues of a manifold and the geometry of the 
manifold and its boundary has been intensively studied in the field of spectral geometry. One way to shed 
light on this interplay is to obtain upper bounds for the Steklov eigenvalues in terms of some of the geometric 
quantities of M and Σ.

An interesting and natural problem is to investigate in which geometric situations it is possible to obtain 
upper bounds for the Steklov eigenvalues where the exponent of k is optimal with respect to the Steklov 
spectral asymptotics (1).

A compelling result in this direction is due to Provenzano and Stubbe [17] which asserts that for a 
bounded open set Ω ⊂ Rn+1 with connected boundary ∂Ω of class C2, for k ∈ N,

λk(∂Ω) ≤ σk(Ω)2 + 2cΩσk(Ω),

σk(Ω) ≤ cΩ +
√

c2Ω + λk(∂Ω),

|σk(Ω) −
√

λk(∂Ω)| ≤ cΩ,

where λk(∂Ω) denotes the k-th eigenvalue of the Laplacian on ∂Ω and cΩ is a constant that depends on 
the dimension, the maximum of the mean of the absolute values of the principal curvatures on ∂Ω and the 
rolling radius of Ω. It has recently been discovered that Hörmander obtained an analogous result to that of 
[17] (see [11,15]). We observe that due to the Weyl Law, the exponent of k in these bounds agrees with the 
asymptotics of the Steklov eigenvalues (1).

These results were generalised to a Riemannian setting of an open set with convex boundary in a com-
plete Riemannian manifold with either non-positive or strictly positive sectional curvature and with some 
hypotheses on the second fundamental form by Xiong [18]. Analogous results were obtained in [6] in the 
more general setting of smooth, compact Riemannian manifolds with boundary under assumptions on the 
sectional curvatures in a tubular neighbourhood of the boundary, the principal curvatures of the boundary, 
and the rolling radius.

In [5], we also obtained bounds for the Steklov eigenvalues that have the optimal exponent of k in 
the special case of hypersurfaces of revolution in Euclidean space (see Theorem 1.8, Theorem 1.11 and 
Proposition 3.1).

The first goal of this article is to obtain an upper bound for the Steklov eigenvalues of a submanifold of 
Rm with non-empty boundary which has optimal exponent of k with respect to (1) and does not depend 
on the curvatures of M or of Σ. This is achieved in Theorem 1.3 below.

On the other hand, we note that there are also important results where the exponent of k is not optimal. 
In the Riemannian setting, it was shown by Colbois, El Soufi and Girouard [3] that if (M, g) is an n-
dimensional Riemannian manifold that is conformally equivalent to a complete Riemannian manifold with 
non-negative Ricci curvature, then for any domain Ω ⊂ M and k ∈ N,

σk(Ω) ≤ α(n) |Ω|(n−2)/n

|∂Ω| k2/n, (2)

where α(n) > 0 is a constant that depends only on n and the volumes |Ω|, |∂Ω| are with respect to the 
metric g. It is also possible to express this inequality in terms of the isoperimetric ratio I(Ω) = |∂Ω|

|Ω|(n−1)/n of 
Ω as follows:
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σk(Ω)|∂Ω|1/(n−1) ≤ α(n) k2/n

I(Ω)(n−2)/(n−1) . (3)

In addition [14] addresses the case of a Riemannian manifold where the Ricci curvature is bounded from 
below by a negative constant.

For a general submanifold M in Euclidean space with fixed boundary Σ, we obtained the following upper 
bound for the Steklov eigenvalues (see Theorem 1.1 of [5]):

Theorem 1.1. Let n ≥ 2. Let Σ be a fixed (n − 1)-dimensional compact, smooth submanifold in Rm. There 
exists a constant AΣ depending on Σ such that any compact, n-dimensional submanifold M of Rm with 
boundary Σ satisfies

σk(M) ≤ AΣ|M | k2/(n−1). (4)

The constant AΣ depends upon several geometric quantities of Σ including the Ricci curvature, the 
diameter and the distortion, and some of these quantities are difficult to measure.

In fact, in Section 5, we observe that, in general, it is not true that a bound of the form

σk(M) ≤ C(|Σ|, n) |M |βkα

with β > 0 has α = 1
n−1 (where C(|Σ|, n) is a constant depending on |Σ|, n). Indeed, for a cylinder 

M = Σ × [0, L], if β > 0 then α > 1
n−1 .

The second goal of this article is to obtain estimates of the same form as (3) and (4) that depend on an 
invariant that is more robust than the Ricci curvature and more easily computed and understood than the 
distortion. This is addressed in Theorem 1.6.

The invariant that we consider throughout this paper is the intersection index which we define below as 
in [2]. For a compact immersed submanifold N of dimension q in Rq+p, almost every p-plane Π in Rq+p is 
transverse to N so that the intersection Π ∩N consists of a finite number of points.

Definition 1.2. The intersection index of N is

ip(N) := sup
Π

{#Π ∩N}, (5)

where the supremum is taken over the set of all p-planes Π that are transverse to N in Rq+p.

Before stating our main result, we recall that the injectivity radius of a Riemannian manifold M is the 
infimum over all points x ∈ M of the largest radius of a ball centred at x and contained in M such that the 
exponential map is a diffeomorphism.

Our main result is the following.

Theorem 1.3. Let n ≥ 2. Let Σ be an (n − 1)-dimensional, closed, smooth submanifold of Rm. Let r0 denote 
the injectivity radius of Σ. Let M be a compact, n-dimensional submanifold of Rm with boundary Σ. There 
exist constants Ã(n), B̃(n) > 0 depending only on n, such that for k ≥ 1,

σk(M) ≤ Ã(n) i(M)
r0

+ B̃(n) i(M)
(
i(Σ)k
|Σ|

)1/(n−1)

, (6)

where i(Σ) = im−(n−1)(Σ) and i(M) = im−n(M).
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Upper bounds for the eigenvalues of the Laplace–Beltrami operator on a closed, connected submanifold 
of Rm in terms of the intersection index that are optimal with respect to the Weyl Law were obtained in 
[2].

Remark 1.4. In the upper bound (6), there is a strong dependence on the injectivity radius r0 of Σ. First, 
the term involving r0 is separate from the term involving k, so that, asymptotically, we have the optimal 
behaviour in terms of the exponent of k. Moreover, it turns out that we need to take the injectivity radius r0
into account. In Section 4, for n ≥ 2, we construct an example of a compact (n +1)-dimensional submanifold 
M of Rn+3 which has |∂M | = 1 and i(∂M), i(M) bounded, but σ1(M) → +∞ as the injectivity radius of 
∂M tends to zero. This shows that the injectivity radius is necessary in (6) when the dimension of M is at 
least 3. In our construction presented in Section 4.2, it is important that this submanifold has co-dimension 
2. Jade Brisson has recently constructed a submanifold of co-dimension 1 which shows that the injectivity 
radius is also necessary in the upper bound for σk in this case.

For the special case where Σ is a hypersurface, we obtain the following corollary which does not depend 
on i(M).

Corollary 1.5. Let n ≥ 2. Let Σ ⊂ Rn be an (n − 1)-dimensional, closed, smooth hypersurface bounding a 
domain M ⊂ Rn. Let r0 denote the injectivity radius of Σ. There exist constants Â(n), B̂(n) > 0 depending 
only on n such that for k ≥ 1,

σk(M) ≤ Â(n)
r0

+ B̂(n)
(
i(Σ)k
|Σ|

)1/(n−1)

.

This result is in the same spirit as Corollary 4.8 of [17] except that the constant term in the above bound 
depends only on the dimension and the injectivity radius of Σ while the coefficient of k1/(n−1) also depends 
on i(Σ). On the other hand, if we assume that Σ is convex then i(Σ) = 2 so we separate the geometry from 
the asymptotics similarly to Corollary 5.4 of [17].

By making use of the intersection index of Σ, we obtain the following more explicit version of Theorem 1.1
that does not depend on the Ricci curvature or the distortion of Σ.

Theorem 1.6. Let n ≥ 2. Let Σ be an (n − 1)-dimensional, compact, smooth submanifold of Rm. Let M be a 
closed, n-dimensional submanifold of Rm with boundary Σ. There exists a constant C̃(n, m) > 0 depending 
only on n, m such that for k ≥ 1,

σk(M) ≤ C̃(n,m) i(Σ)2/(n−1)|M |
|Σ|(n+1)/(n−1) k2/(n−1). (7)

This theorem gives rise to an upper bound for AΣ in terms of the intersection index and the volume of 
Σ as well as a dimensional constant.

Another way to express Inequality (7) in Theorem 1.6 is as follows.

Corollary 1.7. Under the same assumptions as in Theorem 1.6,

σk(M)|Σ|1/(n−1) ≤ C̃(n,m) i(Σ)2/(n−1)

I(M)n/(n−1) k
2/(n−1), (8)

where I(M) denotes the isoperimetric ratio I(M) = |Σ|
(n−1)/n .
|M |
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Inequality (8) looks like Inequality (3) except that the exponent 2
n−1 of k in the former is slightly worse 

than the exponent 2
n of k in the latter. However, Inequality (3) was established for domains of a complete 

manifold with Ricci curvature conformally non-negative, and Inequality (8) holds for any submanifold Σ of 
Euclidean space without any curvature assumptions.

Remark 1.8. Estimates as in Theorem 1.3 and Theorem 1.6, in terms of the intersection indices of M and 
Σ, are particularly interesting if we consider algebraic submanifolds M and Σ of Rm. In this case, the 
intersection indices of M and Σ are bounded from above by the product of the degrees of the polynomials 
that define these submanifolds (see the proof of Corollary 4.1 of [2] and references therein). We note that, 
in general, for a submanifold that is defined as the level set of a function it is not possible to estimate the 
curvature and the distortion.

Organisation of the paper

In Section 2, we recall some general results about the Steklov eigenvalue problem. Section 3 is devoted to 
the proofs of Theorem 1.3 and Theorem 1.6. In Section 4, we construct an example to show that the term 
involving the injectivity radius in Theorem 1.3 is necessary in the case where the dimension is at least 3. In 
Section 5, we present two examples for which, if the upper bound for σk(M) contains the volume of M to a 
positive power, then the exponent of k cannot be optimal with respect to the Steklov spectral asymptotics.

2. Some general facts about the Steklov eigenvalue problem

For k ∈ N∗, the Steklov eigenvalues of (M, g) can be characterised by the following variational formula:

σk(M) = min
E∈Hk

max
0�=u∈E

RM (u), (9)

where Hk is the set of all k-dimensional subspaces in the Sobolev space H1(M) that are L2(Σ)-orthogonal 
to constants on Σ, and

RM (u) =
∫
M

|∇u|2 dVolM∫
Σ |u|2 dVolΣ

is the corresponding Rayleigh quotient.
For the first non-zero Steklov eigenvalue of M , we have that

σ1(M) = min

⎧⎨
⎩RM (u) : 0 
= u ∈ H1(M),

∫
Σ

u dVolΣ = 0

⎫⎬
⎭ .

In Section 4, we will make use of the comparison with the eigenvalues of the mixed Steklov–Neumann 
problem. Let Σ be an (n − 1)-dimensional, closed, smooth submanifold of Rm. Let M be an n-dimensional, 
compact submanifold of Rm with boundary Σ. We consider Ω ⊂ M such that Σ ⊂ ∂Ω. We denote the 
intersection of ∂Ω with the interior of M by ∂IΩ and suppose that it is smooth. As in [5], the mixed 
Steklov-Neumann problem on Ω is given by

Δu = 0 in Ω,

∂νu = σu on Σ,

∂νu = 0 on ∂IΩ.
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The corresponding eigenvalues of this problem form a discrete sequence

0 = σN
0 (Ω) ≤ σN

1 (Ω) ≤ σN
2 (Ω) ≤ · · · ,

where the only point of accumulation is +∞. For each k ∈ N∗ the k-th eigenvalue is given by

σN
k (Ω) = min

E∈Hk(Ω)
max

0�=u∈E

∫
Ω |∇u|2 dVolM∫

Σ |u|2 dVolΣ
,

where Hk(Ω) is the set of all k-dimensional subspaces in the Sobolev space H1(Ω) which are L2(Σ)-
orthogonal to constants on Σ. We therefore have that for k ∈ N∗,

σN
k (Ω) ≤ σk(M). (10)

As in [5], the mixed Steklov-Dirichlet problem on Ω is given by

Δu = 0 in Ω,

∂νu = σu on Σ,

u = 0 on ∂IΩ.

In Section 4, we will use the fact that the first eigenvalue of the mixed Steklov-Dirichlet problem on Ω, 
σD

0 (Ω), is given by

σD
0 (Ω) = min

u∈H1
0 (Ω)

∫
Ω |∇u|2 dVolM∫

Σ |u|2 dVolΣ
, (11)

where H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂IΩ}.

3. Upper bounds for submanifolds in Euclidean space

Let n ≥ 2. Let Σ be an (n − 1)-dimensional, closed, smooth submanifold of Rm. Let M be a compact, 
n-dimensional submanifold of Rm with boundary Σ. In order to obtain upper bounds for the Steklov 
eigenvalues of M , we define test functions with disjoint support and then estimate the Rayleigh quotient 
(see also [5] and references therein).

We recall the following proposition from [2] for a compact, immersed submanifold N of dimension q in 
Rq+p. It shows that if the intersection index of N is bounded then N does not concentrate in small regions 
of Rq+p.

Proposition 3.1. For all x ∈ Rq+p and all r > 0, we have that

|N ∩B(x, r)| ≤ ip(N)
2 |Sq| rq. (12)

We observe that if Σ is an (n −1)-dimensional, compact, smooth submanifold of Rm such that im−(n−1)(Σ)
is bounded, then

|Σ ∩B(x, r)| ≤
im−(n−1)(Σ)

2 |Sn−1| rn−1. (13)

In addition, if M is an n-dimensional, compact, smooth submanifold of Rm such that im−n(M) is bounded, 
then
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|M ∩B(x, r)| ≤ im−n(M)
2 |Sn| rn. (14)

We make use of Inequality (13) in the proofs of Theorems 1.6 and 1.3. On the other hand, by also taking the 
injectivity radius into account and making use of Inequality (14), we obtain the upper bound with optimal 
exponent given in Theorem 1.3.

3.1. Proof of Theorem 1.6

To obtain disjoint sets on which to define test functions, we apply a variation of Lemma 2.2 and Corollary 
2.3 of [7] which appeared in [5] (Lemma 4.1). We recall this result below.

Lemma 3.2. Let (X, d, μ) be a complete, locally compact metric measured space, where μ is a non-atomic 
finite measure. Assume that for all r > 0, there exists an integer C > 0 such that each ball of radius r can 
be covered by C balls of radius r/2. Let K ∈ N∗. If there exists a radius r > 0 such that, for each x ∈ X

μ(B(x, r)) ≤ μ(X)
4C2K

,

then, there exist μ-measurable subsets A1, . . . , AK of X such that, for all i ≤ K, μ(Ai) ≥ μ(X)
2CK and, for 

i 
= j, d(Ai, Aj) ≥ 3r.

Proof of Theorem 1.6. We note that in the case under consideration, the ambient space is X = Rm and we 
can choose C(m) = 32m (see for example [1,4,5] for further details).

The measure μ is defined for a Borelian set O of Rm as

μ(O) =
∫

Σ∩O

dVolΣ = |Σ ∩ O|,

and μ(Rm) is the usual volume |Σ| of Σ (see also [4,5]).
As we wish to begin with 2k + 2 test functions in what follows, we take K = 2k + 2.
We choose

r =
(

|Σ|
2C(m)2|Sn−1|i(Σ)(2k + 2)

)1/(n−1)

. (15)

By Proposition 3.1, we have that for all x ∈ Rm = Rn−1+p,

μ(B(x, r)) =
∫

Σ∩B(x,r)

dVolΣ = |Σ ∩B(x, r)| ≤ i(Σ)
2 |Sn−1| rn−1.

Together with the above choice of r, we obtain

μ(B(x, r)) ≤ |Σ|
4C(m)2(2k + 2) .

Hence by Lemma 3.2, there exist 2k + 2 μ-measurable subsets A1, . . . , A2k+2 of Rm such that for all i =
1, . . . , 2k + 2,

(i) μ(Ai) ≥ |Σ|
2C(m)(2k+2) ,

(ii) for i 
= j, d(Ai, Aj) ≥ 3r.
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For each i ∈ {1, . . . , 2k + 2}, we define the r-neighbourhood of Ai as

Ar
i := {x ∈ Rm : d(x,Ai) < r},

where d denotes the Euclidean distance. By property (ii) above, the Ar
i are disjoint.

Similarly to [7], for each i ∈ {1, . . . , 2k+2}, we construct a test function gi with support in Ar
i as follows. 

For x ∈ Ar
i ,

gi(x) = 1 − d(x,Ai)
r

.

Then |∇gi|2 ≤ 1
r2 almost everywhere in Ar

i . So

∫
M∩Ar

i

|∇gi|2 dVolM ≤ |M ∩Ar
i |

r2 .

Since gi(x) = 1 for x ∈ Ai, we have that

∫
Σ

g2
i dVolΣ ≥

∫
Σ∩Ai

dVolΣ = μ(Ai) ≥
|Σ|

2C(m)(2k + 2) .

We now use the previous two inequalities to estimate the Rayleigh quotient and hence prove Theorem 1.6.
As the Ar

i are disjoint, there exist k + 1 of them, say Ar
1, . . . , A

r
k+1, such that for i = 1, . . . , k + 1,

|M ∩Ar
i | ≤

|M |
k + 1 .

Therefore, using (15), we have that

∫
M

|∇gi|2 dVolM∫
Σ g2

i dVolΣ
≤ |M |

(k + 1)r2
2C(m)(2k + 2)

|Σ|

= 4 · 42/(n−1)C(m)(n+3)/(n−1)|Sn−1|2/(n−1) i(Σ)2/(n−1)|M |
|Σ|(n+1)/(n−1) (k + 1)2/(n−1)

≤ 4 · 43/(n−1)C(m)(n+3)/(n−1)|Sn−1|2/(n−1) i(Σ)2/(n−1)|M |
|Σ|(n+1)/(n−1) k2/(n−1),

which proves Theorem 1.6 with C̃(n, m) = 4 · 43/(n−1)C(m)(n+3)/(n−1)|Sn−1|2/(n−1). �
3.2. Proof of Theorem 1.3

The intuition behind the proof of this theorem is that we can make use of Inequality (14) instead of taking 
the whole volume of M into account. Indeed, Inequality (14) gives local control on the volume of M via the 
intersection index i(M). This allows us to obtain that the numerator in the Rayleigh quotient is bounded 
from above by a geometric constant times rn−2. If we also have that the denominator is bounded from below 
by a geometric constant times rn−1, then this would give rise to an upper bound for the Rayleigh quotient 
as a geometric constant times the desired factor 1

r as opposed to 1
r2 . By taking the injectivity radius into 

account, we can obtain a suitable lower bound for the denominator of the Rayleigh quotient.
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In fact, in the case where we take the injectivity radius into account, we can obtain a collection of disjoint 
balls on which to define the test functions. That is, we do not need to appeal to the result of [7]. To do this 
we make use of inequalities (13) and (14) and the following result due to Croke [9].

For the submanifold M in Rm, we denote by g the Riemannian metric induced by Rm on M . Then, we 
have that the Euclidean distance between two points d is smaller than or equal to the Riemannian distance 
dg between these points. So, for r > 0, x ∈ Σ,

Bg(x, r) ∩ Σ = {y ∈ Σ : dg(x, y) ≤ r} ⊂ B(x, r) ∩ Σ = {y ∈ Σ : d(x, y) ≤ r},

hence |B(x, r)| ≥ |Bg(x, r)|. By Proposition 14 of [9], for r ≤ r0
2 , we have that

|B(x, r) ∩ Σ| ≥ |Bg(x, r) ∩ Σ| ≥ 2n−1|Sn−1|n
(n− 1)n−1|Sn|n−1 rn−1. (16)

Proof of Theorem 1.3. We choose

r =
(

|Σ|
4n−1|Sn−1| i(Σ) k

)1/(n−1)

. (17)

Note that this choice of r does not depend on m, the dimension of the ambient space, in contrast to the 
choice in (15).

Let {xj}Nj=1 be a maximal subset of points in Σ such that d(xi, xj) ≥ 4r for i 
= j. By maximality, we 
have that Σ ⊂ ∪N

i=1B(xi, 4r). Hence by (13) we have

i(Σ)
2 |Sn−1|N(4r)n−1 ≥

N∑
i=1

|B(xj , 4r) ∩ Σ| ≥ |Σ|,

which implies that

N ≥ 2|Σ|
4n−1 i(Σ) |Sn−1| rn−1 . (18)

To estimate σk, we require k + 1 disjoint open balls. In what follows, we will take the balls B(xi, 2r) which 
are disjoint since d(xi, xj) ≥ 4r, i 
= j. Thus we need N ≥ k + 1 so, by (18), it suffices to take

2|Σ|
4n−1 i(Σ) |Sn−1| rn−1 > k.

By the choice of r in (17), we have

2|Σ|
4n−1 i(Σ) |Sn−1|

4n−1|Sn−1| i(Σ) k
|Σ| = 2k

which is indeed larger than k.
We set

k0 =
⌈

|Σ|
2n−1 i(Σ) |Sn−1| rn−1

0

⌉
(19)

and consider the case k ≥ k0. Then, by our choice of r in (17), we have that
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|Σ|
2n−1 i(Σ) |Sn−1| rn−1

0
≤ k ⇐⇒ r ≤ r0

2 .

Hence for k ≥ k0, (16) holds.
We now define a test function gi supported on B(xi, 2r) as follows

gi(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ∈ B(xi, r),
1 − d(x,B(xi,r))

r , if x ∈ B(xi, 2r) \B(xi, r),
0, otherwise.

Now ∫
Σ

u2
i dVolΣ ≥

∫
Σ∩B(xi,r)

u2
i dVolΣ = |Σ ∩B(xi, r)| ≥

2n−1|Sn−1|n
(n− 1)n−1|Sn|n−1 rn−1.

In addition, |∇gi|2 ≤ 1
r2 almost everywhere so
∫
M

|∇gi|2 dVolM =
∫

M∩B(xi,2r)

|∇gi|2 dVolM ≤ |M ∩B(xi, 2r)|
r2 ,

and by (14) we obtain ∫
M

|∇gi|2 dVolM ≤ 2n−1i(M) |Sn| rn−2.

Hence the Rayleigh quotient R(gi) satisfies

R(gi) ≤
(n− 1)n−1|Sn|n i(M)

|Sn−1|n · 1
r
.

We deduce that for k ≥ k0,

σk(M) ≤ B̃(n) i(M)
(
i(Σ)k
|Σ|

)1/(n−1)

,

where B̃(n) = 4(n−1)n−1|Sn|n
|Sn−1|n−(1/(n−1)) .

Now by (19), we have

k0 ≤ 2|Σ|
2n−1 i(Σ) |Sn−1| rn−1

0

Hence for k ≤ k0,

σk(M) ≤ σk0(M) ≤ Ã(n) i(M)
r0

,

where Ã(n) = 21+(1/(n−1))(n−1)n−1|Sn|n
|Sn−1|n .

Hence for any k ≥ 1, we conclude that

σk(M) ≤ Ã(n) i(M)
r0

+ B̃(n) i(M)
(
i(Σ)k
|Σ|

)1/(n−1)

as required. �
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Remark 3.3. For the special case where Σ ⊂ Rn is an (n − 1)-dimensional, closed, smooth hypersurface 
bounding a domain M ⊂ Rn, we can use the inequality

|M ∩B(x, r)| ≤ ωnr
n

instead of Inequality (14) in the above proof. Then i(M) is no longer present in the upper bound as stated 
in Corollary 1.5.

4. Example to show that the injectivity radius is necessary

The goal of this section is to show that the term involving the injectivity radius in Inequality (6) of 
Theorem 1.3 is necessary in the case where the dimension of M is at least 3. To do this, for n ≥ 2, we 
construct an (n + 1)-dimensional submanifold of Rn+3 whose boundary has volume 1 and such that the 
intersection index of the manifold and its boundary are bounded, but the first non-zero Steklov eigenvalue 
of the manifold tends to +∞ as the injectivity radius tends to zero.

The idea of our construction is as follows. We begin with an n-dimensional annulus in Rn which has a 
Steklov boundary condition on the interior (smaller) boundary sphere and a Neumann boundary condition 
on the exterior (larger) boundary sphere. Roughly speaking, if the radius of the interior boundary sphere 
is small and the radius of the exterior boundary sphere is large, then the first non-zero eigenvalue of the 
mixed Steklov–Neumann problem on the annulus is large (see Subsection 4.1).

In Subsection 4.2, we construct a manifold M and show that it has large first non-zero Steklov eigenvalue. 
The idea of the construction is that M contains a nice set for which it is possible to estimate the first non-
zero Steklov eigenvalue of the mixed Steklov–Neumann problem. The latter gives a lower bound for the first 
non-zero Steklov eigenvalue of M by the bracketing (10). This estimate is quite technical and we defer it to 
Subsection 4.2.3.

More precisely, this nice set is the Cartesian product of the annulus considered in Subsection 4.1 with a 
circle of a certain radius such that the volume of the interior boundary is equal to 1. Allowing the width of 
the annulus to become large and the radius of the interior boundary sphere to become small gives rise to 
large eigenvalues.

A difficulty is then to “close up” the annulus so that we can view the product as a submanifold M of 
Rn+3 with one boundary component. This is done in Subsection 4.2.1. Note that it is also necessary to 
control the index of M . This is treated in Subsection 4.2.2.

4.1. First non-zero eigenvalue of an annulus with mixed Steklov–Neumann boundary condition

We note that similar computations to those carried out in this subsection can be found in [10]. These 
calculations will be used at the end of Subsection 4.2 (see Inequality (23)).

For 0 < ε < δ, we consider the annulus

A(ε, δ) = {x ∈ Rn : ε < d(x, 0) < δ}.

Let ∂Aδ denote the boundary component of radius δ and ∂Aε denote the boundary component of radius ε. 
We have that |∂Aε| = nωnε

n−1. We consider the following eigenvalue problem on A = A(ε, δ) which has a 
Neumann boundary condition on ∂Aδ and a Steklov boundary condition on ∂Aε:

Δu = 0 in A

∂νu = 0 on ∂Aδ

∂νu = σu on ∂Aε.
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We consider spherical coordinates ρ, θ1, . . . , θn−1 where ρ denotes the radial variable. In these coordinates, 
it is well known that the Laplacian can be written as follows

Δ = ∂2

∂ρ2 + (n− 1)
ρ

∂

∂ρ
+ 1

ρ2 ΔSn−1 ,

where ΔSn−1 denotes the Laplacian on the (n − 1)-dimensional unit sphere Sn−1. Below we use that the 
corresponding eigenvalues of Sn−1 are k(k + n − 2).

We now separate the angular and radial variables and consider

u(ρ, θ) = α(ρ)β(θ1, . . . , θn−1).

We have that

Δu =
(
α′′(ρ) + (n− 1)

ρ
α′(ρ) − α(ρ)

ρ2 k(k + n− 2)
)
β(θ1, . . . , θn−1).

So if Δu = 0 then, as β(θ1, . . . , θn−1) is not identically zero,

(
α′′(ρ) + (n− 1)

ρ
α′(ρ) − α(ρ)

ρ2 k(k + n− 2)
)

= 0.

By setting α(ρ) = ρθ, we deduce that θ = k or θ = −n + 2 − k. Hence

α(ρ) = aρk + bρ−n+2−k, a, b ∈ R,

with the boundary conditions

α′(δ) = 0, −α′(ε) = σα(ε).

From α′(δ) = 0, we obtain that

b = akδ2k−2+n

k − 2 + n
.

By substituting this formula for b into −α′(ε) = σα(ε), we obtain

−kεk−1 + kδ2k−2+nε−k+1−n = σ

(
εk + k

k − 2 + n
δ2k−2+nε−k+2−n

)
.

In what follows, we will be interested in the first non-zero eigenvalue, so we set k = 1 and obtain

−1 + δnε−n = σ

(
ε + 1

n− 1δ
nε1−n

)
,

which implies that

σN
1 (A(ε, δ)) = −1 + δnε−n

ε + 1 δnε1−n
. (20)
n−1
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4.2. Example to show that the injectivity radius is necessary

The idea is to construct a family of manifolds M = Mε,δ,R with boundary of volume 1 such that the 
injectivity radius of the boundary tends to 0 as ε tends to 0.

We first consider the product A(ε, δ) × S1
R ⊂ Rn × R2, where S1

R is a circle of radius R, and view it as 
follows:

A(ε, δ) × S1
R ⊂ Rn ×R2 ⊂ Rn+2 × {0} ⊂ Rn+3.

We note that the constants δ and R will depend on ε and will be chosen appropriately in what follows. We 
have Sn−1

ε = ∂Aε ⊂ Rn−1.
We would like to view A(ε, δ) × S1

R as part of an (n + 1)-dimensional submanifold M = Mε,δ,R of Rn+3

with boundary isometric to Σ = Sn−1
ε ×S1

R. The difficulty is to “close up” the annulus A(ε, δ), that is to see 
it as part of a manifold N = Nε,δ with boundary Sn−1

ε . We also need to be able to show that the intersection 
index of the manifold that we construct (and that of its boundary) is bounded from above. In fact, we can 
construct a manifold of revolution in Rn+1 with one boundary component.

4.2.1. Construction of the manifold
We consider N = Nε,δ as the union of three parts:

• the annulus A(ε, δ) ⊂ Rn that we view in Rn+1 as

Ñ1 := A(ε, δ) × {xn+1 = −1},

• the ball Bδ ⊂ Rn of centre 0 and radius δ that we view in Rn+1 as

Ñ2 := Bδ × {xn+1 = 1},

• the manifold of revolution given by the equation

x2
1 + · · · + x2

n = (δ +
√

1 − x2
n+1)2, −1 ≤ xn+1 ≤ 1,

which is contained in the real algebraic variety of degree 4:

Ñ3 := {(x2
1 + · · · + x2

n − δ2 − 1 + x2
n+1)2 − 4δ2(1 − x2

n+1) = 0, −1 ≤ xn+1 ≤ 1}.

Roughly speaking, the manifold N ⊂ Rn+1 that we construct above is a smoother version of the union 
of a cylinder Sn−1

δ × (−1, 1) with the face Bδ × {1}, and the face Bδ × {−1} with a hole of centre 0 and 
radius ε.

The manifold N is only C1 but we can make it C2 using a manifold of revolution given by an equation 
of degree 4. We then consider the submanifold

M = Mε,δ,R = Nε,δ × S1
R ⊂ Rn+1 ×R2

which is of dimension n + 1, has boundary Sn−1
ε ×S1

R and contains A(ε, δ) ×S1
R ⊂ Nε,δ ×S1

R. We note that 
the injectivity radius of the boundary of A(ε, δ) when r = ε is proportional to ε, so the injectivity radius 
of ∂M is proportional to ε. In particular, as ε → 0, the injectivity radius of ∂M tends to 0. We note that 
∂IA(ε, δ) is smooth. We see that |Sn−1

ε × S1
R| = 2πnωnRεn−1. To ensure that |Sn−1

ε × S1
R| = 1, we choose 

R = (2πnωn)−1ε−(n−1).
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4.2.2. Intersection index of the manifold and its boundary
We now show that the intersection index of M = N × S1

R, respectively of Σ = Sn−1
ε × S1

R, is bounded. 
In particular, as Σ = Sn−1

ε ×S1
R ⊂ Rn+3 is n-dimensional, we have to show that i3(Sn−1

ε ×S1
R) is bounded. 

Similarly, as N × S1
R ⊂ Rn+3 is (n + 1)-dimensional, we have to show that i2(N × S1

R) is bounded.
We wish to apply Lemma 1 of [16] to obtain an upper bound for the intersection index of each of the 

manifolds Ñ1×S1
R, Ñ2×S1

R and Ñ3×S1
R. Lemma 1 of [16] states that it is possible to bound the intersection 

index of a real algebraic variety defined by polynomial equations from above by the product of the degrees 
of these polynomials. Then, as M ⊂ ∪3

i=1Ñi × S1
R, taking the sum of these upper bounds gives an upper 

bound for the intersection index of M .
Let Zi = Ñi × S1

R for i = 1, 2, 3. Let m ≥ n + 3 and p ≥ 2. Let X ⊂ Rm be a p-plane. Let S ⊂ Rm be an 
open ball of Rm. Define F : X ×S → Rm by F (x, s) = x + s. Then by the Transversality Theorem (see, for 
example, page 68 of [13]), if F is transverse to Zi, then for almost every s ∈ S, fs(x) = F (x, s) is transverse 
to Zi. That is, almost every p-plane is transverse to Zi. Hence by Lemma 1 of [16], ip(Z1) ≤ 1 × 2 = 2, 
ip(Z2) ≤ 1 × 2 = 2 and ip(Z3) ≤ 4 × 2 = 8. So ip(Z1 ∪ Z2 ∪ Z3) ≤ 12 and ip(M) ≤ 12. As Σ = ∂M =
Sn−1
ε × S1

R ⊂ Z1 × S1
R, ip(∂M) ≤ 2.

4.2.3. Steklov problem on the manifold
We consider the Steklov problem on M :

Δu = 0 in N × S1
R

∂νu = σu on Σ = ∂(N × S1
R).

We are interested in the non-zero Steklov eigenvalues of M . For x ∈ N , y ∈ S1
R, we take a separation of 

variables to obtain

u(x, y) = f(x)g(y)

where g is an eigenfunction of the Laplacian on S1
R with corresponding eigenvalue λ ≥ 0. Then

0 = Δu = (Δf)g + f(Δg) = (Δf − λf)g.

In addition, for each fixed y ∈ S1
R, we have ∇xu(x, y) = (∇xf(x))g(y) and νΣ(x, y) = ν(x), where ν(x) ∈

Rn × {0} denotes the outward unit normal to the boundary Sn−1
ε of N . So, for each fixed y ∈ S1

R,

∂u

∂νΣ
(x, y) = ∇xu(x, y) · νΣ(x, y) = (∇xf(x) · ν(x))g(y) =

(
∂f

∂ν
(x)

)
g(y).

Hence we have that

Δf = λf in N

∂f

∂ν
= σf on Sn−1

ε .

We observe that if λ = 0, then σ is a non-zero Steklov eigenvalue of N . Indeed, if λ = 0, then the first 
eigenfunction g is constant and non-zero. As u is a Steklov eigenfunction of M with corresponding eigenvalue 
σ > 0, we have

0 =
∫
Σ

u dVolSn−1
ε

dVolS1
R

=
∫
n−1

f dVolSn−1
ε

∫
1

g dVolS1
R
,

Sε SR
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so 
∫
Sn−1
ε

f dVolΣ = 0, i.e. f is orthogonal to constants on Sn−1
ε .

On one hand, we have that
∫

N×S1
R

fΔf dVolN dVolS1
R

= Vol(S1
R)

∫
N

fΔf dVolN = λ|S1
R|

∫
N

f2 dVolN .

On the other hand, by Green’s formula, we have that
∫

N×S1
R

fΔf dVolN dVolS1
R

= |S1
R|

∫
N

fΔf dVolN

= |S1
R|

⎛
⎜⎝ ∫
Sn−1
ε

∂νf f dVolSn−1
ε

−
∫
N

|∇f |2 dVolN

⎞
⎟⎠

= |S1
R|

⎛
⎜⎝σ

∫
Sn−1
ε

f2 dVolSn−1
ε

−
∫
N

|∇f |2 dVolN

⎞
⎟⎠ .

So we obtain

σ =
λ
∫
N
f2 dVolN +

∫
N
|∇f |2 dVolN∫

Sn−1
ε

f2 dVolSn−1
ε

.

Hence if λ = 0, then

σ =
∫
N
|∇f |2 dVolN∫

Sn−1
ε

f2 dVolSn−1
ε

≥ σ1(N) ≥ σN
1 (A(ε, δ)), (21)

where we use that f is orthogonal to constants on Sn−1
ε in the first inequality, and Steklov–Neumann 

bracketing (10) in the second inequality.
We first treat the case where λ > 0 and we come back to the case where λ = 0 at the end.
Case λ > 0.
Let A = A(ε, δ) ⊂ N where δ > ε is to be chosen below. We have that

σ =
λ
∫
N
f2 dVolN +

∫
N
|∇f |2 dVolN∫

Sn−1
ε

f2 dVolSn−1
ε

≥
λ
∫
A
f2 dVolN +

∫
A
|∇f |2 dVolN∫

Sn−1
ε

f2 dVolSn−1
ε

.

On A we express the metric in spherical coordinates

g(r, q) = dr2 + h(r)2g0

where ε ≤ r ≤ δ, q ∈ Sn−1, h(r) = r and g0 is the canonical metric on Sn−1. Let {vi}∞i=0 be an orthonormal 
basis of eigenfunctions of the Laplacian on Sn−1 with corresponding eigenvalues μi. Any smooth function 
f ∈ L2(A) can be written in the following form:

f(r, q) =
∞∑
i=0

ai(r)vi(q).

We have that
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∫
Sn−1
ε

f2 dVolSn−1
ε

= ‖f‖2
L2(Sn−1

ε ) =
∞∑
i=0

ai(ε)2h(ε)n−1,

and

∫
A

f2 dVolN = ‖f‖2
L2(A) =

∞∑
i=0

δ∫
ε

ai(r)2h(r)n−1 dr.

In addition, df(r, q) =
∑∞

i=0(a′i(r)vi(q)dr + ai(r)dvi(q)) so

∫
A

|∇f |2 dVolM = ‖∇f‖2
L2(A) =

∞∑
i=0

δ∫
ε

(
a′i(r)2 + ai(r)2μi

h(r)2

)
h(r)n−1 dr

=
∞∑
i=0

δ∫
ε

(
a′i(r)2h(r)n−1 + ai(r)2μih(r)n−3) dr.

For each i ∈ N, we consider the ratio

Ri =
∫ δ

ε

(
a′i(r)2h(r)n−1 + λai(r)2h(r)n−1 + ai(r)2μih(r)n−3) dr

ai(ε)2h(ε)n−1 .

We wish to show that there exists a constant C̃ > 0, depending only on n, such that for i ∈ N,

Ri ≥
C̃

ε
.

In what follows, we treat the cases i ∈ N∗ and i = 0 separately. For i ∈ N∗, it is sufficient to consider a 
small neighbourhood of the boundary of A. While for i = 0, it is important that δ can be taken to be very 
large.

We first treat the case i ∈ N∗. For each ε ≤ r1 ≤ δ,

r1∫
ε

a′i(r) dr = ai(r1) − ai(ε),

and, by the Cauchy-Schwarz inequality, we have

∣∣∣∣
r1∫
ε

a′i(r) dr
∣∣∣∣
2

≤ (r1 − ε)
r1∫
ε

a′i(r)2 dr.

So

r1∫
ε

a′i(r)2 dr ≥ (ai(r1) − ai(ε))2

r1 − ε
,

and, as r �→ h(r) is an increasing function,
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r1∫
ε

a′i(r)2h(r)n−1 dr ≥ h(ε)n−1 (ai(r1) − ai(ε))2

r1 − ε
.

First suppose there exists ε < r1 ≤ 2ε such that |ai(r1)| < |ai(ε)|
2 . Then

2ε∫
ε

a′i(r)2h(r)n−1 dr ≥
r1∫
ε

a′i(r)2h(r)n−1 dr ≥ h(ε)n−1 ai(ε)2

4(r1 − ε) .

Hence we obtain that

Ri ≥
∫ 2ε
ε

a′i(r)2h(r)n−1 dr

ai(ε)2h(ε)n−1 ≥ 1
4(r1 − ε) ≥ 1

4ε .

On the other hand, if |ai(r)| ≥ |ai(ε)|
2 for all ε ≤ r ≤ 2ε, then

Ri ≥
∫ 2ε
ε

(λai(r)2h(r)n−1 + ai(r)2μih(r)n−3) dr
ai(ε)2h(ε)n−1 ≥

∫ 2ε
ε

(λh(r)n−1 + μih(r)n−3) dr
4h(ε)n−1 .

As i ≥ 1, μi ≥ n − 1 and for n ≥ 3, we have

Ri ≥
∫ 2ε
ε

(n− 1)rn−3 dr

4εn−1 = (n− 1)
4(n− 2)

(
(2ε)n−2 − εn−2

εn−1

)
= (n− 1)

4(n− 2)

(
2n−2 − 1

ε

)
.

For n = 2, Ri ≥ log(2)/(4ε). In addition, we note that for n ≥ 3,

(n− 1)
4(n− 2)(2n−2 − 1) ≥ log(2)

4 .

To treat the case i = 0, as μ0 = 0, it is important that λ > 0. We first suppose that |a0(r)| ≥ |a0(ε)|
2 for 

all ε ≤ r ≤ δ. We have that

R0 ≥
∫ δ

ε
λa0(r)2h(r)n−1 dr

a0(ε)2h(ε)n−1 ≥
∫ δ

ε
λrn−1 dr

4εn−1 = λ

4n

(
δn − εn

εn−1

)
.

As λ ≥ λ1(S1
R) = 1

4R2 = π2n2ω2
nε

2(n−1),

R0 ≥ nπ2ω2
n

4 ε2(n−1)
(
δn − εn

εn−1

)
.

We choose δ = 2ε−1. Then we have

R0 ≥ nπ2ω2
n

4

(
2n − ε2n

ε

)
≥ nπ2ω2

n(2n − 1)
4 · 1

ε
.

It remains to deal with the case that there exists ε < r1 ≤ δ such that |a0(r1)| < |a0(ε)|
2 . We note that 

the choice of δ above could be large for small ε, so we have to take into account the possibility that r1 could 
also be large. Hence we must employ a different strategy to the one used above for i ∈ N∗.

Without loss of generality, we assume that a0(ε) > 0. We define the function t : [ε, δ] → R as

t(r) = a0(r) −
a0(ε)

.
2
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Then t(ε) = a0(ε)
2 > 0 and t(r1) = a0(r1) − a0(ε)

2 < 0 since |a0(r1)| < |a0(ε)|
2 . Hence there exists ε < r2 < r1

such that t(r2) = 0.
We then define the function T : [ε, δ] → R as

T (r) =
{
t(r), if t(r) ≥ 0,
0, otherwise.

Up to a constant factor, the function T (r) is a test function for the variational characterisation for the 
first eigenvalue of the mixed Steklov-Dirichlet problem on the annulus A(ε, r2) (see (11)). Indeed, we have

σD
0 (A(ε, r2)) ≤

∫ r2
ε

T ′(r)2h(r)n−1 dr

T (ε)2h(ε)n−1 =
∫ r2
ε

a′0(r)2h(r)n−1 dr

(a0(ε)
2 )2h(ε)n−1

≤ 4R0.

Therefore, R0 ≥ 1
4σ

D
0 (A(ε, r2)). Now, σD

0 (A(ε, r2)) ≥ n−1
ε , by similar computations to those carried out in 

Subsection 4.1 (see, for example, [8]). We conclude that

R0 ≥ n− 1
4ε .

Hence, we have that

Ri ≥
C̃

ε

for i ∈ N where

C̃ = min
{

1
4 ,

(2n−2 − 1)(n− 1)
4(n− 2) ,

log(2)
4 ,

nπ2ω2
n(2n − 1)
4 ,

n− 1
4

}
.

So, if λ > 0, we conclude that

σ ≥ C̃

ε
. (22)

Case λ = 0.
We now use the choice of δ = 2ε−1 to deal with the case where λ = 0. By (21) and (20) from Subsection 

4.1, we have that

σ ≥ σN
1 (A(ε, 2ε−1)) = −ε2n + 2n

ε2n+1 + 2n

n−1ε
≥ (2n − 1)

(1 + 2n

n−1 )ε
= (n− 1)(2n − 1)

(n− 1 + 2n) · 1
ε
. (23)

Using (22) and (23), we conclude that

σ ≥ Ĉ

ε

where

Ĉ = min
{

log(2)
4 ,

nπ2ω2
n(2n − 1)
4 ,

(n− 1)(2n − 1)
(n− 1 + 2n)

}
.

Therefore σ → +∞ as ε → 0.
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5. An obstruction to the optimal exponent

In this section we present two examples of Riemannian manifolds (M, g) for which the presence of |M |β, 
β > 0, in an upper bound for σk(M, g) poses an obstruction to achieving the optimal exponent of k.

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth boundary Σ. We often 
have the following type of inequality for the Steklov eigenvalues of M : for each k ≥ 1,

σk(M, g) ≤ C(n)|Σ|γ |M |β kα,

where α > 0 and β ≥ 0. In order for this inequality to be invariant by homothety, we require that γ = −1+nβ
n−1 .

A particular inequality that we wish to obtain is the case where α = 1
n−1 and β = 0. However, a simple 

example shows that α and β cannot be chosen independently. In fact, for every such manifold M , we can 
construct an example of a metric such that α and β satisfy the inequality

1 + β ≤ α(n− 1). (24)

For example, if β = 0, then α ≥ 1
n−1 , and if β > 0, then α > 1

n−1 . In the latter case, the bound cannot 
have the optimal exponent of k with respect to the Steklov spectral asymptotics (1). In general, the only 
situation where we can hope to obtain a bound with optimal exponent of k is when β = 0, that is, there is 
no contribution from the volume of M .

We first consider the particular case of a cylinder and then address a more general situation. In what 
follows, we make use of Lemma 2.1 and Inequality (5) from [5].

Example 5.1. Let Σ be a smooth, closed, connected Riemannian manifold of dimension n − 1. Let L > 0
and M = Σ × [0, L]. If, for k ≥ 1, we have

σk(M, g) ≤ C(|Σ|, n)|M |β kα,

where α > 0, β ≥ 0, and C(|Σ|, n) is a constant depending only on |Σ|, n, then (24) holds.
The Steklov spectrum of M = Σ ×[0, L] is the union of 0, 2/L, 

√
λk tanh(

√
λkL/2) and 

√
λk coth(

√
λkL/2), 

where λk are the Laplace eigenvalues of Σ. In particular, σ2k(M) ≥
√
λk tanh(

√
λkL
2 ). Then taking 

L = 1/
√
λk, this implies

√
λk tanh 1

2 ≤ σ2k(M) ≤ C(|Σ|, n)|M |β(2k)α,

and we have

λ
1+β
2

k ≤ C̃(|Σ|, n)kα.

As λk ∼ k2/(n−1) as k → ∞, we conclude that inequality (24) holds.

Example 5.2. For a compact manifold M of dimension n ≥ 2 with smooth boundary Σ, we can construct 
an example of a metric such that if

σk(M) ≤ C(|Σ|, n)|M |β kα,

where α > 0, β ≥ 0, and C(|Σ|, n) is a constant depending only on |Σ|, n, then (24) holds.
Suppose M has b boundary components denoted Σ1, . . . , Σb. We fix the metrics on Σ1, . . . , Σb. For each 

integer k, we introduce a Riemannian metric on M such that near each boundary component Σi, i = 1, . . . , b, 
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this metric is isometric to the product Σi × [0, Li], where Li = 1/
√

λk(Σi) and λk(Σi) is the k-th Laplace 
eigenvalue of Σi.

By Lemma 2.2 of [5], the mixed Steklov-Neumann spectrum of a cylinder Σ × [0, L] of length L is given 
by σN

k (Σ × [0, L]) =
√
λk tanh(

√
λkL
2 ) where λk are the Laplace eigenvalues of Σ.

The choice of Li implies that

√
λk(Σi) tanh 1

2 = σN
k (Σi × [0, Li]).

Let σ̄k(M, g) be the minimum of σN
[ kb ](Σi × [0, Li]) where [.] denotes the integer part. Then, using the 

Steklov-Neumann bracketing (10), we have

σk(M) ≥ σ̄k(M).

So, for each k ∈ N∗, there exists i(k) ∈ {1, . . . , b} such that

σk(M) ≥ σN
[ kb ](Σi(k) × [0, Li(k)]) ≥ (tanh 1

2 )
√

λ[ kb ](Σi(k)).

We note that the metric can be constructed such that the volume outside the cylinders Σi × [0, Li] is 
arbitrarily small, so only the volume of the cylindrical neighbourhood of Σ plays a role in what follows.

On one hand, we have

(tanh 1
2 )
√
λ[ kb ](Σi(k)) ≤ σk(M) ≤ C(|Σ|, n)|M |βkα ≤ C(|Σ|, n)kα|Σ|β(

b∑
i=1

Li)β . (25)

On the other hand, we have

(
b∑

i=1
Li)β =

⎛
⎝ b∑

i=1

1√
λ[ kb ](Σi)

⎞
⎠

β

.

For each i, as k → ∞, we have λ[ kb ](Σi) ∼ k2/(n−1). (At this stage, it is crucial that the boundary 
components Σ1, . . . , Σb are fixed throughout the process.) This implies that

(
b∑

i=1
Li)β ∼ k−β/(n−1),

which together with (25) implies, as for the cylinder, that for large k

k1/(n−1)kβ/(n−1) ≤ Ckα,

and we conclude that (24) holds.
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