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Abstract

We analyze an extremely deep 450 μm image (1σ=0.56 mJy beam−1) of a ;300 arcmin2 area in the CANDELS/
COSMOS field as part of the Sub-millimeter Common User Bolometric Array-2 Ultra Deep Imaging EAO Survey.
We select a robust (signal-to-noise ratio �4) and flux-limited (�4 mJy) sample of 164 submillimeter galaxies
(SMGs) at 450 μm that have K-band counterparts in the COSMOS2015 catalog identified from radio or mid-
infrared imaging. Utilizing this SMG sample and the 4705 K-band-selected non-SMGs that reside within the noise
level �1 mJy beam−1 region of the 450 μm image as a training set, we develop a machine-learning classifier using
K-band magnitude and color–color pairs based on the 13-band photometry available in this field. We apply the
trained machine-learning classifier to the wider COSMOS field (1.6 deg2) using the same COSMOS2015 catalog
and identify a sample of 6182 SMG candidates with similar colors. The number density, radio and/or mid-infrared
detection rates, redshift and stellar-mass distributions, and the stacked 450 μm fluxes of these SMG candidates,
from the S2COSMOS observations of the wide field, agree with the measurements made in the much smaller
CANDELS field, supporting the effectiveness of the classifier. Using this SMG candidate sample, we measure the
two-point autocorrelation functions from z=3 down to z=0.5. We find that the SMG candidates reside in halos
with masses of ;(2.0±0.5)×1013 h−1M☉ across this redshift range. We do not find evidence of downsizing that
has been suggested by other recent observational studies.

Unified Astronomy Thesaurus concepts: Clustering (1908); Submillimeter astronomy (1647); High-redshift
galaxies (734); Galaxy evolution (594); Large-scale structure of the universe (902); Galaxy formation (595)

1. Introduction

Over the past two decades, a class of far-infrared luminous
galaxies has been discovered at submillimeter wavelengths.

The extreme infrared luminosities observed in these submilli-
meter galaxies (SMGs) suggest that they are dusty and
considered to be among the most intensively star-forming
sources in the universe (Smail et al. 1997; Barger et al.
1998, 1999; Hughes et al. 1998; Eales et al. 1999). SMGs
appear to have a redshift distribution peaking at z ; 2.5 with
the majority of them at z=1.5–3.5 (Barger et al. 2000;
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Chapman et al. 2003, 2005; Pope et al. 2006; Aretxaga et al.
2007; Wardlow et al. 2011; Michałowski et al. 2012b, 2017;
Yun et al. 2012; Simpson et al. 2014, 2017; Chen et al. 2016;
Koprowski et al. 2016; Danielson et al. 2017; Dunlop et al.
2017; Stach et al. 2019; Dudzevičiūtė et al. 2020), occupying
the same putative peak epoch of unobscured star formation
(Madau & Dickinson 2014) and active galactic nucleus (AGN)
activity (Schmidt et al. 1995; Hasinger et al. 2005; Wall et al.
2008; Assef et al. 2011). The total infrared luminosities (LIR;
8–1000 μm) of SMGs are similar to local ultra-luminous
infrared galaxies (Sanders et al. 1988; Sanders & Mirabel 1996;
Farrah et al. 2001; Armus et al. 2009), reaching values greater
than a few times 1012 L☉ or even higher than 1013 L☉ for some
of the brightest sources. This corresponds to star formation
rates (SFRs) ranging from around 100M☉ yr−1 to more than
1000M☉ yr−1 (Hainline et al. 2011; Barger et al. 2012;
Swinbank et al. 2014; da Cunha et al. 2015; Simpson et al.
2015; Dudzevičiūtė et al. 2020).

Violent gas accretion, potentially induced by mergers, is the
most likely explanation to date for the intensive star formation
of SMGs (Frayer et al. 1998; Conselice et al. 2003; Greve et al.
2005; Tacconi et al. 2008; Engel et al. 2010; Swinbank et al.
2010; Alaghband-Zadeh et al. 2012; Menéndez-Delmestre
et al. 2013; Chen et al. 2015; Koprowski et al. 2016;
Michałowski et al. 2017; Chang et al. 2018). Large amounts
of gas accretion can result in a short-lived starburst possibly
followed by a quasar phase. Feedback mechanisms from star
formation or black hole accretion could have injected sufficient
energy to heat the remaining gas or expel it from the galaxy to
prevent further star formation (Silk & Rees 1998; Fabian 1999;
Trayford et al. 2016). This scenario may be responsible for the
formation of the most massive (M*>1011M☉) elliptical
galaxies in the local universe (Lilly et al. 1999; Hopkins et al.
2005; Simpson et al. 2014; Toft et al. 2014; Dudzevičiūtė et al.
2020; Rennehan et al. 2020). Therefore, the cosmological
evolution of SMGs is crucial for our understanding of the
formation of massive galaxies in the universe.

Comparison of clustering measurements with dark matter
simulations can provide constraints on the masses of dark
matter halos that a given galaxy population resides in
(Peebles 1980) and further trace the evolution of the given
galaxy population. Previous clustering analyses of SMGs
identified in shorter (250–500 μm; Cooray et al. 2010; Maddox
et al. 2010; Mitchell-Wynne et al. 2012; van Kampen et al.
2012; Amvrosiadis et al. 2019) and longer (850–1100 μm;
Scott et al. 2002; Webb et al. 2003; Weiß et al. 2009; Lindner
et al. 2011; Williams et al. 2011; Hickox et al. 2012; Wilkinson
et al. 2017; An et al. 2019) submillimeter wave bands have
revealed that SMGs reside in high-mass (1012–1013 h−1M☉)
dark matter halos. These values are also consistent with
previous estimates from a sample of obscured starburst galaxies
reported by Béthermin et al. (2014), in which they used a
combined BzK color criterion and Herschel/PACS data to
study the clustering signal of obscured starburst galaxies at
1.5<z<2.5 as a function of their physical parameters. These
results suggest that SMGs may be the progenitors of massive
elliptical galaxies in the local universe (Hughes et al. 1998;
Eales et al. 1999; Swinbank et al. 2006; Targett et al. 2011;
Miller et al. 2018; Wang et al. 2019). However, many of these
previous studies were limited by either the modest samples of
SMGs (;100 sources) or a lack of reliable identifications and

redshift measurements, which makes their estimated clustering
signals highly uncertain.
More precise determinations of the clustering properties with

sizable SMG samples have been performed by Chen et al.
(2016), Wilkinson et al. (2017), Amvrosiadis et al. (2019), and
An et al. (2019). Chen et al. (2016) identified a sample of
;3000 faint SMGs (S850 μm<2 mJy) using a color selection
technique and compared their clustering properties with other
galaxy populations in the redshift range 1<z<5. Wilkinson
et al. (2017) performed a clustering analysis using a sample of
;600 850 μm–selected SMGs in the UKIDSS Ultra Deep
Survey field in the redshift interval 1<z<3. Amvrosiadis
et al. (2019) studied the clustering properties for a sample of
;120,000 Herschel-selected SMGs with flux densities
S250 μm>30 mJy in low (z<0.3) and high (1<z<5)
redshift intervals. An et al. (2019) identified ;7000 potential
850 μm–selected SMGs in the COSMOS field based on a radio
+machine-learning method trained on the Atacama Large
Millimeter/submillimeter Array (ALMA)–identified sample
(An et al. 2018) and studied their clustering properties.
These aforementioned recent studies were able to measure

the clustering signals from SMGs as a function of redshift.
Wilkinson et al. (2017) found that the clustering appears to
exhibit tentative evolution with redshift, such that the SMG
activity seems to be shifting to less massive halos at lower
redshifts z=1–2 and consistent with the downsizing scenario
(Cowie et al. 1996; Magliocchetti et al. 2014; Rennehan et al.
2020) that the contribution of luminous sources dominates in
the early universe, whereas the growth of the less luminous
ones continues at lower redshifts. In contrast, Chen et al.
(2016), Amvrosiadis et al. (2019), and An et al. (2019) did not
find such a trend, suggesting that SMGs reside in a typical halo
mass of about 1013 h−1M☉ across the redshift range
1<z<5. The discrepancies in the lower-redshift bins could
be simply caused by the measurement uncertainties (uncertain
identifications and/or poor redshift measurements) or by the
different methodologies that are adopted in the clustering
analyses, where Wilkinson et al. (2017) relied on the cross-
correlation technique with an abundant K-band selected
sample, while Chen et al. (2016), Amvrosiadis et al. (2019),
and An et al. (2019) adopted an autocorrelation technique.
However, these studies did not probe the clustering signals in

a key redshift range (0.3<z<1.0; cosmic time ranges from
6.0 to 10.4 Gyr) in which the downsizing effect, if it exists, is
expected to increase. This is likely caused by the longer-
wavelength observations being more sensitive to high-redshift
sources. The traditional 850 μm selection allows us to measure
clustering at z>1 (Chen et al. 2016; Wilkinson et al. 2017; An
et al. 2019), whereas the studies based on Herschel at shorter
wavelengths (e.g., 250 μm; van Kampen et al. 2012;
Amvrosiadis et al. 2019) are mainly sensitive to the brightest
low-redshift sources (S250 μm>30 mJy) due to their positive
K-correction. Using spectral energy distribution (SED) tem-
plate fitting on the far-infrared photometry to estimate redshifts
for sources without optical counterparts, Amvrosiadis et al.
(2019) extended the Herschel-based clustering studies to z>1,
finding results consistent with those obtained from the 850 μm
selection. However, the large redshift uncertainties (;0.3 for
z=1; Amvrosiadis et al. 2019) have the consequence that they
cannot meaningfully measure the clustering signals in the low-
redshift regime.
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Observations at mid-infrared (e.g., 24 μm) can be used to
overcome the aforementioned selection bias and probe the
clustering signals in the key redshift range of 0.3<z<1.0
(Gilli et al. 2007; Magliocchetti et al. 2008; Starikova et al.
2012; Dolley et al. 2014; Solarz et al. 2015). These studies
found relatively lower clustering strengths at z<1 with
clustering length r0=3–6 h−1 Mpc compared to the high-
redshift measurements. This finding is similar to the work of
Magliocchetti et al. (2013) based on Herschel/PACS 100 μm–

selected sources, in which they found clear evidence for the
downsizing effect at redshifts limited to z  1. However, the
clustering lengths also correlate with the infrared luminosities,
where the galaxies with higher LIR (higher SFRs) tend to have
stronger clustering signals (Dolley et al. 2014; Toba et al.
2017). The majority of the sources in the above studies at 24
and 100 μm are biased toward a fainter population with LIR ;
1011 L☉ at z<1, which prevents us from making a fair
comparison with the SMGs at z>1 that have LIR>1012 L☉.

In this paper, we base our analysis on the 450 μm data
obtained from the Sub-millimeter Common User Bolometric
Array-2 (SCUBA-2; Holland et al. 2013) camera on the 15 m
James Clerk Maxwell Telescope (JCMT). The 450 μm
observations allow us to obtain photometric measurements
closer to the redshifted SED peak of typical SMGs
(λrest;100 μm) so they provide a closer match to far-infrared
luminosity selection compared to longer-wavelength observa-
tions. The 450 μm observations also allow us to probe the
SMGs at lower redshifts (z;1.5), with the majority of them at
z=0.5–3.0 (Casey et al. 2013; Simpson et al. 2014; Bourne
et al. 2017; Zavala et al. 2018; Lim et al. 2020). We have
pushed the frontier of the 450 μm imaging by initiating a new
SCUBA-2 imaging survey in the CANDELS/Cosmic Evol-
ution Survey (COSMOS; Scoville et al. 2007) field, called the
SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES; Wang
et al. 2017). By including all of the archival data, we have
constructed an extremely deep single-dish image at 450 μm
(σ450 μm=0.56 mJy beam−1), which is the deepest image yet
obtained at 450 μm. A series of papers has been published
based on STUDIES, including number counts (Wang et al.
2017), stellar morphology (Chang et al. 2018), and multi-
wavelength properties of the sample (Lim et al. 2020). In this
work, we develop a machine-learning classifier based on 164
sources that have 450 μm flux density � 4 mJy, signal-to-noise
ratio (S/N) � 4, and K-band counterparts from their radio or
mid-infrared identifications. Our machine-learning classifier
labels a sample of 6182 SMG candidates in the wider
COSMOS field. We employ an autocorrelation technique on
the SMG candidates to statistically estimate their clustering
signal, which allows us to infer the dark matter halo mass and
to constrain the clustering evolution of SMGs from z=3 down
to z=0.5.

This paper is structured as follows. In Section 2, we introduce
the ancillary data in the COSMOS field, as well as the
observations, data reduction techniques, source extraction
procedure, and training data set. In Section 3, we describe the
machine-learning methodology we use for SMG candidate
identification. In Section 4, we verify our machine-learning
technique in selecting the SMG candidates. We present the
comparison samples in Section 5 and the clustering properties of
SMG candidates in Section 6. We summarize our findings in
Section 7. Throughout this work, the standard errors of our
sample distribution medians are estimated from bootstrap

analysis. The term “SMG candidates” in this work represents
the machine-learned candidates of 450 μm-selected SMGs,
unless otherwise stated. We adopt cosmological parameters
H0=70 km s−1Mpc−1, ΩΛ=0.70, Ωm=0.30, and σ8=0.83
(Planck Collaboration et al. 2014).

2. Data

2.1. Main Data

The SCUBA-2 camera contains 5000 pixels (field of view
;45 arcmin2) in each of the 450 and 850 μm detector arrays.
The SCUBA-2 camera operates at 450 and 850 μm simulta-
neously and provides an unprecedented mapping speed,
meaning that it can efficiently survey large areas of sky at
450 and 850 μm. The beam size of SCUBA-2 is 7 9 at
450 μm, which is an order of magnitude smaller in area
compared to far-infrared observations from Herschel at similar
wavelengths (24″–35″). The 450 μm data presented in this
paper come from three sources: STUDIES (Wang et al. 2017),
the data taken by Casey et al. (2013, hereafter C13), and the
SCUBA-2 Cosmology Legacy Survey 450 μm campaign in the
COSMOS field (S2CLS-COSMOS; Geach et al. 2013, 2017).
We briefly describe these programs in turn.
STUDIES is a JCMT Large Program that aims to reach the

confusion limit at 450 μm within the CANDELS (Grogin et al.
2011; Koekemoer et al. 2011) footprint in the COSMOS field.
The mapping center of STUDIES is R.A.=10h00m30 7 and
decl.=+02°26′40″. The CV DAISY mapping pattern was used,
resulting in an 3′ diameter area of approximately uniform
coverage of high sensitivity, with noise level increasing outside
of this area as a function of radius. In this work, we only adopt
the STUDIES data that were collected until 2019 April,
amounting to 252 hr of exposures, about 84% of the total
allocated integration (330 hr) for the whole project. We note that
data collection for STUDIES is now 99% complete (by 2020
April), and the final version of the deeper image and source
catalog will be published in the future. In addition, as part of the
S2CLS project, the 450 μm S2CLS-COSMOS was observed
with two CV DAISY maps offset by 2′ in decl. from the central
pointing of R.A.=10h00m30 7 and decl.=+02°22′40″, with
some overlap resulting in an area of ;13 arcmin2 with noise
level <5 mJy beam−1. The total on-sky integration of S2CLS-
COSMOS is 150 hr. The survey of C13 used the PONG-900 scan
pattern, mapping with a center of R.A.=10h00m28 0 and
decl.=+02°24′00″, resulting in a wider circular map that
reaches a uniform depth over an area of approximately
700 arcmin2. The total on-target time of C13 is 38 hr, and these
data are much shallower compared to the STUDIES and S2CLS
data sets. The majority of the aforementioned observations
were conducted under the best submillimeter weather on
Maunakea (“Band 1”, τ225 GHz < 0.05, where τ225 GHz is the
sky opacity at 225 GHz).
The procedure used for data reduction are similar to those in

Wang et al. (2017) and Lim et al. (2020). In brief, we apply the
following steps.

1. The raw time-stream data from SCUBA-2 were flat-
fielded using the flat scans that bracket each science
observation, and the data were scaled to units of pW.

2. The time streams were then assumed to be a linear
combination of noise and signal from the background
(atmospheric water and ambient thermal emission), as
well as astronomical objects. The procedure then entered
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an iterative stage that attempts to fit these components
with a model by using the Dynamic Iterative Map-
Maker routine of Sub-Millimeter Common User Reduc-
tion Facility (SMURF; Chapin et al. 2013).

3. We then calibrated the individual reduced scans into units
of flux density by using the weighted mean flux
conversion factor (FCF) of 476±95 Jy beam−1 pW−1.
The adopted FCF was estimated from a subset of
submillimeter calibrators observed under Band-1 weather
during the survey campaigns and was consistent with the
canonical value estimated from a wider base of
calibrators (Dempsey et al. 2013).

4. Individual scans were then co-added in an optimal, noise-
weighted manner, by using the MOSAIC_JCMT_IMAGES
recipe from the PIpeline for Combining and Analyzing
Reduced Data (PICARD; Jenness et al. 2008).

5. To improve the detectability of faint point sources, we
convolved the map with a broad Gaussian kernel of
FWHM=20″ and subtracted the convolved map from
the original maps to remove any large-scale structure in
the sky background. We then convolved the subtracted
map with a Gaussian kernel that is matched to the
instrumental point-spread function (FWHM=7 9,
Dempsey et al. 2013). We used the SCUBA2_MATCH-
ED_FILTER recipe in the PICARD environment for this
procedure.

Finally, we constructed an extremely deep 450 μm image,
with the STUDIES, C13, and S2CLS-COSMOS data combined
(Figure 1). The final image covers a sensitive region of

;300 arcmin2. The instrumental noise level in the deepest
regions is ;0.56 mJy beam−1, which is roughly 16% deeper
than those in previous works (Lim et al. 2020).

2.2. Ancillary Data

We employed radio and near-/mid-infrared identifications to
construct a sample of SMG counterparts used for this work
(Section 2.3). In the radio, we used the catalog from the Jansky
Very Large Array (VLA) Large Project survey at 3 GHz (VLA-
COSMOS; Smolčić et al. 2017). In the near-infrared, we
employed the archival IRAC catalog (Sanders et al. 2007)
obtained from the Spitzer Space Telescope. In the mid-infrared,
we generated our own 24 μm catalog using SExtractor
(Bertin & Arnouts 1996), since the archival MIPS 24 μm
catalog (Sanders et al. 2007) only contains sources with

>mS 15024 m μJy. We run SExtractor in the S-COSMOS
24 μm image (Sanders et al. 2007) and recalibrated our extracted
24 μm fluxes to their Spitzer General Observer Cycle 3 total
flux. Our generated catalog has a 3.5σ detection limit of 57 μJy
without using positional priors from other wavelengths. We
verify that our generated catalog is in good agreement with the
deep Spitzer catalog ( >mS 8024 m μJy) provided by Le Floc’h
et al. (2009) with a median value of ∣ ∣D =m m -

+S S 6 %24 m 24 m 4
10

and with median flux peak offsets of Δα=0 0±0 3 and
Δδ=0 3±0 3.
We utilized the multiwavelength band-merged COS-

MOS2015 catalog compiled by Laigle et al. (2016), which
includes 30+ bands of photometric data, spanning from X-ray
through the near-ultraviolet and optical to the far-infrared.

Figure 1. JCMT SCUBA-2 450 μm S/N image, showing the positions of the 164 S/N � 4 and S450 μm � 4 mJy sources with K-band counterparts based on the VLA
and MIPS identifications (red circles). The cyan contours show the instrumental noise levels with contours at 1, 5, 9, 13, and 17 mJy.
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We used the combined “FLAG_HJMCC=0 (or 2)” and
“FLAG_COSMOS=1”, which is the region covered by
UltraVISTA-DR2 occupying an area of 1.6 deg2 in the
COSMOS field. The near-infrared data (e.g., K-band) is
essential for accurate photometric redshift and stellar-mass
estimates, and the observed K-band magnitude correlates well
with stellar mass up to z∼4 (Laigle et al. 2016). To ensure a
uniform selection, we further limited ourselves to galaxies with
K-band magnitude of mK<24.5 magAB (limiting magnitude at
3σ in a 2″ diameter aperture from Laigle et al. 2016). The
COSMOS2015 catalog also provides stellar-mass and redshift
estimations, which are used in our sample selection (Section 5)
and clustering analysis (Section 6). The stellar-mass and
redshift measurements in the COSMOS2015 catalog were fitted
using the LE PHARE code (Arnouts et al. 1999; Ilbert et al.
2006). In this work, we do not exclude AGNs from our sample,
and we refer readers to Laigle et al. (2016) for further details.

We employed a stacking technique to assess the averaged
450 and 850 μm flux density of our SMG candidates
(Section 4) using the wide-field SCUBA-2 image from
S2COSMOS (Simpson et al. 2019). S2COSMOS is an EAO
Large Program that has mapped the entire COSMOS field to a
uniform depth at 850 μm of σ=1.2 mJy beam−1. Thanks to
the dual-band observing capability of SCUBA-2, 450 μm data
were simultaneously obtained. While S2COSMOS is designed
for the 850 μm imaging (it has been carried out under weather
conditions less suitable for 450 μm observations), the large area
and the depth reached 1σ ; 12 mJy beam−1 at 450 μm allow us
to obtain strong constraints on the stacked flux of the SMG
candidates.

2.3. Training Sample

The methodologies employed here for source extraction and
counterpart identification are similar to those in Lim et al.
(2020). We briefly summarize the method here, referring
readers to Lim et al. (2020) for further details.

We employed a source extraction method similar to the
“CLEAN” deconvolution in radio interferometric imaging. We
identified the most significant peak in the S/N map and
subtracted 5% of a peak-scaled model point-spread function
from the image at its position. The subtracted flux and
coordinates were then cataloged, and the subtraction was
iterated until a significance threshold floor (=3.5σ) was
reached. We summed up the subtracted fluxes and the
remaining threshold flux density and took this to be the final
flux density for each source. In this work, we limited our
450 μm–selected sample to the sources with total integrated
S/N over the “CLEAN”ed area �4 due to the relatively high
fraction of spurious sources (�20%) at S/N < 4. We further
limited our sources to those with S450 μm�4 mJy beam−1 to
achieve a more uniform selection and to address the nonuni-
form sensitivity coverage of our map. In total, we obtained 221
such sources from a region of ;300 arcmin2.

To construct the K-band source catalog for our 450 μm–

selected sample, we first cross-matched the positions of 450 μm
sources with positions from the VLA-COSMOS 3 GHz radio
catalog (Smolčić et al. 2017) using a 4″ search radius. In total,
we found 131 VLA-identified sources, and this procedure is
expected to produce ;3 false matches out of the 131. The
expected false matches are derived from the number density of
the matched catalog at a certain search radius and then
multiplied by the total number of matched sources. We then

cross-matched the radio positions with coordinates from the
Spitzer IRAC near-infrared catalog (Sanders et al. 2007) using
a 1″ search radius (;4 expected false matches out of 123). For
the remaining 90 450 μm sources without radio counterparts,
we cross-matched them to the Spitzer MIPS 24 μm catalog
using a search radius of 4″ (;4 expected false matches out of
65). Based on the 24 μm positions, we then made a positional
matching in the IRAC near-infrared catalog by using a 2″
search radius (;2 expected false matches out of 52). Once we
obtained the IRAC positions from the mid-infrared or radio
counterparts, we associated these sources with the band-merged
COSMOS2015 photometric catalog (Laigle et al. 2016) using a
search radius of 1″.
Among the 221 sources, 164 (74%±6%) of the SMGs have

K-band counterparts, of which, 117 sources are VLA-identified
and 47 are MIPS-identified. All of them are detected sig-
nificantly according to a corrected-Poissonian probability
identification technique (p-values <0.05; see Downes et al.
1986). We employed these 164 sources as our SMG data set for
the machine-learning algorithm (Section 3). It is worth noting
that 57 sources (26%±3% of total 221 sources) do not have
MIPS/VLA counterparts and so they are not in the training set.
This missing population does not exhibit significant variation
in 450 μm flux density compared to the sources having MIPS/
VLA identifications with p-value of 0.16 in a Kolmogorov–
Smirnov test (KS test). These 57 sources most likely lie at
higher redshifts (z  3; see also Figure 4 in Lim et al. 2020)
due to the fact that the mid-infrared and radio wave bands do
not benefit from a strong negative K-correction, so they are
biased against identifying the high-redshift SMGs. Therefore,
we do not expect a significant impact from this missing
population on our final results (Section 6), which mainly focus
on z<3.
To construct a non-SMG sample for the training that is

undetected by SCUBA-2 but within the SCUBA-2 footprint, we
select 4705 K-band-selected sources that reside within the noise
level �1mJy beam−1 region of the 450 μm image. We adopt
their K-band magnitudes and color–color pairs (i.e., flux ratios)
to be the feature vectors in the machine-learning algorithm.
Given the faint optical magnitudes of most of our SMG sample,
we only adopt the broadband photometries from COSMOS2015
catalog in this work. In total, we have 79 features, of which,
78 features are derived by the interlacing color quantities from
13-band photometry ( + ++uBVri z JHK [3.6][4.5][5.8][8.0]).

3. Machine-learning Methodology

3.1. Performance Measures of Classification

Before introducing our machine-learning methodology, we
first describe how we verify the performance of the classifica-
tion. In the field of machine learning, a confusion matrix is
often used to describe the performance of a classification model
(Table 1). The confusion matrix has four terms: true positive
(TP) refers to an actual positive sample correctly labeled as

Table 1
Confusion Matrix for Binary Classification

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
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positive; false positive (FP) is a sample incorrectly flagged as
positive while in reality it is negative; false negative (FN)
corresponds to real positive cases incorrectly flagged as
negative; and true negative (TN) represents an actual negative
sample correctly labeled as negative. From these categories,
one can compute the precision, recall (in other words, the
sensitivity or true positive rate, TPR), and false positive rate
(FPR) as

=
+

=
+

=
+

Precision
TP

TP FP
,

Recall
TP

TP FN
, and

FPR
FP

FP TN
.

The precision represents the proportion of all correct positive
predictions, while recall is the recovery of all real positive cases
that are predicted to be positive. Conversely, the FPR is the
ratio between the number of actual negative cases wrongly
categorized as positive and the total negative cases.

Several meaningful indicators are often used to verify the
performance of a classifier. The f1-measure (Rijsbergen 1979)
considers both precision and recall to compute a score. This f1-
score can be interpreted as a harmonic average of precision and
recall, which can be measured as

( )- =
´ ´

+
f1 score

2 Precision Recall

Precision Recall
. 1

The f1-score reaches its best value at 1 and worst at 0.
Another standard test for evaluating a binary decision problem

is using the Receiver Operating Characteristic (ROC) Curve
that is plotting TPR against FPR (Provost et al. 1997). A perfect
classifier, which has no FN and FP, will have a high value
of TPR and low value of FPR. Therefore, a higher value of
the area under the ROC curve (AUROCC) corresponds to a
better classifier.

3.2. Methodology

In this work, we adopt the extreme gradient boosting
(XGBoost; Chen & Guestrin 2016) method that is designed
based on a scalable gradient tree boosting learning, since the
XGBoost performs the best for identifying the SMG candidates
in our sample (Section 3.5; see also other similar works done
with XGBoost, An et al. 2018, 2019; Liu et al. 2019). The idea
of gradient tree boosting is to build an ensemble of simpler
estimators (usually they are decision trees) and convert them
sequentially into a complex predictor. During the iterations of
building the trees, each tree will correct the error between the
predictions and the actual output from the existing trees and
minimize the training error of the ensemble. The contribution of
each tree can be scaled to reduce the influence of each tree that
will leave more space for future trees to improve the ensemble.
This process will lead to a better model and prevent the behavior
of over-fitting (Friedman 2000, 2002). Typically, smaller values
of this weighting (i.e., learning rate or shrinkage) seem to
produce a better performance (Friedman 2000).

XGBoost is designed to push the limit of computational
resources and improve the model performance for the gradient
tree boosting algorithm. XGBoost performs a split finding
algorithm that enumerated over all possible splits on all
features and finds the best split in tree learning. The advantage

of XGBoost over other techniques is that it can handle missing
features. When the algorithm encounters a missing value, it is
labeled as going into the default direction, which was already
learned from the data.
In this work, we define 70% of our data to be the training set

and the rest as the test set, where the training set builds the
model, and the testing set evaluates the modelʼs performance.
In principle, the predictor performs better with a larger fraction
of training data. On the other hand, the performance statistic
will have greater variance if there is less testing data
(Kohavi 1995). To strike a balance, we have tried changing
the ratios of our training and testing sets from 50:50 to 90:10,
and we verify that the XGBoost performs the best in both
AUROCC and f1-score with a 70:30 split.
To avoid over-fitting, we adopt an early stopping in

XGBoost after five training iterations that do not yield any
improvements. To control the balance of positive and negative
weights, we set the scale_pos_weight=28.7, which is given
by the ratio between the number of negative and positive
instances (4705/164; see Section 2.3).

3.3. Feature Selection

Feature selection is an important process in machine learning
that strongly influences the performance of the model. Feature
selection is a procedure of selecting a subset of relevant
features for model construction. In general, proper feature
selection can increase the efficiency by reducing the training
duration, enhancing generalization by reducing over-fitting,
and improving the prediction performance (see Chen &
Guestrin 2016; An et al. 2019).
A trained XGBoost model will automatically calculate

feature importance and provide the feature importance scores.
In this work, we first trained the XGBoost model based on the
training data set and selected features by sorting feature
importance scores calculated from the trained model. We then
iteratively trained the model based on the selected subset of
features until the point of best performance. We verified that
both f1-score and AUROCC increase with the number of
selected features until we use up all 79 features. Therefore, we
did not reduce the number of feature vectors in this work.
Considering the limitations of our computational resources, we
repeated this procedure 10 times by using a different
combination of training and test data sets in each iteration
and estimated the average feature importance score from these
10 realizations. The top five important features in our sample
are: K, ([3.6]−[4.5]), (K − [4.5]), ([3.6]–[5.8]), and (H − K ),
which are similar to those photometric wave bands used by
Chen et al. (2016; Optical-Infrared Triple Color: (z − K ),
(K − [3.6]), and ([3.6]–[4.5])) and An et al. (2019; (z − K ),
(J − K ), (K − [3.6]), and ([3.6]–[4.5])). The top five important
features in our sample can be associated to fundamental
physical properties. The K-band flux roughly maps to the stellar
mass, while the SMGs appear to be red and occupy a relatively
well-defined region in near-infrared color–color space (see also
Chen et al. 2016; An et al. 2019).

3.4. Tuning the Hyper-parameters

The hyper-parameters are a set of parameters that define the
machine-learning algorithm as a mathematical formula. The
hyper-parameters act as tuning functions that are set during
the training of the model. We optimized the hyper-parameters
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in XGBoost using k-fold cross-validation (An et al. 2019). This
is a resampling procedure used to iteratively evaluate the
performance of machine-learning models on a limited data
sample. In each iteration, this procedure randomly divides the
training data set into k groups/folds (approximately equal size).
Each unique fold is treated as a validation set, and the model is
fitted on the remaining -k 1 folds. The validation set is
replaced k times, and the average performance measure of the
k sets is then reported. In this work, we used k=5 and adopted
the AUROCC as the scoring function to optimize the
hyper-parameters of the XGBoost classifier. We used the
RandomizedSearchCV recipe from the python-based
scikit-learn package (Pedregosa et al. 2011). Rando-
mizedSearchCV randomly searches over a combination of
hyper-parameter space and finds the best solution for the
constructed model. In the same computational budget,
RandomizedSearchCV can find models that are as good
or better compared to a pure grid search (Bergstra &
Bengio 2012). In this work, we set the number of iterations
to 200. We verify that both f1-score and AUROCC converge
after 200 iterations (confirming up to 300 iterations).

3.5. Algorithms Comparison

We repeated the procedure in Section 3.4 10 times by using
exactly the same combinations of training and test data sets used
in Section 3.3 for each iteration. Each optimizer gives different
results in labeling the SMG candidates in accordance with the
expectation. We verify that the labeled SMG candidates change
within 10% from each optimizer. The mean performance from
these 10 optimizers is summarized in Table 2.

We also test the performance of XGBoost against other
machine-learning algorithms. To make a fair comparison, we
replaced the missing data with the detection limits of each
feature vector since most of the other algorithms do not handle
missing values. We optimized each of the algorithms (similar to
what was done in Section 3.4) and repeated the procedure
10 times by using the exactly same combinations of training
and test data sets used in Section 3.3 in each iteration. As
shown in Table 2, the XGBoost method with missing values
performs the best in terms of both AUROCC and f1-score.
Furthermore, we verify that the values of AUROCC, f1-score,
precision, and recall do not change significantly with redshift
when we review our test data set in specific redshift bins.

3.6. Result from the XGBoost Algorithm

To accommodate the different results from each optimizer
due to different combinations of training and test data sets, we
adopt the following approach so that the training results are
close to the mean performance from the 10 optimizers
mentioned in Section 3.4. We combined the predicted class
probabilities (output from predict_proba algorithm in
scikit-learn package) from each optimizer by using a
combined probability formula ( )P P P... n1 2 n

1
, where n is 10 in this

work. We labeled the sources that have a final class probability
�0.5 (the default threshold for two-classes classification in
XGBoost), as SMG candidates. This procedure is similar to the
bootstrap aggregating, so called bagging (Breiman 1996).
Bagging is a two-step process: bootstrapping and aggregating.
Bootstrapping is a sampling method that randomly selects
several subsets of samples from the entire data set. The
individual subset of samples is then taken as the training data
set for the machine-learning models. The aggregation then
combines the model predictions from those subsets into a final
prediction considering all possible outcomes. In short, the
bagging procedure can generate an aggregated predictor from
multiple predictors, which can improve the stability and
accuracy of machine-learning algorithms and reduce variance
to avoid over-fitting (Breiman 1996).
To validate the performance of the aggregated predictor, we

isolated 30% of our sample as the independent test sample and
split the remaining 70% into 50%:20% for training. We trained
the 50%+20% data set 10 times in XGBoost, in which the 50%
and 20% subsamples were randomly drawn in each iteration.
We used the trained classifiers to estimate the predicted class
probabilities of the isolated 30% test set in each iteration and
performed the bagging procedure in their probabilities. We
confirmed that the performance of the aggregated predictor
(precision and recall) is almost the same as the mean
performance (precision and recall) from those 10 iterations,
indicating that the aggregated predictor is a representative
classifier for a number of classifiers. Therefore, we conclude
that the performance of the aggregated classifier (after the
bagging procedure) should be similar to the mean performance
shown in Table 2.
Based on the adopted training results, there is a non-

negligible degree of misidentification (precision=0.59±
0.04) and incompleteness (recall=0.68±0.07) in our
classifications. It is therefore worth investigating which
population is labeled incorrectly as SMGs while, in reality, it

Table 2
Performance of Test Samples Using Several Machine-learning Methods

Methodology AUROCC f1-score Precision Recall

Adaptive boosting 0.97±0.01 0.55±0.07 0.80±0.07 0.43±0.09
Decision tree 0.92±0.02 0.36±0.03 0.23±0.03 0.87±0.07
Logistic regression 0.97±0.01 0.56±0.07 0.77±0.08 0.46±0.10
Random forest 0.97±0.01 0.54±0.07 0.81±0.08 0.41±0.07
Stochastic gradient boosting 0.96±0.01 0.61±0.03 0.74±0.06 0.53±0.05
Support vector machines 0.91±0.04 0.51±0.04 0.78±0.06 0.38±0.05
XGBoost 0.97±0.01 0.57±0.07 0.51±0.14 0.73±0.12
XGBoost (with missing values) 0.97±0.01 0.63±0.02 0.59±0.04 0.68±0.07

Note. We replace the missing data with the detection limits of each feature vector, since most of the other algorithms do not handle missing values. The XGBoost
method with missing values (marked in bold) performs the best for both AUROCC and f1-score.
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is not (i.e., the FP) and what fraction of SMGs are labeled
incorrectly as field galaxies (i.e., the FN) by our trained
XGBoost algorithm. To do this, we investigate the properties of
FP in each of the 10 iterations. The median stellar mass and
median redshift of our training SMGs are log(M*/M☉)=

-
+10.76 0.02

0.04 and = -
+z 1.64 0.07

0.16, respectively, and their median
stacked flux is (7.1±0.5)mJy at 450 μm based on our
STUDIES image. We find that the overall properties of FP have
a median redshift of z=2.0±0.3, median stellar mass of
log(M*/M☉)=10.7±0.1, and median stacked flux of
(2.5±0.5)mJy at 450 μm, based on our STUDIES image.
These findings show that the FP has a similar stellar mass to
the training SMG sample but appears to have slightly higher
redshifts compared to the training SMG sample and is less
active in obscured star formation. Meanwhile, we carry out
the same investigation for the FN. The overall properties
of FN have median redshift z=1.4±0.2, median stellar
mass log(M*/M☉)=10.5±0.1, and median stacked flux
(6.0±0.5)mJy at 450 μm. These findings show that our
classifier may miss the population that is slightly less massive
and lower in redshift compared to our training SMG sample.
We conclude that the effectiveness of our classifier could be
hindered by the fuzzy boundary between the SMGs and the
less-active star-forming galaxies having similar stellar masses.
We do not expect that this finding will impact our final
clustering measurements significantly in Section 6, where we
show that the clustering signals of star-forming galaxies are
very similar to the SMG candidates once they are matched in
redshift and stellar mass.

As an additional test, shown in the Appendix, we have
applied two distinct machine-learning algorithms with different
levels of recall and precision and show that the clustering
signals recovered for the SMGs are robust. The SMG
candidates that are identified by decision tree (better recall)
and random forest (better precision) yield clustering signals that
are not significantly different from the results of XGBoost-
identified SMG candidates, indicating that our final results are
insensitive to the chosen classifiers (see the Appendix).

The spurious sources in the SMG training sample, which are
wrongly labeled as SMGs, may impact the training sample and
bias the performance estimators. We check that the cumulative
spurious fraction of our SMG training sample is ;10%. To
quantify how sensitive our training is to this contamination, we
randomly choose 10% of the SMG training sample and swap
them with the MIPS- or VLA-detected non-SMGs in the
STUDIES field. We then train the XGBoost by using this
training sample and repeat the procedure 10 times. The mean
AUROCC and f1-scores from these procedures are reduced by
3% and 10%, respectively, compared to the measurements
shown in Table 2. These offsets are expected, since the
contamination in the training sample will reduce the precision
of the predictor. Considering the uncertainties in the measured
AUROCC and f1-score, we conclude that our final clustering
measurements (Section 6) will not be impacted significantly by
the small fraction of spurious sources.

In total, our trained XGBoost algorithm labels 6182 SMG
candidates from the COSMOS2015 catalog containing 307,374
sources that have an mK<24.5 magAB across an effective area
of 1.6 deg2.

4. Verifications of the SMG Candidates

While machine learning is a powerful and promising
technique for data analysis, it inevitably appears to be a black
box to typical users. Checks need to be performed to ensure
that the selected SMG candidates have properties (especially
those not used for the training) similar to those of the parent
SMG sample.
The total number of SMG candidates (6182 sources) is

consistent with the predicted number counts of -
+6100 1400

1800 of
450 μm sources in the field. The predicted number count is
derived by integrating the best-fitted function of Wang et al.
(2017) over a flux range of 3.4–36 mJy. The predicted median
flux in this flux density range is (6.8±0.1)mJy. The lower
end of the range is determined from the boosting corrected
450 μm flux density range of our training SMG data set. We
further apply the fraction of 0.74±0.06 to take into account
the selection bias in our training data set (see Section 2.3), since
our training SMG data set only includes SMGs having K-band
counterparts.
To probe the submillimeter emissions of our 6182 SMG

candidates, we directly measure their 450 μm flux density from
the S2COSMOS image. The 450 μm flux distribution of SMG
candidates is consistent with the measurement from the SMG
training sample, based on the same image (p-value=0.36 in
KS test). The median stacked 450 μm flux density from the
S2COSMOS image of the SMG candidates is (5.3±0.2)mJy
(Figure 3). This value is tentatively offset (;2.3σ) from the
median stacked flux of the SMG training sample
(7.8±1.1)mJy derived from the same S2COSMOS image
but significantly offset from the aforementioned predicted
median flux of (6.8±0.1)mJy and the median stacked flux of
the SMG training sample, based on our deeper STUDIES
image (7.1±0.5)mJy. The stacked value of the SMG training
sample could be biased high, since sources close to the
detection threshold will be included if they are on a peak of the
noise. Indeed, the deboosted 450 μm stacked flux of the SMG
training sample is 6.4±0.5 mJy, only marginally higher than
the stacked flux of the SMG candidates. To have an
independent test, we apply the stacking analyses in the
850 μm images from the S2COSMOS and STUDIES surveys
by assuming that the 450 and 850 μm noise maps are
reasonably independent. The median stacked 850 μm flux
density from the S2COSMOS image of our SMG candidates is
(1.23±0.03)mJy. This value is significantly offset from the
median stacked 850 μm flux of the SMG training sample
(1.9±0.2)mJy based on the same image, but tentatively offset
(;1.9σ) from similar measurements based on our deeper
STUDIES image (1.7±0.2)mJy. The fainter stacked flux of
the SMG candidates compared to the stacked flux of SMG
training sample is expected, since our machine-learning
algorithm misidentifies a fraction of SMGs (;30%; see the
recall value in Table 2). However, the stacked flux only
provides the overall emission properties of our sample. We do
not expect that our results in the following analyses will be
affected significantly due to contamination, since the contam-
ination arises from less dusty star-forming galaxies with similar
stellar masses to the training SMG sample (see Section 3.6),
and the clustering signals of star-forming galaxies are very
similar to the SMG candidates once they are matched in
redshift and stellar mass (Section 6).
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All of the SMG training sample in the machine-learning
algorithm has matched detections from the MIPS at 24 μm or
VLA at 3 GHz, or both (see Section 2.3). The fraction of our
SMG candidates that have MIPS and/or VLA detections is
;88%± 1% (=5442/6182), indicating that our SMG candi-
dates behave similarly at mid-infrared and/or radio wave-
lengths compared with the SMG training sample. In addition,
the MIPS- and VLA-flux distributions of our SMG candidates
are consistent with the SMG training data set, having p-values
of 0.77 and 0.31 in the KS test, respectively. Based on the
S2COSMOS image, the stacked flux of our SMG candidates
with MIPS or VLA detections is (5.6±0.2)mJy, while the
stacked flux of the remaining SMG candidates is
(3.0±0.5)mJy. This indicates that ;12% (=740/6182) of
our SMG candidates are misidentified and/or are biased toward
fainter SMG population. Again, we do not expect that our
results in the following analyses will be affected significantly
due to this finding. It is worth noting that the MIPS 24 μm and
VLA 3 GHz photometry are not part of the training features
(Section 3.3). The high MIPS- or VLA-detection rates strongly
support the reliability of our machine-learning algorithm.

By comparing other populations extracted from the COS-
MOS2015 catalog, we can test whether the distribution of our
SMG candidates is consistent with the SMG training sample.
Figure 2 shows the normalized histograms of photometric

redshift and stellar mass for the 450 μm-selected SMG training
sample, 450 μm-selected SMG candidates, and field galaxies.
The median redshift of our SMG candidates is z=1.69±0.02
(Figure 2(a)), which is in excellent agreement with that of the
SMG training sample ( = -

+z 1.64 0.07
0.16). The redshift distribution

of our SMG candidates is consistent with the SMG training
data set, having a p-value=0.63 in the KS test, indicating that
we cannot reject the null hypothesis of no difference between
our SMG candidates and parent SMG training sample. On the
other hand, the p-value is essentially zero in the KS test
between the redshift distribution of our SMG candidates and
that of the field galaxies in the COSMOS2015 catalog.
Figure 2(b) shows the stellar-mass distributions of the SMG

candidates, SMG training sample, and the field galaxies over a
redshift range of z=0–6. The median stellar mass of our SMG
candidates (log(M*/M☉)=10.83±0.01) is consistent with the
median stellar mass of the SMG training sample (log(M*/M☉)=

-
+10.76 0.02

0.04). A KS test performed on the stellar-mass distributions
of SMG candidates and parent SMG training data set shows that
the test cannot distinguish between these two populations at the
95% significance level (p-value=0.15). The KS test rejects the
null hypothesis that the stellar-mass distributions of our SMG
candidates and field galaxies are drawn from the same distribution
(p-value ;0). The similarities of physical properties (e.g., redshift
and stellar mass) between our SMG candidates and the parent

Figure 2. Panel (a): normalized histograms of photometric redshift; and panel (b): normalized histograms of stellar mass for the SMG training sample, SMG
candidates, and field galaxies. The median values are marked as downward arrows for the corresponding sample. The median redshifts and stellar masses of SMG
candidates are consistent with the estimations from the parent SMG training data set.

Figure 3. Left panel: stacked SCUBA-2 450 μm image from the S2COSMOS survey (Simpson et al. 2019) at the positions of 6182 SMG candidates. The negative
flux trough surrounding the source is caused by the matched-filter procedure from the SCUBA2_MATCHED_FILTER recipe (see Section 2). The stacked 450 μm flux
density is (5.3±0.2) mJy. Right panel: stacked 450 μm image at 6182 random positions.
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SMG training data set are expected. This is because the features
for estimating the physical properties in the COSMOS2015
catalog, which are based on the photometric data, are similar to
the adopted features in our machine-learning algorithm.

We also test our SMG-identification technique on ALMA
observations. ALMA follow-up observations resolved 260
850 μm–selected SMGs in the S2CLS-COSMOS program
(AS2COSMOS; J.M. Simpson et al. 2020, in preparation)
from 183 850 μm submillimeter sources with S/N > 4.3σ (rms
;0.2 mJy). There are 165 ALMA-detected sources with
K-band counterparts in the COSMOS2015 that further satisfy
our selection criterion of mK<24.5 magAB (see Section 2.2).
Among these, our machine-learning algorithm successfully
identifies 126 ALMA-detected sources as SMG candidates,
indicating that the completeness of our identification is
76%± 7%. On the other hand, 148 SMG candidates are
located within the 183 ALMA primary-beam areas
(FWHM=17 3). Among them, 121 sources are detected by
ALMA, suggesting that the precision of our machine-learning
classifier is 82%± 7%. However, the ALMA observations
should not necessarily have high identification rates in our
sample, since ALMA and JCMT were observing in different
wavelengths, and therefore, the sensitivity limits are different.
To coarsely estimate the 450 μm sensitivity in the AS2COS-
MOS survey, we employ the typical S450 μm/S850 μm ratio of
2.5–4.5 at the faint end (Hsu et al. 2016). The sensitivity of
AS2COSMOS (;0.86 mJy) is equivalent to a 450 μm
sensitivity of ;2–4 mJy, which is roughly our selection limit.
Therefore, we conclude that our SMG candidates should be
detected with AS2COSMOS, and the high identification rate of
AS2COSMOS in our sample is expected, which again supports
the reliability of our machine-learning algorithm.

5. Comparison Samples

To put the SMG candidates into the context of general galaxy
populations at the same redshifts, we construct comparison
samples of star-forming galaxies and passive galaxies.

5.1. Rest-frame NUV–r–J Color

Our comparison star-forming and passive galaxies are
selected based on the rest-frame -M MrNUV and -M Mr J
color cuts (Ilbert et al. 2013) for galaxies not flagged as SMG
candidates by our machine-learning algorithm. To avoid
incompleteness, in the following analyses, we only consider
sources that have stellar-mass estimates above the 95% mass
completeness. To empirically estimate the stellar-mass com-
pleteness as a function of redshift, we follow a procedure
similar to that in Pozzetti et al. (2010). We take the faintest
20% of galaxies in K-band magnitude in several redshift bins to
be a representative observational limit for our whole sample.
We then find the 95th upper percentile from the stellar-mass
distribution of this subsample in each of the redshift bins and
take the values to be the stellar-mass limit for the corresp-
onding redshift bins. The 95% mass completeness as a function
of redshift can be described with a polynomial function
log(Mlim/M☉)=8.14+0.95z−0.09z2.
Since it is known that galaxy clustering evolves with redshift

and is a strong function of stellar mas (McCracken et al. 2015),
to make a fair comparison, we need to construct a sample of
comparison galaxies that are matched as closely as possible to
our SMG candidates in redshift, stellar mass, and sample size.
We first adopt the binned_statistic_2d algorithm from
scipy package (Jones et al. 2001) to generate the two-
dimensional histograms of our SMG candidates and compar-
ison galaxies by using specific redshift and stellar-mass bins.
We then randomly select a number of comparison galaxies in
each bin, which is matched with the SMG candidates. The
normalized redshift distributions for our SMG candidates and
comparison samples are shown in Figure 4(a). As we can see,
the number of passive galaxies drops at z>2. Similarly, it is
also hard to find sufficient numbers of massive star-forming
galaxies that are not SMG candidates at z>2. Therefore, in
this work, we restrict the comparison samples to the galaxies at
0.5<z<2. In total, we randomly select 3021 and 3083
passive galaxies and star-forming galaxies, respectively, at
0.5<z<2 (summarized in Table 3). The redshift estimations
for SMG candidates may be less reliable compared to the

Figure 4. Panel (a): normalized redshift distributions for SMG candidates, and comparison samples of star-forming galaxies and passive galaxies. All of these
populations are matched as closely as possible in redshift, stellar mass, and sample size. In this work, we restrict the comparison samples to the galaxies at 0.5<z<2
(gray shaded region), since it is difficult to find sufficient numbers of passive and massive star-forming galaxies at z>2. Panel (b): normalized stellar-mass
distributions for SMG candidates and comparison samples of star-forming galaxies and passive galaxies at 0.5<z<2.
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comparison passive and star-forming galaxies, since SMG
candidates are expected to be dusty and consequently fainter in
the optical. Interestingly, at 0.5<z<2, the median redshift
errors for SMG candidates (σz=0.02±0.06) is statistically

consistent with the comparison passive (σz=0.02±0.06) and
star-forming galaxies (σz=0.03±0.06). Therefore, we con-
clude that the redshift estimations for all of our samples are
equally reliable. The stellar-mass distribution for sources at

Table 3
Results of Clustering Analyses

Sample Redshift Ns
a b r0 log(Mhalo)

(h−1 Mpc) (h−1 M☉)

SMG candidates 0.5<z<1.0 1112 2.4+0.3
−0.3 -

+8.1 1.1
1.0

-
+13.4 0.2

0.2

1.0<z<2.0 2205 -
+3.9 0.4

0.4
-
+9.8 1.1

1.1
-
+13.4 0.2

0.1

2.0<z<3.0 1518 -
+5.9 0.9

0.7
-
+10.9 1.7

1.5
-
+13.2 0.2

0.2

Passive galaxies 0.5<z<1.0 1112 -
+3.3 0.2

0.2
-
+11.5 0.8

0.8
-
+13.9 0.1

0.1

1.0<z<2.0 1909 -
+4.3 0.5

0.4
-
+10.8 1.3

1.2
-
+13.5 0.2

0.1

Star-forming galaxies 0.5<z<1.0 1090 -
+2.5 0.3

0.3
-
+8.4 1.0

1.0
-
+13.5 0.2

0.1

1.0<z<2.0 1993 -
+4.1 0.5

0.4
-
+10.4 1.3

1.2
-
+13.5 0.2

0.1

Note.
a Sample sizes of our samples in the corresponding redshift bins.

Figure 5. Physical properties of SMG candidates and comparison galaxy samples. Panel (a): normalized histograms of extinction; panel (b): normalized histograms of
stellar population age; panel (c): effective radius and stellar-mass relations; and panel (d): histograms of Sérsic index. In panels (a), (b), and (d), the median values are
marked as downward arrows for the corresponding sample. In panel (c), the larger points show the running median of our sample and the ±1σ scatter, while the
smaller circles show the effective radius and stellar-mass relation of individual sources for the corresponding sample. In panel (c), we also show the best-fit size–mass
relations of star-forming and passive galaxies at z=1.25 from van der Wel et al. (2014), which correspond to the median redshifts of our sample. In summary, we find
that the SMG candidates are dustier, younger, larger, and more disk-like than the comparison samples that are matched in redshift and stellar mass.
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0.5<z<2 is plotted in Figure 4(b). The samples all show
similar stellar-mass distributions according to the KS test
(p-value >0.05).

5.2. Physical Properties of SMG Candidates and Comparison
Samples

In this section, we compare some physical properties
between our SMG candidates and comparison samples. The
stellar mass, dust extinction, and age of the stellar population
assembled in the model can be recovered from SED template
fitting. In this work, we adopted the COSMOS2015 catalog
values, estimated with the LE PHARE code. In short, they used
a library of synthetic spectra generated using stellar population
synthesis from Bruzual & Charlot (2003) and assuming a
Chabrier (2003) initial mass function. Both declining and
delayed star formation histories were used. The SEDs were
generated for a grid of 42 ages in the range 0.05–13 Gyr, and
the attenuation curve of Calzetti et al. (2000) was applied to the
templates with color excess in range of E(B−V )=0–0.7.

Our results show that the SMG candidates, which are
expected to be dusty, tend to have higher values of E(B−V ),
compared to star-forming and passive comparison samples
(Figure 5(a)). A significant fraction of our SMG candidates
have E(B−V )=0.7, which is a cap on the maximum
E(B−V ) value introduced in the LE PHARE SED fitting
procedure. This implies that the extinction corrections, which
are applied to the sources in the COSMOS2015 catalog, may
be insufficient, and consequently, their dust-corrected SFR
estimations may be underestimated, particularly for the dusty
population (see also Casey et al. 2013; Simpson et al. 2014;
Elbaz et al. 2018; Dudzevičiūtė et al. 2020).

Figure 5(b) shows histograms of model stellar population age
for our SMG candidates and comparison samples. It is worth
noting that the age measurements derived from SED fitting alone
should perhaps be treated with skepticism (see Dudzevičiūtė et al.
2020), since the galaxy colors become redder with increasing
extinction or age (the age-dust degeneracy; e.g., Calzetti 2001;
Pforr et al. 2012). This degeneracy might be more severe in the
starburst systems such as SMGs (Hainline et al. 2011;
Michałowski et al. 2012a; Simpson et al. 2014). On the other
hand, the age measurements are highly dependent on the assumed
star formation history, in which the bursty star formation models
tend to produce the youngest ages, while the continuous star
formation models tend to produce the oldest ages (Maraston
et al. 2010; Hainline et al. 2011). Nevertheless, the distribution of
stellar population age in SMG candidates peaks at younger ages
(Figure 5(b)), even though the overall distribution of stellar
masses is similar to that in comparing star-forming and passive
galaxies. This suggests that the SMG candidates may be galaxies
with more recent star formation (i.e., a higher proportion of young
stars), since the amount of attenuation in the rest-frame ultraviolet
or optical is so large that the SED fitting code will have to
de-redden the optical SED to the youngest available stellar
populations.

To investigate the spatial structure of our SMG candidates
and comparison samples, we adopt the morphological proper-
ties of Hubble Space Telescope (HST) HF160W-selected
galaxies in the CANDELS/COSMOS field from van der Wel
et al. (2012). We only use the sources with “flag=0” in this
catalog, which consists of the objects with a good Sérsic model
fits (Sérsic 1963, 1968) measured by the GALFIT code (Peng
et al. 2010). According to van der Wel et al. (2012), the

structural parameters can be measured with a precision and
accuracy better than 10% down to HF160W;24.5 magAB. It is
worth noting that our work here is similar to that in Chang et al.
(2018). Chang et al. (2018) used a sample of SCUBA-2 SMGs
with S450 μm>2 mJy, while we adopt machine-learned SMG
candidates with S450 μm>4 mJy (see Section 4). Our sample
size is about 50% larger than that in Chang et al. (2018), since
we can use the entire catalog from van der Wel et al. (2012) for
our SMG candidates. In total, we have 91 SMG candidates, 102
star-forming galaxies, and 99 passive galaxies with a robust
Sérsic model fit.
Figure 5(c) shows the effective radius (Re) at a rest-frame

wavelength of ;5000Å and stellar-mass relations for our SMG
candidates and the comparison samples. To determine the Re

value at a rest-frame wavelength of ;5000Å, we follow
Equations (1) and (2) in van der Wel et al. (2014), which
consider the wavelength dependence of Re as a function of
redshift and stellar mass. In Figure 5(c), we also show the best-
fit size–mass relations of star-forming and passive galaxies at
z=1.25 from van der Wel et al. (2014), which correspond to
the median redshifts of these subsamples. The comparison
passive galaxies are, on average, smaller than star-forming
galaxies, which is consistent with earlier studies on both local
and high-redshift samples (Shen et al. 2003; Ichikawa et al.
2012; Newman et al. 2012; Fernández Lorenzo et al. 2013; van
der Wel et al. 2014). The median Re of our SMG candidates
( -

+5.5 0.4
0.3 kpc) is consistent with previous studies of ALMA

follow-up at LABOCA 870 μm–selected SMGs at z ; 2
( = -

+R 4.4e 0.5
1.1 kpc; Chen et al. 2015), SCUBA-2 SMGs at

z=0.5–1.5 (Re=4.9±0.3 kpc; Chang et al. 2018), and
ALMA follow-up at SCUBA-2 SMGs (Re=4.8±0.3 kpc;
Lang et al. 2019), within the errors, but somewhat higher than
the measurement of radio-identified SMGs at z ; 2
(Re=2.8±0.4 kpc; Swinbank et al. 2010). Chen et al.
(2015) attributed this to the fact that Swinbank et al. (2010)
used shallower HST-NICMOS images, which tend to show
smaller sizes. Our result shows that the SMG candidates are
significantly (;3σ) more extended than the comparison star-
forming galaxies ( = -

+R 4.0e 0.2
0.3 kpc). Even though we split our

samples by stellar mass, we still find the trend that the SMG
candidates are slightly larger than comparison star-forming
galaxies in all mass bins (Figure 5(c)). The two-dimensional
KS test (python-package ks2d2s; original estimation
references from Peacock 1983) in the size–mass plane shows
that the SMG candidates are significantly different from
comparison star-forming galaxies (p-value=0.006). We
therefore confirm and strengthen the tentative findings in
Chang et al. (2018), in which they showed that the 450 and
850 μm–selected SMGs are marginally different from a stellar-
mass- and SFR-matched star-forming sample.
The Sérsic indices (ns) for our SMG candidates and

comparison samples, which are from van der Wel et al.
(2012), are shown as histograms in Figure 5(d). The median ns
of our SMG candidates (1.1±0.1) is consistent with previous
studies, including ns=1.4±0.8 (Swinbank et al. 2010),
ns=1.2±0.3 (Chen et al. 2015), ns=1.1±0.1 (Chang
et al. 2018), and ns=1.0±0.2 (Lang et al. 2019). Our SMG
candidates are statistically distinguishable, with a lower median
of ns, compared to comparison star-forming (ns=1.9±0.1)
and passive galaxies ( )= -

+n 3.2s 0.1
0.2 . However, our result does

not necessarily show that the SMG candidates are dominated
by disk-like structures (ns ; 1), since most of the SMGs with
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low ns (;1) are in fact visually classified as either irregulars or
interacting systems (Chen et al. 2015).

In summary, we find that the SMG candidates are dustier,
younger, larger, and more disk-like than the comparison
samples that are matched in redshift and stellar mass. With
these differences in mind, in the next section, we discuss their
clustering properties.

6. Clustering and Halo Mass

We now investigate the standard two-point clustering
statistics that can quantitatively measure the large-scale
structure of the universe and trace the amplitude of galaxy
clustering as a function of scale. The clustering measurements
can further allow us to infer the dark matter halo mass and to
constrain the evolution of clustering.

6.1. Two-point Autocorrelation Function

We measure the two-point galaxy autocorrelation function
by using the Landy & Szalay (1993) estimator,

( ) ( ) ( ) ( )
( )

( )w q
q q q

q
=

- +DD 2DR RR

RR
, 2

where DD(θ), DR(θ), and RR(θ) are the normalized number of
galaxy–galaxy, galaxy–random, and random–random pairs,
respectively, counted within a given angular separation bin of
θ±δθ/2. The DR(θ) and RR(θ) are normalized to the same
total number of pairs as DD(θ), with ( ) ( )( )q q= - NDR N

N

1

2 DR
D

R
,

and ( ) ( )( )
( )

q q= -
-

NRR N N

N N

1

1 RR
D D

R R
, where ND and NR are the

number of sources in the galaxy and random samples,
respectively, while NDR(θ) and NRR(θ) are the original counts
of galaxy–random and random–random pairs, respectively. We
adopted 10 times as many random points as the number of our
galaxies.

The projected angular two-point autocorrelation function,
ω(θ), can generally be described as a power law,

( ) ( )w q q= d-A , 3mod

where A is the clustering amplitude, and δ is the slope of the
correlation function. The value δ=0.8 has been found to be
appropriate for both observations and theories at the physical

separation of ;0.1–10 h−1 Mpc (e.g., Peebles 1980; Davis &
Peebles 1983; Zehavi et al. 2005; Coil et al. 2007, 2008). This
statement still holds for the galaxy samples at redshift up to ;5
(δ=0.8–1.1; Ouchi et al. 2005; Coil et al. 2006; Kashikawa
et al. 2006; Lee et al. 2006; Hildebrandt et al. 2009; Durkalec
et al. 2015; Harikane et al. 2016; Jose et al. 2017).
Measurement of ω(θ) could be biased, since our sample is

located in a single, area-limited region that may not be
representative of the true underlying mean density over the
whole sky. The observed ω(θ) is usually biased lower than the
true value ω(θ)mod,

( ) ( ) ( )w q w q= - IC, 4mod

by an additive factor of IC known as the integral constraint. In
practice, IC can be numerically estimated (e.g., Infante 1994;
Roche & Eales 1999; Adelberger et al. 2005) over the survey
geometry using the random–random pairs of the form

( ) ( )
( )

( )
q w q

q
=

å
å

N

N
IC . 5i i i

i i

RR true

RR

We repeated the estimate of Equation (2) 25 times. We
calculated the variance, mean ω(θ), and the mean Nrr using
these 25 estimates in Equation (5). We then employed a χ2

minimization in Equation (4) to derive the best-fit ω(θ)true over
scales of 0 1–6′ (;0.1–6 h−1 Mpc at z=2 for co-moving
distance). The IC-corrected ω(θ) is shown as black symbols in
Figure 6.
The errors in the clustering amplitude of ω(θ)true are expected

to be underestimated, since the variance only accounts for the
shot noise from the sample of the random points and the
Poisson uncertainties of the DD counts, and it does not include
the field-to-field variance (often called cosmic variance) of a
field-limited survey. To quantify the uncertainty more realis-
tically, we employed the “delete one jackknife” resampling
method (see also Scranton et al. 2002; Zehavi et al. 2002, 2005;
Norberg et al. 2009) to estimate the covariance matrix for the
autocorrelation function measurements. The principle of the
jackknife method is to first divide the data set into N
independent subsamples, and then, one copy of the subsamples
is omitted systematically at a time, similar to the k-fold cross-
validation used in machine learning. Therefore, the resampling
data set consists of Nsub−1 remaining subarea, with area

Figure 6. Two-point autocorrelation function of our SMG candidates and the comparison samples at 0.5<z<3.0. The data points are offset horizontally, to avoid
confusion. The dotted curves show the autocorrelation functions of the dark matter in the corresponding redshift bins.
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(Nsub−1)/Nsub times the full area of the original data set. The
covariance matrix of N independent realizations can be
obtained as

( ( ) ( ))( ( ) ( ))å w q w q w q w q=
-

- -
=

C
N

N

1
,ij

k

N

i
k

i j
k

j
sub

sub 1

sub

where ( )w qi j
k

, is the autocorrelation function measured with the
kth area removed, and ( )w qi is the average autocorrelation
function of the jackknife realizations. In practice, we divide our
sample into Nsub=13 nearly equally sized stripe-shaped
subareas. We verify that the shapes of the subarea do not
affect the jackknife results significantly. To determine the best-
fit power-law model (Equation (3)) for each correlation
function, we perform a χ2 minimization, where

( ( ) ( ) ) ( ( ) ( ) )ååc w q w q w q w q= - --C .
i j

i
k

i ij j
k

j
2

mod
1

mod

The 1σ error is estimated based on finding where Δχ2=1
(Avni 1976).

6.2. Dark Matter Halo Mass

To quantify the underlying dark matter halo mass (Mhalo) of
our sample, we first need to compute the galaxy bias (b), which
can be defined as the square root of the ratio of the two-point
correlation function of the galaxies relative to the dark matter,

( )
( )

⎛
⎝⎜

⎞
⎠⎟

w q
w q

=b ,
DM

1
2

where the ω(θ)DM is the projected angular two-point correlation
function of the dark matter. To reproduce the clustering model in
dark matter, we use the HALOFIT code from Smith et al. (2003)
with improved fitting formulae provided by Takahashi et al.
(2012), which can predict the nonlinear and dimensionless power
spectrum of dark matter ( ) ( ) ( )pD =k k P k 22 3 2 for a wide range
of cold dark matter cosmologies. The Fourier transform of the
two-point correlation function is the power spectrum. We then
project the power spectrum into the angular correlation function
by using Limberʼs equation (Limber 1953; Peebles 1980;
Peacock 1991; Baugh & Efstathiou 1993), specifically via the
Equation (A6) in Myers et al. (2007). The ω(θ)DM profiles at
z=0.5–1, z=1–2, and z=2–3 are shown as dotted curves in
Figure 6. We fit a single b parameter from the observed galaxy
correlation function and the dark matter correlation function by
minimizing χ2 on the scales of 0 1–6′. Finally, we convert the b
toMhalo using the ellipsoidal collapse model of Sheth et al. (2001).

In the case of the small-angle approximation (θ= 1 rad) and
assuming no clustering evolution over the redshift bin, we can
de-project the angular autocorrelation function to the power
spectrum by inverting Limberʼs equation (e.g., Myers et al.
2006; Hickox et al. 2012; see Peebles 1980 for full detivation)
and further estimate the clustering scale length (r0) as follows:

( )

[( ) ]
( )
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= g

g
g

¥ -
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dN dz E dz

dN dz dz
r , 6
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2 0

where ( ) ([ ] ) ( )g g= G G - GgH 1 2 1 2 2 , Γ is the gamma
function, γ=δ+1 (=1.8 in this work), χ is the radial

co-moving distance, dN/dz is the redshift selection function,
and c= =E H H dz dz z 0 ( [ ( ) ]= W + + WLH H z1z

2
0
2

m
3 ).

According to the formalism of Peebles (1980), r0 is related to
b via
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where ( )( )( )g g g= - - -g
gC 72 3 4 6 2 , σ8 is the ampl-

itude of matter clustering (= 0.83; Planck Collaboration et al.
2014), and Δ8 is the clustering strength of dark matter haloes
more massive than stellar mass M at redshift z, which can be
defined as ( ) ( )sD = b M z D z,8 8 . The function D(z) is the
growth factor of linear fluctuations in the dark matter
distribution, which can be computed from
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In our subsequent analysis, the redshift value is assumed to be
the median of the distribution of the sources. The results are
summarized in Table 3.

6.3. Clustering Signals

Figure 7 shows the values of r0 as a function of redshift for our
SMG candidates and for comparison samples. We also plot the
measurements from the literature for 24μm–selected galaxies
(Dolley et al. 2014; Solarz et al. 2015), 100μm–selected Herschel
SMGs (Magliocchetti et al. 2013), 250 μm–selected Herschel
sources (Amvrosiadis et al. 2019), 850μm–selected SMGs (Webb
et al. 2003; Blain et al. 2004; Weiß et al. 2009; Williams et al.
2011; Hickox et al. 2012; Chen et al. 2016; Wilkinson et al. 2017;
An et al. 2019), and quasars (Myers et al. 2006; Porciani &
Norberg 2006; Shen et al. 2007; Eftekharzadeh et al. 2015).
The measured r0 (or b) of our SMG candidates and the
comparison samples decline with decreasing redshift (Table 3).
This trend is expected, since dark matter clustering evolves rapidly
as the universe evolves with time (dotted curves in Figure 6),
resulting in a decrease of the measured value of r0 (or b) of a
biased population. The preceding analysis only illustrates the
clustering signals of our sample, so combining the knowledge of
clustering signals and halo masses of our samples is more
meaningful. Our SMG candidates reside in a halo with a typical
mass of ;(2.0±0.5)×1013 h−1M☉ across the redshift range
0.5<z<3. In general, passive galaxies have stronger clustering
signals than the comparison star-forming galaxies and SMG
candidates, indicating that passive galaxies preferentially reside in
more massive halos compared to star-forming galaxies and SMG
candidates at fixed stellar mass and redshift (see also Hartley et al.
2008, 2010; McCracken et al. 2010; Lin et al. 2012, 2016;
Sato et al. 2014; Ji et al. 2018). On the other hand, there is no
significant difference between the SMG candidates and the
comparison star-forming galaxies for the same stellar-mass
cut, suggesting that these two populations reside in similar
mass halos. Similar trends can also be found in earlier studies of
galaxy samples at 1.5<z<2.5 (Béthermin et al. 2014) and at
1<z<5 (Chen et al. 2016; An et al. 2019). This result implies
that merging events may not be the only triggering mechanism
for SMGs, since we expect that more biased regions will result
in higher merging and/or interaction rates (Lin et al. 2010;
de Ravel et al. 2011; Sobral et al. 2011). However, further studies
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are still needed to address the question of which mechanisms
increase the dust obscuration within galaxies.

At z=1–3, the clustering measured for our SMG candidates
is in broad agreement with that of previous studies, except that
Wilkinson et al. (2017) found a weaker clustering strength at
z ; 1–2, although, with large uncertainties (so not significantly
different from our results). We find no strong evidence that the
halo masses of SMG candidates exhibit any evolution with
redshift. This is in agreement with what was found in Chen
et al. (2016), Amvrosiadis et al. (2019), and An et al. (2019)
but is contrary to what was suggested in Wilkinson et al.
(2017), in which they found that SMG activity seems to be
shifting to less massive halos, consistent with an early
downsizing scenario. We attribute this to their large measure-
ment uncertainties or the different methodologies that are
adopted in the clustering analyses. We note, however, that
the term “downsizing” is a relative notion. While we do not
observe a significant decrease of halo masses of SMGs with
decreasing redshifts, which is why we say we do not observe
downsizing, we are ultimately comparing halo masses at
different redshifts. Given the same mass, halos at higher
redshifts are expected to grow into more massive halos at
the present day. From this perspective, our results support the
downsizing scenario such that the SMGs at lower redshifts are
formed within halos that are, on average, smaller in mass at
the present day.

Our result provides a meaningful constraint on the clustering
amplitude of SMGs at z;0.5–1, a key redshift range where
downsizing effects are expected to take place. At z;0.5–1,
the clustering signal of our SMG candidates appears to be a
little higher than in the previous studies of Magliocchetti et al.
(2013), Dolley et al. (2014), and Solarz et al. (2015); although,
there are large uncertainties. It is worth noting that the majority
of the sources in the aforementioned studies represent a fainter
population with LIR ; 1011 L☉. On the other hand, our SMG
candidates are bright at 450 μm (;5 mJy; see Section 4), which
corresponds to LIR ; 1012 L☉ at z=0.5–1 if we convert the
450 μm flux density into the total LIR by using the average
ALESS 870 μm SEDs (da Cunha et al. 2015). Therefore, a
stronger clustering signal is expected in our sample, since the
galaxies with higher LIR tend to have stronger clustering
(Dolley et al. 2014; Toba et al. 2017).
By comparing the z<1 measurements and those at z>1,

along with the quasars, there is a clear trend for clustering
length to increase with redshift at earlier epochs, which is
consistent with downsizing behavior. The question now arises:
are the SMGs at z<1 the same dusty population as those at
z>1? The dusty star-forming galaxy population seems to have
lower LIR at low redshifts (e.g., Magliocchetti et al. 2013;
Dolley et al. 2014; Solarz et al. 2015), which prevents us from
making a direct comparison with the SMGs at high redshifts.
Nevertheless, our understanding of the clustering properties
in SMGs is still far from complete. The study of the redshift

Figure 7. Redshift evolution of the clustering length r0 for our SMG candidates and the comparison samples. The data points are slightly offset horizontally, to avoid
overlap. We find no evidence that the clustering signal of SMG candidates exhibits an evolution with redshift. SMG candidates reside in a typical halo mass of
;(2.0±0.5)×1013 h−1 M☉ across the redshift range of 0.5<z<3. We also show the estimated r0 of 24 μm–selected galaxies (Dolley et al. 2014; Solarz
et al. 2015), SMGs (Webb et al. 2003; Blain et al. 2004; Weiß et al. 2009; Williams et al. 2011; Hickox et al. 2012; Magliocchetti et al. 2013; Chen et al. 2016;
Wilkinson et al. 2017; Amvrosiadis et al. 2019; An et al. 2019), and quasars (Myers et al. 2006; Porciani & Norberg 2006; Shen et al. 2007; Eftekharzadeh et al. 2015)
in literature for comparison.
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evolution of the clustering properties in SMGs with comparable
LIR at a similar wavelength is required to solve this problem.
We expect this situation to be improved with next-generation
submillimeter telescopes, such as Atacama Large Aperture
Submm/mm Telescope (AtLAST; Klaassen et al. 2019). A
future AtLAST survey with increased sensitivity at 350 μm,
and a larger field of view (;1°) will detect fainter populations
(LIR;1011 L☉) at larger scales.

7. Summary

By combining SCUBA-2 data from the ongoing JCMT
Large Program STUDIES and the archive in the CANDELS/
COSMOS field, we have obtained an extremely deep 450 μm
image (1σ=0.56 mJy beam−1) covering ;300 arcmin2: by far
the deepest image ever observed at 450 μm. We obtain a
sample of 221 SMGs from this image; however, the sample
size is too small to meaningfully study the redshift evolution of
the clustering of the population.

We select a robust (S/N � 4) and flux-limited (�4mJy)
sample of 164 SMGs that have K-band counterparts in the
COSMOS2015 catalog identified based on radio or mid-infrared
imaging, which allows us to employ their optical and near-
infrared colors. Ultilizing this SMG sample and the 4705
K-band-selected non-SMGs lying within the �1mJy beam−1

noise level region of the 450 μm image as a training set, we
develop a machine-learning classifier to identify SMG candi-
dates in the full COSMOS field. We employ the K-band
magnitudes and color–color pairs based on the 13-broadband
photometry measurements ( + ++uBVri z JHK [3.6][4.5][5.8][8.0])
available in this field for the machine-learning algorithm.
Our main findings are as follows:

1. Our trained classifier labels 6182 SMG candidates in the
wider COSMOS field from the COSMOS2015 catalog with
mK<24.5 magAB across an effective area of 1.6 deg2.

2. The number density, VLA 3 GHz and/or MIPS 24 μm
detection rates, redshift and stellar-mass distributions, and
the stacked 450 μm flux densities of the SMG candidates
across the COSMOS field agree with the measurements
made in the much smaller CANDELS field, all supporting
the effectiveness of the classifier. The high completeness
(76%±7%) and precision (82%±7%) of our SMG
candidates as judged from their detection in longer-
wavelength ALMA observations further supports our
machine-learning algorithm.

3. We found that the SMG candidates tend to have higher
reddening compared to comparison star-forming and
passive galaxies that are matched in redshift and stellar
mass. The SMG candidates also have younger stellar
population ages than the comparison star-forming and
passive galaxies, even though their overall distribution of
stellar masses is similar. This suggests that the SMG
candidates may have more recent star formation and,
consequently, have a higher proportion of young stars.

4. The SMG candidates have a median effective radius of
-
+5.5 0.4

0.3 kpc and a median Sérsic index of 1.1±0.1. These
measurements are consistent with previous studies within
the uncertainties. Our results show that SMG candidates
are significantly more extended and more disk-like than
the comparison star-forming and passive galaxies.

5. We measured the two-point autocorrelation function
of the SMG candidates from z=3 down to z=0.5

and found that they reside in halos with masses of
;(2.0±0.5)×1013 h−1M☉ across this redshift range.
However, we do not find evidence of downsizing that has
been suggested by other recent observational studies.
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Appendix
Clustering Results of SMG Candidates Identified by Other

Algorithms

We adopt the SMG candidates that are identified by a
decision tree (better recall) and random forest (better precision),
and we estimate their clustering signals by using the same
procedures as in Section 6. The results are shown in Table A1.
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The decision tree and random forest label 14440 and 1866 SMG
candidates, respectively, from the COSMOS2015 catalog at
redshift 0.5<z<3.0. The larger number of SMG candidates
found using the decision tree algorithm is expected, since the
higher recall will select more sources, but as a tradeoff, the
precision decreases. In contrast, the situation is reserved for the
random forest algorithm. The stacked fluxes of the SMG
candidates identified by the decision tree and random forest
methods are (3.0±0.1)mJy and (6.4±0.3)mJy, respectively.
As expected, we find a lower stacked flux with the decision tree
and a higher one with the random forest, essentially reflecting their
precision. It is worth noting that the random forest algorithm only
labels ∼100 SMG candidates in the redshift bin of 0.5<z<1.0,
and consequently, we do not have sufficient data points for the
clustering analyses in this redshift bin. Nevertheless, the clustering
signals do not show significant differences from the results of
XGBoost-identified SMG candidates (Table 3), indicating that our
final results do not strongly depend upon the method we choose.
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Table A1
Clustering Results of SMG Candidates Identified by Decision Tree and Random Forest Algorithms

Sample Redshift Ns
a b r0 log(Mhalo)

(h−1 Mpc) (h−1 M☉)

SMG candidates (Decision Tree) < <z0.5 1.0 2406 -
+2.4 0.2

0.2
-
+8.1 0.8

0.7
-
+13.4 0.1

0.1

1.0<z<2.0 8919 -
+3.2 0.2

0.2
-
+8.0 0.5

0.5
-
+13.1 0.1

0.1

2.0<z<3.0 3115 -
+6.2 0.5

0.5
-
+11.5 1.0

1.0
-
+13.3 0.1

0.1

SMG candidates (Random Forest) 0.5<z<1.0 143 ... ... ...
1.0<z<2.0 730 -

+5.3 1.3
1.0

-
+13.8 3.6

3.0
-
+13.8 0.4

0.2

2.0<z<3.0 993 -
+6.0 1.7

1.3
-
+11.0 3.5

2.8
-
+13.2 0.5

0.3

Note.
a Sample sizes of our samples in the corresponding redshift bins.
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