
Journal Pre-proof

The influence of a slope break on turbidite deposits: An
experimental investigation

F. Pohl, J.T. Eggenhuisen, M.J.B. Cartigny, M. Tilston, J. de
Leeuw, N. Hermidas

PII: S0025-3227(20)30048-7

DOI: https://doi.org/10.1016/j.margeo.2020.106160

Reference: MARGO 106160

To appear in: Marine Geology

Received date: 13 October 2019

Revised date: 24 February 2020

Accepted date: 28 February 2020

Please cite this article as: F. Pohl, J.T. Eggenhuisen, M.J.B. Cartigny, et al., The influence
of a slope break on turbidite deposits: An experimental investigation, Marine Geology
(2020), https://doi.org/10.1016/j.margeo.2020.106160

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2020 Published by Elsevier.

https://doi.org/10.1016/j.margeo.2020.106160
https://doi.org/10.1016/j.margeo.2020.106160


Jo
ur

na
l P

re
-p

ro
of

1 

The influence of a slope break on turbidite deposits: an 

experimental investigation 

Pohl, F.a,b*, Eggenhuisen, J.T.a, Cartigny, M.J.B.c, Tilston, M.a, de Leeuw, J.a, Hermidas, N.d 

a
 Faculty of Geosciences, Utrecht University, P.O. box 80021, 3508 TA Utrecht, The Netherlands 

b
 Departments of Earth Science, Durham University, Lower Mountjoy South Road, DH1 3LE Durham, UK 

c
 Departments of Geography, Durham University, Lower Mountjoy South Road, DH1 3LE Durham, UK 

d
 Faculty of Civil Engineering and Geosciences, TU Delft, P.O. box 5048, 2600 GA Delft, The Netherlands 

* Corresponding author: florian.pohl63@gmail.com 

Bypassing turbidity currents can travel downslope without depositing any of their suspended 

sediment load. Along the way, they may encounter a slope break (i.e. an abrupt decrease in 

slope angle) that initiates sediment deposition. Depending on the initiation point of deposition 

(the upslope pinch-out), these turbidite deposits in slope-break systems can form potential 

reservoirs for hydrocarbons. Here we investigate the distribution of turbidite deposits as a 

function of the geometry of slope-break systems in flume experiments. Shields-scaled 

turbidity currents were released into a flume tank containing an upper and a lower slope reach 

separated by a slope break. These slope-break experiments were generating both depositional 

and bypassing flows solely based on variation in steepness of the lower and upper slope. 

Results show that the depositional pattern in a slope-break system is controlled by the 

steepness of the upper and lower slope, rather than the angle of the slope break. The steepness 

of the upper slope controls the upslope pinch-out, while the lower slope controls the deposit 

thickness downstream of the slope break. 

Keywords 

Turbidity current, , Reservoir, upslope pinch-out, stratigraphic trap, Flume experiment, 
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1. Introduction 

Turbidity currents are subaqueous currents of sediment- laden water that move downslope as 

the result of the density difference between the flow and the surrounding ambient water. They 

represent a principal mechanism for transporting sediment into the deep ocean (e.g. Mutti et 

al., 2009; Talling et al., 2015). Multiple turbidity current events can produce submarine 

channels, which allow the currents to bypass their sediment down the continental slope onto 

the deep-marine abyssal plain (Daly, 1936; Maier et al., 2011; Stevenson et al., 2015). 

Following Stevenson et al. (2015), we refer to a bypassing turbidity current as a flow that 

keeps its entire sediment load in suspension or traction, thereby preventing any deposition. 

Along their downflow trajectory, turbidity currents may encounter a slope break, marked by a 

decrease in the ocean-floor gradient. Slope breaks tend to occur in ponded basins, on stepped 

slopes (Amy, 2019; Brooks et al., 2018; Jobe et al., 2017; Prather, 2003; Prather et al., 2012a, 

2012b), and at the base of steep active continental margins (Bourget et al., 2011; Lee et al., 

2002). On the more gently dipping ocean floor downstream of the slope break, turbidity 

currents usually switch from bypassing to depositional conditions, thereby forming sediment 

bodies (e.g. Amy et al., 2000; Hansen et al., 2019; Mutti and Normark, 1991, 1987; Prélat et 

al., 2010).  

Sandy deposits in slope-break systems can serve as potential reservoirs for hydrocarbons if 

these hydrocarbons are trapped (Amy, 2019; Hansen et al., 2019; Pettingill, 2004; Weimer 

and Slatt, 2004; Zou et al., 2015). Common trapping mechanisms are: (1) structural trapping 

by post depositional faulting and displacement of reservoirs sands, (2) stratigraphic trapping 

by sediment bypass and erosion during – or shortly after – deposition of the reservoir sands, 

or (3) a combination of structural and stratigraphic trapping (Amy, 2019 and references 

therein). In proximal basin locations, the most common inferred trapping mechanisms are 

sediment bypass and erosion, thus forming a stratigraphic pinch-out trap (Amy, 2019). Well-
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known examples of upslope stratigraphic pinch-out traps are the Buzzard Field in the Central 

North Sea, and the Foinaven Field western of the Shetland’s (Amy, 2019; Doré and Robbins, 

2005; Ray et al., 2010; Straccia and Prather, 1999). In a slope-break setting, the upslope 

location of the stratigraphic pinch-out trap is crucial for the development of a sealed reservoir. 

If the upslope pinch-out is located upstream of the slope break, the basin floor sediments are 

connected to slope sediments, also called thief sands, creating upslope-migration pathways for 

hydrocarbons (e.g. Amy, 2019; Hansen et al., 2019). In contrast, an upslope pinch-out located 

downstream of the slope break will result in basin-floor sediments that are detached from the 

slope sediments, forming a stratigraphic pinch-out trap and making upslope leakage of 

hydrocarbons unlikely. Hence, the location of the upslope stratigraphic pinch-out is of major 

interest for the recognition and development of reservoirs in slope-break systems.  

We present flume tank experiments to investigate the impact of the slope-break geometry on 

the location of the upslope pinch-out, and the thickness distribution of the resulting deposits. 

Numerous experiments have studied turbidity currents in slope-break settings (Garcia and 

Parker, 1989; Garcia, 1994, 1993; Gray et al., 2006, 2005; Islam and Imran, 2010; Marr et al., 

2001; Mulder and Alexander, 2001; Toniolo et al., 2006), often associated with rapid 

transformation of the current dynamics over the slope break, such as hydraulic jumps (Garcia 

and Parker, 1989; Garcia, 1994, 1993; Islam and Imran, 2010) or a marked increase in 

turbulent kinetic energy (Gray et al., 2006, 2005). However, all of the above-mentioned 

studies used continuously depletive currents (sensu Kneller and Branney, 1995), where 

deposition was initiated immediately after entering the experimental setup, even when the 

initial slope was steep. In such depletive conditions there is no upslope pinch-out as the 

deposits are continuous throughout the flume (e.g. Garcia and Parker, 1989; Garcia, 1994). As 

a consequence, the impact of the slope break on deposition was commonly rather unclear, and 

could only be evaluated on the basis of small variations in the thickness of the deposits (Gray 
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et al., 2006, 2005; Mulder and Alexander, 2001). For the present experiments, we used 

Shields scaling of sediment mobility (e.g. de Leeuw et al., 2016; Fernandes et al., 2019), to 

generate turbidity currents that are able to bypass on the steepest of our experimental slopes, 

and transform to depositional currents on more gentle slopes. Furthermore, most previous 

slope-break studies used fixed horizontal, or slightly dipping basin floors down-dip of the 

slope break (Garcia and Parker, 1989; Garcia, 1994, 1993; Gray et al., 2006, 2005; Islam and 

Imran, 2010; Marr et al., 2001; Mulder and Alexander, 2001; Toniolo et al., 2006). While this 

condition may represent the condition for lobes on very gently dipping surfaces, it neglects 

systems with steeper basin floors (e.g. stepped slopes). Instead, in the set-up used in the 

experiments presented here both the lower slope and upper slope could be adjusted 

independently. This allowed us to investigate the effect of basin-floor slope on the 

depositional pattern independently. 

In total, 45 combinations of different upper and lower slope conditions were tested. The 

results allow us to answer two prominent research questions: (1) How does the gradient 

before and after the slope break affect the location of the upslope pinch-out? (2) How is the 

deposit thickness controlled by the gradients before and after the slope break?   
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2. Methods 

2.1. Scaling 

Many studies have applied Froude scaling of flow processes, which maintains similarity in the 

ratio of kinematic to potential energy of the flow by setting a similar Froude number, and 

ensures turbulent flow with a sufficiently high Reynolds number. The focus of additional 

Shields scaling in this study is to ensure that physical processes of sediment erosion, 

transport, and deposition occur in a similar regime as in natural turbidity currents. Shields 

scaling achieves similarity of the sediment transport regime by setting the particle Reynolds 

number (Rep) and aiming for similarity of the Shields parameter (Θ). The Shields-scaling 

approach has been discussed in previous studies for sediment transport in rivers and shallow 

seas (e.g. Hughes, 1993; Peakall et al., 1996; Yalin, 1971), and it has recently been applied in 

experimental turbidity current studies (de Leeuw et al., 2018a, 2018b, 2016; Eggenhuisen et 

al., 2019; Ferguson et al., 2020; Fernandes et al., 2019; Miramontes et al., 2020; Pohl et al., 

2019). Given the significance of this approach for turbidity current studies, the following 

provides a detailed procedure on the application of Shields scaling. 

Shields scaling of turbidity currents necessitates a priori evaluation of the general flow and 

sediment characteristics in nature and the laboratory. The aim of this evaluation is to organize 

the boundary conditions of the experiments in such a way that the developing turbidity 

currents are broadly dynamically similar to a natural turbidity current. The initial objective is 

thus not to calculate precise values of the flow properties, which is also not possible because 

these properties are only broadly known for natural systems.  

The particle Reynolds number is defined as: 

     
   

 
  , (1) 
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where u  is the shear velocity (m/s), d the grain size of the sediment (m), and  the kinematic 

viscosity (1.3 * 10-6 m²/s at 10°C). Measurements on natural turbidity currents in submarine 

canyons revealed Rep of 2 – 20 (Azpiroz-Zabala et al., 2017; Fernandes et al., 2019). Previous 

work using our experiment setup has reported shear velocities of ~0.07 m/s (Cartigny et al., 

2013). Knowing this, the Rep can be altered by manipulating d, which was set to a fine grain 

size (d10 = 35 µm, d50 = 133 µm, d90 = 214 µm; supplementary material Fig. S1) to achieve 

Rep values of ~7, which is centrally placed within the natural range of 2 – 20. It is noted that 

the kinematic viscosity increases significantly with the sediment concentration (e.g. Boyer et 

al., 2011), but this effect occurs equally in laboratory experiments and in the high-density 

basal layer of real world turbidity currents (Paull et al., 2018). 

The Shields parameter   is the ratio between the fluid shear stress and the gravity force acting 

on sediment particles (Shields, 1936): 

   
    

 

(     )  
  , (2) 

where s is the density of the suspended sediment (2,650 kg/m³), w is the density of water 

(1,000 kg/m³), and g the gravitational acceleration (9.81 m/s²). The density of the turbidity 

current t is: 

          (   )  , (3) 

with C as the sediment concentration. The shear velocity u  is used to describe the turbulent 

shear at the base of the flow and is related to the bed shear stress. The shear velocity is a key 

variable in the evaluation of the sediment transport capability of a flow (Eggenhuisen et al., 

2017; Rouse, 1937). Here the shear velocity is estimated by assuming a logarithmic velocity 
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profile between the bed and the velocity maximum um (Cartigny et al., 2013; Middleton and 

Southard, 1984; van Rijn, 1993): 

      (  (
  

      
))

  

   . (4) 

K is the von Kármán constant with 0.4. The thickness of the flow to the height of the velocity 

maximum is hm.  

Studies on natural flows report  –values of 0.2 – 10 (Azpiroz-Zabala et al., 2017; de Leeuw 

et al., 2016; Fernandes et al., 2019). To meet these values in the experiments, the sediment 

concentration, the slope gradient, and the grain size of the suspended sediment were adjusted. 

We required turbidity currents with a flow thickness of ~0.1 m, flowing on slopes in between 

2 – 12°, in order to be able to generate a variety of different slope-break system geometries in 

the available flume. The grain size of the suspended sediment was already determined by the 

particle Reynolds number at d50 = 133 µm. Therefore, we set the initial sediment 

concentration C for the modeled turbidity currents at 17 % vol to meet the required  –values 

of 0.2 – 10. With this sediment concentration the modeled flows can be described as high-

density turbidity currents (Kuenen and Migliorini, 1950; Cartigny et al., 2013). Recent 

seafloor measurements from full-scale turbidity currents suggest high basal sediment 

concentrations are common in natural systems (i.e. > 10 % vol; Paull et al., 2018). The 

similarity in sediment concentrations make it likely that sediment exchange between the 

sediment bed and the high-density flow is governed by the same processes that include grain-

to-grain interactions, and hindered settling (Heerema et al., 2020). 

Froude numbers are also calculated to qualify the flow criticality of the turbidity currents. 

Depth-average densimetric Froude numbers (Fr’) were estimated using:  
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√   
,     (5) 

The thickness of the flow h is here defined as the height at which the velocity u is half the 

velocity maximum Um (Buckee et al., 2001; Gray et al., 2005; Launder and Rodi, 1983). U is 

the depth-averaged velocity and g’ is submerged gravity defined as:  

    
(     )

  
,    (6) 

2.2. Flume tank setup and experimental procedure 

Experiments were conducted in a flume tank 4 m x 0.5 m x 0.2 m (length x height x width) 

with a variable slope break (Fig. 1). The turbidity currents left the flume through a free over-

fall into an expansion tank (3 m x 2 m x 1.8 m, with a floor 0.3 m lower than the flume tank 

floor). The currents could expand freely in the expansion tank and produced a weak reflection 

wave that was too slow to travel back into the experimental setup during the experiment. The 

flume and expansion tank were filled with fresh water. Sediment with an identical grain size 

to the sediment used in the turbidity currents was glued to the flume floor to create a rough, 

non-erodible substrate. A longitudinally oriented separation wall subdivided the flume tank 

into two, 0.1 m wide channels (see inset view in Fig. 1) to minimize the effect of backflow 

from the expansion tank into the flume during the experiments. Backflow is generated in 

flumes to balance the water entrained into the top of the turbidity currents. The severity of the 

effect of this backflow is reduced by providing additional space on the other side of the 

separation wall for the water flowing back from the expansion tank into the flume. A 

cantilevered false-floor was installed to adjust the bed slopes on the upper and lower slope 

segments (Fig. 1). The steepness of the upper slope was varied between 2 and 12°, and the 

steepness of the lower slope between 0 and 8° (both angles relative to the horizontal). This 
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resulted in 10 unique slope-break angles and 45 unique combinations of the upper and lower 

slope conditions (Fig. 2). 

A mixture of sediment and fresh water with a volume of 0.45 m³ was prepared in a mixing 

tank. The grain size of the sediment was measured with a laser particle sizer (Malvern 

Mastersizer 2000; supplementary material Fig. S1). The density of the sediment was 2,650 

kg/m³. The sediment concentration in the mixture was set to 17 %vol as prescribed by the 

Shields scaling, which is equivalent to a bulk density of 1,280 kg/m³, for each experiment. 

The mixture was pumped into the flume tank through a 4 m long pipe (diameter = 0.06 m) 

with a radial-flow pump and monitored by a discharge meter (Krohne Optiflux 2300). The 

discharge was set to 12.5 ± 0.7 m³/h, resulting in a mean flow velocity of 0.81 ± 0.04 m/s at 

the inlet box. The discharged was held at a constant level by computer-controlled adjustment 

of the pump speed. The duration of an experiment was ca. 100 s. Video analysis showed that 

the end of all experimental currents were accompanied by the deposition of a 7 – 10 mm thick 

layer of sediment over the entire length of the flume, which is hereafter called the waning-

phase deposit. The waning phase deposits were deposited in all experiments, as the result of 

the rapid decrease of discharge at the end of experiments and the subsequent collapse of the 

flow (sensu Kneller and Branney, 1995) that caused the rapid deposition of all suspended 

sediment. This process occurred even in experiments with steep slopes, were the steady body 

of the flow was bypassing. The waning phase deposits do not represent the depositional 

pattern of the steady body of the flow and were neglected in further analysis. 

 

2.3. Acquisition of the depositional pattern 

The thickness of the deposits was manually measured through the glass side-wall at 

longitudinal intervals of 0.05 m prior to draining the flume. Visual inspection through the side 
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glass wall revealed that the thickness of the deposits was constant over the width of the 10 cm 

wide channel. In all non-bypassing runs, deposit thickness decreased abruptly over the final 

~0.35 m of the flume (Fig. 3a). This abrupt thinning of the deposit was an artifact of the 

transition from the flume into the expansion tank. Consequently, the last 0.5 m of the 

depositional profiles are omitted from the analysis (Fig. 3b). 

The upslope pinch-out is defined as the point where deposit thickness initially exceeded 10 

mm. The value of 10 mm was chosen to disregard the waning phase deposits (cf. Fig. 3b) 

therefore the origins of the upslope pinch-out are associated with the head and body of the 

currents. Downstream of the upslope pinch-out the thickness of the deposits increased (Fig. 

3b). The rate of thickness increase is here referred to as the deposit-thickness- increase. The 

deposit-thickness- increase was calculated by taking the slope of a local linear regression that 

was applied to the depositional profile. The range of the fitting function was from the upslope 

pinch-out to 2.85 m downstream of the inlet box (Fig. 3b). 

 

2.4. Flow dynamic measurements  

The flow velocity and density were measured in a reference-experiment as a check of the 

correct scaling conditions. The reference-experiment was conducted on a 6° dipping flume-

tank floor with no slope break. This condition was chosen because it represents an 

intermediate case within our dataset (Fig. 2).  

Flow velocity was measured with an Ultrasonic Velocimetry Profiler (UVP) 2.3 m 

downstream of the inlet. The UVP probe was positioned 0.11 m above the bed, angled 60° 

relative to the local bed slope (Figs. 1 and 4a). UVP data acquisition settings are provided in 

supplementary material Tab. S1. The UVP measures velocities of the suspended particles 

along the beam-axis, and this is converted into a bed-parallel component with the assumption 
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that the bed-normal component is ~0 m/s (Fig. 4a). This assumption was verified in a test 

experiment with a vertically-oriented UVP. Measured bed-normal velocities were less than 

0.02 m/s, which is only a fraction (~2%) of the downstream velocity component. 

A time-averaged velocity profile was calculated for the body of the current, which is 

associated with steady-flow conditions. The start of this averaging window was set to 10 s 

after the current head passed the measurement location. The duration of the time averaging 

was 80 s (which was 10 s before the end of the experiment). Figure 4b illustrates the 

parameterization of the time-averaged velocity profile, where the vertical axis (z) describes 

the distance normal to the bed and the horizontal axis (u) the bed-parallel velocity component. 

The velocity maximum of the flow is Um and the height of the velocity maximum is hm.  

Flow density was measured by siphoning. Siphon samples were collected 2.5 m downstream 

of the inlet (i.e. 0.2 m downstream of the UVP), at four different elevations above the flume-

tank floor (1, 2, 4, and 8 cm; Fig. 1). The siphon-tube diameter was 7 mm and the average 

flow velocity in the tube was set to approximately 1 m/s, similar to the velocity scale of the 

turbidity current. Siphoning commenced ~10 s after the turbidity current head passed the 

siphon tubes, and was continued until 2 liter of mixture was sampled. The volume and weight 

of each siphon-tube sample were measured, and sediment concentration was calculated from 

the bulk density of the sample and the specific densities of the water and sediment. A 

concentration profile was calculated from the best fit of a three-parameter exponential 

function through the four concentration measurement points, which is defined as: 

  ( )   
(    )

        , (5) 

where the sediment concentration at height z is represented by c(z); l1, l2, and l3 are empiric 

parameters for the curve fitting.  
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3. Results 

3.1. Flow dynamics and confirmation of scaling 

The time-averaged velocity profile of the turbidity current in the reference experiment 

obtained by the UVP is shown in Figure 5a. The velocity maximum (Um) was 1.15 m/s, the 

flow thickens 0.06 m and the depth-average velocity was 0.93 m/s (Table 1). The vertical 

sediment concentration profile shows stratification with decreasing concentration upwards 

(Fig 5b). The depth-average sediment concentration was 13.4 % vol, resulting in a depth-

average flow density of ~1,11 kg/m3. Shear velocity was calculated with equation 4 as 0.07 

m/s. These parameters allow to calculate Rep with 7.2 (Eq. 1), and   with 2.9 (Eq. 2). Both 

scaling parameters in the reference experiment are within the range of values required for the 

Shields scaling. (i.e. Rep of 2 – 20, and  of 0.2 – 10). Depth-average densiometric Froude 

number was calculated at 2.3, suggesting supercritical flow conditions.  

3.2. Depositional patterns 

Variations in the steepness of the upper and lower slope resulted in a variety of different 

depositional behaviors, ranging from high rates of deposition to bypass. If deposition 

occurred, the deposits increased in thickness in a downstream direction, away from the 

upslope pinch-out.  

3.2.1. Upslope pinch-out  

The location of the upslope pinch-out was controlled by the steepness of the upper slope. 

Steepening of the upper slope resulted in the upslope pinch-out moving downdip (Figs. 6a and 

c). Analysis of all experiments with depositional flows revealed that with an upper slope angle 

of 5° or less, the upslope pinch-out was located updip of the slope break. If, however, the 

steepness of the upper slope was 6° or higher, the upslope pinch-out was located on the lower 
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slope, and deposits were detached from the upper slope. A variation in steepness of the lower 

slope caused no shift of the location of the upslope pinch-out (Figs. 6b and d). 

3.2.2. Deposit-thickness-increase  

Variation in the steepness of the upper slope resulted in a minor signal in the deposit-

thickness-increase (Figs. 7a and c). In contrast, a variation in the steepness of the lower slope 

had a signifficant effect on the deposit-thickness- increase, where steepening of the lower 

slope generally resulted in a decreased deposit-thickness- increase (Figs. 7b and d). 

3.2.3. Experiments with a horizontal lower slope 

Six experiments were conducted using a horizontal lower slope downstream of the slope 

break, resulting in rapid deposition downstream of the slope break. These deposits formed an 

adverse topographic gradient and the turbidity current had to travel upslope, resulting in a 

significant deceleration. In four of such experiments with an upper slope between 2 to 8°, 

videos revealed the formation of a roller structure during the last ~10 to 20 s of the 

experiments (Fig. 8a and supplementary material Video S1). The roller structure was initiated 

at the thickest point of the accreted sediment, 3.1 m downstream of the inlet box, and 

propagated in an upstream direction. The roller structure was characterized by bed-normal 

oriented velocities, resulting in an abrupt increase in flow thickness (Fig 8a and 

supplementary material Video S1). Deposition rates downstream of the roller structure 

increased significantly, which resulted in a distinct depositional pattern for these four 

experiments (Fig. 6c and supplementary material Fig. S2). The remaining two out of the six 

experiments that showed rapid deposition downstream of the slope break, also involved a 

horizontal lower slope but steeper upper slopes (i.e. 10 and 12°). In these experiments no 

roller structure emerged. Yet towards the end of these two experiments, when the flow waned, 

some of the deposited sediment remobilized and moved opposite to the original flow 
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direction. This remobilized sediment overprinted the original deposition pattern (Fig. 6c and 

supplementary material Fig. S2). In other experiments, on steeper lower slopes and with less 

depositional flows, no roller structure or sediment mobilization occurred (Fig. 8b and 

supplementary material Video S2).  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

15 

4. Discussion 

4.1. Control mechanisms on the upslope pinch-out and the deposit-thickness-increase 

The main research objective of this study is to examine how the location of the upslope pinch-

out and the deposit-thickness- increase in a slope-break system are controlled by the system’s 

geometry. Geometric parameters in a slope-break system are the steepness of the upper and 

the lower slopes, and the resulting slope-break angle in between them. 

The steepness of the upper slope is the primary control on the upslope pinch-out; steeper 

upper slopes force the upslope pinch-out farther downdip (Figs. 6c and 9a). In the 

experiments, slope-break systems with upper slopes equal or steeper than 6° resulted in upper-

slope-detached deposition (Fig. 6c). A slope of 6° was also the most gently dipping slope 

angle at which flows were still bypassing, suggesting that bypass conditions on the upper 

slope can be used as a predictor of upper-slope-detached sedimentation patterns. In slope-

break systems with an upper-slope gradient too low to achieve bypass conditions, the deposits 

may onlap onto the upper slope due to the reduction in the turbidity current’s transport 

potential. The downstream shift in upslope pinch-out can be explained with the faster flow 

velocities on steeper incoming slopes as also suggested Mulder and Alexander (2001). The 

correlation of the upslope pinch-out with the geometry of the slope-break system was 

proposed in earlier studies (e.g. Mutti, 1985; Wynn et al., 2002) but has not been 

demonstrated or quantified by previous experimental results. 

The upslope pinch-out is also controlled by the transport efficiency of the flow (Mutti, 1992). 

The flow efficiency is controlled by the grain-size distribution of the suspended sediment, the 

flow volume, and the flow density (Al Ja’Aidi et al., 2004; Mutti, 1992). Large, finer grained 

flows with a high density are more efficient than smaller, coarser grained flows with a low 

density (Al Ja’Aidi et al., 2004; Mutti, 1992). Highly efficient flows transport their sediment 
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load further into the basin before deposition, and hence, the upslope pinch-out is further 

downstream. Conversely, the upslope pinch-out produced by a low-efficiency flow will be 

located further upstream. 

In contrast to the upslope pinch-out, which is governed by the upper slope and therefore 

results from upstream controls, the deposit-thickness- increase is dictated by the lower-slope 

gradient in a slope-break system. A steeper dipping lower slope resulted in a lower deposit-

thickness-increase and, consequently, thinner deposits on the lower slope in the experimental 

setup (Figs. 7d and 9b). On a gentler dipping lower slope, the flow has less sediment transport 

capability resulting in a higher deposit-thickness- increase, and thus, thicker deposits in the 

experiments. 

The slope-break angle (i.e. the severity or steepness of the slope break) is an inadequate 

parameter to describe the system’s geometry, since it can represent a variety of different upper 

and lower slope combinations (cf. Fig.2). Our results indicate that the slope-break angle, as a 

parameter, has no discernable impact on the depositional pattern. This may challenge the 

interpretations of previous studies, where variations in flow dynamics and deposition patterns 

are associated with the slope-break angle (e.g. Gray et al., 2005; Mulder and Alexander, 

2001). In these studies, the increased slope-break angle was achieved by steepening of the 

upper slope, while the lower slope was kept horizontal. Hence, observed variations in flow 

dynamics and deposition patterns are likely to be caused by variations of the upper slope, 

rather than varying the slope-break angle. 

In our experiments, slope-break settings with a horizontal lower slope represent a geometrical 

arrangement that results in a distinct deposition pattern, related to high sedimentation rates on 

the lower horizontal slope (cf. Fig. 6c). A horizontal lower slope was also used in most 

previous experiments involving a slope break (Garcia and Parker, 1989; Garcia, 1994, 1993; 

Gray et al., 2006, 2005; Islam and Imran, 2010; Mulder and Alexander, 2001). Our results 
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suggest that slope-break systems with a horizontal lower slope represent an exceptional 

condition since it is the only geometrical arrangement where gravitational forces lack a 

downflow component, or are in fact even reversed with respect to the flow direction due to the 

development of adverse gradients. These systems need to be assessed separately. 

The present study has considered the effects of a slope break on the depositional signal of 

turbidity currents. It is important to note that a slope break can be accompanied by a loss of 

lateral confinement if turbidity currents on the upper slope produce a channel by either 

erosion, or by buildup of levees, or both, which would create an overprint of the depositional 

pattern reported here (e.g. Alexander et al., 2008; Pohl et al., 2019; Stacey et al., 2018). 

Future studies are required to assess the relative contribution of these two factors in the 

depositional record. 

 

4.2. Implications for natural slope-break systems 

4.2.1. Stratigraphic development of slope-break systems 

Above-grade slope systems (sensu Prather, 2000) may have longitudinal profiles with 

multiple slope breaks that create loci of deposition on the slope. There are two types of above-

grade slope systems: stepped slopes, characterized by a low relief and terraced topography, 

and ponded slopes, characterized by enclosed intra-slope basins (Prather et al., 2017). Here 

we discuss how our results can be used to interpret the stratigraphic patterns in terms of the 

depositional patterns of the turbidites. For this we use as an example a system with a slope-

detached sedimentation pattern, the Niger Delta slope, and for a slope-attached sedimentation 

pattern the Brazos-Trinity Turbidite System in the Gulf of Mexico. 
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The Niger Delta slope is an above-grade slope system with a stepped slope topography 

(Adeogba et al., 2005; Beaubouef and Friedmann, 2000; Jobe et al., 2017; Prather et al., 

2012a). Each step represents a slope break and forms a small basin. These basins are filled 

with perched submarine aprons, that have the effect of healing the slope profile and reduce the 

step morphology over time. The perched submarine apron (OML 134) is subdivided into a 

lower apron and an overlying upper apron (Prather et al., 2012a) (Fig 10a). At the basin entry 

point, which corresponds to the slope break, the lower apron is characterized by multiple 

erosion features. These erosion features suggest a slope-detached depositional style for the 

lower apron. In contrast to the erosional features observed in the lower apron, the upper apron 

is perched over the sediments of the lower apron (Prather et al., 2012a). Hence, there was a 

switch of the flow behavior from erosion to deposition at the basin point, which implies an 

up-slope shift of the upslope pinch-out. This shift may have been due to changes in the 

geometry of the slope-break system due to tectonic activity, or as the basin was filled with 

sediment. A up-slope shift of the upslope pinch-out was also described between Fan 3 and 4 

in the Tanqua depocenter, Karoo Basin, South Africa (Hansen et al., 2019). The shift between 

Fan 3 and 4 was interpreted to be caused by a subtle change in slope gradient, which was 

probably the consequence of the infilling and healing of previous topographic lows and the 

slope break (Hansen et al., 2019). In addition, externally imposed forces on slope-break 

systems like flow thickness and delivered grain size will affect its stratigraphic evolution. 

These external forces might be caused by a transition to less efficient flows with the falling 

limb of a sediment supply cycle (e.g. Hodgson et al., 2016, 2006), as for example described 

for the evolution of channel systems (Jobe et al., 2015).  

The Brazos-Trinity Turbidite System, offshore the Gulf of Mexico, is an above-grade ponded-

slope system (Badalini et al., 2000; Prather et al., 2017, 2012b, 1998; Winker, 1996). The 

Brazos-Trinity Turbidite System consists of four intra-slope basins, connected by a channel 
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system (Prather et al., 2012b). The proximal region of each ponded basin is characterized by a 

slope break, affecting the basin’s sedimentation style. A seismic section through Brazos-

Trinity Basin II reveals a succession of perched aprons onlapping onto the upstream slope 

(Fig. 10b). This infilling pattern differs from that of the Niger Delta slope, in that it shows no 

erosion at the basin entry point (Prather et al., 2012a). Hence, the slope of the incoming 

channel of Brazos-Trinity Basin II is not steep enough to maintain bypass conditions for the 

turbidity currents on that slope. This results in the slope-attached onlap pattern of the perched 

aprons in the Brazos-Trinity Basin II, and is consistent with the experimental observations. 

4.2.2. Plunge pools 

Plunge pools represent an end member slope-break system and usually form in geometric 

arrangements with a steep upper slope and a high slope-break angle (Bourget et al., 2011; Lee 

et al., 2002). Lee et al. (2002) suggested an abrupt slope break of > 4° as the minimum 

criterion for the formation of a plunge pool, although observations suggest that plunge pools 

are well developed at slope breaks of > 15°. The continental slope of the California Margin, 

for example, is ~20° steep and characterized by a series of gullies that terminate in plunge 

pools (Lee et al., 2002); similar slope angles have been reported along the Makran system 

(Bourget et al., 2011).  

Lee et al. (2002) describe in their hydraulic-jump-pool process-model a hydraulic jump which 

emerged at the slope break due to the sharp decrease in slope. Rapid deposition downstream 

of the hydraulic jump forms a constructional rampart and in consequence a plunge pool. In 

case of our experiments, the above-mentioned scenario would correspond to slope-break 

settings using a steep upper slope and a horizontal lower slope, which resulted in high 

sedimentation rates downstream of the slope break. The deposits on the lower horizontal slope 

formed an adverse slope, comparable to the constructional rampart of a plunge pool. In the 

experiments, this adverse slope resulted in the emergence of an upstream migrating roller 
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structure (Fig. 8a), which is likely to represent a hydraulic jump (e.g. Komar, 1971; Vellinga 

et al., 2018). The results of our experiments therefore suggest that the hydraulic jump in a 

submarine plunge pool can also result from the deposition of the rampart, initiating after the 

formation of the plunge pool, rather than as an initial effect of the slope break. Thus, the 

initial formation of a constructional rampart can also be explained with high sedimentation 

rates downstream of the slope break rather than with the formation of a hydraulic jump. 

4.2.3. The formation of upslope stratigraphic traps  

The steepness of the upper slope in slope-break systems provides an additional tool for the 

estimation of potential hydrocarbon reservoirs. If sandy deposits downstream of a slope break 

are connected to the upslope slope sands, potential hydrocarbon reserves may migrate through 

these sands out off the main reservoir. Such thin connected slope sands are therefore known 

as thief sands in reservoir evaluation. In contrast, a system with slope-detached sand 

sedimentation may result in the formation of upslope stratigraphic traps and sealed reservoirs 

(Amy, 2019; Doré and Robbins, 2005; Ray et al., 2010). This type of stratigraphic trap was 

termed a bypass-related pinchout trap by Amy (2019). Thief sands can be thin (e.g. Brooks et 

al., 2018; Hansen et al., 2019), and therefore poorly imaged on seismic data, which means that 

the presence of a bypass-related trap can be one of the main risks that is under debate in 

subsurface exploration. In such cases, it can be useful to apply learnings from studies on the 

control of depositional patterns on attached/detached sedimentation. The results of the 

experiments indicate that the steepness to the upper slope adjacent to the slope break controls 

whether or not deposits drape onto the slope. If the upper slope is steep enough to maintain 

bypass conditions, deposits are likely to be detached from the upper slope. In such a slope-

break setting, the formation of an upslope stratigraphic trap is more likely. Conversely, upper 

slopes that are not steep enough to maintain bypass conditions are more likely to form 

attached deposits, and therefore poorly sealed reservoirs. Already subtle changes in slope 
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gradients can result in a shift of the upslope pinch-out as implied by field relations in the 

Tanqua depocenter, Karoo Basin, with significant implications for the risk assessment of 

stratigraphic traps (Hansen et al., 2019). Our findings simplify the sedimentological risk 

assessment for stratigraphic traps, because the basin floor steepness and the slope-break angle 

can be disregarded as primary controls on thief sands. As discussed above, considerations of 

the steepness of the incoming slope must always be combined with considerations of flow 

scales and efficiency. We therefor echo the conclusion of Amy (2019) that future work 

improving stratigraphic trap evaluation should try to quantify the critical slope needed to 

maintain bypass conditions in turbidity currents. 

 

5. Conclusions 

The Shields-scaled experiments of the present study mimic the transition from a bypassing to 

a depositional turbidity current in a slope-break system. Furthermore, we present the first 

experiments involving steeply dipping lower slopes, downstream of the slope break, as well as 

testing a variety of 45 different combinations of the upper and lower slopes. 

1) The geometric control parameters in a high-density turbidity current slope-break 

system are the steepness of the upper and lower slope. Our results show that the 

resulting slope-break angle between these two slopes, as a parameter, has no clearly 

discernible impact on the deposition pattern, since it represents a variety of 

different upper and lower slope combinations. Therefore, we suggest that in a 

slope-break system, it is not the slope-break angle which should be considered as 

the main parameter or driving factor in this system, but rather the combination of 

the incoming upper and outgoing lower slopes. 
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2) In our experiments slope-break systems with a horizontal lower slope resulted in 

high sedimentation rates on the horizontal lower slope and the formation of a roller 

structure, producing a distinctly different deposition pattern from experiments with 

an inclined lower slope. Furthermore, gravitational forces lack a downflow 

component on a horizontal lower slope. Slope-break systems with a horizontal 

lower slope represent an exceptional condition and should, therefore, be considered 

separately from slope-break systems with dipping lower slopes. 

3) In a slope-break system the location of the upslope pinch-out is controlled by the 

upper slope, whereas the value of the deposit-thickness- increase is controlled by the 

lower slope. An increase in the steepness of the upper slope shifts the upslope 

pinch-out basinwards, making a connection between basin floor sediments and 

slope sediments less likely. Increasing the angle of the lower slope results in thinner 

deposits in the experimental set-up, but has no impact on the location of the 

upslope pinch-out. 

4) The steepness of the upper slope may be useful to estimate the potential for 

hydrocarbon traps in slope-break systems. Upper slopes steep enough to maintain 

bypass condition result in a slope-detached sedimentation pattern, and an increased 

likelihood of the formation of an upslope stratigraphic trap. Whereas upper slopes 

not steep enough to maintain bypass conditions result in a slope-attached 

sedimentation and the formation of thief sands. 
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Figure Captions 

Fig. 1. Sketch of the experiment setup. The dip angle of the upper slope was varied from 0 to 12° and 

the angle of the lower slope from 0 to 8° (both angles with respect to the horizontal). Inset view shows 

the separation of the flume tank into two channels; one was used for the turbidity current, while the 

second provides space for the backflow. UVP: Ultrasonic Velocimetry Probe. 

Fig. 2. Slope-break systems which were used in this study. A total of 45 different combinations of 

upper and lower slope angles were tested. The angles of the lower and upper slope are relative to the 

horizontal. The slope break is the angle between the upper and the lower slope. 

Fig. 3. (a) Photograph of the deposits of taken shortly after the end of an experiment. At the time the 

picture was taken, the silt fraction of the sediment was still in suspension. (b) Sketch illustrating the 

methods applied to analyze and parameterize the deposit profiles. 

Fig. 4. (a) The orientation of the UVP and the trigonometric calculation to calculate bed-parallel 

velocities u. The velocity component directed toward the UVP is uuvp. Not to scale. (b) Sketch of a 

time-averaged velocity profile illustrating the parameterization of the velocity structure.  

Fig. 5. (a) Time-averaged velocity profile and, (b) sediment concentration profile of the turbidity 

current in the reference-experiment. 

Fig. 6. (a) Deposition profiles of representative experiments, where only the upper slope was varied, 

and (b), where only the lower slope was varied (cf. Fig. 2). The profiles were measured along the 

length of the flume tank and flow direction was from right to left. The slope break was at 1.7 m 

downstream from the inlet box. (c) The location of the upslope pinch-out of all deposition experiments 

against the steepness of the upper slope, and (d) against the steepness of the lower slope. US: Upper 

slope, LS: Lower slope, SB: Slope break. Deposition profiles of all experiments are shown in the 

supplementary material Fig. S2. 
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Fig. 7. (a) Deposition profiles of representative experiments, where only the upper slope was varied, 

and (b), where only the lower slope was varied (cf. Fig. 2). The deposit profiles were aligned with 

respect to the location of the upslope pinch-out, which was done by a shift of individual profiles along 

the horizontal axis. (c) The deposit-thickness-increase of all deposition experiments against the 

steepness of the upper slope, and (d) against the steepness of the lower slope. US: Upper slope, LS: 

Lower slope, SB: Slope break, UPO: Upslope pinch-out. Deposition profiles of all experiments are 

shown in the supplementary material Fig. S2. 

Fig. 8. Snapshots of videos from the turbidity currents through the glass side-wall of the flume tank; 

see Figure 1 for field of view. (a) An experiment in which a roller structure emerged on the deposits 

and migrated upstream. In the experiment, the upper slope was 8° and the lower slope was horizontal. 

(b) A typical experiment in which sediment was deposited, but no roller structure emerged. In this 

experiment, the upper slope was 6° and the lower slope was 1°. The green, red, and white scale bars 

are each 0.1 m long. The videos can be found in the supplementary material (YouTube link [only for 

the review process]). 

Fig. 9. Sketch illustrating the impact of the upper and lower slopes on the deposition pattern in a 

slope-break system. (a) Upstream shift of the upslope pinch-out due to the decrease of the upper slope. 

(b) Decrease of the deposit-thickness-increase due to the increase of the lower slope. 

Fig. 10. (a) Seismic longitudinal-section of the Niger Delta slope, an example of a slope-detached 

sedimentation pattern. The red lines indicate erosive contacts at the slope break (i.e. the basin entry 

point). Modified after: Prather et al. (2012a). (b) Seismic longitudinal-section of the Brazos-Trinity 

Basin II, an example of slope-attached sedimentation with less scour development and an onlapping 

sedimentation pattern. Modified after: Prather et al. (2012b). 

Tab. 1. Parameters in the reference experiment.   
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Table 1 

Parameter   Unit Value 

Upper slope   (°) 6 

Lower slope   (°) 6 

Slope break   (°) 0 

Flow thickness h (m) 0.0536 

Height of the  

maximum velocity  

h

m 
(m) 0.0164 

Depth-averaged 

velocity 
U (m/s) 0.9277 

Maximum velocity 
U

m 
(m/s) 1.1536 

Depth-averaged 

sediment concentration   
C (%Vol) 13.3775 

Depth-averaged flow 

density  
C Kg/m

3
 1111.7 

 Froude number 
F

r' 
– 2.2869 

Shear velocity 
u

* 
(m/s) 0.0693 

Shields parameter  – 2.9146 

Reynolds particle 

number 

R

ep 
– 7.1616 
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Highlights 

- Upstream slope angle controls the upslope pinch-out location for slope-break deposits 

- Basin floor angle controls the rate of deposition downstream of the slope break 

- The experimental application of Shield-scaling is described in detail 
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