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ABSTRACT In power systems modelling, optimization methods based on certain objective function(s) are 
widely used to provide solutions for decision makers. For complex high-dimensional problems, such as 
network hosting capacity evaluation of intermittent renewables, simplifications are often used which can 
lead to the ‘optimal’ solution being suboptimal or nonoptimal. Even where the optimization problem is 
resolved, it would still be valuable to introduce some diversity to the solution for long-term planning 
purposes. This paper introduces a general framework for solving optimization for power systems that treats 
an optimization problem as a history match problem which is resolved via statistical emulation and 
uncertainty quantification. Emulation constructs fast statistical approximations to the complex computer 
simulation model in order to identify appropriate choices of candidate solutions for given objective 
function(s). Uncertainty quantification is adopted to capture multiple sources of uncertainty attached to 
each candidate solution and is conducted via Bayes linear analysis. It is demonstrated through a hosting 
capacity case study involving variable wind generation and active network management. The proposed 
method effectively identified not only the maximum connectable capacities but also a diverse set of near-
optimal solutions, and so provided flexible guides for using the existing network to maximize the benefits 
of renewable generation. 

INDEX TERMS Hosting capacity; distribution network; distributed generation; wind curtailment; history 
matching; optimization; statistical emulation; uncertainty quantification. 

I. INTRODUCTION 
Effective decision-making for power systems is often 
addressed using optimization which, for example, has been 
applied to planning national-level energy policy [1], energy 
network expansion [2], and down to building level [3] or 
household systems [4]. Much of the interest is in 
constructing computer simulation models (physical models 
that approximate the real systems) to define the objective 
function based on historic system data or forecasts in order 
to identify an optimal solution for decision support. The 
computer simulation model takes input, describing the 
properties of the system, including the parameters of 
interest for optimization, and returns the corresponding 
value of the objective function. 

The conventional optimization method is to find the global 
minimum/maximum solution of an objective function, via 
solving the zero solution to the derivative of the objective 
function. In power systems, the optimization task is 
commonly based on complex high-dimensional systems, for 
example, unit commitment (UC) and economic dispatch 
(ED) problems at transmission level, which feature thousands 
of different generator units at national scales to be optimized 
simultaneously; and hosting capacity evaluation (HC) of 
variable renewables at the distribution level, which needs to 
consider the uncertainty and variance of renewables over a 
very long horizon at high temporal resolution. Solving these 
mathematical problems becomes non-trivial and 
computationally expensive. Therefore, there is a trade-off to 



 H. Du et al.: Preparation of Papers for IEEE Access (August 2021) 

VOLUME XX, 2021 2 

consider between computational tractability and modelling 
accuracy. Since linear programming (LP) and mixed integer 
linear programming (MIP) are easier to solve than nonlinear 
programming problem (NLP), modelling of the physical 
components in the energy system often uses linearized 
simplifications [5], [6]. This approach can be found in many 
large-scale energy system studies. For example, the popular 
technology-rich TIMES (an acronym for The Integrated 
MARKAL-EFOM System) model family, used for 
developing energy policy, fully adopts linear programming 
and translates each technology via linear representation [7], 
[8]. However, an LP model could face the challenges of 
being unable to provide accurate or sufficiently detailed 
representations of real energy systems. When nonlinear 
optimization is considered necessary and used to improve the 
accuracy of models, it may suffer from local minima/maxima 
even if the problem is tractable. Some sophisticated 
approaches, for example, Second-Order Cone Programming 
[9] and Semidefinite programming [10], may be able to help 
solve problems with more computational cost. Even if the 
optimal solution is obtained, end users may still find it 
practically challenging to act precisely according to the 
optimal solution, given the uncertainties of real-work 
transition in policy, technology and costs.  

It is important to note that the operational environment of 
the energy system is not static and varies from year to year 
with uncertainties. The optimal solution found in the certain 
deterministic case may have less satisfactory performance 
across future scenarios. Therefore, it is valuable that the 
modelling method can efficiently explore the full input space 
by allowing deviations from the optimality, helping to 
address structural uncertainties that arise when the real world 
deviates from the fixed consumption adopted by the 
modelling process. Providing a range of suboptimal solutions 
could be advantageous since it can increase the number of 
quality candidate plans for the planner to take into 
consideration against uncertainty. Taking electricity network 
expansion as an example, in practice the ‘optimal’ route for 
the new line may be found to be impossible due to land 
permissions or terrain considerations, and alternative 
suboptimal solutions are valuable. Therefore, a variety of 
quality solutions with objective function values close to that 
of the optimal solution offers decision makers flexibility 
against different scenarios. 

When computer simulation models are adopted to make 
inferences about the behaviour of the real world, 
uncertainties arise. Some are due to observational error and 
others to model discrepancy between the computer 
simulation model and the real system. These uncertainties are 
rarely considered in conventional optimization as only the 
optimal solution is delivered to the decision maker. 

To overcome the shortcomings of the conventional 
optimization approach, a general methodology based on 
statistical emulation and uncertainty quantification is 
proposed in this paper. The essence of the approach is to treat 

the optimization problem as a history matching problem [11], 
[12] where the goal is to locate a set of inputs for which the 
corresponding outputs meet certain criteria (e.g. the objective 
function is larger/smaller than some threshold). While Monte 
Carlo methods can sample the input space to locate such sets, 
the computational cost can be enormous (if achievable) for 
complex systems. Therefore, statistical emulations are 
adopted to explore the input space efficiently by 
approximating the computer simulation model with statistical 
models. The corresponding uncertainty is assessed via Bayes 
linear analysis [13]. Our approach provides not only a set of 
candidate ‘optimal’ solutions (due to various sources of 
uncertainty, one cannot identify the true unique optimal 
solution just a set of ‘optimal’ solutions that are 
indistinguishable from each other) but also quantifies the 
uncertainty attached to each solution.  

A hosting capacity problem is used in this paper to 
demonstrate the proposed framework. Analysis of ‘hosting 
capacity’ for effective utilization of the existing network to 
improve renewable integration is now a popular research 
field [14]–[17] . ‘Hosting capacity’ is usually modelled as an 
optimization problem, with the objective function of 
maximum DG power capacity that can be connected, and 
subject to network constraints including line capacity, bus 
voltage, and power quality limits [18]–[21]. The solving 
methods for hosting capacity problems are mainly 
categorized as analytical methods and intelligent ones. 
Analytical methods are often used to convert non-convex and 
nonlinear power flow constraints into linear constraints, and 
then solve the relaxed model by using commercial software 
such as CPLEX and GUROBI. Recent developments, for 
example, include linear programming [22], polygonal inner-
approximation [23],  second-order cone relaxation [24], and 
the quadratically constrained method [25]. However, the 
adopted relaxations lose accuracy and are difficult to apply 
when the network and control model are complex. Popular 
intelligent optimization algorithms include Genetic 
Algorithms (GA) [26], [27] and  Particle Swarm Algorithm 
(PSA) [15], [28], [29]. They are able to solve hosting 
capacity while maintaining intact network and control 
models, but require many iterations to find the optimum and 
do not scale well with complexity.  

Given the issues with the above methods, the efficiency of 
hosting capacity solving techniques still needs to be 
improved. The proposed framework can tackle the challenges 
associated with conventional nonlinear nonconvex 
optimization and also consider uncertainty that is not 
addressed by deterministic approaches. The proposed method 
effectively identified the maximum connectable capacities as 
well as a diverse set of near-optimal alterative solutions, and 
therefore provided flexible guides for using the existing 
network to maximize the benefits of renewable generation. In 
this case study, candidate ‘optimal’ solutions identified from 
the proposed approach are found comparable to the 
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deterministic ‘optimal’ solution obtained from conventional 
optimization.  

This paper provides four key contributions to energy 
system optimization. Firstly, a general framework of using 
history matching to address the optimization problem is 
proposed to overcome the shortcomings of the conventional 
optimization approach. Secondly, the proposed framework is 
demonstrated using a popular problem in renewable energy 
integration, namely wind farm hosting capacity. Thirdly, 
statistical emulation is demonstrated, in a complex energy 
system, to be able to explore the input space in a much more 
efficient way. Lastly, various sources of uncertainties have 
been assessed to aid decision support. The essential 
difference between the proposed optimization approach and 
the traditional (and intelligent) approaches is that instead of 
searching for an ‘optimal’ solution directly/interactively, the 
proposed approach adapts history matching to remove all the 
distinguishable ‘non-optimal’ solutions from the input 
(search) space, which leaves the reduced space that contains 
candidate ‘optimal’ solutions. Furthermore, our aim is to find 
the class of good decisions not just to carry out an 
optimization to find the "best" decision. 

The structure of the article is as follows: the hosting 
capacity problem is given in Section II. The general 
framework of the proposed method is set out in Section III. A 
case study is presented in Section IV, followed by discussion 
and conclusions. 

II. HOSTING CAPACITY OPTIMIZATION PROBLEM 

A. HOSTING CAPACITY 
This paper uses the problem of distribution network hosting 
capacity evaluation for wind distributed generation (DG) to 
demonstrate the proposed framework, which treats an 
optimization problem as a history matching problem resolved 
via statistical emulation and uncertainty quantification. 
Hosting capacity is the maximum capacity of new DGs that 
are connected at multiple locations across the network 
without technical (or other) limits being breached.  

Active Network Management (ANM) [30], including 
active generation control, is also considered to help handle 
the fluctuation of renewables and increase hosting capacity. 

B. CONVENTIONAL OPTIMIZATION APPROACH 
The conventional approach for hosting capacity evaluation is 
to model it as an optimization method. The optimization 
model adopted is based on AC optimal power flow 
(ACOPF), as used in a series of established works, so the 
proposed statistical approach can be readily benchmarked. In 
this context, it is considered as a reasonable test bed model to 
demonstrate the methodology. It is acknowledged that there 
are energy systems, as well as corresponding simulation 
models, that are far more complex than this.  
1) OBJECTIVE FUNCTION 

In the hosting capacity evaluation, the objective is to 
maximize the connectable capacity 𝐶𝐶 (rated power, MW) of 
new wind farms (WF, G is the set of WFs) at all potential 
locations: 

max Hosting Capacity = max�𝐶𝐶𝑔𝑔
𝑔𝑔∈𝐺𝐺

 (1) 

The key information required includes the technical details 
of the network, potential locations for wind farms, demand 
time series at each bus, and time series of wind production at 
each potential wind farm location. The time series production 
from each potential DG is a function of the DG capacity and 
the level of resource. The hosting capacity is defined across 
all periods (e.g. hours) within a longer time horizon (e.g. a 
year). 

Additional constraints are modelled to describe the 
nonlinear network AC power flow, such as the real and 
reactive nodal power balance, as well as voltage and power 
flow constraints. The formulation of all these constraints is 
found in [30]. 
2) POWER FLOW CONSTRAINTS 
The optimization model is subject to a range of constraints, 
where the constraints on the power flow are as follows:  

𝑉𝑉𝑏𝑏− ≤ 𝑉𝑉𝑏𝑏,𝑚𝑚 ≤ 𝑉𝑉𝑏𝑏+             ∀𝑏𝑏 ∈ 𝐵𝐵 (2) 

�𝑓𝑓𝑙𝑙,𝑚𝑚
(1,2),𝑃𝑃�

2
+ �𝑓𝑓𝑙𝑙,𝑚𝑚

(1,2),𝑄𝑄�
2
≤ (𝑓𝑓𝑙𝑙+)2       ∀𝑙𝑙 ∈ 𝐿𝐿 (3) 

𝑓𝑓𝑙𝑙,𝑚𝑚
1,𝑃𝑃 = 𝑔𝑔𝑙𝑙 ⋅ 𝑉𝑉𝛽𝛽𝑙𝑙1,𝑚𝑚

2 − 𝑉𝑉𝛽𝛽𝑙𝑙1,𝑚𝑚 ⋅ 𝑉𝑉𝛽𝛽𝑙𝑙2,𝑚𝑚

⋅ �𝑔𝑔𝑙𝑙 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛿𝛿𝛽𝛽𝑙𝑙1,𝑚𝑚 − 𝛿𝛿𝛽𝛽𝑙𝑙2,𝑚𝑚�+ 𝑏𝑏𝑙𝑙
⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝛿𝛿𝛽𝛽𝑙𝑙1,𝑚𝑚 − 𝛿𝛿𝛽𝛽𝑙𝑙2,𝑚𝑚�� 

(4) 

𝑓𝑓𝑙𝑙,𝑚𝑚
1,𝑄𝑄 = −𝑏𝑏𝑙𝑙 ⋅ 𝑉𝑉𝛽𝛽𝑙𝑙1,𝑚𝑚

2 − 𝑉𝑉𝛽𝛽𝑙𝑙1,𝑚𝑚 ⋅ 𝑉𝑉𝛽𝛽𝑙𝑙2,𝑚𝑚

⋅ �𝑔𝑔𝑙𝑙 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝛿𝛿𝛽𝛽𝑙𝑙1,𝑚𝑚 − 𝛿𝛿𝛽𝛽𝑙𝑙2,𝑚𝑚�−  𝑏𝑏𝑙𝑙
⋅ 𝑐𝑐𝑐𝑐𝑐𝑐 �𝛿𝛿𝛽𝛽𝑙𝑙1,𝑚𝑚 − 𝛿𝛿𝛽𝛽𝑙𝑙2,𝑚𝑚�� 

(5) 

∑ (𝑓𝑓𝑙𝑙,𝑚𝑚
1,𝑃𝑃 + 𝑓𝑓𝑙𝑙,𝑚𝑚

2,𝑃𝑃)𝑙𝑙∈𝐿𝐿|𝛽𝛽𝑙𝑙
1,2=𝑏𝑏 + 𝑑𝑑𝑏𝑏,𝑚𝑚

𝑃𝑃 = ∑ 𝑝𝑝𝑔𝑔 ,𝑚𝑚  𝑔𝑔∈𝐺𝐺|𝛽𝛽𝑔𝑔=𝑏𝑏 +
∑ 𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺,𝑚𝑚𝛽𝛽𝐺𝐺𝐺𝐺𝐺𝐺=𝑏𝑏   

(6) 

∑ (𝑓𝑓𝑙𝑙,𝑚𝑚
1,𝑄𝑄 + 𝑓𝑓𝑙𝑙,𝑚𝑚

2,𝑄𝑄)𝑙𝑙∈𝐿𝐿|𝛽𝛽𝑙𝑙
1,2=𝑏𝑏 + 𝑑𝑑𝑏𝑏,𝑚𝑚

𝑄𝑄 =
∑ 𝑝𝑝𝑔𝑔,𝑚𝑚  ⋅ 𝑡𝑡𝑡𝑡𝑡𝑡�𝜙𝜙𝑔𝑔,𝑚𝑚�𝑔𝑔∈𝐺𝐺|𝛽𝛽𝑔𝑔=𝑏𝑏 +∑ 𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺,𝑚𝑚𝛽𝛽𝐺𝐺𝐺𝐺𝐺𝐺=𝑏𝑏   

(7) 

𝑝𝑝𝑔𝑔,𝑚𝑚  =  𝐶𝐶𝑔𝑔𝜔𝜔𝑚𝑚 − 𝑝𝑝𝑔𝑔,𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (8) 
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Constraint (2) sets the voltage limits at each bus b (B, set 
of buses) within maximum/minimum levels. Constraint (3) 
ensures the flow at each end of lines is not above thermal 
limits. The two terminal buses for line l are denoted as 𝛽𝛽𝑙𝑙1 
and 𝛽𝛽𝑙𝑙2 . Equations (4)–(5) (∀𝑙𝑙 ∈ 𝐿𝐿) describe the active and 
reactive power injections into the end ‘1’ of the lines (the 
ends of each line are denoted as 1 and 2), which is given in 
terms of voltage level V and phase 𝛿𝛿 by standard Kirchhoff’s 
voltage formula. 𝑔𝑔𝑙𝑙  and 𝑏𝑏𝑙𝑙 are the conductance and 
susceptance on line l, respectively. The active and reactive 
equations for injection at bus 2 could be obtained by 
transposing the superscript labels 1 and 2 in (4) and (5).   In 
terms of power flow direction, the direction from the bus 
injects into its connected line end is defined as positive and 
the opposite as negative. These constraints are applied for all 
lines in  𝑙𝑙 ∈ 𝐿𝐿.When line l contains on-load tap changers 
(OLTC) or a voltage regulator, the voltage at the start bus of 
the line would be divided by tap ratio 𝑡𝑡𝑙𝑙,𝑚𝑚 , within 𝑡𝑡𝑙𝑙− ≤
𝑡𝑡𝑙𝑙,𝑚𝑚 ≤ 𝑡𝑡𝑙𝑙+ . Equations (6)-(7) (∀𝑏𝑏 ∈ 𝐵𝐵) describe the active 
and reactive nodal power balance governed by Kirchhoff’s 
current law, where the actual power output of DG (𝑝𝑝𝑔𝑔,m) is 
modelled as the difference between its potential power output 
( 𝐶𝐶𝑔𝑔𝜔𝜔𝑚𝑚) and curtailment ( 𝑝𝑝𝑔𝑔,𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  as in (8). 𝜔𝜔𝑚𝑚  is the 
maximum level of output DG can generate relative to its 
nominal capacity 𝐶𝐶𝑔𝑔 , which is determined by the level of 
variable renewable resources during period m. 𝑑𝑑𝑏𝑏,𝑚𝑚

𝑃𝑃  and 𝑑𝑑𝑏𝑏,𝑚𝑚
𝑄𝑄  

are the active or reactive load respectively at bus b during 
period m. 𝑡𝑡𝑡𝑡𝑡𝑡�𝜙𝜙𝑔𝑔,𝑚𝑚�  is the power factor of DG that may 
vary between periods. 

The main grid can supply power to the distribution 
network through the grid supply point (GSP). For buses that 
are connected to the GSP, GSP flow is added to the bus 
balance in (6)-(7). Constraint (9) sets the import/export limits 
for the GSP bus. The GSP will be taken as the reference 
(slack) bus for a power flow model with the voltage angle set 
at zero, i.e., δ𝑏𝑏0 ,𝑚𝑚 = 0. 

 𝑞𝑞𝐺𝐺𝐺𝐺𝐺𝐺− ≤ 𝑞𝑞𝛽𝛽𝐺𝐺𝐺𝐺𝐺𝐺,𝑚𝑚 ≤ 𝑞𝑞𝐺𝐺𝐺𝐺𝐺𝐺+                 ∀𝑥𝑥 ∈ 𝑋𝑋  (9) 

Constraint (10) sets the upper and lower limits on the 
capacity of new DG g. 

𝐶𝐶𝑔𝑔− ≤ 𝐶𝐶𝑔𝑔 ≤ 𝐶𝐶𝑔𝑔+            ∀𝑔𝑔 ∈ 𝐺𝐺 (10) 

3) OPERATION AND CONTROL OF ANM 
As implemented, two active network management control 
schemes are used. The first control is active control of DG 
output. This acts to curtail the generator output during 
periods when the level of renewables is high and demand low 
to avoid voltage or power flow limits being breached. 
Although this may involve lost revenue for the wind 
developer, this might be acceptable due to the infrequent 
occurrence of these periods as the resulting larger capacity 

increases the overall energy production and total revenue. 
Therefore, there is a trade-off between greater generation 
capacity and the proportion of energy curtailed. 

The optimization will determine the variable value of 
power curtailment ( ,

t
g m
CurP ) for each DG in each period. The 

following constraint applies to limit the curtailment variables 
within the maximum potential output of g: 

 
,

Curt
g mg mp C ω≤  (11) 

 Here, the Curtailment Ratio (CR) presents the waste level 
of renewable energy, defined as the ratio of the curtailment 
against the potential energy that could have otherwise been 
delivered by these DGs. While curtailment is very effective 
in managing constraints and enabling larger generator 
capacity, revenue is reduced. Economic considerations will 
limit the total amount of curtailed energy that is acceptable to 
the owner of renewable generators. Such considerations 
strongly depend on the network connection arrangements, 
where different “principles of access” govern the scope of 
curtailment. A simplified approach is taken which places an 
upper limit on the allowed amount of total curtailment across 
the network. Mathematically, the total curtailment ratio 
(TCR) sets a limit on the total curtailed generation (TCG) 
relative to the total potential generation (TPG) that could 
otherwise be delivered over the whole period: 

 ,
curt
g m

m M g G

TCG p
∈ ∈

= ∑∑   (12) 

 g m
m M g G

TPG C ω
∈ ∈

= ∑∑   (13) 

 
TCG

TCR TCR
TPG

= ≤   (14) 

The second control is coordinated control of on-load tap 
changers, where the voltage target of each transformer 
secondary is treated as variable and chosen for each period 
within the statutory range.  

 𝑉𝑉𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 
− ≤ 𝑉𝑉𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ,𝑚𝑚 ≤ 𝑉𝑉𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

+   (15) 

This control will choose a low target voltage for each 
transformer secondary when wind production is high and 
demand low to enable export without breaching the upper 
voltage limit.  

The optimization was solved using the nonlinear solver 
Interior Point OPTimizer (IPOPT). By solving the above 
optimization, the main outputs of the model are the capacities 
of each generator. Values of time series variables, including 
wind production, curtailment, and control actions, are also 
retained. While the desired results could be the global 
optimal, there is no guarantee, in common with other well-
known nonlinear solvers. 

C. CHALLENGES IN CONVENTIONAL OPTIMIZATION 
APPROACH 
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Directly solving the above optimization model for hosting 
capacity evaluation could be very computationally 
challenging. Firstly, the model complexity derives from the 
fact that it is a strictly non-convex nonlinear programming 
problem (NLP), being based on ACOPF formulations in 
order to capture the key network operational constraints, such 
as both magnitudes and phase values of  bus voltages [31]. 
Secondly, it is a dynamic programming that seeks to 
optimize a set of unique variables (i.e. the DG capacity) over 
a long period of variable renewable and demand scenarios to 
capture the full range of operational conditions, i.e. high 
temporal resolution over a long horizon [16], [32]. This 
limits the length of time series that can be readily handled 
within the capability of the solver and computing 
intractability. In previous work [30], [16], the time series was 
subject to a scenario reduction process to deliberately reduce 
the number of periods in order to allow a larger network to 
be modelled. 

Apart from the computational challenges, the fact that only 
a single deterministic solution is generated without any 
alternatives also leads to challenges for practical 
implementation. The exogenous uncertainty that is not 
considered in the model, such as policy and regulation 
changes, may play a decisive role. A reasonable scenario 
could be that the connectable capacity of a wind farm 
identified by the model would become unrealistic due to 
construction limits or planning permission; having a range of 
quality and distinctive results enables the user to choose a 
suboptimal solution that will enable consequent best use of 
the network by redeploying available capacity. 

III. OPTIMIZATION VIA HISTORY MATCHING  
The proposed framework treats an optimization problem as a 
history matching problem. History matching (an alternative 
approach to model calibration [11], [12]) is usually adopted 
to identify the regions of input space of a model where the 
corresponding model outputs ‘match’ the observations with 
consideration of the associated uncertainties. It starts with the 
full input space of the model and gradually reduces the 
volume of the input space by removing the “implausible" 
inputs “wave by wave" and eventually ends up with a 
subspace of the input space where inputs can produce model 
outputs consistent with observations. The task of the 
optimization problem can be considered as a history 
matching problem that finds a collection of input choices for 
which the corresponding “computer simulation model" 
output meets some criteria (instead of looking for 
consistency with the observations), for example, that the 
output is smaller than a threshold. 

Fig. 1 presents a flow chart illustrating the methodology. 
Small samples from the entire input space are initially fed 
into the computer simulation model (simulator). These model 
runs are then used to construct and train a statistical 
emulator. A statistical emulator is a statistical model that 
approximates the simulation model (see III B for details). As 

a statistical emulator is much (computationally) cheaper to 
run than the simulation model, it helps to explore the input 
space in a much more efficient way. Bayes linear analysis 
(see III B for more details) is adopted to quantify the 
uncertainty due to the use of the emulator. With a statistical 
emulator, a large set of inputs sampled from the input space 
can be fed into the emulator. The corresponding outputs can 
be used to define a threshold, e.g. the 95𝑡𝑡ℎ percentile (one 
may use a lower or higher percentile depending on how well 
the emulator approximates the simulation model; 
lower/higher percentiles may increase/decrease the number 
of total emulation waves.) of the emulation outputs, so that 
inputs that lead to outputs above the threshold are discarded 
from the input space (with the consideration of associated 
uncertainty). A small set of samples from the reduced input 
space can then be fed into the computer simulation model 
again to build a new statistical emulator. And a large set of 
input samples from the reduced input space can then be fed 
into the new simulator to define a new threshold and to 
further reduce the volume of the input space. This process is 
repeated until the input space is not significantly reduced 
further, which leaves the reduced input space comprising 
candidate solutions for the optimization problem. Note that 
as the emulator is only an approximation of the computer 
simulation model, there is uncertainty attaching to each 
candidate solution. When the uncertainty ranges of the 
outputs from two candidate solutions overlap, it makes the 
candidate solutions indistinguishable from each other. 

 

FIGURE 1. Flow chart of the proposed methodology that identifies a 
subset of the input space that meets certain criteria. 

A. REFRAMING THE OPTIMIZATION PROBLEM 
The hosting capacity model in Section II needs to be 
reframed to employ history matching. Instead of the model 
choosing optimal DG capacities within the optimization, the 
new model is to simulate the optimal network operation 
under given specific generator capacities; that is, the 
capacities of each wind farm are considered as the input of 
the computer simulation model. The objective function is 
changed to: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑝𝑝𝑔𝑔,𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑔𝑔∈𝐺𝐺

  ∀𝑚𝑚 ∈ 𝑀𝑀 (16) 
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It is also subjected to constraints (2)-(11) for each 
individual period, except the dynamic constraints (12)-(14) 
that sum over all periods. The rest of the input data remains 
the same: time series of wind speed levels, demand, and 
potential wind farm locations. In this way, the original 
dynamic model of hosting capacity optimization is converted 
to a snapshot operational model that can be solved separately 
in each period. This reframe presents a significant reduction 
in terms of the optimization size, for example, 8,760 times 
less in the number of variables than the original hosting 
capacity model if a one-year horizon is considered. Such size 
reduction is essential for an NLP model, which is otherwise 
likely to be intractable. While the reframed model still needs 
to be run many times in time sequence, the total solving time 
is generally much faster than solving a large dynamic NLP at 
once. 

The initial outputs of the reframed simulation model are 
the power generation and curtailment from each wind farm 
plus the control variable values (OLTC target voltages and 
import/export power at GSP) which minimize power 
curtailment in each period. Based on these outputs, the final 
performance metrics measure how the capacity input 
scenario relates to the total potential power generation and 
total power curtailment ratio. 

For a given input of wind speed, the TPG is a linear 
combination of the capacities {𝐶𝐶1 − 𝐶𝐶𝑔𝑔} of the wind farms: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑏𝑏1𝐶𝐶1+. . . +𝑏𝑏𝑔𝑔𝐶𝐶𝑔𝑔+. . . +𝑏𝑏𝐺𝐺𝐶𝐶𝐺𝐺  (17) 

where each term reflects the power generation by each wind 
farm. Wind farms experiencing the same wind speed profiles 
will have the same 𝑏𝑏𝑛𝑛 coefficients. 

Rather than being a dynamic constraint on the original 
optimization, the total power curtailment ratio TCR is the 
output of the computer simulation model 𝑓𝑓∗  acting to 
minimize the power curtailment of each wind farm in each 
period across the horizon. This is a function of the capacities 
and controls, as well as of wind and demand: 

𝑇𝑇𝑇𝑇𝑇𝑇
= 𝑓𝑓∗(𝐶𝐶1,𝐶𝐶𝑔𝑔 , . . ,𝐶𝐶𝐺𝐺 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) (18) 

The conventional optimization approach naturally respects 
the constraints imposed by the network and other limits. In 
this computer simulation model 𝑓𝑓∗ , the network limits 
(voltage and power flow) are respected by the control system 
operation (mainly by controlling generator outputs) at minute 
by minute. Potential violations of network security 
constraints during high wind periods due to large installed 
capacity are avoided by reducing the generator outputs, 
potentially down to zero. This has the effect of pushing up 
the curtailment ratio which the emulation process considers. 
It is, of course, possible for network limits to be violated 
should demand be too high, but this would not occur in a 
properly designed network as the primary aim of the network 
operator is to supply the demand. 

B. STATISTICAL EMULATION 
For an optimization problem, if one could sample and 
simulate the entire input space, the optimal solution would be 
located. The conventional Monte Carlo approach can be 
adopted to uniformly draw samples from the input space and 
then run the computer simulation model for every input 
drawn. This approach is, however, computationally 
unfavourable for high-dimensional complex systems (such as 
hosting capacity, where the operational power system 
contains controls, power supplies, demands and wind speed 
profiles) as it is impossible to evaluate the computer 
simulation model with enough inputs in order to account for 
uncertainty over the entire input space. Therefore, statistical 
emulation is adopted to address this challenge, where a 
statistical model (emulator) is fitted to a small number of 
simulation model evaluations. For high-dimensional complex 
systems, one single evaluation of a computer simulation 
model for a specific set of inputs might take hours, days or 
even weeks (for example, the galaxy formation model [33]), 
while it usually takes ~ms to run a statistical emulator. A 
statistical emulator approximates the simulation model for 
any inputs in the input space, thus, even for inputs that have 
not been evaluated, the emulator can provide an 
approximation of the simulation model output (with 
uncertainty attached due to the approximation) at that input. 
Statistical emulation has been used to explore the input space 
and assess uncertainty due to unknown inputs of the 
simulation model for various complex systems, e.g. 
cosmology [33], oil reservoirs [34], meteorology [35], and 
energy [36]–[38]. 

A common choice for the emulator [12] is adopted in the 
paper, where an individual component of the output is 
modelled by a statistical function 𝑓𝑓(𝐱𝐱) ,where 𝐱𝐱  is treated as 
a vector of random variables. For example for the 
optimization problem defined in III.A, the output TCR is 
modelled by a statistical function 𝑓𝑓(C1, Cg, … , CG) where the 
inputs C1, Cg, … , CG  are treated as random variables. The 
function 𝑓𝑓(𝐱𝐱) contains stochastic terms, given by: 

𝑓𝑓(𝒙𝒙) = �𝛽𝛽𝑖𝑖
𝑖𝑖

𝑔𝑔𝑖𝑖(𝒙𝒙) + 𝑢𝑢(𝒙𝒙) (19) 

where 𝐵𝐵 = {𝛽𝛽𝑖𝑖} are unknown scalars and 𝑔𝑔𝑖𝑖(𝐱𝐱) are known 
deterministic functions of the input vector 𝐱𝐱  (e.g., 
polynomials). 𝐵𝐵𝐵𝐵(𝐱𝐱)  expresses global variation in 𝑓𝑓(𝐱𝐱) , 
where the functional forms 𝑔𝑔𝑖𝑖  (for example, 𝑔𝑔𝑖𝑖  is some 
power function of x) are chosen and the specification for the 
elements of 𝐵𝐵  are fitted based on an analysis of a set of 
simulation model evaluations. In practice, a common way to 
construct 𝐵𝐵𝐵𝐵(𝐱𝐱) is simply conducting a linear regression fit. 
𝑢𝑢(𝐱𝐱) expresses local variation and is represented as a second-
order stationary stochastic process, with a correlation 
function which expresses the notion that the correlation 
between the value of 𝑢𝑢  for any two values 𝐱𝐱 , 𝐱𝐱′  is a 
decreasing function of the distance between the input values. 
Various choices for the form of the correlation function have 
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been proposed in the literature (see, for example, [35]) with 
different meritorious aspects. Following [12], the correlation 
function used in this paper is of the form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢(𝒙𝒙),𝑢𝑢(𝒙𝒙′)) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
∥ 𝒙𝒙 − 𝒙𝒙′ ∥

𝜃𝜃
�
2

� (20) 

where 𝜃𝜃 is a tuning parameter specified through the analysis. 
To construct the emulator there is a rich literature that 

covers statistical modelling of complex functions (see [39] 
for a good introduction and [35] for an example). Following 
[12], we adopted a simple approach to construct the 
emulator, choosing the functional forms 𝑔𝑔𝑖𝑖  using least 
squares fitting and then fitting the correlation function for 
𝑢𝑢(𝐱𝐱)  to the residuals by trial and error based on cross-
validation. 

C. UNCERTAINTY QUANTIFICATION VIA BAYES 
LINEAR ANALYSIS 
There are three major sources of uncertainty that need to be 
accounted for when solving an optimization problem. 
Firstly, the computer simulation model is an imperfect 
analogue of the system. Even with the “best" choice for the 
model input, the output will almost certainly not reflect the 
system behaviour (reality) precisely. Secondly, if there are 
data involved, there is the uncertainty induced by 
measurement error. Lastly, as the statistical emulator acts as 
an approximation to the computer simulation, additional 
uncertainty is introduced. One of the major drawbacks of 
conventional optimization is that it only provides a solo 
“optimal" solution without taking account of uncertainties. A 
natural way to conduct uncertainty quantification is to adopt 
a Bayesian approach [40]. 

Full Bayes analysis can be very informative when both the 
prior specification and the analysis are carefully conducted. 
Bayes linear analysis [13] is partial but easier, faster, and 
more robust [12]. The application of a full Bayesian analysis 
requires enormous computation cost for complex systems. 
The more tractable Bayes linear approach has had some 
success (see, for example, [11], [41]) for complex systems, 
and avoids much of the computational burden of the full 
Bayesian approach. In this paper, Bayes linear analysis is 
adopted to conduct uncertainty quantification. 

Instead of specifying the full distribution of prior and 
posterior in full Bayes analysis, the Bayes linear approach is 
based only on the mean, variance, and covariance 
specification. Similarly, instead of updating the entire 
distribution in full Bayes analysis, the Bayes linear approach 
only updates the expectation and variance through Bayes 
linear adjustment (see [13] for the details of the mathematical 
formula). In general, Bayes linear analysis may be 
considered as a fast approximation to a full Bayes analysis. 
Note that Bayes linear analysis does not require the model to 
be linear; "linear" refers to the linearity properties of 
expectation. If one treats expectation as primitive, Bayes 

linear analysis is simply giving the appropriate analysis 
under a direct partial specification of means, variances, and 
covariances (see [13] for more details). 

IV. CASE STUDY 
A real UK distribution network is used for the case study, as 
shown in Fig. 2. It is a 61 buses 33/11kV weakly meshed 
network and data can be found in [42]. The rating of the 
substation is 60 MVA and the maximum demand of the 
network is 38.2 MW. The 15 MVA interconnector in the 
network is modelled as a PV bus with target voltage of 1pu. 
Voltage limits are taken to be +6/-6% of nominal. A whole 
year of hourly demand and potential wind power profiles are 
used. Five potential locations for wind generation are 
considered. Two different wind resource profiles are 
employed, with wind farms 1-3 (at buses 1108, 1106 and 
1105) considered sufficiently close geographically to use one 
profile and wind farms 4-5 (at buses 1114 and 1115) close 
enough to use the other. The one-year wind (wind area 1) and 
demand are shown in Figure 3. (The respective 𝑏𝑏𝑛𝑛 
coefficients for TPG in the simulation model (17) are 
390,915 for wind farms 1-3 and 341,880 for wind farms 4-5.) 

A. CONVENTIONAL OPTIMIZATION 
The optimization was conducted using the full year’s hourly 
time series of local demands and wind speed at different 
wind farm locations. For illustration, the maximum amount 
of curtailment (TCR) allowed across the wind farms is 10%. 
The solution is further constrained by requiring that the 
curtailment ratio for each individual wind farm is also no 
more than 10%. 

Directly using the full year of hourly data, the optimization 
takes around 3.8 hours to execute on a typical PC (16 GB 
RAM and 3 GHz processor). For reference, the scenario 
reduction approach presented in [30] allows the optimization 
to find a single approximate solution within 55 minutes, 
albeit with some reduction in accuracy. Table I shows the 
solution from this conventional optimization approach. The 
total hosting capacity reaches 52.7 MW, with the highest 
capacity available at wind farms 2 and 5, and the lowest 
capacity at wind farm 1. 
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FIGURE 2. A 38-kV five-bus radial distribution network diagram  

 

 

FIGURE 3. One-year wind and demand data 
 

TABLE I 
“OPTIMAL" SOLUTION FROM CONVENTIONAL APPROACH. 

Wind farm ID 1 2 3 4 5 Total 

Optimal capacity (MW) 5.0 14.8 9.5 8.6 14.9 52.7 

Curtailment ratio 10% 10% 10% 10% 10% 10% 

Full generation (GWh) 17.9 53.1 34.1 35.9 62.0 203.0 

 
 

  

  
FIGURE 4. First (a), third (b), fourth (c) and fifth (d) wave emulation validations. The mean values of the emulation approximation for inputs drawn from an 
independent test set are marked as black dots, error bars are two standard deviations around this mean. Note each set of inputs (five capacities) determines 
the Total Power Generation (X-axis). Cross is actual output from the computer simulation model. Dashed line is the threshold used for history matching. 
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B. OPTIMIZATION VIA HISTORY MATCHING 
Following the proposed framework, this optimization 
problem is treated as a history matching problem. The 
simulation model is defined in (19) and (20). The inputs we 
want to explore are the capacities of each wind farm, and the 
outputs are TPG and TCR.  As the wind farm capacities fully 
determine TPG given the wind speed data, we only need to 
build a statistical emulator for TCR. Following Fig 1., an 
initial design for the history matching samples input 
parameter values (wind farm capacities) using a Latin 
hypercube [43] with a coarse constraint that each farm 
capacity ranges between 0 and 50MW. Such a Latin 
hypercube design aims to select the values of inputs that are 
space-filling in order to avoid sample bias. A set of 50 
simulation model evaluations of TCR were generated using 
50 Latin hypercube input samples, with the same hourly 
demand and wind speed data. There is a trade-off between 
the number of scenarios and convergence speed; if a smaller 
number of scenarios are considered at each wave of 
emulation, the emulator might not approximate the 
simulation model well which would lead to more emulation 
waves to achieve similar results as using larger number of 
scenarios. Using more scenario runs, however, are more 
computationally costly. One could adjust the number of 
scenarios runs at each different wave of emulation. In this 
manuscript, for illustrative purpose, we used 50 scenarios at 
all waves of emulation. It takes about 30 seconds computing 
time to evaluate the simulation model for a given capacity 
scenario. Moreover, the evolution of multiple scenarios could 
be parallel and so the total time would further reduce 
significantly. 

The first emulator 𝑓𝑓(1)  was fitted using these model 
evaluations and the performance of the emulator in terms of 
predicting TCR was tested with an independent test set of 50 
model evaluations. The best global fit (𝐵𝐵𝐵𝐵(𝐱𝐱)) is found with 
an adjusted 𝑅𝑅2 of 0.87. For the correlation function 𝑢𝑢(𝐱𝐱), the 
parameter 𝜃𝜃  is chosen so that the emulator successfully 
predicts more than 95%  of the evaluations to within 3 
standard deviations. (i.e. the Three Sigma Rule [44]).  

As the emulator is an approximation of the simulation 
model, a poor approximation would lead to unreliable 
candidate solutions in the end. Therefore, before moving 
onto the next wave emulation, the performance of the 
emulator needs to be properly assessed. Fig. 4a shows the 
performance of the first emulator in the first wave emulation 
(wave 1), where TCR is plotted against TPG. Almost all the 
simulation model outputs lie within the predicted interval, 
which indicates a reasonably good fit of the emulator to the 
computer simulation model. Fig. 4a also shows that the TCR 
of all the design points are much higher than 10%, which is 
due to the fact that the input capacity range is too wide. This 
first wave emulation, however, provides information to 
reduce the input (search) space. A threshold for output TCR 

was defined subjectively to be 𝑇𝑇𝑥𝑥
(1) = 0.5 (alternatively, the 

threshold can be defined based on a percentile of the output). 
Given this first emulator 𝑓𝑓(1) , 1,000,000 point Latin 
Hypercube samples of five input capacities are fed into the 
first emulator. Remove all the input 𝐱𝐱 ≡ (𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4,𝐶𝐶5) 
for which 𝐸𝐸(𝑓𝑓(1)(𝐱𝐱))− 3𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(1)(𝐱𝐱)) > 𝑇𝑇𝑥𝑥

(1) , where the 
expected value 𝐸𝐸(𝑓𝑓(1)(𝐱𝐱))  and the standard deviation 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(1)(𝐱𝐱)) of the emulation outcome are obtained through 
Bayes linear updates. It is almost certain that the removed 
inputs are not ‘optimal’ solutions. About 18% of the input 
sets remain, which means the first wave emulation reduces 
the volume of the input space by 82%. 

The computer simulation model’s behaviour over the 
reduced input space can then be studied. Fifty samples from 
the reduced input space are fed into the simulation model 
(wave 2) and a new emulator 𝑓𝑓(2)  is built based on the 
evaluations. The best global fit (𝐵𝐵𝐵𝐵(𝐱𝐱)) is found giving an 
adjusted 𝑅𝑅2 of 0.91. Defining a threshold of the output TCR 
to be 𝑇𝑇𝑥𝑥

(2) = 0.3, a large set of inputs in the reduced input 
space from wave 1 emulation was fed into 𝑓𝑓(2) . After 
removing all the input 𝐱𝐱  for which 𝐸𝐸(𝑓𝑓(2)(𝐱𝐱))−
3𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(2)(𝐱𝐱)) > 𝑇𝑇𝑥𝑥

(2), about 11% of the input sets remain, 
which means the second wave emulation reduces the search 
space further by 89%. In the third wave emulation, emulator 
𝑓𝑓(3) (with adjusted 𝑅𝑅2 of 0.88) is built and fits the simulation 
model well over the reduced input space (see Fig. 4b). The 
exceptions are the points corresponding to low TPG, which 
seem to overestimate TCR. Under the threshold 𝑇𝑇𝑥𝑥

(3) = 0.25, 
the input space is further reduced by 80%. 

At the fourth wave emulation, emulator 𝑓𝑓(4) is built with 
adjusted 𝑅𝑅2  of 0.87 . Figure 4c shows the results on an 
independent test set of evaluations. There is one input 
resulting in TCR less than 10%. Note the objective is not 
only to achieve TCR ≤ 10%, but also to generate as much 
power as possible. If zero capacity is assigned to all the wind 
farms, their curtailment ratio would be zero as well as the 
TPG. Therefore, an additional constraint based on TPG is 
imposed to reduce the input space. Defining the threshold to 
be 𝑇𝑇𝑥𝑥

(4) = 0.12 and the TPG of the conventional “optimal" 
solution to be 𝑇𝑇𝑇𝑇𝐺𝐺⋆, all values of 𝐱𝐱 for which 𝐸𝐸(𝑓𝑓(4)(𝐱𝐱)) −
3𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(4)(𝐱𝐱)) > 𝑇𝑇𝑥𝑥

(4)  and corresponding to TPG ≥
0.9𝑇𝑇𝑇𝑇𝐺𝐺⋆ were removed; this further reduces the input space 
by 90%.  

At the fifth wave emulation, emulator 𝑓𝑓(5)  is built with 
adjusted 𝑅𝑅2  of 0.91. Fig. 4d shows the results on an 
independent test set of evaluations. Note there are already 
several inputs that result in TPG and TCR comparable to the 
conventional “optimal" solution. Under the threshold 𝑇𝑇𝑥𝑥

(5) =
0.10 , we remove all values of 𝐱𝐱  for which 𝐸𝐸(𝑓𝑓(5)(𝐱𝐱))−
3𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(5)(𝐱𝐱)) > 𝑇𝑇𝑥𝑥

(5)  and the corresponding TPG ≥
0.95𝑇𝑇𝑇𝑇𝐺𝐺⋆. This further reduces the input space by 75%. 

After five waves of emulations, we now have only 
18% × 11% × 20% × 10% × 25% =  0.0099% of the 
original input parameter volume. This is a space of 
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acceptable candidate solutions which can be accessed 
through emulation runs. Any candidate solutions can still be 
evaluated through the simulation model.  

Table II presents 5 candidate solutions (S1-S5). For each 
solution, the capacity (Cap in MW) of wind farms (WF) and 
its curtailment ratio (CR) are listed as well as the TPG (in 
brackets) and TCR. 

TABLE II 
FIVE CANDIDATE SOLUTIONS SAMPLED FROM FINAL 

REDUCED SPACE. 
  WF1 WF2 WF3 WF4 WF5 Total 

S1 
Cap 5.9 14.7 10.5 8.4 13.7 53.2 (203.4GWh) 

CR 17.9% 9.8% 14.6% 8.7% 6.0% 10.31% 

S2 
Cap 3.3 14.2 11.0 9.1 14.3  51.9 (199.6GWh) 

CR 0% 8.2% 16.8% 12.8% 8.0% 10.26% 

S3 
Cap 5.5 15 10.1 8.5 13.8  52.9  (203.2GWh) 

CR 14.7% 10.7% 12.8% 9.3% 6.3% 9.98% 

S4 
Cap 5.0 14.3 10.1 8.3 14.9  52.6 (202.8GWh) 

CR 10.3% 8.5% 12.9% 8.2% 10.1% 9.89% 

S5 
Cap 4.6 13.7 8.9 9.6 15.1 51.9 (201.3GWh) 

CR 6..7% 6.7% 7.2% 15.5% 10.7% 9.81% 

 
All solutions in Table II produce TPG and TCR 

comparable to the conventional ``Optimal" solution (Table I). 
In fact, candidate solution 3 produces larger TPG and smaller 
TCR than the conventional ``Optimal" solution. This is due 
to the conventional ``Optimal" solution not only requiring 
TCR ≤ 10% but also each wind farm’s CR ≤ 10%, while 
the emulation relaxes the second constraint. The candidate 
solutions from our approach explore the diversity of 
solutions that might be of interest. Moreover, if any specific 
requirement (e.g. curtailment ratio for wind farm 5 no more 
than 6%, as in candidate S1) or additional limit emerges 
when implementing the plan (e.g. high additional costs for 
wind farm 3 to use the land, so S5 become more preferable), 
extra constraints can be added when selecting candidate 
solutions. 

While a set of quite different candidate solutions are 
found, by curtailing at critical periods (e.g high wind and low 
demand), the network is able to operate reliably. DG tends to 
raise the voltage at its connected bus given its power 
injection into the network. When there is a potential voltage 
rise issue during high DG output, a certain amount of 
curtailment is performed by the optimization to maintain the 
voltage at or below the allowed upper value. To clearly 
compare the impact of different candidate capacity solutions 
on voltage profiles over a year, using WF5 as an example, 
Fig. 5 shows the total hours when the voltage at bus 1115 
(where WF5 is connected) reached its upper limit and 
curtailment occurred. As can be seen, the larger size DG (e.g 
the largest WF5 at S5 vs smallest WF5 at S1) at the same 
location does raise the voltage to its limit more frequently, 
also causing more curtailments. 

 

 
FIGURE 5. Impact of DG size on voltage and curtailment 

C. MODEL DISCREPANCY 
No matter how carefully a physical model is designed, it is 
an imperfect approximation of the real system. The impact of 
model discrepancy plays a key role in linking the model and 
the real world, yet it is often neglected in energy system 
optimization problems. Following [12], there are two types 
of model discrepancy: internal and external. Internal 
discrepancy can be assessed by experiments on the computer 
simulation model and it provides a lower bound on the model 
discrepancy. External discrepancy refers to the aspects of 
model discrepancy that have not been addressed by the 
assessment of internal discrepancy; it could be estimated by 
expert judgement. 

In the previous section, uncertainty in the five input 
capacity values as well as the uncertainty due to emulation 
approximation have been accounted for, but there is no 
consideration of model discrepancy. To interpret the 
simulation model solutions for future planning, the internal 
discrepancy due to weather and demand profiles can be 
assessed. Due to the complexity of the weather system and 
consumer behaviours, it is impossible to produce detailed 
hourly wind speed and demand forecasts years into the 
future. Instead, we can assess the mean effects by running the 
simulation model with fixed wind farm capacities but 
varying the weather and demand profiles in the historical 
data. Linear perturbations are applied to the wind speed and 
demand data. Note if the variation (that reflects the 
uncertainty due to structural discrepancy) strongly depends 
on the 5 wind capacities, we can emulate this variation as 
well, which would provide extra information for decision 
makers to select a reliable solution. After analysing the 
experimental results, it turns out that the changes in TCR 
respond to the changes in weather profile or demand profile 
linearly, but for a different set of capacity values the response 
rates are different. Fig. 6 shows how the five candidate 
solutions listed in Table II respond to the changes in demand 
and wind speed, with the slope indicating sensitivity. 
Increasing the wind speed or decreasing the demand would 
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increase the TCR, and wind speed clearly has more impact 
than demand. Quantifying the response to the changes in 
demand and weather profiles provides valuable information 
for decision support. This paper is focused on addressing the 
optimization problem, where the solutions that the simulation 
model suggests are explored for their reliability. If this 
involved working directly with decision makers, these 
discrepancies could be introduced at the optimization stage. 

 

 

FIGURE 6. Total Curtailment Ratio responses to the changes in 
demands (above) and wind profiles (below). The lines correspond to 
each candidate solution in Table II. 

V. DISCUSSION AND CONCLUSION 
While the hosting capacity optimization is solved as an 
exemplary problem, the proposed emulation-based 
framework presents an attractive general way to address 
optimization problems in power systems. Statistical 
emulation is effective in carrying out this approach and 
Bayes linear analysis provides proper uncertainty 
quantification. Careful structural discrepancy assessment and 
multi-level emulation are essential parts of this methodology, 
which overcomes the shortcomings of conventional 
optimization. The proposed methodology is able to access 
the space of acceptable candidate solutions and provides 
proper uncertainty quantifications attached to the solutions. 

For the studied hosting capacity problem, as there is a 
trade-off between the total capacity and curtailment ratio, a 
constraint upon the curtailment ratio (no more than 10%) is 
needed to conduct the optimization. Such optimization 
problems can be extended to estimate a Pareto boundary 
based on power generation and the curtailment ratio. From 
the perspective of optimization, it is well known that a 
bi/multi-objective optimization problem usually admits an 
infinite number of non-inferior solutions (theoretical limits), 
which form the outermost boundary of achievable 
performance, the Pareto boundary [45]. A noninferior 
solution on the Pareto boundary is considered to be Pareto-
optimal in the sense that no other solution can improve the 
performance of some objectives without reducing other 
objective(s). Solutions on the Pareto boundary can be 
identified using the proposed method, and therefore allow 
relaxation of the 10% constraint on the curtailment ratio, 
which would provide additional valuable information for 
decision support. 

In future study, the statistical emulation-based method 
offers scope to enhance the precision of the control system 
by reducing the time interval, improving representation of 
weather conditions by extending the time series of wind and 
demand, and also by enabling representation of technologies, 
such as storage, which adds inter-temporal constraints. 
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