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Cite This: Inorg. Chem. 2020, 59, 8916−8924 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: To account for the charge transfer and covalent
character in bonding between P and Bi centers, the electronic
structures of [P(C6H4-o-CH2SCH3)3BiCln]

(3−n)+ (n = 0−3) model
species have been investigated computationally. On the basis of
this survey a synthetic target compound with a dative P→Bi bond
has been selected. Consecutively, the highly reactive bismuth cage
[P(C6H4-o-CH2SCH3)3Bi]

3+ has been accessed experimentally and
characterized. Importantly, our experiments (single-crystal X-ray
diffraction and solid-state NMR spectroscopy) and computations
(NBO and AIM analysis) reveal that the P···Bi bonding in this
trication can be described as a dative bond. Here we have shown
that our accordion-like molecular framework allows for tuning of
the interaction between P and Bi centers.

1. INTRODUCTION
The hundred years old concept of coordinative covalent or
dative bonding has evolved from a fundamental physical
theory1,2 to cornerstones of undergraduate chemical education.
In contrast to electron-sharing covalent bonding, dative
bonding arises between two closed-shell systems, an electron
pair donor (Lewis base) and an electron pair acceptor (Lewis
acid), and significant electron density is transferred from the
donor to the acceptor (charge transfer). More recently, the
concept of σ-hole interactions introduced just a decade ago3,4

has gained increasing attention5−7 (note that some examples
such as hydrogen bonds and halogen bonds have been known
for much longer5). σ-Hole interactions, similarly to dative
bonds, also arise between two closed-shell entities, but they are
regarded as noncovalent in nature. A relatively new congener
of noncovalent interactions is the pnictogen bond (PnB),8−10

which (in analogy with the IUPAC definition of a halogen
bond11) can be defined as an attractive interaction between the
electron-deficient region of a pnictogen (group 15 element)
called a pnictogen bond donor and a Lewis base (pnictogen
bond acceptor, acting as an electron pair donor).12 In the past
few years, the potential of PnB in structural assembly,
supramolecular architecture, anion sensing, (organo)catalysis,
and molecular recognition has also been highlighted.7,13−21 On
the basis of thorough computational studies,6,9,22−41 pnictogen
bonding is chiefly electrostatic in nature (attraction between
the oppositely charged regions around the two centers).
Moreover, charge transfer effects (donation from the lone pair
of the Lewis base into the σ*-antibonding orbitals at the
pnictogen center) may also contribute, though to a much lesser
extent. This also means that the charge transfer and thus the

covalent character in pnictogen bonding are rather low.
Importantly, the strength of a pnictogen interaction can be
comparable to that of a hydrogen bond. However, the
experimental observation is still challenging, especially with
spectroscopic methods such as NMR spectroscopy.9,15,42−45

Even though the concepts of both dative bonds and σ-hole
interactions are well-known, to our knowledge the relationship
and connectivity between them has not yet been explored
experimentally. In the present study we aim to investigate the
bonding situation in P/Bi complexes. Due to its highest
polarizability among the group 15 elements, bismuth has the
strongest ability to form complexes with conventional dative
bonds. On the other hand, phosphorus stands out because of
its excellent NMR properties (broad chemical shift range,
100% natural abundance) and can be employed as a sensor to
detect delicate structural changes.
Several prototype donor−acceptor complexes are known in

the literature exhibiting P−Bi distances described as dative
bonds such as the peri-substituted acenaphthyl derivative A
(2.7696(8) Å46 and other recently reported congeners of this
family47) and the monocation B shown in Figure 1
(2.6883(14) and 2.6750(13) Å).48 Similarly, a dative bond
was reported for a phosphane coordinated diphenylbismuthe-
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nium cation (see C 2.6672(19) Å).49 In contrast, significantly
longer P−Bi distances of 2.968(3) and 2.937(3) Å were
observed for the related complex D, in which two phosphane
ligands coordinate to the bismuthenium cation. These bonds
were described rather as an electrostatic, induced dipole−ion
attraction than a conventional dative bond.50 The Bi···P
distance can be stretched further as in the geminally
substituted tris(acenaphthyl) bismuthine E (3.218(3)−
3.279(4) Å), in which only weak interactions between the P
and Bi centers were found.51 Recently we have reported a
series of phosphane−trihalobismuth complexes (PS3BiX3, X =
Cl, Br, I), featuring even longer P···Bi distances (in the range of
3.365(1)−3.792(9) Å). The interactions between the P and Bi
centers in these PS3BiX3 compounds exhibit a remarkable
strength of 7.1−8.8 kcal mol−1.52

The goal of the present study is to gain more insight into the
bonding situation in bismuth(III) complexes with the PS3
ligand. Although other multidentate ligand systems are known
in the literature,55−64 due to their accordion-like structural
flexibility the molecular skeleton of type PS3BiX3 seems to be
suitable for experimental investigations. First, we aim to predict
computationally how the pnictogen interaction between the
bridgehead atoms P and Bi observed in the neutral PS3BiX3
compounds can be shifted into a dative (covalent) regime, and
subsequently, we provide experimental evidence based on X-
ray crystallography and NMR studies.

2. RESULTS AND DISCUSSION
2.1. Computational Considerations. To search for

possible candidates in which the interaction between the P
and Bi can be described with dative bonding, first we
investigated a series of species related to PS3BiX3. As the P−
Bi atom distance in PS3BiX3 depends on the halide substituent
on the bismuth and decreases in the order I > Br > Cl,52 an
obvious choice could be the complex of P(C6H4-o-CH2SCH3)3
(PS3) with bismuth trifluoride; however, this compound could
not be synthetically realized due to the extreme low solubility
of BiF3.

52 Alternatively, the halides could be changed for
weakly coordinating anions. In our computational survey we
studied a series of model species arising by sequential
abstraction of chlorides from the compound PS3BiCl3. Thus,
the monocation [PS3BiCl2]

+, the dication [PS3BiCl]
2+, the

trication [PS3Bi]
3+, and the complex of the trication with three

acetonitrile (ACN) molecules, [PS3Bi(ACN)3]
3+ were inves-

tigated alongside the neutral compound PS3BiCl3. In order to
gain insight into the bonding situation between the P and Bi

atoms we performed dispersion-corrected DFT calculations
(for details and the results at the B3LYP-D3/cc-pVDZ(-PP)
level, see the Supporting Information). Herein, we present the
results obtained at the ωB97XD/cc-pVDZ(-PP) level, which
was successfully employed for similar systems.52 Furthermore,
the solvent effects were simulated with the polarized
continuum model (PCM), employing acetonitrile as solvent.
On the optimized structures bond valences have been obtained
according to the method described by Brown,65 employing the
data set reported by Brese and O’Keeffe.66 Furthermore, NBO
(natural bonding orbital) computations67 delivering the
Wiberg bond indices as well as atoms in molecules (AIM)
analyses68 have been carried out and the results are collected in
Table 1. The NPA (natural population analysis) charges show
the same tendencies as the AIM charges and, therefore, they
can be found in Table S5 in the Supporting Information.
The P···Bi atom distance decreases systematically upon

abstraction of the chlorides in the row of PS3BiCl3 →
[PS3Bi]

3+, both in the gas-phase calculations and with the
PCM solvent model. If these two data sets (without and with
solvent model) are compared, the largest difference (0.154 Å)
is observed for the neutral PS3BiCl3, while the deviation is
significantly smaller for the other species. The PCM model
results in somewhat shorter P···Bi distances in the case of the
neutral PS3BiCl3 and the monocationic [PS3BiCl2]

+, whereas it
results in slightly longer distances for the di- and trications.
Altogether, the differences between the results obtained with
or without the solvent model are much smaller than those
resulting from the change in the substituents/charge. There-
fore, the general tendencies among the different species are not
affected, and in the following we only discuss the parameters
computed using the solvent model.
Importantly, the shortest P···Bi distance is found in the

trication [PS3Bi]
3+ (2.743 Å), being clearly in the range of

dative bonds reported for compounds such as A, B, and C (see
Figure 1). As the direct coordination of solvent molecules to
the bismuth center may have an effect on the interaction
between the P and Bi centers, we have also computed the
model species [PS3Bi(ACN)3]

3+. As expected, the competition
between the donor atoms around the Bi center leads to an
elongation of the P···Bi distance (2.849 Å in [PS3Bi-
(ACN)3]

3+). This bond, however, is significantly shorter than
that in the dication (2.923 Å in [PS3BiCl]

2+), and thus the
effect of three coordinating solvent molecules is inferior to that
of one chloride anion.

Figure 1. Selected examples of P−Bi distances determined by X-ray crystallography. For B, C and D the counteranions are not shown. ∑rcovalent
and ∑rvdW denote the sum of covalent53 and van der Waals54 radii, respectively, for the P Bi couple.
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The strengthening of the interaction between the P and Bi
centers in the sequence of PS3BiCl3, [PS3BiCl2]

+, [PS3BiCl]
2+,

[PS3Bi(ACN)3]
3+, and [PS3Bi]

3+ is also reflected in the
increasing bond valence values (s) and Wiberg bond indices
(WBI). These two nicely correlating parameter sets indicate a
tendentious rise in covalent character on going from the
neutral to the tricationic species. Surprisingly, the AIM charge
at the bismuth center shows a decreasing trend upon
abstraction of the chlorides, which is moderate if the solvent
model is employed and is more pronounced in the gas-phase
calculations. This descending charge can be explained by
substantial charge transfer from the PS3 ligand toward the
bismuth center reaching Δq = 1.875 e in the gas phase (Δq =
1.663 e with the PCM solvent model) for [PS3Bi]

3+. The
intensification of the charge transfer is also nicely visible on the
AIM charges at the phosphorus centers, which gradually grow

from the neutral PS3BiCl3 (q(P) = 1.695 e in the gas phase,
1.693 e with PCM) to the tricationic [PS3Bi]

3+ (q(P) = 1.924
e in the gas phase, 1.867 e with PCM).
The results of the NBO investigations and partial charges are

further bolstered by an atoms in molecules (AIM) analysis68 of
the electron density, which located bond critical points (bcp)
between the P and Bi nuclei in each of the complexes. The
trend of the electron density at the bond critical points (ρbcp)
again indicates gradual strengthening of the interaction
between the P and Bi atoms from PS3BiCl3 to [PS3Bi]

3+.
The Laplacian of the electron density at the P···Bi bcp (∇2ρbcp)
is positive for each of these complexes, which suggests closed-
shell interactions (dative, ionic, or σ-hole interaction). The
electron density and its Laplacian at the bcp of the Bi−P bond
in the tricationic [PS3Bi]

3+ (0.424 e/Å3 and 0.697 e/Å5,
respectively) are similar to those reported for the acenaphthyl

Table 1. Calculated Bi···P Atomic Distances (d, Å) in [PS3BiCln]
3−n (n = 0−3) and [PS3Bi(ACN)3]

3+, bond valences (s, valence
units), Wiberg bond indices (WBIs), AIM Charges (q, electron) and Net Charge Donation from the Ligand to the [BiCln]

3‑n

moiety (Δq Calculated As the Sum of Partial AIM Charges in the Ligand Fragment), Properties at the Bond Critical Point of
Electron Density (ρbcp, e/Å

3), Laplacian of the Electron Density (∇2ρbcp, e/Å
5), Total Electronic Energy Density (H, au), and

Ratio of Potential and Kinetic Energy Density (|V|/G)a

aThe gas-phase data without PCM for PS3BiCl3 are taken from ref 52. All data were obtained at the ωB97XD/cc-pVDZ(-PP) level of theory. The
values obtained with the solvent model PCM are shown in italics.
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derivative A in Figure 1 (0.42 e/Å3 and 0.6 e/Å5,
respectively46), which was described with a polar covalent
Bi−P interaction. While the Cl−Bi−Cl arrangement in A is
close to linear (174.32(2)°), a second rotamer exhibiting a
pyramidalized Bi environment and an elongated Bi−P bond
(3.005 Å) could also be optimized. The Bi−P interaction in
the latter rotamer was described as rather ionic (electrostatic),
and its characteristics (ρbcp = 0.24 e/Å3 and ∇2ρbcp = 1.0 e/Å5)
are similar to those of the monocationic [PS3BiCl2]

+ (ρbcp =
0.252 e/Å3 and ∇2ρbcp = 1.183 e/Å5).
The neutral PS3BiCl3 and the tricationic [PS3Bi]

3+ present
the two extremes of noncovalent and dative bonding,
respectively; however, there is clearly a continuum between
them. The gradual conversion of the electrostatic nature of the
interaction into covalency is visible in a smooth change of all
the bonding descriptors shown in Table 1. The question may
arise where the borderline is between weak interaction and
dative bonding. Necessarily, this separation is arbitrary and
here we refer to a simple tool based on the relative amount of
kinetic and potential energy at the bcp (Cremer−Kraka
criteria).69,70 At the bcp of a covalent bond the potential
energy density V (always negative) is more substantial than the
kinetic energy density G (always positive), resulting in a total
electronic energy density H = V + G < 0 or alternatively |V|/G
> 1. These characteristics show that the P···Bi interaction in
the trichloride PS3BiCl3 is chiefly electrostatic, whereas the
cationic complexes [PS3BiCln]

(3−n)+ (n = 0−2) all exhibit H <
0 and |V|/G > 1. Thus, in all these cationic species the P···Bi
bond has a highly covalent character and can be classified as a
dative bond (P→Bi).
On the basis of the results of the above analysis we propose a

simple model based on the competing effects of the donor
atoms to understand the different P···Bi bonding situations in
the complexes outlined in Table 1. To discuss the changes in
the coordination sphere of the Bi center, we employ the bond
valences obtained from the geometries optimized with the
PCM solvent model (see Table 1 and Table S7 in the
Supporting Information). The rather strongly donating
chloride ligands and the sulfur donors in the coordination
sphere around the bismuth center in PS3BiCl3 hamper the
phosphorus from developing significant charge transfer toward
the bismuth. Therefore, a weak, mainly electrostatic pnictogen
bond can only be formed, which results in a large P···Bi
distance. The valence of the bismuth center in PS3BiCl3 is
2.793 vu (valence units), calculated as the sum of bond
valences (∑s). The abstraction of one chloride ligand formally
frees up a coordination site by 0.663 vu (taken as the least
strongly bound chloride among the three; see Table S7), which
initiates reorganization to reach a new equilibrium structure.
Thus, the remaining donors can coordinate more strongly to
the bismuth, which is reflected in the larger P···Bi and S···Bi
bond valences (for details see Table S7 in the Supporting
Information) and the valence of the bismuth center is almost
re-established (∑s = 2.700 vu in [PS3BiCl2]

+). Similar
phenomena occur for the abstraction of the second and third
chloride anions. However, the “buffering effect” of the
remaining donors to re-establish the valence of the bismuth
center decreases somewhat, which can clearly be seen in the
slight gradual dropping of the ∑s values in the direction
PS3BiCl3 to [PS3Bi]

3+ (see Table 1), indicating slight
undercoordination. Nevertheless, the intensification of the
charge transfer (due to the sequential abstraction of chloride

ions) results in a gradual strengthening of the P···Bi and S···Bi
interactions in the same direction.
On the basis of the computations above, all three cationic

species seem to be suitable for experimental detection of a
dative interaction between the P and Bi centers. However, to
target the strongest possible P→Bi interaction, we chose the
trication [PS3Bi]

3+ with weakly coordinating anions as the best
candidate for our experimental study.

2.3. Experimental Validation. In order to access the
aimed tricationic coordination compound [PS3Bi]

3+, we
decided to employ trifluoromethanesulfonate (triflate) as a
counteranion for two reasons: the triflate anion is reasonably
weakly coordinating,71 and bismuth triflate is an easily
accessible metal salt, which is also widely used as a catalyst
in various organic syntheses.72,73

To form the target complex, the ligand P(C6H4-o-
CH2SCH3)3 (PS3)

52 and 1 equiv of commercially available
bismuth trifluoromethanesulfonate Bi[OTf]3(H2O)n (n ≈ 14
according to a TGA measurement) were reacted in acetonitrile
at room temperature. In the 31P{1H} NMR spectrum of this
reaction mixture only a singlet at −22.0 ppm was observed,
which appears in the 31P NMR spectrum as a doublet with 1JPH
= 535.0 Hz, indicating protonation at the phosphorus center.
This phosphorus-containing product was unambiguously
identified by 31P, 13C, and 1H NMR spectroscopy and a
single-crystal X-ray diffraction study as the phosphonium salt
[HP(C6H4-o-CH2SCH3)3]

+[OTf]− (see Figure S7 in the
Supporting Information). Note that bismuth salts in general
are prone to hydrolysis in the presence of water and in this case
the hydrolysis of bismuth triflate resulted in the formation of
triflic acid, which as a strong acid can protonate the phosphane
ligand PS3.
According to the literature it is practically impossible to

obtain strictly anhydrous bismuth triflate.74,75 To decrease the
possibility of hydrolysis, we dried Bi[OTf]3 for 10 days at 160
°C under a dynamic vacuum,76 which resulted in a solid with
the formula of Bi[OTf]3(H2O)n (n ≈ 2.8, on the basis of
elemental analysis). We repeated the reaction described above
employing Bi[OTf]3(H2O)n (n ≈ 2.8) in toluene instead of
acetonitrile, which resulted in the formation of a yellow
precipitate. On the basis of its solid-state 31P CP-MAS NMR
spectrum this material is a mixture of products. However,
recrystallization from acetonitrile delivered yellow crystals
isolated in a low yield (15%). These crystals were also suitable
for single-crystal X-ray diffraction analysis (see below),
s h o w i n g t h a t t h e i r c o m p o s i t i o n i s
[PS3Bi]2{Bi6O4(OH)4[OTf]12}(H2O)(CH3CN)6, which was
also confirmed by elemental analysis of the isolated product.
[PS3Bi]2{Bi6O4(OH)4[OTf]12}(H2O)(CH3CN)6 is in the
following abbreviated as [PS3Bi]2[BOT], in which the
“bismuth oxo triflate” cluster hexaanion [BOT]6− stands for
{Bi6O4(OH)4[OTf]12}

6− (Figure 2). This compound is only
stable in the solid state and was further characterized by CP-
MAS 31P, 1H, 13C, and 19F NMR spectroscopy (for details see
section 2.5 and Figure 4). The low yield is attributed to the
observation that [PS3Bi]2[BOT] decomposes in solution.
Indeed, when crystals of [PS3Bi]2[BOT] are dissolved in dry
acetonitrile, the 31P NMR spectrum of the solution (see Figure
S2) shows two resonances: a very small singlet resonance at δ
+67.6 ppm is observed (likely indicating the [PS3Bi]

3+ species)
while the larger doublet resonance at δ −22.0 ppm with the
coupling constant 1JPH = 535.0 Hz again indicates the
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phosphonium salt [HPS3]
+[OTf]− as a decomposition

product.
2.4. Structural Studies. We suggest describing the

compound [PS3Bi]2[BOT] as an assembly of two tricationic
[PS3Bi]

3+ units and a central {Bi6O4(OH)4[OTf]12}
6− cluster

anion (Figure 3), on the basis of the analogy of the latter to
known cluster anions such as [Bi6O4(OH)4(F3CCO2)12]

6−.77

Alternatively, [PS3Bi]2[BOT] could also be considered as
{[PS3Bi][OTf]3}{Bi6O4(OH)4[OTf]6}{[PS3Bi][OTf]3} with
two neutral capping {[PS3Bi][OTf]3} moieties and a central
neutral {Bi6O4(OH)4[OTf]6} cluster.
The so far unknown {Bi6O4(OH)4[OTf]12}

6− ([BOT]6−)
cluster hexaanion formally consists of a cationic [Bi6(μ3-
O)4(μ3-OH)4]

6+ core surrounded by 12 triflate anions. In the
core, which is a common motif in hydrolysis products of
bismuth salts,77−84 six bismuth(III) centers occupy the corners
of an octahedron, whose faces are capped by four oxo and four
hydroxo ligands in a μ3 fashion (the hydroxy protons could not
be located crystallographically). The 12 edges of the
octahedron are each capped by a triflate anion in a μ2-O
fashion, six of which form the ring arrangement shown in
Figure 3b. The additional (2 times 3) triflate anions bridge the
central core with one of the two tricationic [PS3Bi]

3+ moieties
on the two sides of the structure (Figure 3a).
The bismuth centers of these [PS3Bi]

3+ fragments are
coordinated by three triflate anions as well as the three sulfur
and the phosphorus centers of ligand PS3; the C3 symmetry
around the bismuth centers suggests stereochemical inactivity
of their lone pairs. The Bi−S atom distances of 2.749(9) Å
reflect a dative bond between the sulfur donor and a Bi(III)
cation (for example 2.6873(3)−3.013(2) Å in Bi(III)
chalcogenone complexes).85 The Bi−O[triflate] distances
(2.760(1) Å) are between the sum of the covalent and van
der Waals radii of the respective elements (2.1453 and 3.59

Å,54 respectively) and are in the range of those found in
reported bismuth triflato compounds (2.386(11)−3.010(3)
Å).48,86

Most importantly, the P−Bi distance is 2.800(3) Å, which is
only slightly longer than those in compounds A, B, and C in
Figure 1 (from 2.6672(19) to 2.7696(8) Å); however, it is
significantly shorter than the “pnictogen-bonded” P−Bi
distances in PS3BiX3 (3.365(1)−3.792(9) Å). The correspond-
ing bond valences have also been calculated65,66 (see Table S8
in the Supporting Information) and show that the P−Bi bond
in [PS3Bi]2[BOT] (s = 0.632 vu) is remarkably stronger than
those in PS3BiX3 (s = 0.137, 0.047, and 0.043 vu for X = Cl, Br,
I, respectively). The sum of the bond valences at the bismuth
center indicates that the Bi in [PS3Bi]2[BOT] (∑s = 2.874 vu)
is undercoordinated in comparison to the halide analogues
PS3BiX3 (∑s = 3.233, 3.217, and 3.191 vu for X = Cl, Br, I,
respectively), which is in accord with the observations
discussed for the gas-phase structures (vide supra).
We also compared the solid-state structure of

[PS3Bi]2[BOT] to the gas-phase structure of the tricationic
adduct [PS3Bi]

3+ obtained by DFT computations (vide supra).
The structure corresponding to the energy minimum (in the
gas phase) is not symmetrical and shows a stereochemically
active lone pair at the bismuth center. Furthermore, a structure
with a constrained C3 symmetry was also obtained (as a
second-order saddle point) lying only 3.7 kcal/mol higher in
energy. This indicates that the coordination geometry around
the bismuth is very flexible and, thus, the difference between
the gas-phase and solid-state structures is most likely caused by
crystal-packing effects. Nevertheless, the computed P−Bi
distances in the gas phase (2.697 Å for the minimum and
2.715 Å for the C3-symmetric structure) are similar but
somewhat shorter than that in the solid-state structure
(2.800(3) Å). We attribute this difference to weak coordina-
tion of the triflate anions in the solid state, transferring some
electron density to the bismuth center and thus elongating the
P−Bi atom distance.

2.5. Solid-State NMR Investigations. As 31P NMR
spectroscopy is a useful tool in studying bonding situations, we
investigated specifically the compound [PS3Bi]2[BOT]. The
chemical shifts obtained in both solid-state CP-MAS and
solution 31P NMR spectra (+56.0 and +67.6 ppm, respectively)
are similar to that of B, in which the phosphorus coordinates to
a bismuth center (Figure 1, δ(31P) 50.8 ppm),48 confirming a
remarkable change in the chemical environment around the
phosphorus nucleus in comparison to the free ligand PS3

Figure 2. Schematic depiction of [PS3Bi]2[BOT].

Figure 3. (a) Plot of the adduct [PS3Bi]2[BOT] (Bi, purple; S, yellow; P, orange; F, green; O, red; C, gray). Hydrogen atoms and solvent
molecules have been omitted for clarity. (b) Side view of the section marked with asterisk in (a) showing the central core (CF3 groups are not
shown). (c) ORTEP representation of the C3-symmetric [PS3Bi]

3+ moiety (thermal ellipsoids are drawn at 50% probability). Hydrogen atoms,
solvent molecules, and the [BOT]6− cluster have been omitted for clarity. Selected atomic distances (Å): Bi−P 2.800(3), Bi−S 2.749(9), Bi−
O[triflate] 2.760(1).
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(δ(31P) −38.0 ppm52). This substantial coordination chemical
shift change (Δδ ≈ 100 ppm) is attributable to the significant
P→Bi charge transfer, nicely agreeing with the results of the
computations (the partial charge difference between the
trication [PS3Bi]

3+ and the ligand PS3: Δq(P) = 0.205 e).
In the CP MAS 31P NMR spectra of compounds PS3BiX3

scalar indirect spin−spin coupling between the 209Bi and 31P
nuclei was observed (typically as an unresolved broad band),
which is consistent with the overlap of the P and Bi lone pairs,
resulting in a Mallory-type through-space coupling mecha-
nism.87−89 Furthermore, the strength of the pnictogen
interaction in these compounds was found to correlate with
the width of the band arising from this coupling, which
increases in the order PS3BiI3 < PS3BiBr3 < PS3BiCl3.

52

Knowing that the coupling mechanism in all of these PS3BiX3
compounds is the same, and assuming that it is the same in
[PS3Bi]2[BOT] as well, we would expect that intensifying the
interaction between P and Bi would lead to an increase in the
coupling constant and as a consequence to a broadening of the
band. Thus, the band of [PS3Bi]2[BOT] would be significantly
broader than that of PS3BiCl3. Surprisingly, the CP MAS 31P
NMR spectrum of [PS3Bi]2[BOT] (see Figure 4) exhibits a

band which is narrower than that in the case of PS3BiI3. The
remarkable half-width of 1.6 kHz for [PS3Bi]2[BOT] again
indicates an unresolved, indirect spin−spin coupling between
the 31P and the quadrupolar 209Bi nuclei. However, since the
width of [PS3Bi]2[BOT] does not fit into the expected
tendency, the coupling mechanism should be starkly different
in the compounds PS3BiX3 and [PS3Bi]2[BOT]. To verify this
assumption, we have simulated the spin−spin coupling
constant in the gas phase at the PBE1/TZ2P level with a
scalar ZORA approximation (see the Supporting Information).
The J(209Bi−31P) value calculated for the gas-phase optimized
structure of [PS3Bi]

3+ is −773 Hz, the absolute value of which
is indeed smaller than that calculated for PS3BiI3 at the same
level (908 Hz52), agreeing with the experimental findings for
the band widths. A striking difference is, however, found in the
sign of the computed coupling constant, which was determined
to be positive for the compounds PS3BiX3 (X = Cl, Br, I),
while it was negative for [PS3Bi]

3+. The former is characteristic
for a Mallory type through-space coupling mechanism resulting
from the overlap of the Bi and P lone pairs,52 while we

attribute the latter to a real through-bond coupling in line with
the presence of a dative P→Bi interaction.

3. SUMMARY AND CONCLUSIONS
In summary, it is demonstrated that a weak secondary
pnictogen interaction previously reported for PS3BiX3 can be
tuned into a dative bond employing the same molecular
framework. On the basis of our DFT computations on the
structures of [PS3BiCln]

(3−n)+ (n = 0−3) and [PS3Bi(ACN)3]3+
model species, the increase in covalency and thus the shift
toward dative bonding can be achieved by intensifying the
charge transfer from the P to the Bi center already in the case
of the monocation [PS3BiCl2]

+. Experimentally this was
realized by employing weakly coordinating triflate anions and
a new coordination compound exhibiting a dative P→Bi bond
was synthesized and characterized, which shows marked
contrast to pnictogen-bonded complexes PS3BiX3 described
previously. Furthermore, our investigations reveal a connection
between the nature of the P···Bi interaction and the spin−spin
coupling mechanism between the two nuclei involved, offering
the possibility to distinguish between these two types of
interactions. Our results also show that ligand P(C6H4-o-
CH2SCH3)3 is “flexidentate”, which means it can adopt
different coordination modes and in these accordion-like
complexes the distance between the bridgehead atoms may
deviate by nearly 1 Å. Therefore, this system could also be of
interest for the development of new catalytic systems: for
example, with transition metals.
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