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Abstract

Small angle X-ray scattering (SAXS) is an important tool for investigating the

structure of proteins in solution. We present a novel ab-initio method representing

polypeptide chains as discrete curves used to derive a meaningful three-dimensional

model from only the primary sequence and SAXS data. High resolution structures were

used to generate probability density functions for each common secondary structural

element found in proteins, which are used to place realistic restraints on the model

curve’s geometry. This is coupled with a novel explicit hydration shell model in order

derive physically meaningful 3D models by optimizing against experimental SAXS data.

The efficacy of this model is verified on an established benchmark protein set, then it

is used to predict the Lysozyme structure using only its primary sequence and SAXS
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data. The method is used to generate a biologically plausible model of the coiled-coil

component of the human synaptonemal complex central element protein.

Introduction

Biological small angle X-ray scattering (BioSAXS) is an increasingly important method for

characterising protein structures in solution.1–3 Its primary advantages over complmentary

techniques such as crystallography and NMR is its ability to provide information under

native conditions about large protein molecules not accessible by complementary methods.

However, there is a price to pay for this advantage; the random motion and orientation

of molecules in solution leads to a loss of information due to an effective averaging of the

scattering, leaving only information about the protein’s intra-molecular distances not their

spatial orientations.4 The correct interpretation leading to meaningful biological results re-

mains therefore challenging.5

Two main methods have been developed to interpret BioSAXS data. The first assumes

an accurate 3D model of the protein backbone, usually derived from X-ray crystallogra-

phy.6–9 This model is used to calculate the X-ray scattering curve once the excluded solvent

volume is taken into account. A major advance, first presented in the CRYSOL algorithm,6

was the inclusion of the solvation layer - the ordered water molecules at the surface of the

protein. CRYSOL as well as the FOXS package, developed by Schneidmann-Duhovny et

al ,7 adjust an implicit “shell" of scattering (implicit meaning they do not model individual

solvent molecules). Other packages treat the shell explicitly using either molecular dynamics

(AquaSAXS)8 or a geometric filling approach (the SCT suite).9 Allowing for a shell which

can have gaps and fill cavities in the protein model gives a more reliable fit to the data.5

An extension of this approach is to use all atomistic modeling with PDB structures as a

start point,10,11 the application of such techniques, however, can require significant technical

expertise. The second method does not assume an initial structure (ab-initio) but simplifies
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the protein model as either a volume12 or a chain13 of scattering beads without explicit

secondary structure. These methods are hence applicable to de novo structural prediction,

but the lack of secondary structure means interpreting these predictions is a difficult task.5

Here we propose an alternative ab-initio technique which uses a curve model of the 3D

structure of the polypeptide chain, this description has a much reduced number of param-

eters by comparison to all atomistic models. Similar curve models have been previously

proposed14–16 but not for the purpose of interpreting BioSAXS data. The model is pa-

rameterised by consecutive discretised descriptions of the four major secondary structural

elements, α-helices, β-strands, flexible sections and random coils. The permissible geom-

etry of these curves is restricted by empirically determined constraints, which are akin to

Ramachandran constraints.17 To use the model for interpretation of BioSAXS data the

polypeptide chain model is combined with a water model for the first hydration shell and an

empirically calibrated scattering model. The geometry of the model can then be optimized

against the experimental BioSAXS data. A critical factor, novel to our curve representation

of the polypeptide chain, is the construction of empirical probability distributions for the

model parameters. These distributions serve the dual purpose of preferencing commonly

observed secondary structures in the set of potential chain models, whilst simultaneously

allowing for predictions with rare/novel but physically permissible secondary structure. An

advantage of this mthod for ab-initio interpretation of BioSAXS data, by comparison to the

established bead models,12,13 is that by accurately characterizing the protein’s secondary

structure it can reliably incorporate additional structural information in order to improve

the results of the technique. In this study contact predictions, based on sequence alignments

alone, are used to improve the model predictions. A final advantage of the code developed

is that its only input requirements are the primary sequence and scattering data, so places

only basic technical requirements on the user for its use.

We first applied this new methodology to data of well characterized model protein

Lysozyme before moving to the BioSAXS data of structural core of the human synaptonemal
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complex central element protein 1 (SYCE1). This protein represents an essential structural

component of the synaptonemal complex (SC) that binds together homologous chromosomes

during meiosis and provides the necessary three-dimensional environment for crossover for-

mation.18–20 The SC is formed of oligomeric α-helical coiled-coil proteins that undergo self-

assembly to create a lattice-like assembly.21–23 In a recent biochemical and biophysical study,

human SYCE1 was shown to adopt a homodimeric structure in which its structural core is

provided by residues 25-179 forming an anti-parallel coiled-coil.24 Further, the structural

core was expressed in an engineered construct in which two SYCE1 25-179 sequences were

tethered together through a short linker sequence (GQTNPG). This construct faithfully re-

produced the native structure, and substantially improved protein stability in solution.24

In this study, using secondary structure predictions and distance restraints purely based on

the sequence of the protein alone, an excellent model of an anti-parallel extended but bent

coiled-coil is derived, which is fully consistent with biological data.

Methods

First we describe the reduced parameter protein model we use to interpret the BioSAXS data.

This is composed of a polypetide chain curve model with a surrounding explict hydration

shell. Empirically calibrated structure factor functions for each constituent element of the

model are constructed to produce theoretical scattering curves for this tertiary structure

model.

Polypeptide chain

The polypeptide chain is represented as a set of points in 3D space {ci}ni=1, the positions of

the Cα atoms in each amino acid. The geometry of four consecutive points (ci, ci+1, ci+2, ci+3)

can be characterized by two parameters, the curvature κ and torsion τ . κ is defined by the

unique sphere made by the centre of the joining edges (see Figure 1(a)), the smaller the
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Figure 1: Figures depicting elements of the backbone model. (a) curve subsections
(ci, ci+1, ci+2, ci+3) (red points) and their mid section points (cm1, cm2, cm3) (blue), the first
example is more tightly wound and has a smaller sphere, hence a higher κ value. The sphere
defined by these mid-section points is shown, the inverse of it’s radius is the curvature κ. (b)
an α-helical section with uniformly similar (κ, τ) values. (c) a flexible (linker) section with
varying (κ, τ) values.

sphere the more tightly the curve joining the points fold on themselves, τ measures the

chirality of the section, it is positive for right-handed coiling negative if left-handed. More

precise definitions are as follows:

Curvature κ

A section of four residues defined by the points (ci, ci+1, ci+2, ci+3) defines three edges with

midpoints cml = (ci+l−1 + ci+l)/2, which in turn define the curvature sphere.1–3 The curva-

ture, the inverse of its radius is

κ(cm1, cm2, cm3) =
2| sin(θ123)|
||cm1 − cm2||

(1)

where θ123 is the angle between the vectors cm1 − cm3 and cm2 − cm3.
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Torsion τ

Three points define a plane (with unit normal vector n) and the four points (ci, ci+1, ci+2, ci+3)

define two planes through their unit normal vectors n2 and n2 respectively:

nα = Nα/||Nα||, α = 1, 2, (2)

N1 = (ci+1 − ci)×( ci+2 − ci+1),

N2 = (ci+2 − ci+1)×( ci+3 − ci+2).

The torsion is the (length weighted) angle these planes make with each other,

τ(ci, ci+1, ci+2, ci+3) =
2

l
sin(θn/2), (3)

l = (||ci+1 − ci||+ ||ci+2 − ci+1||+ ||ci+3 − ci+2||)/3.

with θn is the angle between n1 and n2, see e.g.25

The algorithm for generating a curve of length n from n − 3 pairs of values of (κi, τi)

is as follows: Consider a section of curve of length m and m − 3 pairs (κi, τi), whose three

initial points c1, c2, c3 are randomly chosen (with fixed separation distance R = 3.8). Since

scattering expressions are invariant under an arbitrary translation and rotation (4) the exact

values of the first two points do not matter (as long as their separation is R). The third point

is a structural degree of freedom but it is restricted such that the Cα-Cα distance between

c1 and c3 is greater than R. Once these points are specified the fourth point will be

c4 = c3 +R (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (4)

with θ =∈ [0, π], φ ∈ [0, 2π]. The set (c1, c2, c3, θ, φ) define four points and hence κ and τ

values. Using values of κ1 and τ1 equations (1) and (3) are solved for θ and φ, this gives

c4. The next point c5 can similarly be found from the values κ2 and τ3, and so on until all
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m − 3 (κi, τi) have been used to yield the m points ci. Examples of an alpha-helical and

flexible linker sections (taken from the structure of Bovine serum albumin (PDB=3V03)26)

are shown in Figure 1(b) and (c).

0.1 0.2 0.3 0.4 0.5 0.6

- 0.6

- 0.4

- 0.2

0.2

0.4

0.6

(a) (b)

Figure 2: Illustrations of the κ-τ spaces used to impose realistic geometry constraints on the
polypeptide chain. (a) (κ, τ) pairs obtained from crystal structures, plotted as points with
κ on the horizontal axis and τ the vertical axis. (b) is a P.D.F, created from the data in (a),
which correspond to linker sections. There are three distinct domains of high probability
corresponding to the preferred corresponding to the preferred secondary structural elements.

Secondary structure geometry restraints

In order to derive geometric constraints Cα coordinates were extracted from over from a

set of over 60 protein structures for which high-resolution crystal structures are available

in the Protein Data Base (PDB) and the κ and τ values calculated for all sub-sections

(ci, ci+1, ci+2, ci+3). The κ-τ pairs are shown in Figure 2(a). There are three main popula-

tions of values (preferential regions). As shown in section 1.3 of the supplementary material

these regions of (κ, τ) space correspond to the three preferential domains of Ramachandran

space.17 Using the PDB’s secondary structure annotation this data was split into categories

of β-strands, α-helices and the rest which are not identified (referred to here as linkers). To

account for random coils the data were further divided into subsets whose values remained

in one preferential domain (as in Figure 1(b)) and those whose κ-τ values belong to multiple

domains (like Figure 1(c)). For each set of data a representative probability density function
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(P.D.F.) was calculated using Kernel smoothing techniques27 (for details see sections 1.4 and

1.5 of the supplementary material), an example is shown in Figure 2(b).

Generating models from secondary structure annotation

In order to generate models based on secondary structure information alone a protein of n

amino acids is split into l distinct sub-domains of length mi (
∑l

i=1mi = n). Each section

l is classified as α-helical, β-strand or linker, for the purpose of testing and calibration the

PDB file’s secondary structure assignment was used to perform this task. For each section

of length mi, mi − 3 (κ, τ) pairs are drawn from an appropriate P.D.F. and the section is

constructed. This process creates the l individual secondary structures, which must then be

linked together. Two neighboring sections with specified geometry (for example an α helix

and linker) still have a relative rotational degree of freedom. To ensure this remains physically

realistic the geometry of the last three and first Cα positions of neighboring secondary sections

were extracted from the PDB set and further PDF’s for the set of permissible (κ, τ) pairs of

these joining sections were generated for each type of join (i.e. α-helix to linker or linker to β

strand). So the final step of the process is to obtain all (κ, τ) values for the joint geometry and

then construct the whole backbone. A precise mathematical description of this algorithm,

constrained backbone algorithm (CB), is given in section 1.6 of the supplement. One example

of a structure generated using this algorithm is shown in Figure 6(b), this particular structure

was used as a starting point for an ab-initio structure optimization in this study.

The hydration layer

Once the curve representation is obtained it is crucial to include a model of the hydration

layer in order to generate realistic scattering curves. To this aim solvent molecules are placed

in-between a pair of cylindrical surfaces surrounding the axis of a section of the backbone

(Figure 3(a)). This layer is then reduced by removing all overlapping solvent molecules. This

ensures the shell remains in hollow sections between the fold and on the protein surface, whilst
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(a) (b) (c)

Figure 3: Visualizations of the hydration layer model. (a) the initial solvent layer, shown
as silver spheres with the core Rc and outer Ro cylinders surrounding the axis of the section
(red curve). (b) overlapping sections and solvent layers, (c) shows, in blue, the removed
solvent molecules of the pair of sections shown in (b).

the water molecules are removed form significantly folded regions. This is a crucial aspect of

our hydration layer model as it has been shown that one needs to allow for inhomogenous

hydration layers in order to avoid inaccurate predictions from BioSaxs data.28 This method

is illustrated in Figure 3 where the two cylinders of radius Rc (core) and Ro (outer), Ro > Rc

are centered on a section i’s helical axis (a). Consider a solvent molecule belonging to another

section j whose nearest distance from the axis of section i is Rs. If Rs < Rc the solvent is

too close to the backbone and removed. If Rc < Rs < Ro the solvent is classed as being

shared by the sections i and j and only counted once.

This process is applied to all solvent molecules from section i and j on each other, an

example of the outcome is shown in Figures 3(b) and (c). Applying this process pairwise to

all sections of a Cα backbone yields the final hydration layer.

The exact mathematical description of this hydration layer is detailed in sections 2.1-

2.3 of the supplement. The values of the radii (Rc, Ro) and a number of other parameters

controlling the solvent density were determined by fitting the model to high resolution crystal

structures which contained the first hydration shell. An example model shell, generated with

these parameters, is shown in comparison to the model solvent positions from the subatomic

9



resolution structure of a phosphate binding protein from the PDB 4F1V29 in Figure 4.

It is shown the two distributions are statistically similar in section 2.4 of the supplement

and hence that the model is a realistic representation of the average positions of the inner

hydration shell.

(a) (b)

Figure 4: Comparisons of crystallographic and model solvent positions from the crystal
structure of a phosphate binding protein PDB=4F1V, determined at an ultra- high resolution
of 0.88 Å .29 (a) the PDB backbone and the relevant solvent molecules. (b) the model solvent
positions (surrounding the same curve as in (a)) obtained with the experimentally determined
hydration shell model parameters.

The scattering formula

Once the polypeptide chain and hydration layer models are determined, the Debye formula,30

I(q) =
N∑
i=1

N∑
j=1

fi(q)fj(q)
sin(qrij)

qrij
, (5)

is used to calculate the scattered intensity I(q) as a function of momentum transfer q =

π sin(θ)/λ. Here N is total number of Cα ’s and solvent molecules and fi(q) the form factor

for residue i. There are two types, one for an amino acid with an excluded volume correction

and one for a solvent molecule which are defined as follows:
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(d) Bovine serum albumin χ2
s =

0.003, PDB:3V03
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Figure 5: Fits to scattering data for various molecules using appropriate Cα coordinates as
a backbone model {c}ni=1 (see chapter 3 of the supplementary notes for details). In panels
(a)-(d) The data scattering data is shown overlayed by the smoothed data used for fitting
(blue curve) and and the model fit (red curve). Panel is the (e) the averaged scattering
function f exam obtained by averaging the scattering parameters obtained from fits like those
shown in (a)-(d).

Amino acid form factors

The form factor fam of an amino acid, centered on the Cα atom position, are

fam(q) = fb(q)− ρexfex(q), (6)

where fb is the scattering of the amino acid in a vacuum, fex is the adjustment due to

the excluded volume of solvent and ρex a constant. Each amino acid is assigned the same

scattering function fb(q), a five-factor exponential representation

fb =
5∑
i=1

Aie
−Biq

2

+ C, (7)
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where {Ai, Bi}5i=1 and C are empirically determined constants (a standard form used to

fit molecular form factors31). The excluded volume effect is captured using an exponential

model in the form

faex(rw, q) = v(rw)e
−πq2v(rw)3/2 , v(rw) =

4π

3
r3w, (8)

where rw is the average atomic radius of the atom.6,7,13 To calculate the excluded volume

for amino acids coordinates for all 20 amino acids,32 and values of rw for Carbon, Nitro-

gen, Oxygen, Hydrogen and Sulphur (e.g.33) were used to compute the excluded volume

scattering, centered at the Cα, through

famex (q) =
Nam∑
i=1

faex(rwi, q)
sin(qrαi )

qrαi
, (9)

where rαi is the distance of atom i from the Cα molecule and Nam the number of atoms in

the amino acid. Since fb does not discriminate individual amino acids this value famex was

averaged over all 20 amino acids, weighted by their abundance in globular proteins (see34).

This averaged function, shown in Figure 5(e), gives fex(q). Finally (6) includes a constant

ρex which modulates the effect of the excluded volume scatter by comparison to fb, this

value is constrained to lie within 0.75 and 1.25 (similar constraints are used in6,7,13). The

scattering form for an individual water molecule in the hydration layer is

fh(q) = ρh(2fhy(q) + fox(q)), (10)

where fhy and fox are the vacuum scattering of Hydrogen and Oxygen respectively.31 The

constant ρh was empirically determined (as in7). A detailed description of the parameter

determination method is given in Section 3 of the supplementary notes.
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Evaluating structural similarity.

In the next step the geometry of each model generated by the CB algorithm is optimized

by refinement against the scattering data. However, since the problem is under-determined,

many models will fit the experimental data so a method is required to compare structures

and determine which predictions are “essentially the same" in that they only differ by small

local conformational changes (as one should expect in solution). The standard methods

in protein crystallography for comparing similar protein structures are based on root mean

squared deviations (RMSD) where two structures are superimposed to minimize the sum of

all distances of equivalent paired atoms.35,36 This measure and variants on it are known to

be overly sensitive to large deviations in single loops (as discussed in35). Unlike homologous

crystal structures, which will often only differ by the change in a small subsection of the

whole structure, the comparison here will be made between structures generated by a random

algorithm, so the significant build up of relatively small individual RMSD errors is likely.

In section 2.1 of the supplement a number of additional problems with using the RMSD

measure in this context are discussed in detail. To mitigate these problems a novel and more

robust approach based on knot theoretic techniques was developed.

Knot fingerprints

Techniques from knot theory have previously been applied to identify specific (knotted)

entanglements in protein structures.37 To compare two protein structures using knot theory

the N and C termini need to be joined.38 As in37 the procedure used here is to surround

the backbone with a sphere, then choose two random points on the sphere and join the

end termini to these points, finally this extended curve is closed with a geodesic arc. The

knot is then classified (e.g. via Jones polynomials). This procedure is repeated a significant

number of times (10000 in this study) and the most common knot (MCK) chosen to indicate

the knotting of the curve. To obtain additional information the MCK is calculated for all

subsets {ci| i = k, k + 1 . . . j, j > k, j − k > 3} of the curve. One can then plot this data on
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a “staircase" diagram with j and k on the axes and each square of the domain colored by

its most common knot (e.g.39) (examples of staircase diagrams are shown in Figure 6(c), (d)

and (e)). The fingerprint is found to be preserved across protein families,39 even when there

is low sequence identity.40

(a) (b)

(3_1)*

3_1

4_1

5_2

(c)

(3_1)*

3_1

4_1

(d)

(3_1)*

3_1

4_1

(5_2)*

5_2

(e)

Figure 6: Secondary knot fingerprint analysis of the Lysozyme structure. (a) The Cα trace
of Lysozyme (PDB 1LYZ41). The α-helices are shown in red, β-strand structures green, and
linker sections light blue. (b) A random structure generated using the CB algorithm which
has the same secondary structural elements as Lysozyme. This could be a starting model for
the fitting procedure. Panels (c) and (d) are secondary fingerprints of two different crystal
structure of Lysozome (1LYZ and the 1AKI respectively). The knot types are indicated
(Rolfsen classification42), white spaces indicate no secondary knots (all knots were of the
primary type). (e) Secondary fingerprint for the random structure shown in (b), it differs
significantly from (c) and (d) and has a larger range of knots present.

Secondary knot fingerprints

Figure 6(c) is the knot fingerprint for one set of Lysozyme coordinates (shown in Figure

6(a)), of the second most common knot identified during the random closure process. The

secondary fingerprint shown in 6(d) is from a second set of Lysozyme coordinates, (c) and

(d) are significantly similar. The secondary fingerprint (e) is derived from a CB generated

backbone model, shown in (b), which has the same secondary structure sequence as the

1LYZ PDB. The secondary fingerprint differences between the correct structure (c) and the

randomly generated structure (d) is immediately obvious. All primary (MCK) fingerprints

in these cases are identical and all have the unknot as the MCK. It is clear secondary (and

possibly tertiary) knot fingerprints can differentiate un-knotted folds. A knot fingerprint
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statistic Kl(K1, K2) is defined in section 4.2 of the supplement which quantifies the weighted

similarity of knot fingerprints at level l associated with the curves K1 and K2 (l = 2 for

Figures 6(c)-(e)); it yields a value between 0, completely dissimilar, and 1, identically folded.

PDB's

Random
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Figure 7: Properties of the (secondary) knot fingerprint statistic K2 based on variations of
the Lysozyme structure. (a) Secondary knot statistics K2(K1LY Z , K) of various structures K
compared to the curve shown in Figure 6(a). The two distinct sets are Lysozyme PDB’s and
random structures with secondary structure alignment to Lysozyme (generated using the
CB algorithm). (b) Plots of the mean, maximum and minimum value of the 50 secondary
knot statistics comparing the 1LYZ structure and the same structure subjected to n random
changes in its secondary structure. The dotted lines show 1 standard deviation from the
mean. The black line is the average of the PDB structure secondary fingerprint statistics
(see (a)) the purple line the Random structure average (crossing the mean at about n = 15
) and the yellow line the average of secondary fingerprint values for models which fit the
experimental data (crossing the mean at about n = 3).

In section 4.3 of the supplement it is demonstrated that the statistic has the following

properties. Firstly it quantifies crystal structures of the same molecule as highly similar

K2(K1, K2) > 0.77 and randomly generated structures (with the same secondary structure

sequence) as significantly dissimilar, generally K2(K1, K2) < 0.1 (see Figure 7(a)). Secondly

it judges crystal monomer structures of similar length as being significantly different (typi-

cally K2 < 0.4), i.e. it can differentiate folds. Thirdly it is shown to have excellent properties

under deformation. To demonstrate, n randomly distributed changes were applied to a crys-

tal structure Kpdb using the CB algorithm. For each n 50 such structures Kn were generated

and the values of the statistic K2(Kpdb, Kn) calculated. The results are plotted as a function

of n in Figure 7(b) for Lysozyme. The mean value drops off rapidly to the same value as

the average of the randomly generated structures (after about 15 changes). The maximum

15



value always remains significantly higher than the mean, it drops below PDB quality after

only 2 changes. So a high K2(Kpdb, Kn) value > 0.75 indicates the structure is likely largely

the same as the original structure.

Experimental data fitting

The following chi -square statistic χ2
f is used to to asses the fit quality of a model predictions

χ2
f =

1

ns − 1

ns∑
i=1

[log(Im(qi))− log(Ise (qi))− Ld]
2 , (11)

Ld =
1

ns

ns∑
i=1

log(Im(qi))− log(Ise (qi)).

Where ns is the discrete number of points on the domain q ∈ [0, 0.4] on which the scattering

is sampled (a commonly used domain e.g.7). Im is the model scattering calculated using the

Debye formula (5) and Ise , the smoothed experimental data (smoothed using the procedure

described in43 which is designed to avoid over-fitting). The factor Ld, which will superimpose

identical curves which differ by a translation, is used because the protein concentration can

only be measured with relatively low accuracy6,7 (when taking a logarithm of the data a

scaling factor becomes a vertical translation). In addition, to prevent chemically unreason-

able conformations, a penalty is applied if the Cα-Cα distance of ≤ 3.8 occurs for any pair

of non-adjacent Cα positions, this quantity is labelled χnl. The initial model is optimized as

described above until χ2
f + χnl < 0.008. Values below this threshold represent an excellent

fit to the scattering data, as shown in Figure 8(d). This value is based on a comparison to

other studies (see Section 3.6 of the supplement).
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Figure 8: Figures illustrating the fitting process. (a) An initial configuration of the backbone
based only on the secondary structure assignment of Lysozyme (PDB:1LYZ). Also shown as
spheres are the molecules of the hydration layer. (b) The model scattering curve compared
the BioSAXS data. (c) a final structure (and hydration layer) obtained from the fitting
process and its model scattering curve now fitting the BioSAXS data well (d).

Results

Validation of the backbone curve and water model

As discussed in the methods section, each part of the model, the Cα backbone, the explicit

hydration layer and the scattering model have individually been designed and verified using

actual structures from the protein data bank. However, it remains to demonstrate the

composite model’s efficacy. To test this it was applied to the benchmark set of proteins used

to compare the set of atomistic small angle scattering verification methods in44 (this is in

addition to the cases shown in Figure 5). This set includes monomer and multimer proteins

both globular and elongated. We allow the parameters of the scattering model to vary for

each structure but fix the geometric hydration layer as described above. The scattering
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model is physically constrained in the same manner as in the FOXS7 and Crysol6 models,

as discussed in detail in section 3 of the supplement. For the sake of brevity we also detail

these results in section 3.6 of the supplement; it suffices to state here that the model performs

comparably to the atomistic structure techniques and hence can be used to correctly infer

protein structure from small angle scattering data.

Developing and testing and averaged scattering model for ab-initio

prediction

In an ab-initio fitting it will be necessary to fix all parameters of the the scattering model

so that the algorithm only alters the protein backbone parameters (the pairs (κi, τi)), this

will allow the model to run in a reasonable time frame. In section 3.61 of the supplement

we detail the construction of an averaged scattering model based on the set of parameters

used for each successful fitting detailed in section 3.6 of the supplement. In general if this

this average scattering model is then re-applied to the PDB structure and explicit hydration

shell we do not obtain a sufficiently good fit to the scattering data (although it is not too

far off).

The aim of this section is to show that we can use this averaged model and distort an

initial PDB model in order obtain a high quality fit to the scattering data whilst still retaining

a sufficiently realistic structure (within a few angstroms on average). This demonstrates

ab-initio technique proposed here contains within its potential prediction population a high

quality representation of the actual protein structure. It will also highlight some properties of

the knot fingerprint statistic, by comparison to the widely used RMSD structural comparison

statistic.

To perform this test we selected three pairs of proteins and crystal structure : Lysozyme

(PDB:1LYZ), Ribonuclease (PDB:1C0B) and Bovine Serum Albumin (BSA, PDB:3V03, se-

lecting a monomer unit) and scattering data obtained from the SAS database.45 We used the

PDB coordinates and secondary structure assignment as an initial input into the algorithm,
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then we altered each secondary section individually using Monte Carlo sampling of the κ-τ

distributions and the CB algorithm generate new structures. Using the hydration layer and

scattering model, scattering curves were generated for these models. This process was run

until a suitable fit to the scattering data was obtained.

Lysozyme and Ribonuclease

(a) PDB (b) Fits (c)

(d)

Figure 9: Sections of the 1LYZ PDB structure and example fits obtained by fitting our model
to the scattering data. Panels (a) and (c) are subsections of the PDB, (a) has the sheet.
Panels (b) and (d) are composite visualizations of the predictions.

Examples of the derived models obtained for Lysozyme are compared to subsections of the

original PDB in Figure 9, we compare subsections for visual clarity. Typically the structures

are nearly identical with only the occasional slight deviation in the geometry of some of the

linker sections. This similarity is reflected in both the RMSD measures (calculated using

the Biopython module46) and the knot finger print statistics, as shown in Figure 10(a). As

one would expect both indicate excellent fits to the structure. There is a correlation of −0.3

between the two measures, a value on the edge of weak and reasonable. The results for
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Figure 10: A comparison of RMSD measures and Knot fingerprint statistics K2 for fittings
of the model to scattering data for Lysozyme and Ribonuclease.These results are obtained
using the PDB structure as the initial input to the algorithm and are by comparison to that
PDB. (a) Lysozyme, (b) Ribonuclease.

Ribonuclease were very similar and the fit statistics are shown in Figure 10(b); again there

is also a clear relationship between the knot fingerprint statistic and the RMSD measure,

in this case the correlation is very strong, −0.8. We see this the correlation between the

two measures as further justification of the knot statistic’s appropriateness as a measure of

structure.

BSA

Example fits to the (parts of the) larger BSA structure are shown in Figure 11, we only

display sub-sections as the full molecule is too complex for a clear visual comparison, the

sections where chosen at random and are indicative of the general comparison. Once again

it is clear the structures are very similar.

So it is clear the model and method has the potential to correctly predict the tertiary

structure of proteins accurately. From a purely ab-initio perspective the question now is how

easy is it to get to the correct structure from a random initial guess? This question proves to

be more complicated, requiring multiple predictions so for this preliminary study we focus

on a single structure, Lysozyme.

20



(a) PDB (b) Fit (c) PDB (d) Fit

Figure 11: Sections of the 3V03 PDB structure and example fits obtained by fitting our
model to the scattering data. Panels (a) and (c) are subsections of the PDB. Panels (b) and
(d) are example predictions.

Ab-initio prediction

In the case where no crystal structure is available, the secondary structure prediction based

on the sequence alone can be used as a starting point. In order to test this ab-initio method

we used the small angle scattering data of Lysozyme to make predictions of its structure.

The process for obtaining a model is summarized in Figure 8. First an initial structure is

randomly generated by the CB algorithm and surrounded with an explicit hydration layer

(Figure 8(a)). A model scattering curve is calculated and compared to the experimental

data (b). The curve is then changed by using a Monte-Carlo algorithm to generate new

secondary structure units (along with a new hydration shell), thus altering the model’s fold

until it attains a sufficiently good fit to the scattering data Figure 8(c) and (d).

Once again we use the χ2
f statistic (11), but this time with additional constraint on

the potential search space, contact predictions, based on a large number of homologous

sequences. Data from the Raptor X web server47 for the Lysozyme primary sequence were

obtained. The Cα pairs with the 10 highest correlations were selected. An extra potential

χcon was added to the optimization statistic to ensure the distance between these pairs was

restricted to be within 5 and 15 Å. If l = 1, . . . nc labels the nc pairs of constrained points
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with mutual distances dcl then the quality of contact match χcon is defined as follows:

χcon =
C

nc

nc∑
l=1

(
dcl − dcf

)2
, (12)

with C a constant and dfc a reference distance (7 was used in this study). The value of C

controls the likely variation in the distances dlc, a value of C = 0.01 in this study was found

to give good results. In the following a model was considered a valid prediction when both

χ2
f + χnl + χcon < 0.008 and χf < 0.008 so that predictions had to simultaneously fit the

scattering data and minimised the geometric penalties of not overlapping and also satisfying

the contact predictions (to within a specified tolerance dictated by the constant C).
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(a) (b) PDB Res 1:63 (c) Ab-initio fit Res 1:63

(d) PDB Res 64:129 (e) ab-initio fit Res 64:129

Figure 12: Ab-initio predictions for Lysozyme based on sequence data alone. Panel (a)
depicts the RMSD and Knot statistic K2(Kpdb, Kn) values for the predictions Kn, these are
indicated as blue circles with the from-PDB data (Figure 10) shown as brown squares for
comparison. Panel (b): secondary structure sections 1-10 (residues 1-63) of the 1LYZ crystal
structure. Panel (c): secondary structure sections 1-10 of the best ab-initio fit. Panel (d):
secondary structure sections 11- of the 1LYZ crystal structure (residues 64-129) . Panel (e):
secondary structure sections 11- of the best ab-initio fit.

The results of the ab-initio fitting procedure are shown in Figure 12(a). The RMSD

and knot fingerprint statistics, compared to the 1LYZ crystal structure are shown. The first
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observation is that the best knot finger print statistics are comparable to the lower end of the

from-PDB predictions obtained in the previous section. The second is that these correspond

to the best RMSD measures. The apparent correlation between the two measures seems to

remain for knot fingerprint statistics above 0.6. However, there is a gap between the best

RMSD for the ab-initio predictions and those derived from the PDB structure. This is to be

expected as the knot statistic is more tolerant of differences which preserve the entanglement

(the general geometry of the fold). This difference can be seen visually in Figure 12 (b) and

(c) which respectively represent the first 10 secondary structure sections of the 1LYZ crystal

structure and the best fit ab-initio prediction (the one closest to the PDB predictions in

Figure 12). The same fold-back of the two significant α-helical sections is present in both

cases, as is the fold back of the β-sheet (although the variability in strand geometry allowed in

the algorithm means they aren’t identical). Further the relative orientation of this helical pair

and the strand section is present is the same in both cases. So overall the basic fold geometry

is correctly predicted which is why the knot statistic is so close to the PDB values. There

are, however, a number of sections with some reasonably significant distance differences,

for example the linker section joining the two helices; this means a bigger difference in the

RMSD measure. Given all the difficulties associated with interpreting small angle scattering

experiments we argue the knot statistic is a more appropriate measure of the accuracy of

the prediction. One can see a similar conclusion can be applied to the rest of the molecule

shown in Figure 12(d) and (e) for the PDB and fit respectively.

Objective prediction comparisons

Using only the protein sequence for secondary structure prediction and BioSAXS data we

have been able to obtain tertiary structure models which can be observed and quantified to

have a significantly similar fold geometry (topology) to the Lysozyme structure. However, a

large number of predictions have knot statistics which suggest the structure’s fold topology

differs significantly from that of the crystal structure (Figure 12(a)). The target applications
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(a) PDB (b) Good fit K2 = 0.73 (c) Poor fit K = 0.23
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Figure 13: Comparisons of high K2 and low K2 Lysozyme predictions. Panel (a) is the
PDB:1LYZ crystal structure. (b) A high quality fit (K2 = 0.73), (c) a low quality fit
K2 = 0.23. (d) a comparison of the contact constraint χcon and the knot finger print, the
blue points (with larger values) are for the ab-intio fits and he brown dots are the from PDB
fits. (e) two (green) sections of a sheet from Lysozyme model. A plane and its normal bi-
secting the strand sections is shown, also shown are two sections of the rest of the molecule
which bisect the plane between the two strands. (f) the fingerprint-RMSD comparison plot
with the screened ab-initio predictions.

for this method will be unknown structures and it must be established whether one could have

identified these were “bad" predictions without the knowledge of the underlying structure.

To differentiate predictions we should seek objective structure comparison measures which

do not depend on comparison known structural information (i.e. not to the PDB). One

example would be the contact prediction statistic χcon. This is objective in the sense that it

only relies on sequence predictions, and would generally be available in target applications.

A scatter plot of the knot statistic indicates the high quality ab-initio predictions (high K2)

are less likely to have a high χcon than the worse predictions, see Figure 13(d). If we were to

run a significant number of predictions and then say select only those below the mean χcon

value then most of the high χcon predictions remain, this could be a first means of filtering
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the predictions, although we see it will still leave “bad" predictions so further analysis is

required.

β sheet model variations and the power of knot statistics

Figure 13 shows the full 1LYZ crystal structure (a), a high K2 model (0.73) (b) with RMSD

9.21 (by comparison to the crystal structure) and a low K2 model (0.23) (c) with RMSD=

10.8. So there is a relatively small difference between the two prediction’s RMSD measures,

but a significant one as measure by the knot topological method. One clear difference is

the isolation of the β-sheet. In both (a) and (b) the sheet is at one edge of the structure,

whilst is (c) it is closer to the alpha helical secondary units of the structure, and further

because its constituent strands of the prediction shown in (c) are not sufficiently closely

related there appears to be a section of α-helix passing between them. This is a significant

difference in entanglement detected by the knot based measure for (c) compared to (a) and

(b). An inspection of the structures indicated that the better performing structures (in terms

of their fingerprints) tended to have tighter and more isolated β-sheets, consistent with the

examples illustrated. To try to quantify this we created two mathematical measures. The

first measure is the mean distance between sequentially paired Cα atoms of the predicted

sheet structure (this sequential dependence can be determined by distance measures and

does not need a pre-determined knowledge of the strand orientation). We calculate this

value for all predictions and choose those say less than the median value. The second is a

discrete test as to whether any other section of the molecule passes “between the sheet". We

approximate a plane for the sheet as indicated in Figure 13(e) and then determine if any

other arcs of the main Cα chain pierce this plane, this this does occur we simply reject the

structure as being physically unrealistic (as is the case in Figure 13(e)). Both are objective

measures.

When the combination of sheet measures and the contact prediction cut-offs are applied

we are left with a significant proportion of the high quality fits, including the one with the
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lowest RMSD (Figure 13(d)). Crucially all the lower quality fits are filtered out. It should be

noted that one of the high quality K2 > 0.7 predictions was lost during this filtering process,

on the basis that its mean sheet distance was too high. This underlying selection mechanism

should be generally applicable being based on basic principles, so there is an indication it

will be possible to produce a general post-hoc selection procedure. In future it might be also

be useful to use information such as sulphide bonding and hydrophobic exposure to further

classify predictions.

Application to a novel protein with unknown 3D structure: the hu-

man SYCE1 core

Figure 14: Schematic drawing of the SYCE1 construct with each box corresponding to one
predicted alpha helix. The SYCE sequence of approximately 120 amino-acids corresponding
to helices 1-4 is duplicated and linked by a tether to a repeat of the same sequence comprising
of helices 5-8.

Based on the success of utilizing contact predictions to constrain potential models we ap-

plied the algorithm on the structural core of the human SYCE1 protein, a tethered construct

where the sequence is repeated to allow formation of an extended anti-parallel coiled-coils

with two short additional helices at each end that could fold back to form a small 3-helix

bundle. The secondary structure of the tethered protein construct resulted in eight stretches

of alpha-helices where based on the heptad repeats helices 2, 3, and 4, can be aligned to he-

lices 6, 7, and 8 corresponding to the same sequence, respectively in an anti-parallel fashion.

This resulted in 14 close contact predictions between helices 2 and 8, and helices 4 and 6,

respectively, as shown in Figure 14.
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Figure 15: Illustrations of the optimization process used to obtain the model predictions
forthe structural core of human SYCE1 . Panel (a) An initial configuration of the backbone
based only on the sequence data shown in Figure 14. Also shown as spheres are the molecules
of the hydration layer. Large black and white spheres indicate the end termini. (b) the
scattering curve of the initial configuration (blue) over-layed on the scattering data (red).
(c) the model prediction for which χ2

f +χnl +χcon < 0.008, the end termini are next to each
other. (d) the final scattering curve compared to the experimental data.

Deriving the models

Based on the sequence and secondary structure predictions (a combination of those of Raptor

X47 and HHPRED48) 40 initial configurations were generated using the CB algorithm. An

example is shown in Figure 15(a) along with its hydration layer, its scattering curve is

compared to the experimental data (from24) in Figure 15(b). As shown the fitting is limited

to the domain q ∈ [0, 0.3]−1, which balances the twin consideration of a sufficient resolution

and reliable signal to noise ratio. Using monte-carlo optimization the structure is altered

until a reliable fit χ2
f + χnl + χcon < 0.008 is obtained, where the potential χcon is based

on the contact predictions described above. One such model is shown in Figure 15(c) along

with its scattering curve in Figure 15(d). The identical chains of the structure have folded
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(a) (b)

(c) (d) (e)

Figure 16: Illustrations of the model predictions. (a)-(b) are all model predictions. (c) One
of the coiled coil units of (a) with black tubes representing the contact prediction distances,
as see along the axis of the unit. (d) the tilted helical structure of the coiled coil unit. (e) a
model obtained by minimising the chi-squared measure χnl + χcon only.

to lie (nearly) parallel with the end termini occupying a local neighbourhood. Two example

models for which χ2
f+χnl+χcon < 0.008 are shown in Figure 16(a)-(b). Figures 16(c) and (d)

indicate one of the coiled coil structures and depict the pairwise distances associated with the

contact prediction terms χcon. All models share the elongated bend shape with a anti-parallel

coiled-coil arrangement of helix 2-4 to 6-8, respectively. The first helix in each helix (helices

1 and 5, respectively) show different orientations which reflect the expected conformational

flexibility of the protein in solution. Importantly, the central coiled coil (made of helices 3

and 7, respectively) is not based on the constraints given a-priori but is entirely based on

the optimization against the experimental data. Although a bead model results in a similar

overall shape24 our methods is able to derive a more detailed molecular model with distinct

structural features such as the central coiled coil.
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The experimental scattering data is crucial to the prediction quality

One might ask if the contact predictions alone were sufficient to predict the structure, since

they are crucial to forming (some of) the coiled-coil structure. To test this we derived

models by minimising the chi-squared measure χnl+χcon (i.e. ignoring the scattering data),

a typical example is shown in Figure 16(e). The outer α-helicies are present as the contact

prediction constraint χcon force these structures to form. However, the whole structure is

significantly folded. This folding was found to be a typical property of models obtained by

minimsing only χnl+χcon and the degree of folding was far from consistent. The clear effect

of further enforcing the model fit the scattering data is two-fold, first straightening out the

whole structure and secondly, in doing so, developing a coiled-coil geometry in the middle of

the structure.

Fitting to the scattering data and contact predictions is not straightforward

As a final note we note that of the 40 initial structures generated, only 5 obtained a suitably

low combined chi -squared statistic ( χ2
f +χnl+χcon < 0.008). All 5 structures, two of which

are shown in Figure 16, were basically identical in this case (comparative K2 values > 0.9)

so there was not need for any post-hoc structural comparison analysis. By comparison all

40 lead to models for which χnl + χcon < 0.008. As we have just seen there is significant

value in the extra information provided by the scattering data. The difficulty with obtaining

suitable fits indicates that in the future more advanced optimization techniques than a

straightforward monte-carlo search may be needed.

Discussion

This paper describes in depth the development of a tertiary structure model for BioSAXS

data interpretation. A number of key points have been demonstrated with regards to its

potential use to the structural biology community. Firstly, if the method takes as input
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a structure with a similar tertiary structure to the target structure e.g a homology model

or an incomplete (core) model for a structure, then it will likely find a highly accurate fit

to the presumably correct structure, as verified on a benchmark set of proteins. Secondly,

given a near complete absence of tertiary structural information, save that available from

sequence data such as secondary structure predictions, the technique can generate realistic

representations of the structure’s fold. Further, in this ab-initio scenario there is the potential

to reliably separate realistic predictions from those which are not biologically plausible, by

both constraining the fitting procedure and applying optimization filtering. This final result,

demonstrated here on Lysozyme is a significant result; there exists no purely ab-intio SAXS

technique so far which has achieved such detailed predictions of the protein’s fold (a number

of techniques superimpose tertiary and secondary structure into ab-intio bead predictions

but this requires extra information such as a valid homologous structure).

With regards to comparisons to existing techniques there are two categories to be dis-

cussed. The first is the set of different experimental methods used to derive structures in the

protein data bank. The predictions from our methods, applied to small angle scattering data,

can be near this level of quality if a reliable initial structural model is provided. This was

demonstrated in the results section when we used PDB structures as a starting model, the

algorithm yielded structures with RMSD measures (by comparison to the PDB structure)

highly comparable to experimentally obtained models (for α carbon positions). In a purely

ab-initio scenario our results indicate it is currently difficult to obtain this level of accuracy

on a reliable basis (although one can get single angstrom RMSD measures). However, as

shown in Figure 13(d), there is some indication that, if extra constraints such as contact

predictions from homologous sequences can be enforced to a high degree of accuracy, there is

the potential to reach similar levels of structural resolution to these alternative experimental

techniques.

The second comparison would be to SAXS-specific ab-initio techniques for interpreting

BioSAXS data. These include the bead based models such as GASBOR and DAMMIN/DAMMIF.13,49However,
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a direct comparison is not informative because as the nature of the prediction is different.

Neither method makes explicit predictions of the tertiary structure of the molecule. Both are

composed of effective scattering beads, the DAMMIN model aims to predict the volume oc-

cupied by the molecule by creating a cloud of beads whilst GASBOR does aim for a structure

with a chain like nature constraining bead-bead distances, but there is no explicit secondary

structure in the model. In the case of Lysozyme, can see that our predictions also have this

property of occupying a similar volume to the crystal structure in Figure 13(a)-(c) thus is

consistent with the low-resolution ab-intio bead teachniques (see e.g.13) . The advantage of

our model is that it also makes an explicit prediction for the fold geometry of the secondary

structure elements.

The ATSAS package does allow for the interpretation of bead models with tertiary struc-

ture through the use of the CORAL package.49 Given known structures the package attempts

to fit the structure into the bead model with a mixture of known (manually assigned) and

unknown elements. This procedure was performed in24 provide evidence that the SYC1E

core modelled in section was a coiled-coil domain. Two coiled-coils were superimposed on

a bead model with CORAL providing an additional linker section to join them. Our model

simply uses the sequence data to determine the secondary structural elements, then it is

able to try millions of differing (physically realistic) folds which and tests each time if they

satisfy the scattering data, a much more direct and exhaustive test, which relies on far less

user input. What is interesting is that this technique predicts an additional coiled-coil do-

main at the structure’s centre, owing to the sequence interpretation splitting of the helical

units. The method presented in this paper offers more flexibility in terms of using additional

structural constraints and is more amenable to automated structural evaluation, with its

main comparative advantage is the potentially exhaustive automated search of a space of

potential tertiary folds with realistically constrained secondary structure.
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Computation time

A single calculation comprising the CB algorithm, the generation of the hydration layer

and calculation of the scattering curve takes of order 0.05 s for Lysozyme (128 residues)

and 0.5 s for BSA (433 residues), both based on calculations performed on a single CPU,

with the main cost coming from the Debye formula (5). As far as the actual optimization

goes the timing can vary significantly, this depends on the number of secondary units which

can be changed, the randomised initial condition and the difficulty in satisfying additional

restrictions like the contact predictions (and how tightly they have been penalised). The ab-

initio Lysozyme predictions generally varied between 10 min and an hour. For the SYCE1

chain (318 residues) it was closer to 20 hours (that said as mentioned above the predictions

produced in this case were reliably accurate). In future we will look to implement Bayesian

learning techniques for the search, as a large number of models suggested by the Monte-Carlo

sampling overlap themselves and consistently trying such models wastes much time. This

will be crucial to ensuring it can be run for larger molecules in future.

Number of initial models

One might ask how many predictions are required in order to obtain a viable structure (ab

-intio). The examples here present a contrasting picture. The Lysozyme cases consistently

produced structure which fit the scattering data, but as discussed only a relatively small

percentage (about 8%) were considered a sufficiently good fit to the scattering data (i.e.

a sufficiently low RMSD with respect to the PDB structure and high K2 value) and. By

contrast from 40 initial conditions for the SYCE1 molecule only 12.5% were able to fit the

scattering data, but all were near identical (K2 > 0.9) and excellent candidate structures.

It is likely this is because Lysozyme is a globular protein whilst SYCE1 a very flat, linear

structure. It is relatively easy to distort our model into a globular shape, but it allows

for more structural variance, whilst the more linear structure is harder to form but much

more constrained. The consistent evidence is that, currently, one might need at least 10
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optimisation runs in order to obtain a good quality prediction. A future aim will be to

better enforce contact predictions or other constraints during the fitting procedure in order

to bring this ratio down.

Conclusion

As a solution-based technique, BioSAXS can provide structural information for targets where

crystallisation and cryoEM techniques are challenging. In addition, the method allows data

collection in a more natural environment than techniques such as crystallography and cryo-

EM. Additionally, SAXS is not limited by protein size, as is the case for cryo-EM and NMR.

Therefore, there is a clear need to develop the techniques for interpretation of this data in

an ab-initio setting which improve on the levels of structural detail provided by the bead

models currently popular.

In this paper we have shown that curve representation with hydration shell provides a

molecular model for BioSAXS data with fits as good or better than traditional bead and

envelope models. Unlike these models our model includes a complete secondary and tertiary

model description. Importantly, starting from random models that only take secondary

structure information and sequence-dependent distance constraints into account, a physically

meaningful 3D model can be obtained by fitting models against the experimental data. That

this is possible is due to the fact that the model is described with far fewer parameters

compared to even a coarse-grain model that required three coordinates for each amino-acid

combined with use of geometric constraints for regular secondary structural elements.

In order to show the potential of this ab-initio technique it was applied to a tethered

core component of the human SYCE1 protein, for which no high-resolution structural data

is available. The model derived was based on sequence information alone match those of a

model that was previously reported in.24 where the model was based on manual inspection of

the sequences coupled with the fitting of ideal coiled coil segments to experimental scattering
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data. Importantly, whilst the previously modelled structure includes two coiled coil segments,

the model derived here recognised that this was the minimum number of segments required to

explain the curved structure and that the true structure could consist of multiple coiled coils

interrupted by short linkers. Thus, our novel ab-initio method has successfully generated a

highly plausible model from experimental scattering data without the need for any more than

minimal manual evaluation. This facility will be crucial for ab-initio structural determination

(from biosaxs data) of larger molecules where it would not be practical to generate structures

manually.

Further experimental information such as distance information from any other source can

easily been added in the form of additional restraints into the optimization algorithm. The

model’s explicit description of realistic secondary structure means additional information, like

contact predictions, radius of gyration, hydrophobicity of the chain and disulfide bonding

can be employed as model constraints in the future. This will further enhance the accuracy

of all potential models, and in particular help the end-user to distinguish mathematically

correct but physically less likely models from correct solution. The secondary knot fingerprint

statistic developed shows significant potential to evaluate structural similarity of models and

hence to further automate this vital validation step.

The two future next steps are (i) the application of this method to multimeric struc-

tures where each known monomer structure can initially be treated as rigid-body and then

refined in order to account for local changes in solution (ii) the application to larger, de-

novo structures where the exact 3D structure remains elusive. The second goal will require

further refinements of the search space method of the optimization algorithm. The applica-

tion to homo-multimers is straightforward and requires only minor addition to the existing

code, we expect this to be the major initial application of our methods. Due to the limited

information content of small-angle X-ray scattering data the ab-initio fold determination

will depend on the accuracy of secondary structure prediction combined with appropriately

weighted distance constraints such as those discussed above.
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