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Abstract 

Charge transfer in organic fluorophores is a fundamental photophysical process that can be 

either beneficial, e.g., facilitating thermally activated delayed fluorescence, or detrimental, e.g., 

mediating emission quenching. N-Alkylation is shown to provide straightforward synthetic 

control of the charge transfer, emission energy and quantum yield of amine chromophores. We 

demonstrate this concept using quinine as a model. N-Alkylation causes changes in its emission 

that mirror those caused by changes in pH (i.e., protonation). Unlike protonation, however, 

alkylation of quinine’s two N sites is performed in a stepwise manner to give kinetically stable 

species. This kinetic stability allows us to isolate and characterize an N-alkylated analogue of an 

‘unnatural’ protonation state that is quaternized selectively at the less basic site, which is 

inaccessible using acid. These materials expose (i) the through-space charge-transfer excited 

state of quinine and (ii) the associated loss pathway, while (iii) developing a simple salt that 

outperforms quinine sulfate as a quantum yield standard. This N-alkylation approach can be 

applied broadly in the discovery of emissive materials by tuning charge-transfer states. 
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Introduction 

‘Your “epipolic” dispersion has given me the clue to a most extensive field of research, 

which has occupied me during the last year when sunlight permitted’ wrote Sir George 

Stokes to Sir John Herschel on April 6, 1852.1 This prediction of an extensive field of 

research has held true through the continued use of spectroscopy to study epipolic 

dispersion that, also thanks to Stokes, we now know as fluorescence. In recent years, 

fluorescence spectroscopy has been used to characterize a wide range of different 

compounds and uncover new functional phenomena such as thermally activated 

delayed fluorescence (TADF),2–7 aggregation induced emission8–10 and room 

temperature phosphorescence.11–13  

TADF is of particular interest as it increases the efficiency of organic light-emitting diodes 

(OLEDs) used in displays and devices. The TADF process is contingent on the formation 

of charge-transfer (CT) states, i.e., the spatial redistribution of electron density in the 

excited state. Controlling and tuning CT states is crucial to the development of high 

efficiency TADF materials.14 This redistribution can result in reduced overlap between 

the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO).4,15 CT states also have a significant impact on photochemistry and are 

commonplace in natural chromophores – for example, they have been invoked in 

photosynthesis16–18 and DNA repair19,20 mechanisms. CT states can contribute to 

enhancing light emission in organic compounds through mechanisms such as TADF, but 

their presence is not always desirable. Identification of their behaviour with respect to 

the electronic energy levels can guide material design. 

Here, we utilize quinine (Qn) as a model system to demonstrate a strategy for modifying 

CT states of organic compounds. Recent literature has shown that some of the cinchona 
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alkaloids display CT and proton transfer, which in turn dictate their photophysical 

properties.21,22 These studies have previously been performed using protonation 

equilibria in aqueous media. Here, we use N-alkylation as an alternative in order to 

permanently modify Qn, allowing investigation into the structure–property relationships 

between lone-pair availability, charge, emission energy and quantum yield. We 

demonstrate that N-alkylation is a versatile method for studying the effects of amine 

quaternization in aqueous and organic solvent media, not requiring acidic conditions or 

being subject to equilibria. The kinetic stabilities of the N-alkylated salts also make it 

possible to quaternize structures at positions other than their most basic N site. We 

identify one N site of Qn that can be manipulated to ‘turn off’ CT state formation and 

another whose modification tunes emission colour. The compound produced by double 

N-alkylation displays enhanced photoluminescence quantum yields (PLQYs) and 

solubilities across a range of solvents compared to acidified quinine sulphate (H2Qn·SO4), 

which is a common PLQY standard for characterizing blue emitters. Overall, this 

N-alkylation approach represents a simple, robust pathway for tuning the emission and 

functional properties of Qn and other tertiary amines23–26 to impart functional properties 

such as improved PLQYs and, potentially, TADF emission. 

Results and Discussion 

Qn fluoresces blue with a high PLQY in acidified water (55% in 0.1 ᴍ aqueous H2SO4), but 

is only weakly emissive at UV wavelengths in basic solution.27 Recent work has shown 

that a similar pH-controlled increase in the PLQY of dehydroquinidine, an analogue of 

Qn, is linked to the availability of the quinuclidine lone pair electrons.21 It has been 
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proposed that formation of a through-space CT state between the quinuclidine N and 

the quinoline chromophore leads to quenching of emission. This CT loss pathway is 

suppressed when the quinuclidine N is protonated, which increases the PLQY. We 

reasoned that N-alkylation of Qn could modulate its CT state in a similar manner and 

that investigation of N-alkylated derivatives would allow us to delineate the separate 

effects of quaternizing each of the two N sites (N1 and N2, Scheme 1) independently of 

one another, circumventing the intrinsic limitations of using protonation for this task. 

We synthesized three salts of methylated Qn (Scheme 1). Synthetic procedures and NMR 

spectroscopic characterisation can be found in Scheme S1 and Figs. S1–S13 in the 

Supplementary Information. Selective N-methylation of the quinuclidine N (N1) is 

achieved by treating Qn with MeI at room temperature,28 giving MeQn+, whereas a 

reaction temperature of 100 °C leads to Me2Qn2+ by N-methylation of both N1 and the 

quinoline N (N2).29,30 This selectivity follows the known basicity trend of N1 and N2.21,31,32 

Methylation at each site gives characteristic changes in 1H NMR chemical shifts (Figs. S14 

and S15) and is confirmed by X-ray diffraction (XRD) analysis of single crystals 

(Scheme 1).‡ By employing an allyl protecting group at N1 (Scheme S1), however, it is 

also possible to prepare an isomeric form of MeQn+ that would be inaccessible using a 

thermodynamically controlled quaternization approach, such as reversible protonation 

under acidic conditions. After methylation at N2, the allyl protecting group at N1 is 

removed to give the kinetically stable ion iMeQn+. Each of the cations were isolated with 

halide counterions before exchanging to BF4 salts by metathesis with AgBF4 to avoid 

heavy-nucleus ions with large spin-orbit couplings that might complicate our 

photophysical investigations by quenching the singlet emission.33  
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The photophysical properties we have measured and modelled for Qn and its salts are 

summarized in Table 1.34 We first recorded (Fig. 1a) emission spectra of Qn dissolved in 

a series of solvents with a range of polarities. Although the absolute emission intensities 

from Qn in polar organic solvents are low on account of its near-zero PLQY, we could 

identify distinct emissions from a locally excited (LE) and a CT state.  

 

 

 

Scheme 1. N-Alkylation of Qn to N-methylquinium tetrafluoroborate, MeQn·BF4, N,N’-
dimethylquinium bis(tetrafluoroborate), Me2Qn·2BF4, and iso-N-methylquinium tetra-
fluoroborate, iMeQn·BF4. XRD structures of MeQn·BF4 and Me2Qn·2BF4 are shown in stick 
representation with N atoms as balls. Further XRD structures can be found in Figs. S16 and S17 
and Table S1. Reagents and conditions: i) a. MeI, rt, 3 d, b. AgBF4, MeCN, 60 °C, 10 min, 74% over 
2 steps; ii) MeI, MeCN, 100 °C, 4 h, b. AgBF4, MeOH, rt, 10 min, 79% over 2 steps; iii) a. allyl 
bromide, CH2Cl2, rt, 16 h, b. MeI, MeCN, 100 °C, 3 h, c. barbituric acid, Pd(PPh3)4 (5 mol%), 
Me2SO, 40 °C, 16 h, d. diisopropylaminomethyl polystyrene, MeOH, rt, 1 h, e. AgBF4, MeOH, rt, 
10 min, 79% over 5 steps. 
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Fig. 1 (a) Steady-state emission spectra of Qn dissolved in a series of solvents and excited at 3.75 eV, 
showing the LE and CT character of its emission. (b) The absorption (solid lines) and emission (dashed 
lines) spectra of Qn (purple), MeQn·BF4 (green), Me2Qn·2BF4 (blue), and iMeQn·BF4 (orange) in MeCN 
(20 µᴍ). A significant shift in the absorption spectra is associated with the methylation of N2. The 
emission spectrum of iMeQn·BF4 in MeCN is omitted as partial protonation of N1 by adventitious water 
affects the spectrum. Instead, the absorption and emission spectra (black) of a MeCN solution of 
iMeQn·BF4 (20 μᴍ) with Et3N (10 mᴍ) are displayed to show there is no significant change in absorption 
with the addition of a base and that there is no emission in the visible region without protonation of N1. 
The excitation energies (Eex) used were 4.13 eV for Qn and MeQn·BF4 or 3.54 eV for Me2Qn·2BF4 and 
iMeQn·BF4 to allow comparison of PLQYs with known standards (Figs. S18–S26 and Table S2). 

 

A peak in the UV region with emission energy, Eem, of 3.4 eV is present in low polarity 

solvent (PhMe), consistent with emission from an LE state. An additional peak is present 

in the visible region between 2.2 and 2.6 eV in more polar media. As the polarity is 

increased when moving from chlorinated solvents to MeCN, the increasing relative 

intensity of this second peak and its further bathochromic shift are indicative of emission 

from a CT state.35–37 The emission spectra are normalized relative to the peak of the LE 
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(which has reduced intensity in polar solvents) in order to better demonstrate the 

solvatochromic shift. The intensities of the spectra alone do not illustrate the absolute 

populations of the states, but the changes in intensity can be rationalised. In apolar 

solvents there is a higher population of molecules emitting from the LE state, having a 

high oscillator strength. In polar solvents an important population of molecules is now 

emitting from the CT state, but the low oscillator strength results in a similar magnitude 

of emission relative to the LE state. Linear-response time-dependent density functional 

theory (LR-TDDFT) calculations performed at the ωB97X-D/6-31G* level of theory with 

state-specific implicit solvation (see supplementary information for full all 

computational details and benchmarking) support the assignment of these LE and CT 

bands of Qn (Fig. 2). The CT state, in this case, is a result of a through-space charge 

transfer between the quinuclidine and quinoline system. 

 

Table 1. Photophysical properties of Qn and its methylated derivatives.  

 Φa / % Eem / eV Calculated Eem
d / eV Presence 

of CTe 

Red-Shifted 

Absorption 

and 

Emissionf 

Compound MeCNb H2O MeCNb H2O LE CT 

Qn 0 22 3.45 (2.30) 3.20 3.75 1.41 Yes No 

MeQn·BF4 5 32 3.40 3.24 3.69 - No No 

Me2Qn·2BF4 63 70 2.75 2.75 3.00 - No Yes 

iMeQn·BF4 0c 60 - 2.75 - 1.01 Yes Yes 

a PLQYs (Φ) for Qn and MeQn·BF4 were measured with respect to a standard of 2-aminopyridine in 0.1 ᴍ 
aqueous H2SO4 (Φ = 60%)38 and those of Me2Qn·2BF4 and iMeQn·BF4 were measured with respect to a 
standard of H2Qn·SO4 in 0.1 ᴍ aqueous H2SO4 (Φ = 55%).27 b Anhydrous MeCN was used throughout the 
spectroscopic study. c Anhydrous MeCN solution with 10 mᴍ Et3N used to suppress the formation of 
trace amounts of N1 protonated species resulting from adventitious water d Excited-state energies in eV 
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for protonated (rather than methylated) compounds calculated at the LR-TDDFT/ωB97X-D/6-31G* level 
of theory with state-specific implicit solvation (MeCN). e The presence or lack of an accessible CT state 
was determined by experimental observation (Fig. 1) and/or theoretical calculation (Tables S5 and S6). f 
Relative to the absorption and emission of Qn. 

 

The calculations predict (i) UV emission associated with an electronic transition localized 

on the quinoline ring system (π→π*) and (ii) a lower energy emission from a CT excited 

state, which is associated with an electronic transition from a nonbonding orbital located 

on N1 to an unoccupied π orbital on the quinoline ring (n→π*). We ascribe Qn’s 

extremely low PLQY (Table 1) to the formation of this through-space CT state. Rapid 

nonradiative decay from the low-energy CT state, possibly through the low-lying LE 

triplet state (Fig. S27), serves as a loss pathway that suppresses photoluminescence.39 

To further confirm this hypothesis and to ‘switch on’ the UV emission of Qn, we 

investigated the effect of alkylating N1 selectively. Pleasingly, we observed (Fig. 1b) only 

a single peak in the emission spectrum of MeQn·BF4 at 3.4 eV in MeCN, indicative of 

emission from the π→π* LE state of the quinoline ring system. Compared to Qn, the 

peak wavelengths observed in the absorption and emission spectra of MeQn·BF4 are 

largely unchanged. However, MeQn·BF4 shows no evidence of the lower energy emission 

from a CT state found for Qn. Consequently, MeQn·BF4 emits (Table 1) with an increased 

PLQY of 5% in MeCN, compared to the near-zero PLQY of neutral Qn in MeCN. 

Quaternization at N1 prevents formation of a CT excited state, removing one of the 

pathways for rapid nonradiative decay and, as a result, enhancing the PLQY. Similarly, CT 

state formation is also suppressed for neutral H2O solutions of Qn, in which the major 

species at equilibrium is monoprotonated HQn+,31 giving a PLQY of 22%. The PLQY of 

MeQn·BF4 in H2O solution is 32%. 
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Methylation of N2 has a markedly different effect on the photoluminescence properties. 

We first investigated this effect by quaternizing both N1 and N2. The doubly methylated 

salt Me2Qn·2BF4 exhibits (Fig. 1b) significant bathochromic shifts in its absorption and 

emission energies relative to Qn and MeQn·BF4. These shifts are reproduced 

qualitatively by our LR-TDDFT (Table 1) and algebraic diagrammatic construction 

(ADC(2)) calculations (Tables S3 and S4). Like MeQn·BF4, emission from Me2Qn·2BF4 

(Fig. 2) comes exclusively from the π→π* LE state. However, the transiƟon is brought 

into the blue region (2.8 eV) as a result of quaternizing N2. 

Extrapolating from our observations based on MeQn·BF4 and Me2Qn·2BF4, we would 

expect that selective quaternization of only N2—the less basic N site—would give rise to 

an ion that retains the CT character of Qn on account of the available quinuclidine lone 

pair electrons (N1), but whose emission and absorption are red-shifted. The LR-TDDFT 

calculations fit with this hypothesis, predicting (Fig. 2) formation of a new low-energy CT 

state at lower electronic energy. Moreover, the LR-TDDFT indicates that, upon relaxation 

of the excited state, the CT state becomes the primary (singlet) ‘emissive’ state. The 

selectivity and kinetic stability of the N-alkylation approach allows us to test this 

hypothesis experimentally using iMeQn·BF4.  

 

 



 

10 

 

 

Fig. 2 Natural transition orbitals (NTOs) and energies characterizing the singlet emission of Qn from its 
LE and CT states, as well as MeQn+, iMeQn+ and Me2Qn2+, calculated at the LR-TDDFT/ωB97X-D/6-31G* 
level of theory with state-specific implicit solvation. ¶ Indicates that protonated structures were used as 
electronically similar (Table S7) models for the methylated salts. 

As predicted, the absorption spectrum of iMeQn·BF4 in MeCN matches closely (Fig. 1b) 

the spectrum of Me2Qn·2BF4. Photoluminescence measurements, which were carried 

out in MeCN with 10 mᴍ triethylamine (Et3N) to prevent protonation of N1 by 

adventitious water, are also consistent. Unlike the other methylated derivatives, there 

is no detectable photoluminescence from iMeQn·BF4. Population of the extremely low-

energy CT excited state predicted by calculation appears to lead solely to non-radiative 

decay. Overall, therefore, selective alkylation of different sites can be used to tune the 
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photophysical behaviour of Qn, modulating independent properties in an orthogonal 

manner. It is a useful approach to control CT and emission energy. However, the kinetic 

stabilities and modified solubility profiles of the Qn salts also give them advantages over 

protonated analogues for use as functional materials. For example, while a doubly 

protonated Qn salt, H2Qn·SO4, is used routinely as a fluorescence standard for relative 

PLQY measurements in the blue region,27 its use is limited to acidic aqueous solutions – 

it is insoluble in common organic solvents and its photoluminescence is quenched in the 

aggregated state. The physical properties of Me2Qn·2BF4, on the other hand, make it 

appealing as a more versatile PLQY standard. 

Our measurements show that it exhibits an enhanced PLQY of 70% in neutral H2O 

compared to the 55% PLQY of H2Qn·SO4 in 0.1 ᴍ aqueous H2SO427 and, unlike H2Qn·SO4, 

it is soluble in organic solvents such as MeCN, EtOH, Me2CO, CH2Cl2, and EtOAc, giving 

rise to useful PLQYs (Figs. S18–S26 and Table S2) of 63%, 43%, 54%, 48% and 13%, 

respectively. The variation in PLQY may be a result of modulating ion-pairing between 

the fluorescent cation and its counterion. Previous investigations of cationic 

fluorophores have also shown solvent-dependent PLQY and have suggested interactions 

with the counterion can provide radiationless decay pathways, e.g., through electron 

transfer and heavy atom effects.40,41 Overall, however, simple counterion exchange can 

be used to tune the solubility profile and emission properties. Work is ongoing in our 

laboratories to optimize these materials as PLQY standards and provide physical insight 

into the empirical changes in PLQY with solvent. 

Conclusions 
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In summary, we have demonstrated an operationally simple method to tune and 

elucidate the CT excited states of emissive organic materials by N-alkylation. In the 

present investigation, this approach has allowed us to systematically toggle on and off 

the presence of a CT excited state, to change the emission colour, and to improve the 

PLQY of Qn – a compound whose photophysical properties were first studied by Herschel 

and Stokes over 150 years ago.42–44 This approach can be applied broadly to N-

heterocycles, which are pervasive structural motifs in many organic chromophores. 

Resulting insights into their CT excited states will progress our understanding of natural 

photoactive systems16–18,45 and improve the performances of emissive2–7,39 and light-

absorbing46–48 devices. The kinetic stabilities of the N-alkylated compounds open up the 

possibility of quaternizing the chromophores selectively at sites other than their most 

basic N site, achieving structures that are inaccessible by protonation, while the choice 

of counterion can serve as a handle to control physical properties.    
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1.  General Methods 

Materials: All reagents were purchased from commercial suppliers (Sigma-Aldrich, Acros Organics, 

or Alfa Aesar) and used without further purification.  

Instrumentation and Analytical Techniques: Analytical thin-layer chromatography (TLC) was 

performed on neutral aluminium-sheet silica gel plates and visualised under UV irradiation 

(254 nm). Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Advance (III)-

400 (1H 400.130 MHz and 13C 100.613 MHz), Varian Inova-500 (1H 500.130 MHz and 13C 125.758 

MHz), Varian VNMRS-600 (1H 600.130 MHz and 13C 150.903 MHz) or a Varian VNMRS-700 (1H 

700.130 MHz and 13C 176.048 MHz) spectrometers, at a constant temperature of 298 K unless 

otherwise stated. Chemical shifts (δ) are reported in parts per million (ppm) relative to the signals 

corresponding to residual non-deuterated solvents [DMSO-d6: δ = 2.50 or 39.52. CD3OD: δ = 3.31 

or 49.00]. Coupling constants (J) are reported in Hertz (Hz). 13C NMR Experiments were proton-

decoupled, whereas 19F NMR experiments are coupled and referenced to an internal standard, 

hexafluorobenzene (HFB, δ = 164.99 ppm). Assignments of 1H and 13C NMR signals were 

accomplished by two-dimensional NMR spectroscopy (COSY, NOESY, HSQC, HMBC). NMR spectra 

were processed using MestReNova version 12. Data are reported as follows: chemical shift; 

multiplicity; coupling constants; integral and assignment. High-resolution electrospray (HR-ESI) 

mass spectra were measured using a Waters LCT Premier XE high resolution, accurate mass UPLC 

ES MS. Melting points were recorded using a Gallenkamp (Sanyo) apparatus and are uncorrected. 

UV-Vis-NIR absorbance spectra of solution samples were recorded using an Agilent Technologies 

Cary Series UV-vis-NIR spectrophotometer at room temperature. Steady-state photoluminescence 

of films and solutions were measured using a Jobin Yvon Fluoromax or Fluorolog with machine-

specific calibration curves. The photoluminescence quantum yields (PLQYs) of the compounds were 
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measured using the relative method1 and comparing to known standards of quinine sulfate2 and 2-

aminopyridine3 in aqueous 0.1 M H2SO4. The absorption spectra and photoluminescence spectra 

for the PLQYs were measured on a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer and a Jobin 

Yvon Fluoromax or Fluorolog. The low temperature phosphorescence spectrum of Qn in a zeonex 

film was acquired by placing the sample in a Janis Research VNF-100 cryostat, used in conjunction 

with a Lakeshore 332 temperature controller, and exciting the sample with 337nm light from an N2 

laser (LTBMNL 100, Lasertechnik Berlin) at 10 Hz. Sample emission was the directed onto a 

spectrograph and gated iCCD camera (Stanford Computer Optics). The X-ray single crystal data were 

collected at a temperature of 120.0(2) K using λCuKα radiation (λ = 1.54178 Å) on a Bruker 

D8Venture (Photon100 CMOS detector, IμS-microsource, focusing mirrors) diffractometer 

equipped with a Cryostream (Oxford Cryosystems) open-flow nitrogen cryostat. Both structures 

were solved by direct method and refined by full-matrix least squares on F2 for all data using Olex24 

and SHELXTL5 software. All non-disordered non-hydrogen atoms were refined anisotropically, 

closely located disordered atoms in structure MeQn·BF4 were refined isotropically. The disordered 

atoms were refined with fixed site occupation factors 0.6 and 0.4. Hydrogen atoms in structure 

Me2Qn·2BF4 and in OH-groups of structure MeQn·BF4 were refined isotropically, the remaining 

hydrogen atoms in structure MeQn·BF4 were placed in the calculated positions and refined in riding 

mode. The absolute configuration of studied compounds was determined from anomalous 

scattering by calculating the Flack6 (x) and Hooft7 (y) parameters which should equal 0 for the 

correct absolute structure and 1 for the inverted model. Crystal data and parameters of refinement 

are listed in Table S1. Crystallographic data for the structure have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication CCDC-1985987-1985988. 
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2.  Synthetic Procedures 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Scheme S1 Synthetic routes to MeQn·BF4, Me2Qn·BF4 and iMeQn·BF4. Reagents and conditions: (i) a) MeI / 
rt / 3 d, b) AgBF4 / MeCN / 60 °C / 10 min; (ii) a) MeI / MeCN / 100 °C / 4 h, b) AgBF4 / MeOH / rt / 10 min,  
(iii) a) Allyl bromide / CH2Cl2  / rt / 16 h, b) MeI / MeCN / 100 °C / 3 h; (iv) (a) Barbituric acid / Pd(PPh3)4 
(5 mol%) / Me2SO / 40 °C / 16 h, (b) Diisopropylaminomethyl polystyrene / MeOH / rt / 1h, c) AgBF4 / MeOH 
/ rt / 10 min. 

 
MeQn·BF4:  Quinine (500 mg, 1.54 mmol) was added to an oven-dried 

microwave vial and sealed. MeI (5 mL) was added and the mixture was 

sonicated at rt for 20 min. The reaction mixture was stirred for 3 days at 

rt. The mixture was filtered to isolate the precipitate, washing with CH2Cl2 

(2 × 5 mL) and drying the precipitate under high vacuum. The resulting solid was recrystallized from 

MeCN to yield the iodide salt of title compound, MeQn·I, as a crystalline solid (618 mg, 1.23 mmol, 

80 %). MeQn·I (106 mg, 0.227 mmol) was dissolved in MeCN (8 mL) and heated to 60 °C. A solution 

of AgBF4 (44.0 mg, 0.227 mmol) in MeCN (1 mL) was added dropwise and allowed to stir at 60 °C 
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for 10 min. The resulting mixture was filtered and the filtrate was evaporated to dryness to give the 

title compound as a colourless solid (87 mg, 0.20 mmol, 93%). M.P. 185 – 187 °C. 1H NMR (700 

MHz, DMSO-d6) δ 8.79 (d, J = 4.5 Hz, 1H, H10), 8.00 (d, J = 9.2 Hz, 1H, H2), 7.70 (d, J = 4.9 Hz, 1H, H9), 

7.48 (dd, J = 9.2, 2.7 Hz, 1H, H3), 7.21 (d, J = 2.7 Hz, 1H, H6), 6.54 (d, J = 2.7 Hz, 1H, H21), 6.21 (d, J = 

3.2 Hz, 1H, H11), 5.75 (ddd, J = 17.3, 10.5, 6.8 Hz, 1H, H17), 5.13 – 5.01 (m, 2H, H18), 4.07 (m, 1H, 

H20), 4.00 (s, 3H, H5), 3.74 – 3.60 (m, 3H, H16+12), 3.45 – 3.35 (m, 4H, H20+22), 2.85 – 2.76 (m, 1H, H15), 

2.20 – 2.10 (m, 2H, H13+19), 2.06 – 2.01 (m, 1H, H14), 1.97 – 1.87 (m, 1H, H19), 1.38 – 1.31 (m, 1H, 

H13). 13C NMR (176 MHz, DMSO-d6) δ 157.4 (C4), 147.4 (C10), 143.8 (C8), 143.6 (C1), 137.9 (C17), 131.5 

(C2), 125.1 (C7), 121.5 (C3), 119.9 (C9), 116.5 (C18), 101.6 (C6), 66.78 (C12), 63.9 (C11 + C16), 55.48 (C5), 

54.2 (C20), 48.7 (C22), 37.6 (C15), 25.9 (C14), 24.6 (C19), 19.3 (C13). 19F NMR (376 MHz, CD3OD) δ -

150.48 (m, 10B), -150.54 (m, 11B). HR-ESI-MS m/z = 339.2088 [M-BF4]+ (calculated for C21H27N2O2 = 

339.2073).  

 

 Me2Qn·2BF4: Quinine (2.00 g, 6.17 mmol) was added to an oven-dried 

microwave vial and sealed. MeCN (18 mL) was added and stirred at rt 

before adding MeI (1.92 mL, 30.8 mmol). The resulting mixture was 

heated at 100 °C for 4 h then allowed to cool to rt and further cooled to 

5 °C in a fridge to allow the product to crystallise. The supernatant was decanted and the resulting 

crystals were isolated and dried under high vacuum to give the diiodide salt of the title compound 

(2.98 g, 4.9 mmol, 79%). Me2Qn·2I (200 mg, 0.329 mmol) was dissolved in MeOH (5 mL) and a 

solution of AgBF4
 (128 mg, 0.658 mmol) in MeOH (5 mL) was added dropwise and stirred at rt for 

10 min. The reaction mixture was filtered and the filtrate was evaporated to dryness to yield the 
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title compound as a colourless solid (135 mg, 0.329 mmol, quantitative). M.P. 195 – 197 °C. 1H NMR 

(600 MHz, DMSO-d6) δ 9.32 (d, J = 6.1 Hz, 1H, H10), 8.51 (d, J = 9.7 Hz, 1H, H2), 8.28 (d, J = 6.0 Hz, 

1H, H9), 7.99 (dd, J = 9.7, 2.6 Hz, 1H, H3), 7.54 (d, J = 2.7 Hz, 1H, H6), 7.16 – 7.05 (m, 1H, H21), 6.53 – 

6.46 (m, 1H, H11), 5.70 (ddd, J = 17.3, 10.5, 6.9 Hz, 1H, H17), 5.13 – 5.03 (m, 2H, H18), 4.62 (s, 3H, 

H22), 4.14 (m, 4H, H5+20), 3.77 – 3.61 (m, 3H, H12+16), 3.48 – 3.38 (m, 4H, H20+23), 2.87 – 2.79 (m, 1H, 

H15), 2.10 (m, 3H, H13+19), 2.00 – 1.92 (m, 1H, H14), 1.36 (m, 1H, H13). 13C NMR (151 MHz, DMSO-d6) 

δ 159.3 (C4), 154.9 (C1), 146.3 (C10), 137.9 (C17), 133.6 (C8), 127.1 (C7), 126.6 (C3), 121.8 (C2), 121.1 

(C9), 116.6 (C18), 103.9 (C6), 66.2 (C12), 64.5 (C11), 64.2 (C16), 56.3 (C5), 54.4 (C20), 48.8 (C23), 45.6 

(C22), 37.4 (C15), 25.8 (C14), 24.6 (C19), 19.4 (C13). 19F NMR (376 MHz, CD3OD) δ -150.49 (m, 10B), -

150.54 (m, 11B). HR-ESI MS m/z = 440.2379 [M-BF4]+ (calculated for C22H30N2O2
10BF4

 = 440.2373). 

 
1·IBr: Quinine (500 mg, 1.54 mmol) was placed into an oven-dried round-

bottomed flask. CH2Cl2 (2.5 mL) was added and stirred at rt before adding 

allyl bromide (0.13 mL, 1.54 mmol). The resulting solution was stirred at 

rt for 16 h. Once the reaction was complete, the volatiles were removed 

under vacuum. The resulting solid was dissolved in MeCN (2.5 mL) and 

MeI (0.13 mL, 2.09 mmol) was added dropwise and the mixture was heated to 100 °C for 3 h. The 

mixture was allowed to cool to rt and further cooled to 5 °C in a fridge to allow the product to 

precipitate. The orange precipitate was isolated by filtration and washed with CH2Cl2 (2 × 5 mL), 

then dried under high vacuum to give the title compound as an orange solid (710 mg, 1.25 mmol, 

81%). M.P. 203 – 205 °C. 1H NMR (400 MHz, DMSO-d6) δ 9.32 (d, J = 6.1 Hz, 1H, H10), 8.50 (d, J = 9.7 

Hz, 1H, H2), 8.25 (d, J = 6.0 Hz, 1H, H9), 8.00 (dd, J = 9.7, 2.7 Hz, 1H, H3), 7.54 (d, J = 2.7 Hz, 1H, H6), 

7.10 (d, J = 4.1 Hz, 1H, H21), 6.55 (m, 1H, H11), 6.26 (m, 1H, H24), 5.81 – 5.59 (m, 3H, H17+23), 5.09 – 
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4.97 (m, 2H, H18), 4.58 (s, 3H, H22), 4.54 (m, 1H, H25) 4.29 (m, 1H, H25), 4.12 (s, 3H, H5), 4.05 – 3.96 

(m, 1H, H20), 3.76 – 3.65 (m, 2H, H12+16), 3.57 – 3.39 (m, 2H, H16+20), 2.79 (m, 1H, H15), 2.13 – 1.96 

(m, 4H, H13+14+19), 1.32 (m, 1H, H13). 13C NMR (101 MHz, DMSO-d6) δ 159.4 (C4), 154.9 (C1), 146.4 

(C10), 138.1 (C17), 133.7 (C8), 127.5 (C23), 127.3 (C7), 126.6 (C3), 126.2 (C24), 121.9 (C2), 121.5 (C9), 

116.7 (C18), 104.4 (C6), 65.9 (C12), 64.6 (C11), 62.5 (C25), 60.3 (C16), 56.5 (C5), 52.2 (C20), 45.7 (C22), 

37.3 (C15), 26.1 (C14), 24.5 (C19), 20.4 (C13). HR-ESI-MS m/z = 507.1505 [M-Br]+ (calculated for 

C24H32N2O2I = 507.1508). 

 

 H-iMeQn·2Cl:  1·IBr (80 mg, 0.14 mmol) was dissolved in Me2SO (1 mL) 

then Pd(PPh3)4 (8 mg, 6.92 µM, 5 mol%) and barbituric acid (52 mg, 0.4 

mmol) were added to the reaction mixture and stirred overnight at 40 °C. 

A 1 M aqueous solution of HCl (1 mL) was added and stirred for 5 min. 

The mixture was then purified by reverse phase column chromatography (Teledyne Isco CombiFlash 

Rf+ system, 40 g C18-capped SiO2, 0.05 M HCl(aq) / MeOH, 0 – 100% elution). After evaporation, 

the product was isolated as a yellow film (57 mg, 0.14 mmol, quantitative). 1H NMR (400 MHz, 

DMSO-d6) δ 9.14 (d, J = 6.1 Hz, 1H, H10), 8.45 (d, J = 9.8 Hz, 1H, H2), 8.28 (d, J = 6.1 Hz, 1H, H9), 7.88 

(m, 2H, H3+6), 6.51 (s, 1H, H11), 5.75 (ddd, J = 17.4, 10.4, 7.2 Hz, 1H, H17), 5.10 – 5.00 (m, 2H, H18), 

4.63 (s, 3H, H22), 4.27 – 4.19 (m, 1H, H20), 4.16 (s, 3H, H5), 3.67 (m, 1H, H12), 3.60 (m, 1H, H16), 3.31 

(m, 1H, H16), 3.24 (m, 1H, H20)  2.81 (m, 1H, H15), 2.19 (m, 2H, H13+19), 2.09 (m, 1H, H14), 1.98 (m, 1H, 

H19), 1.57 (m, 1H, H13). 13C NMR (101 MHz, DMSO-d6) δ 162.4 (C4), 158.0 (C1), 147.1 (C10), 139.2 

(C17), 135.9 (C8), 129.8 (C7), 129.4 (C3), 122.4 (C2), 121.6 (C9), 117.3 (C18), 104.5 (C6), 68.1 (C11), 60.9 
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(C12), 58.6 (C5), 55.5 (C16), 46.5 (C23), 45.3 (C20), 38.5 (C15), 28.4 (C14), 25.1 (C19), 19.2 (C13). HR-ESI-

MS m/z = 409.1472 [M-H]+ (calculated for C21H27N2O2Cl2 = 409.1449). 

 iMeQn·BF4:  H-iMeQn·2Cl (64 mg, 0.16 mmol) was dissolved in MeOH (10 

mL) and diisopropylaminomethyl polystyrene (467 mg, 1.4 mmol, 200–

400 mesh particle size, extent of labelling: ~3 mmol/g base loading, matrix 

crosslinked with 2% divinylbenzene) was added. The reaction mixture was 

stirred for 1 h at rt before being filtered. The filtrate was evaporated to 

dryness and washed with hexanes (5 × 10 mL) to extract any solubilised polymer. The residual solid 

was dried under high vacuum to yield iMeQn·Cl (45 mg, 0.12 mmol, 86%). The chloride salt was 

dissolved in MeOH (3 mL) and a solution of AgBF4 (23 mg, 0.12 mmol) in MeOH (2 mL) was added 

dropwise then stirred for 10 min at rt. The reaction mixture was filtered and the filtrate was 

evaporated to dryness to yield the title compound as an off white solid (51 mg, 0.12 mmol, 

quantitative). M.P. 204 – 206 °C. 1H NMR (400 MHz, CD3OD) δ 9.14 (d, J = 6.1 Hz, 1H, H10), 8.48 (d, 

J = 9.7 Hz, 1H, H2), 8.27 (d, J = 6.1 Hz, 1H, H9), 7.92 (d, J = 9.7, 2.4 Hz, 1H, H3), 7.87 (m, 1H, H6), 6.24 

(s, 1H, H11), 5.79 (ddd, J = 17.4, 10.4, 7.2 Hz, 1H, H17), 5.10 – 5.01 (m, 2H, H18), 4.65 (s, 3H, H22), 4.16 

(s, 3H, H5), 4.06 (m, 1H, H20), 3.52 (m, 1H, H12), 3.48 (m, 1H, H16), 3.13 (m, 2H, H16+20), 2.70 (m, 1H, 

H15), 2.14 (m, 3H, H13+19), 2.04 (m, 1H, H14) 1.87 (m, 1H, H19), 1.61 (m, 1H, H13). 13C NMR (101 MHz, 

CD3OD) δ 162.1 (C4), 147.2 (C10), 140.1 (C17), 135.9 (C8), 129.9 (C7), 129.0 (C3), 122.4 (C2), 121.5 (C9), 

116.7 (C18), 104.5 (C6), 69.4 (C11), 61.2 (C12), 57.7 (C5), 56.2 (C16), 46.4 (C22), 45.2 (C20), 39.2 (C15), 

28.5 (C14), 25.9 (C19), 20.2 (C13).  19F NMR (376 MHz, CD3OD) δ -153.71 (m, 10B), -153.76 (m, 11B). 

HR-ESI-MS m/z = 339.2087 [M-BF4]+ (calculated for C21H27N2O2 = 339.2037). 
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3.1 1H, 13C and 19F NMR Spectroscopic Characterisation of Synthesised Compounds  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S1 1H NMR Spectrum of MeQn·BF4. 
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Fig. S2 13C NMR Spectrum of MeQn·BF4. 
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Fig. S3 19F NMR Spectrum of MeQn·BF4. 
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Fig. S4 1H NMR Spectrum of Me2Qn·BF4. 
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Fig. S5 13C NMR Spectrum of Me2Qn·BF4. 
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Fig. S6 19F NMR Spectrum of Me2Qn·BF4. 
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Fig. S7 1H NMR Spectrum of 1·2Cl. 
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Fig. S8 13C NMR Spectrum of 1·2Cl.
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Fig. S9 1H NMR Spectrum of H-iMeQn·2Cl. 
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Fig. S10 13C NMR Spectrum of H-iMeQn·2Cl. 
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Fig. S11 1H NMR Spectrum of iMeQn·BF4. 
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Fig. S12 13C NMR Spectrum of iMeQn·BF4. Insert: Partial HMBC spectrum to show the 13C resonance for C1, which is not visible in the 1D spectrum.  
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Fig. S13 19F NMR Spectrum of iMeQn·BF4. 
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3.2. NMR Comparisons of Methylated and Protonated Quinines 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S14 Comparison of 1H NMR spectra of Qn, MeQn·BF4, Me2Qn·2BF4 and iMeQn·BF4, demonstrating the deshielding of H11 upon alkylation and 
the characteristic Me resonances observed for the two N sites.  
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Fig. S15 Comparison of H-iMeQn·2BF4 and iMeQn·BF4 1H NMR spectra. The shift in the resonance of H11 is consistent with spectroscopic data in 
the literature for (de)protonation at N1

8 and with the shifts observed (Figure S14) upon methylation.
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4. X-Ray Crystallographic Analysis 
 
4.1 MeQn·BF4 

Crystals of MeQn·BF4 suitable for X-ray diffraction were grown by slow cooling of a saturated MeCN 

solution.  

 
Fig. S16 (a) Solid-state structure and (b) crystal packing of MeQn·BF4.  
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4.2 Me2Qn·2BF4 

Crystals of Me2Qn·2BF4 suitable for X-ray diffraction were grown by slow cooling of a saturated 

MeCN solution. 

 
Fig. S17 (a) Solid-state structure and (b) crystal packing of Me2Qn·2BF4.  
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Table S1 Crystal Data and Refinement. 

Compound MeQn·BF4 Me2Qn·2BF4 

Empirical formula  C21H27BF4N2O2 x 0.5 H2O C22H30B2F8N2O2 

Formula weight  435.26 528.10 

Temperature/K  120.0 120.0 

Crystal system  monoclinic orthorhombic 

Space group  P21 P212121 

a/Å  8.0721(2) 9.6961(3) 

b/Å  15.6353(5) 10.2407(3) 

c/Å  16.4422(5) 23.6533(8) 

α/°  90 90 

β/°  98.2832(14) 90 

γ/°  90 90 

Volume/Å3  2053.52(10) 2348.65(13) 

Z  4 4 

ρcalc g/cm3  1.408 1.494 

μ/mm-1  0.983 1.195 

F(000)  916.0 1096.0 

Crystal size/mm3  0.42 × 0.26 × 0.09 0.39 × 0.28 × 0.12 

2Θ range for data collection/° 5.432 to 139.976 7.474 to 144.936 

Reflections collected  23769 27372 

Independent refl., Rint  6963, 0.0308 4554, 0.0314 

Data/restraints/parameters  6963/15/575 4554/0/445 

Goodness-of-fit on F2  1.068 1.067 

Final R1 indexes [I≥2σ (I)]  0.0424 0.0256 

Final wR2 indexes [all data]  0.1050 0.0651 

Largest diff. peak/hole / e Å-3  0.65/-0.59 0.31/-0.18 

Flack parameter 0.01(6) 0.00(3) 

Hooft parameter 0.05(4) -0.01(3) 
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5. Photoluminescence Quantum Yield Measurements 
 

 
Fig. S18 The emission spectra and emission vs absorption slope of (a-b) 2-aminopyridine in 0.1 M H2SO4(aq) 
as a standard, (c-d) Qn in H2O and (e-f) MeQn·BF4 in H2O. 
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Fig. S19 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard, (c-d) Me2Qn·2BF4 in H2O and (e-f) iMeQn·BF4 in H2O. 
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Fig. S20 The emission spectra and emission vs absorption slope of (a-b) 2-aminopyridine in 0.1 M H2SO4(aq) 
as a standard, (c-d) Qn with 10 mM Et3N in MeCN and (e-f) MeQn·BF4 with 10 mM Et3N in MeCN. 
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Fig. S21 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard, (c-d) Me2Qn·2BF4 with 10 mM Et3N in MeCN and (e-f) iMeQn·BF4 with 10 mM Et3N in MeCN. 
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Fig. S22 The emission spectra and emission vs absorption slope of (a-b) 2-aminopyridine in 0.1 M H2SO4(aq) 
as a standard, (c-d) Qn in MeCN and (e-f) MeQn·BF4 in MeCN. 
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Fig. S23 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard and (c-d) Me2Qn·2BF4 in MeCN. 
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Fig. S24 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard, (c-d) Me2Qn·2BF4 in 0.1 M H2SO4 and (e-f) Me2Qn·2BF4 in acetone (Me2CO) 
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Fig. S25 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard, (c-d) Me2Qn·2BF4 in dichloromethane (CH2Cl2) and (e-f) Me2Qn·2BF4 in ethyl acetate (C4H8O2). 



S34 

 
 
Fig. S26 The emission spectra and emission vs absorption slope of (a-b) Qn·H2SO4 in 0.1 M H2SO4(aq) as a 
standard, (c-d) Me2Qn·2BF4 in tap water and (e-f) Me2Qn·2BF4 in ethanol (EtOH). 
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Table S2 PLQYs measured for Me2Qn·2BF4 in an extended series of solvents. 

Solvent Dielectric Constant, ε9 Polarity Index10 Φ / % 

Deionised Water 88 1 70 

Tap Water - - 62 

0.1 M H2SO4(aq) - - 62 

Acetonitrile (MeCN) 37.5 0.460 63 

Ethanol (EtOH) 24.3 0.654 43 

Acetone (Me2CO) 20.7 0.355 54 

Dichloromethane (CH2Cl2) 9.08 0.309 48 

Ethyl Acetate (EtOAc) 6.4 0.228 13 

 
 
 
6. Phosphorescence of Qn in a Zeonex Film 
 
 

 
Fig. S27 The phosphorescence emission spectra of a 1 wt% film of Qn in zeonex. The film was prepared by 
dropcasting a PhMe solution and recorded at 40 ms delay and 80 K.  
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7. Theoretical study 
 
Computational details 
 
Ground-state geometry optimizations of Qn and its derivatives were performed both in vacuo and 

using an implicit acetonitrile solvent. We used a protonation of N1 and N2 instead of a methylation, 

but Table S7 below shows that the effect of such substitution is minimal for emission energies. We 

employed density functional theory (DFT) with the ωB97X-D exchange-correlation functional11 and 

a 6-31G* basis set.12 This functional contains both long-range and dispersion interaction 

corrections. Solvent effects were taken into account using self-consistent reaction field (SCRF) 

model, where the solvent is represented by a dielectric continuum.  More specifically, we employed 

the integral equation formalism of the polarisable continuum model (IEFPCM).13 Harmonic 

vibrational frequencies were computed to confirm the nature of all stationary points.  

 

Excited electronic states were computed using linear-response time-dependent density functional 

theory (LR-TDDFT) at the ωB97X-D/6-31G* level of theory and systematically compared to results 

obtained with the wavefunction-based second-order algebraic diagrammatic construction method 

(ADC(2)),14 used along with a cc-pVDZ basis set.15 ADC(2) calculations were performed with frozen 

core and resolution of identity approximations. To justify the use of a small basis set, tests were 

conducted for comparison with the larger aug-cc-pVDZ basis set.16  

 

Vertical transitions were calculated based on the optimized ground-state geometries using LR-

TDDFT, with nonequilibrium linear-response IEFPCM solvation (acetonitrile). As our main focus is 

to determine the emission properties of the studied compounds, we also located minimum energy 
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structures on the potential energy surface of the first excited state (and also the second one for 

some specific cases). For these excited-state geometry optimizations, we used LR-TDDFT combined 

with equilibrium linear-response IEFPCM solvation (acetonitrile). Harmonic vibrational frequencies 

were computed for excited-state minima. The linear-response approach for implicit solvation 

models is known to provide reliable excited-state geometries, but less accurate emission energies.17 

Therefore, the emission energies were also computed with the state-specific approach as 

implemented in Gaussian09. ADC(2) excited-state optimizations were performed only in vacuo, and 

harmonic frequencies were not computed due to the high computational cost. To estimate the 

emission energy for the solvated systems, single-point ADC(2) computations with the conductor-

like screening model (COSMO)18 for solvation were performed a posteriori on the optimized gas 

phase geometries. This protocol relies on the assumption that the calculated excited-state 

structures are similar in gas and solvent phases. We also assume the equilibrium solvation limit, in 

which the electronic and nuclear degrees of freedom of the solvent adapt to the excited-state 

(rather than the ground-state) charge distribution of the solute.19 It is important to note, however, 

that we do not attempt here to closely reproduce the experimental values with our calculations, 

but rather to detect the main qualitative changes in absorption and emission upon protonation of 

quinine. 

 

Excited state characters were analysed by computing natural transition orbitals (NTO),20 both with 

TDDFT and ADC(2). All DFT/LR-TDDFT calculations were performed with the Gaussian09 software,21 

while ADC(2) calculations were conducted with Turbomole 7.3.1 program package.22 Molecular 

representations were produced with VMD 1.9.2.23 
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Supporting calculations 

Quinine can have different conformations, and its stable conformers were analyzed in detail in 

earlier theoretical and experimental work.24,25 Here, we have mainly focused our attention on the 

so called cis-γ-open(3) conformer, which was identified as the most stable conformer based on jet-

cooled spectroscopy, vibrational circular dichroism and theoretical calculations.25 The same 

conformer is found for the crystal structure of quinine.26 

 

The absorption spectrum of quinine contains both locally excited (LE) bright ππ* transition localized 

on the quinoline moiety, and a higher-lying charge-transfer (CT) state in which the electron is 

transferred from a n(N) orbital of quinuclidine to a π* orbital of quinoline (nπ*). As shown in Table 

S3, the LE(ππ*) state is the lowest excited singlet state both with ωB97X-D and ADC(2). At the 

ground-state (i.e. Franck-Condon) geometry, the CT(nπ*) state lies higher in energy, and is likely to 

be overestimated by ωB97X-D. Using a larger basis set does not alter these trends – the relevant 

transitions are only slightly down shifted.  

Table S3 Excited states of Qn (in vacuo) at the ground-state geometry optimized at ωB97X-D/6-
31G* level. Excitation energies are given in eV, along with corresponding oscillator strengths (f). 

 
ωB97x-D/6-31G* ωB97x-D/aug-cc-pVDZ ADC(2)/cc-pVDZ ADC(2)/aug-cc-pVDZ 

S1 4.47 (LE), f=0.0993 4.35 (LE), f=0.0992 4.27 (LE), f=0.0949 4.15 (LE), f=0.0979 

S2 4.72, f=0.0029 4.67, f=0.0019 4.63, f=0.0024 5.53, f=0.0018 

S3 4.92, f=0.0336 4.81, f=0.0296 4.89 (CT), f=0.0013 4.63 (CT), f=0.0010 

S4 5.44 (CT), f=0.0029 5.34 (CT), f=0.0020 4.97, f=0.0529 4.71, f=0.0061 

S5 5.79, f=0.0002 5.71, f=0.0029 5.51, f=0.0002 4.83, f=0.0400 

  



S39 

Upon protonation of the N atoms having an available lone pair, the excited states are either shifted 

in energy or removed from the spectrum (as they cannot be formed anymore). Table S4 compares 

the absorption energies of the LE(ππ*) and CT(nπ*) states of Qn and its protonated derivatives, 

HQn+ (proton on N1), iHQn+ (proton on N2) and H2Qn2+ (protons on N1 and N2) in acetonitrile 

solvent. Protonation of N1 prevents the formation of the CT(nπ*) states, while protonation of N2 

causes a large red-shift of the LE(ππ*) and CT(nπ*) vertical transition (when latter exists). H2Qn2+ 

exhibits both effects. 

Table S4 LE(ππ*) and CT(nπ*) excited states of Qn and its protonated derivatives with ωB97X-D/6-
31G* in acetonitrile solvent. Vertical transitions were evaluated at the ground-state geometries 
optimized at the same level of theory with DFT.  Excitation energies are given in eV, along with 
corresponding oscillator strengths (f). 

 Qn HQn+ iHQn+ H2Qn2+ 

LE 4.43, f=0.1312 4.38, f=0.1402 3.93,  f=0.1289 3.88,  f=0.1263 

CT 5.32, f=0.0025 - 4.06,  f=0.0064 - 

 

The calculated vertical emission energies (Table S5) indicate that protonation of N2 causes a 

significant red-shift of the emission as compared to the pristine Qn. However, the LE emission of 

iHQn+ is expected to be quenched due to the presence of the CT state, i.e., the molecule is likely to 

undergo nonradiative decay. This is consistent with our experimental findings for the analogous 

methylated derivatives, which found barely detectable fluorescence for iMeQn+. Interestingly, even 

in Qn the CT state falls down in energy upon geometry relaxation, and the nonradiative population 

exchange between LE and CT states becomes more likely (keeping in mind that CT energies are 

overestimated by ωB97X-D). Therefore, LE emission in Qn has very low intensity, while CT emission 

becomes almost equally pronounced (see Figure 1 in the main text). Protonation of N1 causes only 
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slight red-shift in emission. Again, H2Qn2+ benefits from two effects; the colour of its fluorescence 

is altered, while deleterious nonradiative effects are less likely due to the lack of CT state.   

Table S5 Vertical emission energies computed with ωB97X-D/6-31G* and ADC(2)/cc-pVDZ. Note 
that with ωB97X-D equilibrium linear-response solvation (acetonitrile) is used, while ADC(2) 
optimizations were performed in gas phase. Nevertheless, the qualitative conclusions are similar. 
Emission energies are given in eV, along with corresponding oscillator strengths (f). 

AD
C(

2)
   

  ω
B9

7x
-D

  Qn HQn+ iHQn+ H2Qn2+ 

LE 3.81 (S1), f=0.2641 3.76 (S1), f=0.2635 converge to CT 3.21 (S1), f=0.1741 

CT 3.20 (S1), f=0.0291 - 2.20 (S1), f=0.0074 - 
     

LE 3.75 (S1), f=0.1078 3.59 (S1), f=0.1262 2.69 (S2; above CT), f=0.0777 2.58 (S1), f=0.0924 

CT 2.44 (S1), f=0.0071 - 1.01 (S1), f=0.0019 - 

  

We have also evaluated emission energies based on a state-specific solvation schemes (Table S6), 

in which solvent is supposed to fully equilibrate with the excited state from the solute, while the 

ground state of the solute is treated in a non-equilibrium limit. The underlying assumption is that 

the excited-state lifetime is sufficiently long such that the slow and fast degrees of freedom of the 

solvent have sufficient time to adapt.19 One possible explanation for the too low emission energies 

of the CT states could be related to a breakdown of this assumption, the CT states being too short 

lived to allow for a full relaxation of the solvent (leading to an overestimation of relaxation effects 

in the calculations). This effect is particularly striking for Qn, which exhibits experimentally an 

emission band centred at around 2.2 eV, see Figure 1). We note here that such underestimation of 

charge transfer bands with state-specific implicit solvent models were reported in the literature.27,28 

Explicit solvent effects might be required to improve the description of this band.  The LE states of 

Qn and iHQn+ may also not have sufficiently long lifetime due to the nonradiative effects mentioned 

above, but the variations in LE emission energy with and without state-specific solvation are 

generally not very large. 
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Table S6 Emission energies from state-specific equilibrium solvation (acetonitrile). The optimised 
geometries are the same as those in Table S5, but additional single-point computations were 
conducted. Emission energies are given in eV. 

AD
C(

2)
   

ω
B9

7x
-D

  Qn HQn+ iHQn+ H2Qn2+ 

LE 3.75 3.69  - 3.00 

CT 1.41 - 1.01 -      
LE  3.61 3.47 2.56 2.43 
CT 1.46 - 0.36 - 

 

 

 

Finally, Table S7 shows that methylation has almost the same impact on the calculated fluorescence 

as protonation. 

 

Table S7 Comparison of vertical emission energies for the protonated and methylated Qn 
derivatives. Excited states were optimised with ωB97X-D/6-31G* and equilibrium linear-response 
solvation (acetonitrile). Emission energies are given in eV, along with corresponding oscillator 
strengths (f). 

 HQn+ iHQn+ H2Qn2+ 

LE 3.76  (S1), f=0.2635 converge to CT 3.21 (S1), f=0.1741 
CT - 2.20 (S1), f=0.0074 - 

 MeQn+ iMeQn+ Me2Qn2+ 

LE 3.75 (S1), f=0.2574 converge to CT 3.23 (S1), f=0.1840 
CT - 2.23 (S1), f=0.0088 - 
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