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Glacial and periglacial geomorphology of central Troms and Finnmark county,
Arctic Norway
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aDepartment of Geography, Durham University, Durham, UK; bNorwegian Water Resources and Energy Directorate (NVE), Oslo, Norway;
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ABSTRACT
Here we present a glacial and periglacial geomorphological map of a ∼6800 km2 region of
central Troms and Finnmark county, Arctic Norway. The map is presented at a 1:115,000
scale with the aim of characterising the spatial distribution of glacial and periglacial
landforms and facilitating the reconstruction of the glacial history of the region during the
latter stages of deglaciation from the Last Glacial Maximum and into the Holocene. Mapping
was conducted predominantly by manual digitisation of landforms using a combination of
Sentinel-2A/2B satellite imagery (10 m pixel resolution), vertical aerial photographs (<1 m
pixel resolution), and Digital Elevation Models (10 and 2 m pixel resolution). Over 20,000
individual features have been mapped and include moraines (subdivided into major and
minor moraines), ridges within areas of discrete debris accumulations (DDAs), flutings,
eskers, irregular mounded terrain, lineations, glacially streamlined bedrock, possible glacially
streamlined terrain, pronival ramparts, rock glaciers (subdivided into valley wall and valley
floor, and rock glacierised moraines), lithalsas, contemporary glaciers and lakes. The map
records several noteworthy large moraine assemblages within individual valleys, forming
inset sequences from pre-Younger Dryas limits up to the 2018/19 ice margins and
represents a valuable dataset for reconstructing Holocene glacial and periglacial activity.
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1. Introduction

Since the retreat of the Scandinavian Ice Sheet
(Hughes et al., 2016; Mangerud, 2004) over continen-
tal Norway, the Norwegian Arctic has been subject to a
complex pattern of glacial advance and retreat cycles
(see Nesje, 2009; Solomina et al., 2015 and references
therein). The multitude of large scale, and sometimes
rapid, glacier fluctuations has produced a complex
landscape signature of glacial and periglacial features
and surficial materials (Olsen et al., 2013). However,
the most recent glacier advance during the Little Ice
Age (typically within the past ∼200 years: Ballantyne,
1990; Leigh et al., 2020) is thought to have been the
most extensive neoglacial advance and has likely over-
ridden glacial deposits formed during the mid- to late-
Holocene (cf. Matthews et al., 2000, 2005).

Norway has a rich history of glaciological and geo-
logical investigations with fjords of northern Norway
having been studied since the late-1800s/early-1900s
(e.g. Grønlie, 1931; Helland, 1899; Vogt, 1913).
Detailed investigations into the bedrock geology and
Quaternary surficial geology have also been carried
out across the region, chiefly funded and compiled
by the Geological Survey of Norway (Norges

Geologiske Undersøkelse: NGU). There have also
been several glacier inventories providing information
regarding their characteristics and local geomorphol-
ogy (e.g. Østrem et al., 1973; Andreassen et al.,
2012b). However, while there is good knowledge
about the Quaternary history, the patterns and extent
of mountain glaciation across Arctic Norway through-
out the Holocene, remains less well examined,
especially when compared to southern Norway, or
the European Alps. Indeed, within central Troms
and Finnmark county only a small number of detailed,
site-specific studies have been undertaken with the
aim of reconstructing glacier change since the termin-
ation of the Younger Dryas. Areas covered include
Ullsfjord (e.g. Holmes & Andersen, 1964), Lyngen-
fjord (e.g. Andersen, 1968), the Lyngen peninsula
(e.g. Bakke et al., 2005; Ballantyne, 1990), the Bergsf-
jord Peninsula (e.g. Evans et al., 2002; Wittmeier
et al., 2015), the Rotsund Valley (Leigh et al., 2020),
and the island of Arnøya (Wittmeier et al., 2020).
Most of the more isolated mountain and plateau
regions of central Troms and Finnmark county have
received little or no attention.

To decipher the intricate assemblages of individual
landforms and improve our understanding of the

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrest-
ricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT J. R. Leigh joshua.r.leigh@durham.ac.uk
Supplemental data for this article can be accessed at https://doi.org/10.1080/17445647.2021.1950580.

JOURNAL OF MAPS
2021, VOL. 17, NO. 2, 348–366
https://doi.org/10.1080/17445647.2021.1950580

http://crossmark.crossref.org/dialog/?doi=10.1080/17445647.2021.1950580&domain=pdf&date_stamp=2021-07-22
http://orcid.org/0000-0002-2719-9748
http://orcid.org/0000-0003-3355-1573
http://creativecommons.org/licenses/by/4.0/
mailto:joshua.r.leigh@durham.ac.uk
https://doi.org/10.1080/17445647.2021.1950580
http://www.tandfonline.com/loi/tjom20
http://www.tandfonline.com


complex mountain and fjord landscape of central
Troms and Finnmark county, we have produced a
comprehensive, high-resolution (e.g. <1 m) map of
the regions glacial and periglacial geomorphology
(Main Map). The resulting dataset of this Arctic land-
scape will provide the foundation for new interpret-
ations of mountain glacier dynamics and landscape
response to deglaciation since the termination of the
Younger Dryas (∼11,700 yrs. BP; Lohne et al., 2012),
throughout the Holocene and up to the present day,
further refining existing models of mountain glacial
landsystems and their use in paleoglaciological recon-
structions (e.g. Benn et al., 2003; Bickerdike et al.,
2018; Chandler & Lukas, 2017; Chandler et al., 2019;
Darvill et al., 2017; Evans et al., 2002, 2016a, 2016b,
2017a, 2018; Hättestrand & Clark, 2006; Martin
et al., 2019). Moreover, the mapping of periglacial
landforms provides a baseline for a refined under-
standing of their development, particularly for some
of the more controversial, hybrid landforms, such as
rock glaciers, that evolve from a range of antecedent
conditions and hence demonstrate equifinality
(Berthling, 2011; Evans, 1993; Whalley & Martin,
1992). Additionally, the mapping and monitoring of
the development of periglacial landforms remains
important, especially in Arctic and alpine environ-
ments, as it is likely that periglacial processes will
play an increasingly dominate role in landscape evol-
ution in the future (e.g. Ravanel & Deline, 2011; Hug-
gel et al., 2012; Stoffel & Huggel, 2012; Ballantyne,
2018). The increasing prevalence of periglacial pro-
cesses will likely result in new and/or increased risk
to communities within the periglacial domain (e.g.
Arenson & Jakob, 2015; Eriksen et al., 2018; Hjort
et al., 2018; Jaskólski et al., 2017; Matthews et al.,
2018 Stoffel et al., 2014).

In addition to its employment in landsystem devel-
opments and applications, this map will also underpin
reconstructions of glacial chronologies for the central
Troms and Finnmark region, an Arctic area with a
cryospheric system particularly susceptible to rapid
climate change (IPCC, 2019). This extends the
findings of Evans et al. (2002) and Rea and Evans
(2007), whose work across the Bergsfjord Peninsula
(∼12 km north-east of this study area) illustrated the
value of comprehensive landsystem mapping across
a whole glacierised region with a topographic com-
plexity that dictates the variable nature of post
Younger Dryas glacier-climate responses and hypso-
metric change in mountain glacier systems, particu-
larly in plateau icefield and fjord head settings.

2. Study area and previous work

The mapping conducted in this study focuses on an
area of central Troms and Finnmark county (in the
northern region of the former Troms county),

between ∼69°11′–70°02′N and ∼19°28′–21°50′E
(Figure 1). Geographically, the area extends from the
Lyngen Peninsula (otherwise known as the Lyngen
Alps) in the west, to the large valley, Navitdalen in
the east; and includes the small, glaciated islands of
Uløya and Kågen in the north (Figure 1). The region
is predominantly characterised by alpine and pla-
teau-type mountain terrains (reaching an altitude of
1834 m a.s.l; at Jiehkkevárri 69°28′N–19°52′E) with
steep-sided valleys and fjords in coastal areas, con-
trasting with inland terrain to the south/south-east
comprising an elevated plateau stretching across to
the Norwegian border. There is also a considerable
west–east precipitation gradient across the study area
for example, between 1966 and 2019 total yearly pre-
cipitation averages ∼997 mm yr-1 to the west of our
study area (station No. 90490) whereas at the eastern
margins (station No. 92350) the total yearly precipi-
tation averages less than half that of the west at only
∼468 mm yr−1.

The three largest fjords in the study area are Ullsfjor-
den (75 km long) and Lyngenfjord (82 km long) flank-
ing the Lyngen Peninsula (to the west and east
respectively), and Kvænangen (72 km long). Glaciers
are found in the small mountain ranges that boarder
the fjords particularly on the Lyngen Peninsula
(Andreassen et al., 2012; Stokes et al., 2018), and
most are valley and cirque glaciers (some connected
with several units as glacier complexes such as Strupb-
reen and Koppangsbreen, IDs 200 and 205 respect-
ively), with several plateau icefields (Rea et al., 1999;
Stokes et al., 2018; Whalley et al., 1981), and one
small ice cap (Noammerjiehkki, ID 158). In this
paper, we use the glaciers IDs and names following
the Inventory of Norwegian glaciers (Andreassen
et al., 2012). Beyond the glacierised areas, most of the
land surface is underlain by permafrost, with the
lower altitudinal limit of sporadic permafrost poten-
tially reaching as low as ∼150 m a.s.l. (Gisnås et al.,
2017). Much of the mountain and highland plateau
within the study area is, therefore, within the periglacial
domain, evidenced by large areas of gelifluction sheets
and/or patterned ground and the periglacial reworking
of glacial landforms (e.g. permafrost creep or rock gla-
cierisation of moraines; cf. Ó Cofaigh et al., 2003;
Evans, 1993; Evans et al., 2016a; Vere & Matthews,
1985).

During the last glaciation, the uplands and fjords
throughout the area were covered by the Scandinavian
Ice Sheet, with the most credible position of the ice
sheet margin terminating near the continental shelf
∼16,000 yrs BP (Hughes et al., 2016). The northern
margin of the study area was deglaciated ∼15,000 yrs
BP and regional ice stood at the mouths of the
major fjords (e.g. Ullsfjorden, Lyngenfjord, and Kvæ-
nangen) at ∼13–12,000 yrs BP (Hughes et al., 2016;
Stokes et al., 2014; Figure 1). By ∼11,000 yrs BP it
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had likely receded to the southern limits of our study
area (Hughes et al., 2016; Stokes et al., 2014; Figure 1).
Therefore, in the period since the termination of the
Younger Dryas, the central Troms and Finnmark
region was likely characterised by large valley glaciers
extending beyond individual cirque basins as well as
into valley heads surrounding the numerous plateaux;
at that time, there would also have been extensive peri-
glacial activity in the recently deglaciated terrain.

Recent compilation of superficial geological maps
from the 1980s to the 1990s (e.g. 1:50,000 Quaternary
geological maps: Bergstrøm & Neeb, 1984; Tolgen-
sbakk & Og Sollid, 1988 etc.) for the entirety of former
Troms county was carried out by Sveian et al. (2005) at
a 1:310,000 scale. This mapping defined 22 Quaternary
superficial deposits (including till, marginal moraine,

glaciofluvial deposit, lacustrine deposits etc.) all
mapped as closed polygons (through the process of
scanning and vectorisation of historical maps). The
scale of mapping resulted in frequent grouping of
large swaths of closely spaced yet independent mor-
aines into one feature, which is especially true for val-
ley head and within valley moraine systems.
Additionally, in the recently deglaciated forelands
(e.g. since the Little Ice Age) the classification of
‘Bart Fjell / Bare Rock’ is usually accompanied by
the description that these areas lack material with
more than 50% of the area comprised solely of bed-
rock (Sveian et al., 2005; NGU, 2021) and, as a result,
do not map a wealth of medium- to small-scale glacial
geomorphological features including: rock glacierised
moraines, minor moraines, flutings etc.

Figure 1. Location map showing the study site (within the red frame) in central Troms and Finnmark county, northern Norway,
with site location within Norway shown on the insert map. The inset outlines show the most credible margin of the Scandinavian
Ice Sheet as it retreats inland at 1000-year intervals as reconstructed by Hughes et al. (2016). The base image is a composite of 2 m
resolution hill-shaded Arctic DEM tiles and the glaciers are shown using glacier outlines from the Inventory of Norwegian Glaciers
(Andreassen et al., 2012).
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Furthermore, previous research in the region
employing detailed geomorphological mapping in gla-
cial/periglacial investigations include those of Whalley
(1976), Griffey and Whalley (1979), Ballantyne (1990),
Gordon et al. (1992) and Bakke et al. (2005), Greig
(2011), which all focus on individual valleys or valley
features on the Lyngen Peninsula. On northern Lyngen,
Whalley (1976) and Griffey andWhalley (1979) identify
rock glacier complexes within Strupskardet and Veida-
len, respectively. On the true right (eastern/south-east-
ern) lateral margin of Strupbreen (glacier ID 200;
Andreassen et al., 2012) within Strupskardet, a rock gla-
cier and series of moraines are identified and mapped,
with the rock glacier being depicted as an aggregated
lateral moraine and rock glacier assemblage diverted
around a rock spur and down a small valley-side
niche (Whalley, 1976). There have also been several
studies of the proglacial lake Strupvatnet (in contact
with Strupreeen), dating back to 1898 (cf. Whalley,
1973) which have enabled detailed investigations into
lake development and drainage events (e.g. Aitkenhead,
1960; Liestøl, 1956; Whalley, 1971, 1973). On the
southern side of Veidalen, a series of moraines and a
duel lobed rock glacier originating from two north-
facing cirques (occupied by unnamed glaciers ID 188
and 189; Andreassen et al., 2012) have been mapped;
the rock glacier is depicted as two large and connected
lobes, the proximal margins of which were interpreted
to be ice-cored hummocks (Griffey & Whalley, 1979).
Additional work in Strupskardet by Bakke et al.
(2005) identified moraines fronting the glaciers of East-
ern andWestern Lenangsbreen (glacier ID 199 and 201,
respectively). Their geomorphological map depicts a
series of 13 moraines, which are used to reconstruct
the glacial history of the Lenangsbreen glacier/s and
are associated with other geomorphological features,
including meltwater channels, fossil protalus rock gla-
ciers, former shorelines, till, glaciofluvial deposits,
blockfields, avalanche deposits, talus, and peat accumu-
lations (Bakke et al., 2005).

On southern Lyngen, the glacial and periglacial
geomorphology constrained within the valley of
Fornesdalen is depicted in detail by Ballantyne
(1990). He mapped six major moraines fronting
Fornesbreen (glacier ID 229) as well as ridges
within ‘hummocky drift’ (Ballantyne, 1990). Map-
ping of rockfall/avalanche deposits incorporated
within rock glacier boundaries was also undertaken
and highlighted the areas where post-depositional
rock-glacier reworking/overriding has affected the
lateral portions of some moraines, although the
rock glaciers were considered relict at the time of
mapping (Ballantyne, 1990). Whalley (1992) also
identified a low elevation rock glacier in Ellendalen
noting that this rock glacier appeared to be an
extension of the glacier above and inferred that it
was glacial in origin.

3. Map production

High resolution geomorphological mapping was con-
ducted using remote sensing analysis, with map pro-
duction based on a combination of full colour aerial
orthophotographs (courtesy of the Norwegian Map-
ping Authority, www.norgeibilder.no), Sentinel-2A/
2B satellite imagery (courtesy of the European Spacey
Agency (ESA), downloaded from the US Geological
Survey), and the Arctic Digital Elevation Model
(DEM; Porter et al. (2018) courtesy of the Polar Geos-
patial Center).

Features were identified and digitally mapped as
either vector lines or polygons using ESRIs ArcGIS
software (version 10.5.1). Mapping of all landforms,
excluding contemporary glaciers and lakes, was con-
ducted by manual digitisation on the orthophoto-
graphs, in preference to satellite images, because they
show small scale features that are both absent from
previous mapping and undetectable on the satellite
imagery. Over 2000 georeferenced orthophotographs
with <1 m resolution from 2016 were used for the
mapping. Some differences in lighting are generally
unavoidable when using aerial imagery and, in cases
where this was obvious, it was not considered to impact
image interpretation and mapping. In areas of intense
shading, simple brightness and contrast adjustment in
ArcMap helped mitigate the impacts of shading.

Mapping of glaciers and lakes was conducted using
multispectral satellite imagery and a semi-automated
process, to ensure speed and to provide the most cur-
rent outlines. We used a semi-automated mapping
approach utilising a band ratio method to generate
initial outlines, followed by manual correction of
mapped units to account for glaciers and lakes
which were poorly or erroneously mapped (for further
details on semi-automated mapping see Andreassen
et al., 2012; Du et al., 2016; Leigh et al., 2019, 2020;
Nagy & Andreassen, 2019; Raup et al., 2007; Song
et al., 2017; Watson et al., 2018). Glaciers have also
been divided into individual units based on drainage
divides provided by Andreassen et al. (2012). Thus,
large glacier complexes, like that around Jiehkkevárri
(southern Lyngen), are shown as multiple connected
polygons partitioned by solid lines. Following Leigh
et al. (2019) a minimum size-class of 0.01 km2

(equal to 100 Sentinel-2A/2B pixels) was implemented
for the mapping of glaciers. However, because water-
bodies are easier to identify and define on satellite
imagery, we used a smaller size threshold of 0.0004
km2 (equal to four Sentinel-2A/2B pixels) for lakes.

In the absence of localised ground-truthing we used
oblique, three-dimensional views, provided by the
online features of Norge i bilder (www.norgeibilder.
no), and Google Earth, combined with the imagery
provided by ‘Google Maps Street View’, ‘Google
Maps Community Photosphere’s’ and ‘Google Maps

JOURNAL OF MAPS 351

http://www.norgeibilder.no
http://www.norgeibilder.no
http://www.norgeibilder.no


Community Photographs’ (all freely available online
courtesy of Google LLC and its contributors) in order
to aid landform identification and for cross checking
initial landform interpretations. Cross referencing of
the large-scale geomorphological features (e.g. eskers,
streamlined bedrock, etc.) was also conducted using
Sentinel-2A/2B imagery 2018/19 multispectral satellite
imagery with a spatial resolution of 10 m and can be
viewed with different band combinations, not solely
true colour. Finally, the 2 m resolution ArcticDEM,
projected using varying hill-shading parameters to
account for potential azmith biasing (see Smith &
Clark, 2005), provided both topographic context, but
also a means of identifying changes in topography
associated with small scale geomorphologiacl features.

4. Description of mapped landforms

In total, ∼23,500 glacial features and 1200 periglacial
features were mapped and are described individually
in the following sub-sections.

4.1. Moraines

Moraine ridges are prominent ice-marginal landform
features of formerly glaciated landscapes expressed
as linear or curvilinear, elongate features exhibiting
positive relief (cf. Benn & Evans, 2010 ). We note
that, at the heads of and within individual valleys,
moraines may form continuous ridges (generally
<100 m long, <10 m high). Most often, however, mor-
aines occur as fragmentary deposits, and along the
sides of fjords and on mountain plateaus some frag-
mentary ridges can be traced for several kilometres.
The moraine crests are generally narrow (e.g. 1–5 m
wide), yet the combined proximal–distal widths can

form ridges >100 m wide, and larger moraine com-
plexes are composed of multiple closely spaced or
superimposed ridges (e.g. Figure 2). In some areas
there are clusters of ‘saw-tooth’ frontal moraine
ridges, exhibiting ‘teeth’ pointing down valley and
notches pointing up valley (Burki et al., 2009; Evans
et al., 2017b, 2019; Matthews et al., 1979). Within
some recently deglaciated terrain there are series of
densely spaced moraines that lie generally <15 m
apart, likely reflecting annual or possibly sub-annual
deposition at highly active glacier margins (Boulton,
1986; Chandler et al., 2016, 2020; Evans, 2001; Evans
& Twigg, 2002; Lukas, 2012; Reinardy et al., 2013;
Sharp, 1984). Moraines can also coincide with areas
of discrete debris accumulations (DDAs; sensu Whal-
ley, 2009, p. 1012) that form a complex assemblage of
ridges and furrows (see section 4.2). Overall, moraines
are found throughout the region, but the most exten-
sive and/or complex moraine systems are found along
the fjords and/or within individual valleys.

Moraines are subdivided into two categories based
upon size. Major moraines, either formed of one large
feature or a composite formed by the superimposition
of multiple moraine crests, have been mapped as poly-
gons, with the boundaries drawn around the proximal
and distal slopes (Figure 2). Minor moraines (e.g.
those <4 m wide), mostly found within likely Little
Ice Age glacier limits (see Leigh et al., 2020), are
mapped as lines which are drawn along their crests
(Figure 2).

4.2. Ridges within areas of discrete debris
accumulations (DDA)

We define small areas (generally <0.2 km2) of com-
plex, hummocky ridge systems as ‘ridges within

Figure 2. Moraines in the recently deglaciated foreland of glacier ID 121: (a) image from norgeibilder.no (24/08/2016), (b) subset
of resulting map (presented at 1:4000 scale; glacier mapped on Sentinel-2B imagery from 07/09/2018). The densely spaced, small
moraines are mapped as lines representing their crests, whereas the broader moraines, in places composed of multiple bifurcat-
ing/superimposed ridges (e.g. far right) are mapped as polygons. Note there are also some flutings in the foreland (mapped as
lines) which are aligned perpendicular to the moraines. Approximate image location: 69°43′37.85′′N, 20°39′10.01′′E.
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areas of discrete debris accumulations’ (DDA; sensu
Whalley, 2009, 2012). DDA as described by Whalley
(2012) is ‘a non-genetic and descriptive term ... with-
out any preconceived notion of origin’ (Whalley,
2012, p. 3). These features appear as a complex and
often disorganised network of ridges and furrows sep-
arated by a mix of sediment veneer, boulders, and
vegetated ground (Figure 3). Ridge crest patterns dis-
play no dominant orientation, and ridges are of vari-
able lengths but not exceeding 100 m. Importantly,
these DDA ridges differ from moraine ridges because
they are short and discontinuous and do not appear to
demarcate a clear former ice-margin. Patches of simi-
larly complex ridge systems can be found across the
region where they are contained within large latero-
frontal moraines.

4.3. Flutings

Flutings are closely spaced ridges of sediment
aligned parallel to the direction of ice movement
and often lying down glacier of embedded boulders
or bedrock outcrops (Figure 4; e.g. Hoppe & Schytt,
1953; Boulton, 1976; Gordon et al., 1992; Benn,
1994; Evans et al., 2010). The close grouping of
flutings forms a notable ridge and furrow appear-
ance on till covered glacier forelands, aligned at
right angles to individual moraines and thereby
forming inset arcuate zones separated by moraines
and displaying slightly offset alignments (e.g. Figure
4). Given their small size, flutings are only visible on
the high-resolution orthophotographs and have been
mapped as lines.

Figure 3. Ridges within areas of DDA lying inside and abutted up against major moraines: (a) image from norgeibilder.no (24/08/
2016), (b) subset of resulting map (presented at 1:4,000 scale). When mapped, these ridges (grey lines) generally show no domi-
nant pattern of orientation. Approximate image location: 69°42′4.18′′N, 20°42′21.55′′E.

Figure 4. Flutings on the recently deglaciated foreland of glacier ID 288, showing slight variation in alignment but joining moraine
ridges at right angles: (a) image from norgeibilder.no (24/08/2016), (b) subset of resulting map (presented at 1:4,000 scale).
Approximate image location: 69°26′54.06′′N, 19°47′27.69′′E.

JOURNAL OF MAPS 353



4.4. Eskers

A series of distinctive ridges, predominantly in the
south-east of the region, have been mapped as eskers.
Classification is based on their sinuous planform;
extensive length (with consideration of post deposi-
tional fragmentation); orientation parallel to sub-par-
allel with presumed ice flow direction; and oblique to
features identified as end moraines (e.g. Brennand,
2000; Delaney, 2002; Price, 1966, 1969; Shilts et al.,
1987; Storrar et al., 2014, 2015, 2020; Warren & Ash-
ley, 1994). They also appear as lighter-coloured land-
scape features due to the higher proportion of
glaciofluvial material (e.g. sand: Storrar & Livingstone,
2017). Eskers mostly comprise multiple ridges form-
ing integrated networks but can occasionally occur
as isolated features (Figure 5).

4.5. Irregular mounded terrain

Irregular mounded terrain comprises series of low
relief, disorganised, and irregular mounds, in places
intersected by interweaving meltwater channels and
small ponds (generally <2000 m2, possibly kettle
holes; Figure 6). This type of terrain broadly occurs
as bands ∼0.4 km wide and is found only in the
south-eastern part of the continental plateau area,
near large esker networks. Mapping of individual
mounds as polygon features has revealed no pattern
to their orientation and shows individual mounds
can vary in form from small, simple mounds of ∼25
m2 to larger, branched ridges of ∼3100 m2 (Figure
6). Occasional strips of coarse, bouldery and unvege-
tated debris occur between mounds. These mounds
have a distinctly different morphology to the ridges

Figure 5. A series of eskers in an area of subdued topography in the plateau region of central Troms and Finnmark: (a) image from
norgeibilder.no (24/08/2016), (b) subset of resulting map (presented at 1:8000 scale). The eskers comprise a simple, linear
configuration in the north and a more complex network diverging into multiple flow directions in the east, south east, and
south. Approximate image location: 69°22′6.80′′N, 21°32′48.49′′E.

Figure 6. Three swaths of irregular mounded terrain formed in parallel with each other in an area of subdued topography in the
plateau region of central Troms and Finnmark: (a) image from norgeibilder.no (24/08/2016), (b) subset of resulting map (presented
at 1:8000 scale). The mounds show no dominant shape or orientation but form bands (≤ 500 m wide) of densely spaced mounds.
Approximate image location: 69°20′44.79′′N, 21°33′27.13′′E.
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classified as moraines and eskers and, to ensure clarity,
we do not classify these landforms. Indeed, the origin
of the features is unclear, although a likely genesis
could include the incision of meltwater into a thick
till cover, the dissection and reworking of extensive
and complex esker networks, or the differential melt-
ing of highly debris covered glacier ice during the
final stages of ice-sheet deglaciation in the region.

4.6. Glacial lineations

Glacial lineations are large, straight-crested land-
forms composed of sediment aligned parallel to
the direction of former ice flow and sometimes
differentiated as drumlins or mega-scale glacial
lineations, with the latter exhibiting much greater
length and higher elongation ratios (e.g. Clark,
1993, 1997; Stokes et al., 2013; Stokes & Clark,
2003). Those mapped in this study resemble drum-
lins and most occur within Reisadalen, a ∼3.5 km
wide U-shaped valley in the central part of the
study area, and on the southwest Finnmark plateau.
The lineations are up to 1.4 km long and have been
mapped as lines drawn along their crests. Linea-
tions occur near glacially streamlined bedrock fea-
tures (see Section 4.7) with which they are
aligned (e.g. Figure 7).

4.7. Glacially streamlined bedrock

The term ‘glacially streamlined bedrock’ is used to
describe an assortment of (near-) linear landforms
composed of bedrock and aligned parallel with
the direction of former ice flow, which are mapped
as lines. Glacially streamlined bedrock occurs at
both small and large scale, metres to hundreds of
metres in length and up to several metres in height
and width (Figure 8). It is important to note that

there is potential for identification errors in cases
where bedrock structure is aligned closely parallel
to streamlined features (cf. Darvill et al., 2014;
Lovell et al., 2011), although ice scouring is
known to accentuate structural ridges (cf. Bradwell
et al., 2008; Krabbendam & Bradwell, 2011; Living-
stone et al., 2010; Newton et al., 2018).

4.8. Possible glacially streamlined terrain

Throughout the study area there are areas of sub-
dued streamlined terrain, faintly visible on the
aerial imagery as series of linear features largely
aligned and with a similar orientation (Figure 9).
These features are often not discernible on the
DEM and, as such, it is therefore difficult to inter-
pret their true form. We have, however, mapped
them as linear features, under the classification of
‘possible glacially streamlined terrain’ and, where
mapped, their orientation matches that of other
nearby streamlined features (e.g. glacially stream-
lined bedrock). Caution is, however, advised before
any specific interpretation of these features is made,
which would clearly benefit from fieldwork e.g. to
examine possible striae and/or abrasion surfaces,
etc.

4.9. Pronival ramparts

Pronival ramparts (formerly/alternatively protalus
ramparts; Hedding, 2011) are distinctive ridges of
open blockwork, formed beneath bedrock cliffs and
talus slopes at the downslope margins of past and/or
present perennial or semi-permanent snow-patches
(e.g. Figure. 10). They can appear similar in form to
moraine ridges but generally have a ridge crest to
talus-foot distance of <70 m and there are no glacial
erosional forms or evidence of over-deepening of the

Figure 7. Glacial lineations and associated glacially streamlined bedrock, locally overlain by moraines, and recording a former
north-westerly ice flow direction: (a) image from norgeibilder.no (24/08/2016), (b) subset of resulting map (presented at
1:12,000 scale). Approximate image location: 69°30′48.99′′N, 21°32′11.01′′E.
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associated upslope areas. Their widths can vary, and
individual ridges can be partially superimposed, but
their length is generally <500 m (Ballantyne & Benn,
1994; Hedding, 2016; Hedding & Sumner, 2013; Sha-
kesby, 1997). Active features have a snow-patch occu-
pying their proximal faces. On the high-resolution
orthophotographs it is possible to identify the ridges
as formed of angular (blocky) debris with little to no
soil/vegetation cover on their sides/crest. Pronival
ramparts have been mapped as lines drawn along
the crest of each individual ridge (Figure 10).

4.10. Rock glaciers and glacierised landforms

Rock glaciers are identifiable as lobate, ridged
masses of angular debris that resemble small gla-
ciers, and are moving or have moved downslope

due to the deformation of internal ice lenses or fro-
zen sediments. They may also form from down-
wasting debris-covered mountain glaciers, although
the definition of rock glaciers using genetic versus
descriptive criteria is a contentious issue (cf. Barsch,
1996; Benn et al., 2003; Berthling, 2011; Hamilton
& Whalley, 1995; Hedding, 2016; Whalley et al.,
1995; Whalley & Martin, 1992). Smaller lobate,
ridged masses can also be developed by the process
of rock glacierisation of existing landforms, such as
moraines or protalus ridges (e.g. England, 1978;
Evans, 1993; Matthews et al., 2017; Matthews &
Petch, 1982; Thompson, 1954). We avoid inferring
formation mechanisms and adopt a purely descrip-
tive approach to mapping rock glaciers, following
the protocols used by Dyke et al. (1982) and
Evans et al. (2006, 2016a, 2016b) in mapping

Figure 9. An example of some linear features mapped as possible glacially streamlined terrain: (a) image from norgeibilder.no (24/
08/2016), (b) subset of resulting map (presented at 1:12,000 scale). While there appears to be some semblance of ridges aligned
parallel to each other and with a similar orientation, they are subdued to the extent they are not all discernible on the DEM.
Approximate image location: 69°52′26.50′′N, 21°29′48.77′′E.

Figure 8. Glacially streamlined bedrock developed across an upland flanked by two glacial valleys: (a) image from norgeibilder.no
(24/08/2016), (b) subset of resulting map (presented at 1:12,000 scale). The streamlining gently curves from a mean direction of
334° in the south-east to a mean direction of 300° in the north-west and parallels the orientation of the valleys on either side.
Approximate image location: 69°48′9.30′′N, 21°38′11.01′′E.
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landforms in glacierised mountains. A pronounced
convex morphology of individual lobes is indicative
of an active ice core, while a less distinct, flat or
collapsed appearance indicates older/relict lobes
with a melting/melted ice core (inactive or relict:
Ikeda & Matsuoka, 2002; Sattler et al., 2016);
although in most cases the margins of rock glaciers
remain identifiable by steep front and side slopes
(e.g. 26–36°; Lindner & Marks, 1985). The rock gla-
ciers we mapped may or may not have a present-
day ice core, although this is often not a character-
istic that can be immediately determined (cf. Whal-
ley, 2020). We have, therefore, not attempted to
quantify ice presence in our classifications. These
accumulations of rock debris generally, but not
exclusively, have lengths greater than their widths
and are immediately recognisable by their bouldery
surface of (superimposed) ridges and furrows (Bal-
lantyne & Harris, 1994; Ballantyne & Kirkbride,
1986; Hamilton & Whalley, 1995; Lilleøren & Etzel-
müller, 2011). Large rock glaciers can be identified
on all imagery types and the ridge structures can
be interpreted on the DEM where the elevation
difference between ridges is >2 m. Many smaller
rock glaciers, however, need to be viewed on the
orthophotographs to enable identification of indi-
vidual ridges within the main landform assemblage.
All rock glaciers are depicted by polygons repre-
senting their outer margins inset with lines drawn
along ridge/lobe crests.

Notwithstanding the ongoing debate surrounding
rock glacier origins and classifications (see Berthling,
2011 and references therein), we categorise rock gla-
ciers as either ‘valley floor rock glaciers’ or ‘valley
wall rock glaciers’. We define valley wall rock glaciers
(including protalus lobes e.g. ridges at the foot of talus

slopes meeting the criteria of a pronival rampart but
showing evidence of flow; Blagborough & Breed,
1967; Chattopadhyay, 1984; Gray, 1970; Johnson
et al., 2007; Matthews et al., 2017; Millar & Westfall,
2008; Wilson, 1990) as rock glaciers that appear to
have formed independently of glacier ice cores, and
presumed to have formed as the result of creep of
rock slope failure (RSF) or talus deposits (Figure 11
(a,b)). Indeed, protalus lobes evidence the early stages
of gravitationally induced deformation of interstitial
ice (Lindner & Marks, 1985; Matthews et al., 2013),
representing the embryonic form of a rock glacier, a
key component in the rock glacier continuum (e.g.
Hedding, 2011; Sattler et al., 2016; Serrano & López-
Martıńez, 2000). We define valley floor rock glaciers
as features that have clearly evolved at the margins
of former debris-charged glaciers, for example, those
that occur at the foot of a glacial cirque (Figure 11(c,
d)). The example of a valley floor rock glacier in Figure
11(c,d) has clearly defined ridges within the rock deb-
ris, fills a substantial portion of the cirque, and extends
up to the 2018 glacier margin. Figure 11(c,d) also
shows a valley wall rock glacier that is distinctly separ-
ate from that of the main rock glacier on the cirque
floor. These two rock glaciers (Figure 11(c,d)) could,
over time, effectively fuse together to form a large
complex landform, from which it might not be poss-
ible to define separate origins. The ability to identify
and map each individual landforms (valley wall and
valley floor rock glaciers) at the present day, therefore,
provides a unique insight into rock glacier equifinality
and the evidence of periglacial processes working in
this highly active region.

Finally, we separately define and map ‘rock glacier-
ized moraines’ on the basis that these moraines dis-
play discrete evidence of localised periglacial

Figure 10. A row of individual pronival ramparts: (a) image from norgeibilder.no (24/08/2016), (b) subset of resulting map (pre-
sented at 1:4000 scale). The ramparts sit at the foot of a talus slope, below a valley rock wall that contains several very small (<0.01
km2) perennial snow patches. There is a lateral moraine to the left of the image, lying distal to the pronival ramparts, indicative of
the sequential development of inset parallel ridges of different origins during overall deglaciation of the valley. Approximate
image location: 69°51′39.07′′N, 20°16′19.02′′E.
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downslope deformation (cf. England, 1978; Østrem,
1964; Thompson, 1957; Whalley, 2009). This moraine
deformation manifests as part of a moraine transform-
ing from a largely linear or curvilinear feature, such as
a lateral or frontal moraine, into a lobate ridged or
spatulate form (Figure 11(e,f)). Such moraines may
be accompanied by areas of debris within their

proximal margins that appear to be deforming either
due to permafrost creep of interstitial ice and/or defor-
mation of a buried glacial ice core. The term ‘rock gla-
cierized’ is not strictly genetic, but simply refers to
parts of moraines that have been developed into
rock glaciers. Rock glacierised moraines are generally
found within smaller valleys and are mapped as

Figure 11. A collection of rock glacierised landforms: (a, b) A large valley wall rock glacier with a clear lobate form, multiple (some-
times bifurcating) surface ridges, and convex profile. (c, d) A large valley floor rock glacier showing multiple, overlapping lobes,
formed beneath a very small glacier (not included in the 2012 Inventory of Norwegian Glaciers), and connected to a small valley
wall rock glacier on its northern margin. (e,f) Rock glacierised frontal portions of a latero-frontal moraine fronting a small glacier
(not included in the 2012 Inventory of Norwegian Glaciers). The rock glacierised section of the moraine is inset with smaller ridges
and furrows indicative of post-depositional modification of a glacial ice core. All images from norgeibilder.no (24/08/2016) and
map subsets at 1:4,000 scale, with glaciers mapped on 2018 satellite imagery. Approximate image locations: 69°42′57.27′′N, 20°
33′54.42′′E; 69°40′50.97′′N, 20°38′24.74′′E; 69°32′46.83′′N, 19°59′55.71′′E.
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polygons, with the boundaries drawn around the
proximal and distal slopes.

4.11. Lithalsas

Lithalsas (or ‘mineral palsas’) are vegetation-free
frost-heaved permafrost mounds (showing little pat-
tern in their formation) rising out of a bog/mire (Har-
ris, 1993; Ballantyne, 2018; Figure 12). They can
develop into mounds up to ∼8 m high with diameters
of ∼120 m (Pissart et al., 2011; Wolfe et al., 2014).
Lithalsas are formed on frost-susceptible substrates
including till, alluvium, lake, and marine deposits
with high ground water availability (Ballantyne,
2018). Throughout the study site lithalsas were only
identified and mapped on the western side of the Lyn-
gen peninsula, outside the mapped valley moraine
limits, and in areas not exceeding 20 m a.s.l. Given
their small size, lithalsas are only visible on the high-
resolution orthophotographs and have been mapped
as polygons.

4.12. Contemporary glaciers and lakes

Mapping of glacier outlines was guided by the prior
outlines of Andreassen et al. (2012) and Leigh et al.
(2020). Glaciers are easily identifiable on the multi-
spectral imagery, especially when using a false colour
composite of bands 5-4-3 as Red–Green–Blue,
whereby glaciers appear as bright, fluorescent blue
(e.g. Andreassen et al., 2012; Raup et al., 2007).
Lakes and smaller inland waterbodies are found loca-
lised in a basin or constrained by other geomorpholo-
gical features (e.g. moraines) and are easily identifiable
on the multispectral imagery using both true and false
colour composites. As the extent of lakes is seasonally

variable, the size of mapped polygons is dependent on
image capture date. Both glaciers and lakes were
mapped as polygons, with the lines drawn around
their margins.

A total of 404 glaciers and 3041 lakes were mapped
and these range in size from 0.01 to 8.15 km2 for gla-
ciers and 400 m2 (0.0004 km2) to 10 km2 for lakes.
Around 84% of all mapped glaciers are in the central
and western area and around 41% of lakes are in the
south-east of the study area. At the time of image cap-
ture (2018/19), we identify 36 ice-contact proglacial
lakes (≥0.0004 km2), of which 53% are on the Lyngen
Peninsula.

5. Summary and conclusions

This paper presents a new glacial and periglacial geo-
morphological map of a ∼6800 km2 region of central
Troms and Finnmark county, northern Norway
(Man Map). The map reveals complex suites of land-
form assemblages that include previously unmapped
components of the geomorphological record pertain-
ing to the interaction of glacial and periglacial regimes
in mountainous terrain. Our mapping also revises and
updates the older and more generic superficial geology
mapping of the central Troms and Finnmark region
(e.g. Bergstrøm & Neeb, 1984; Sveian et al., 2005; Tol-
gensbakk & Og Sollid, 1988 etc.), most notably by
mapping: (1) previously un-mapped and recently
deglaciated terrain (up to the 2016 glacier margins,
and including the 2018/19 glacier extent), enabling
the documentation of small and often poorly-pre-
served geomorphological features present in these
active environments (e.g. annual moraines, flutings,
ice-contact proglacial lakes etc.); and (2) individual
moraine ridges (with no minimum size-threshold),

Figure 12. An area of lithalsas at low level and distal to the valley moraine system: (a) image from norgeibilder.no (24/08/2016),
(b) subset of resulting map (presented at 1:4,000 scale). The lithalsas are neatly constrained to the wetland area formed from a
light-coloured sediment like that of glaciofluvial sediments seen elsewhere in the region. Note however, that most of the closely
situated lakes in this wetland are too small to be mapped from satellite imagery and hence are not shown on this map. Approxi-
mate image location: 69°44′43.95′′N, 19°55′53.87 ′′E.
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enabling the identification of closely spaced and
occasionally bifurcating moraine ridges indicative of
minor fluctuations of glacier margins and these were
found at valley heads, within valleys, and at active gla-
cier margins.

Additionally, we note that throughout our study
area, and especially across the Lyngen Peninsula,
very small glaciers (<0.05 km2) have supraglacial
debris cover at/around their fronts. The debris
cover often masks the boundaries of the glaciers,
making it difficult to map the full extent of the
ice, especially using satellite imagery. This indicates
that buried (stagnant) glacier ice is widespread on
the heavily debris covered forelands fronting cirque
glaciers, which has implications for the develop-
ment of glacier-derived rock glaciers and rock gla-
cierised moraines. Indeed, Griffey and Whalley
(1979) previously noted that it is likely that large
rock avalanches supplied the small glaciers 187
and 188 with an abnormally large quantity of deb-
ris, leading to the development of the rock glacier
in the area.

Of particular interest for future glacial geochrono-
logical studies are the extensive moraine systems that
are mapped throughout the region, covering a total
area of ∼63.7 km2. Large terminal and recessional
moraine complexes are mainly located at the heads
of and within mountain valleys and were likely formed
during the retreat of the Scandinavian Ice Sheet at the
termination of the Younger Dryas or several episodes
of glacial advance or still-stands throughout the Holo-
cene. The distribution of glacial valleys near the fjord
systems, and the complex moraine systems they con-
tain, indicate that the maritime mountain regions of
Troms and Finnmark County experienced extensive
alpine-style glaciations (Neoglacial Events; Matthews
& Briffa, 2005; Matthews & Dresser, 2008; Nesje &
Kvamme, 1991; Wanner et al., 2011 etc.), with evi-
dence of ice caps and ice field glaciation limited to
and centred on the higher plateaux areas further
inland and towards the Norwegian boarder (cf.
Evans et al., 2002).

There is a notable decrease in the prevalence of
landforms within the glacial/periglacial domain across
a west to east transect. The alpine terrain that charac-
terises the central/western side of the study area (e.g.
the Lyngen Peninsula, Nordreisa and Kåfjord munici-
palities, and the islands of Uløya and Kågen) has a
high volume of glacial and periglacial landforms. In
contrast, the broad valleys, plateaux regions, and smal-
ler mountain belts that characterise the eastern/south-
eastern side of our study area have fewer mountain
glaciers and, where ice is present, it is more commonly
in the form of plateau glaciers covering areas of sub-
dued topography. The distribution of mapped land-
forms can be attributed not only to the terrain, but
also likely reflects the substantial precipitation

gradient that is present across our study area from
west to east.

The prevalence of permafrost across large areas of
land throughoutour study area has resulted in a wide
variety of periglacial phenomena, much of which
remains outside the scope of our mapping. The most
notable features are those associated with seasonally
frozen ground (e.g. patterned ground) and mass wast-
ing (e.g. gelifluction). In areas of complex glacial geo-
morphology extensive periglacial mass wasting can
not only alter the appearance and structure of glacial
landforms (e.g. rock glacierised moraines; see Section
4.11) but can also, mask or subdue the presence, and/
or imitate the form, of glacial features. Greater care
must, therefore, be taken when mapping the small-
scale glacial geomorphological features in areas of
active periglacial processes.

The map resulting from this work further demon-
strates the utility of high-resolution aerial imagery
and DEMs (e.g. <1 m orthophotographs, 2 m Arctic
DEM), combined with medium-resolution satellite
imagery (e.g. 10 m Sentinel-2A/2B), and their associ-
ated remote sensing techniques, for mapping glacial
and periglacial geomorphology across large swaths of
rugged and poorly accessible terrain. Our map can be
used to underpin robust palaeoglaciological recon-
structions of plateau and mountain glaciers, enable
new interpretations of mountain glacier dynamics in
a highly sensitive Arctic region, further refining exist-
ing models of mountain glacial landsystems, and can
help guide future field investigations throughout the
region.

Software

Features were identified and digitally mapped as either
vector lines or polygons using ESRIs ArcGIS software
(version 10.5.1) and a projected coordinate system of
WGS_1984_UTM_Zone_33N. Final map/figure pro-
duction was undertaken in Adobe Illustrator CS6.

Data used in the production of the accompanying
map is supplied as supplementary material (as ESRI
Shapefiles). The data are supplied for use but must be
cited as per this article and remain the copyright of
the author (Leigh, J.R.). Each landform has specific
attributes, the attributes are listed as follows with the
shapefile attribute column titles shown within brackets:
(i) Shape type (Shape); (ii) Object name (Object_Nam);
(iii) Shape area (Shape_Area); (iv) Shape length (Sha-
pe_Leng); (v) Data source (Data_Src); (vi) Image type
(Imag_Type); (vii) Image resolution (Imag_Res); (viii)
Image date (Imag_Date); (ix) Measurement method
(Meas_Meth); (x) Loose mass type (Jordart*); (xi)
Material description (Mat_Desc); (xii) Feature location
on earth surface (Medium*); (xiii) Analyst Forename
(Anlst_For); (xiv) Analyst Surname (Anlst_Sur); (xv)
Mapping date (Map_Date).Where relevant (as denoted

360 J. R. LEIGH ET AL.



by the *) shapefile attributes have been coded following
the Norwegian Geological Surveys (NGU) product spe-
cification for ‘loose materials, version 3.0’ (NGU, 2015)
in line with Norwegian, Systematic Organization of
Spatial Information (SOSI) codes.
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