
Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-020-00706-6

1 3

On Cycle Transversals and Their Connected Variants
in the Absence of a Small Linear Forest

Konrad K. Dabrowski1 · Carl Feghali2 · Matthew Johnson1 ·
Giacomo Paesani1 · Daniël Paulusma1 · Paweł Rzążewski3

Received: 5 August 2019 / Accepted: 26 March 2020
© The Author(s) 2020

Abstract
A graph is H-free if it contains no induced subgraph isomorphic to H. We prove new
complexity results for the two classical cycle transversal problems Feedback Vertex
Set and Odd cycle tranSVerSal by showing that they can be solved in polynomial
time on (sP1 + P3)-free graphs for every integer s ≥ 1. We show the same result for
the variants cOnnected Feedback Vertex Set and cOnnected Odd cycle tranS-
VerSal. We also prove that the latter two problems are polynomial-time solvable on
cographs; this was already known for Feedback Vertex Set and Odd cycle tranS-
VerSal. We complement these results by proving that Odd cycle tranSVerSal and
cOnnected Odd cycle tranSVerSal are NP-complete on (P2 + P5,P6)-free graphs.

Keywords Odd cycle transversal · Feedback vertex set · H-free graph · Connected
transversal

 * Konrad K. Dabrowski
 konrad.dabrowski@durham.ac.uk

 Carl Feghali
 carl.feghali@uib.no

 Matthew Johnson
 matthew.johnson2@durham.ac.uk

 Giacomo Paesani
 giacomo.paesani@durham.ac.uk

 Daniël Paulusma
 daniel.paulusma@durham.ac.uk

 Paweł Rzążewski
 p.rzazewski@mini.pw.edu.pl

1 Department of Computer Science, Durham University, Durham, UK
2 Department of Informatics, University of Bergen, Bergen, Norway
3 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw,

Poland

http://orcid.org/0000-0001-9515-6945
http://orcid.org/0000-0001-6727-7213
http://orcid.org/0000-0002-7295-2663
http://orcid.org/0000-0002-2383-1339
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0001-7696-3848
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00706-6&domain=pdf

 Algorithmica

1 3

1 Introduction

Graph transversal problems play a central role in Theoretical Computer Science.
To define the notion of a graph transversal, let H be a family of graphs, G = (V ,E)
be a graph and S ⊆ V be a subset of vertices of G. The graph G − S is obtained
from G by removing all vertices of S and all edges incident to vertices in S. We
say that S is an H-transversal of G if G − S is H-free, that is, if G − S contains no
induced subgraph isomorphic to a graph of H . In other words, S intersects every
induced copy of every graph of H in G. Let Cr and Pr denote the cycle and path
on r vertices, respectively. Then S is a vertex cover, feedback vertex set, or odd
cycle transversal if S is an H-transversal for, respectively, H = {P2} (that is, G − S
is edgeless), H = {C3,C4,…} (that is, G − S is a forest), or H = {C3,C5,C7,…}
(that is, G − S is bipartite).

Usually the goal is to find a transversal of minimum size in some given graph.
In this paper we focus on the decision problems corresponding to the three trans-
versals defined above. These are the Vertex cOVer, Feedback Vertex Set and
Odd cycle tranSVerSal problems, which are to decide whether a given graph
has a vertex cover, feedback vertex set or odd cycle transversal, respectively, of
size at most k for some given positive integer k. Each of these three problems is
well studied and is well known to be NP-complete.

We may add further constraints to a transversal. In particular, we may require
a transversal of a graph G to be connected, that is, to induce a connected sub-
graph of G. The corresponding decision problems for the three above transversals
are then called cOnnected Vertex cOVer, cOnnected Feedback Vertex Set and
cOnnected Odd cycle tranSVerSal, respectively.

Garey and Johnson [15] proved that cOnnected Vertex cOVer is NP-complete
even on planar graphs of maximum degree 4 (see, for example, [14, 31, 36] for
NP-completeness results for other graph classes). Grigoriev and Sitters [18]
proved that cOnnected Feedback Vertex Set is NP-complete even on planar
graphs with maximum degree 9. More recently, Chiarelli et al. [10] proved that
cOnnected Odd cycle tranSVerSal is NP-complete even on graphs of arbitrarily
large girth and on line graphs.

As all three decision problems and their connected variants are NP-complete,
we can consider how to restrict the input to some special graph class in order to
achieve tractability. Note that this approach is in line with the aforementioned
results in the literature, where NP-completeness was proven on special graph
classes. It is also in line with with, for instance, polynomial-time results for
cOnnected Vertex cOVer by Escoffier, Gourvès and Monnot [12] (for chordal
graphs) and Ueno, Kajitani and Gotoh [35] (for graphs of maximum degree at
most 3 and trees).

Just as in most of these papers, we consider hereditary graph classes, that is, graph
classes closed under vertex deletion. Hereditary graph classes form a rich frame-
work that captures many well-studied graph classes. It is not difficult to see that
every hereditary graph class G can be characterized by a (possibly infinite) set FG of

1 3

Algorithmica

forbidden induced subgraphs. If |FG| = 1 , say F = {H} , then G is said to be mono-
genic, and every graph G ∈ G is said to be H-free. Considering monogenic graph
classes can be seen as a natural first step for increasing our knowledge of the com-
plexity of an NP-complete problem in a systematic way. Hence, we consider the fol-
lowing research question:

How does the structure of a graph H influence the computational complexity of a
graph transversal problem for input graphs that are H -free?

Note that different graph transversal problems may behave differently on some class
of H-free graphs. However, the general strategy for obtaining complexity results is
to first try to prove that the restriction to H-free graphs is NP-complete whenever H
contains a cycle or the claw (the 4-vertex star). This is usually done by showing,
respectively, that the problem is NP-complete on graphs of arbitrarily large girth
(length of a shortest cycle) and on line graphs, which form a subclass of claw-free
graphs. If this is the case, then we are left to consider the case when H does not con-
tain a cycle, implying that H is a forest, and does not contain a claw either, implying
that H is a linear forest, that is, the disjoint union of one or more paths.

1.1 The Graph H Contains a Cycle or Claw

It follows from Poljak’s construction [30] that Vertex cOVer is NP-complete on
graphs of arbitrarily large girth. Hence, Vertex cOVer is NP-complete on H-free
graphs if H contains a cycle. However, Vertex cOVer becomes polynomial-time
solvable when restricted to claw-free graphs [25, 32]. In contrast, the other five
problems cOnnected Vertex cOVer, (cOnnected) Feedback Vertex Set and (cOn-
nected) Odd cycle tranSVerSal are all NP-complete on graphs of arbitrarily large
girth and on line graphs; see Table 1. Hence, for these five problems, it remains to
consider only the case when H is a linear forest.

Table 1 The complexities of the three connected transversal problems together with the original trans-
versal problems on graphs of girth at least p for every (fixed) constant p ≥ 3 , on line graphs, and on
H-free graphs for various linear forests H

In particular, Feedback Vertex Set can be shown to be NP-complete on graphs of arbitrarily large girth
by using Poljak’s construction (see [3, 26]). We also note that Munro [28] showed that Feedback Vertex
Set is NP-complete even on line graphs of planar cubic bipartite graphs. Unreferenced results directly
follow from other results in the table, and results marked with ∗ are new results proven in this paper. Our
two other new results, namely that Odd cycle tranSVerSal and cOnnected Odd cycle tranSVerSal are
NP-complete on (P2 + P5,P6)-free graphs, are not included in the table

Girth p Line graphs sP2-free P4-free sP1 + P
r
-free

Vertex cOVer NP-c [30] P [25, 32] P [1, 34] P P: s ≥ 0 , r = 6 [20]
Feedback Vertex Set NP-c [30] NP-c [33] P [10] P [4] P: s ≥ 0 , r = 3*
Odd cycle tranSVerSal NP-c [10] NP-c [10] P [10] P [4] P: s ≥ 0 , r = 3*
cOn. Vertex cOVer NP-c [28] NP-c [28] P [10] P P: s ≥ 0 , r = 5 [24]
cOn. Feedback Vertex Set NP-c [10] NP-c [10] P [10] P∗ P: s ≥ 0 , r = 3*
cOn. Odd cycle tranSVerSal NP-c [10] NP-c [10] P [10] P∗ P: s ≥ 0 , r = 3*

 Algorithmica

1 3

1.2 The Graph H Is a Linear Forest

In this paper, we focus on proving new complexity results for Feedback Vertex Set,
cOnnected Feedback Vertex Set, Odd cycle tranSVerSal and cOnnected Odd
cycle tranSVerSal on H-free graphs. It follows from Sect. 1.1 that we may assume
that H is a linear forest. Below we first discuss the known polynomial-time solv-
able cases. As we will use algorithms for Vertex cOVer and cOnnected Vertex
cOVer as subroutines for our new algorithms, we include these two problems in our
discussion.

For every s ≥ 1 , Vertex cOVer (by combining the results of [1, 34]) and cOn-
nected Vertex cOVer [10] are polynomial-time solvable on sP2-free graphs.1 More-
over, Vertex cOVer is also polynomial-time solvable on (sP1 + P6)-free graphs,
for every s ≥ 0 [20], as is the case for cOnnected Vertex cOVer on (sP1 + P5)-free
graphs [24]. Their complexity on Pr-free graphs is unknown for r ≥ 7 and r ≥ 6 ,
respectively.

Both Feedback Vertex Set and Odd cycle tranSVerSal are polynomial-time
solvable on permutation graphs [4], and thus on P4-free graphs. Recently, Okrasa
and Rzążewski [29] proved that Odd cycle tranSVerSal is NP-complete on
P13-free graphs. A small modification of their construction yields the same result for
cOnnected Odd cycle tranSVerSal. The complexity of Feedback Vertex Set and
cOnnected Feedback Vertex Set is unknown when restricted to Pr-free graphs for
r ≥ 5 . For every s ≥ 1 , both problems and their connected variants are polynomial-
time solvable on sP2-free graphs [10], using the price of connectivity for feedback
vertex set [2, 21].2

1.3 Our Results

In Sect. 3 we prove that cOnnected Feedback Vertex Set and cOnnected Odd cycle
tranSVerSal are polynomial-time solvable on P4-free graphs, just as is the case for
Feedback Vertex Set and Odd cycle tranSVerSal. In Sect. 4 we prove that for
every s ≥ 1 , these four problems are all polynomial-time solvable on (sP1 + P3)-free
graphs; see also Table 1. Finally, in Sect. 5, we show that Odd cycle tranSVerSal
and cOnnected Odd cycle tranSVerSal are NP-complete on (P2 + P5,P6)-free
graphs, that is, graphs that are both (P2 + P5)-free and P6-free.

To prove our polynomial-time results, we rely on two proof ingredients. The
first one is that we use known algorithms for Vertex cOVer and cOnnected Vertex
cOVer restricted to H-free graphs as subroutines in our new algorithms. The second
is that we consider the connected variant of the transversal problems in a more gen-
eral form. For cOnnected Vertex cOVer this variant is defined as follows:

1 The graph G + H is the disjoint union of graphs G and H and sG is the disjoint union of s copies of G;
see Sect. 2.
2 The price of connectivity concept was introduced by Cardinal and Levy [9] for vertex cover; see also,
for example, [6–8].

1 3

Algorithmica

Note that cOnnected Vertex cOVer extenSiOn becomes the original problem if
W = � . We define the problems cOnnected Feedback Vertex Set extenSiOn and
cOnnected Odd cycle tranSVerSal extenSiOn analogously. We will prove all our
results for connected feedback vertex sets and connected odd cycle transversals for
the extension versions. These extension versions will serve as auxiliary problems for
some of our inductive arguments, but this approach also leads to slightly stronger
results.

Remark 1 For any connected extension variant of these problems on H-transversals,
we may assume that the input graph G is connected. If it is not, then either all but
at most one connected component of G is H-free and does not intersect W, in which
case it need not be considered, or the answer is immediately no. It is easy to check
H-freeness for the three problems we consider.

Remark 2 Note that one could also define extension versions for any original transver-
sal problem (that is, where there is no requirement for the transversal to be connected).
However, such extension versions will be polynomially equivalent. Indeed, we can
solve the extension version on the input (G, W, k) by considering the original problem
on the input (G −W, max{0, k − |W|}) and adding W to the solution. However, due
to the connectivity condition, we cannot use this approach for the connected variants.

Remark 3 It is known that Vertex cOVer is polynomial-time solvable on
(P1 + H)-free graphs whenever this is the case on H-free graphs. This follows from
a well-known observation, see, for example, [27]: one can solve the complementary
problem of finding a maximum independent set in a (P1 + H)-free graph by solv-
ing this problem on each H-free graph obtained by removing a vertex and all of its
neighbours. However, this trick does not work for cOnnected Vertex cOVer. More-
over, it does not work for Feedback Vertex Set and Odd cycle tranSVerSal and
their connected variants either.

2 Preliminaries

Let G = (V ,E) be a graph. For a set S ⊆ V , we write G[S] to denote the subgraph
of G induced by S. We say that S is connected if G[S] is connected. We write
G − S to denote the graph G[V ⧵ S] . A subset D ⊆ V is a dominating set of G if
every vertex of V ⧵ D is adjacent to at least one vertex of D. An edge uv of a graph
G = (V ,E) is dominating if {u, v} is a dominating set. The complement of G is the

 Algorithmica

1 3

graph G = (V , {uv | uv ∉ E and u ≠ v}) . The neighbourhood of a vertex u ∈ V is
the set NG(u) = {v | uv ∈ E} and for U ⊆ V , we let NG(U) =

⋃
u∈U N(u) ⧵ U . We

omit the subscript when there is no ambiguity. We denote the degree of a vertex
u ∈ V by deg(u) = |NG(u)|.

Let G = (V ,E) be a graph and let S ⊆ V . Then S is a clique if the vertices of S
are pairwise adjacent and an independent set if the vertices of S are pairwise non-
adjacent. A graph is complete if its vertex set is a clique. We let Kr denote the
complete graph on r vertices. Let T ⊆ V with S ∩ T = � . Then S is complete to T
if every vertex of S is adjacent to every vertex of T, and S is anti-complete to T
if there are no edges between S and T. In the first case, we also say that S is com-
plete to G[T] and in the second case anti-complete to G[T].

A graph is bipartite if its vertex set can be partitioned into at most two inde-
pendent sets. A bipartite graph is complete bipartite if its vertex set can be par-
titioned into two independent sets X and Y such that X is complete to Y. If X or Y
has size 1, the complete bipartite graph is said to be a star. Note that every edge
of a complete bipartite graph is dominating.

Let G1 and G2 be two vertex-disjoint graphs. The union operation cre-
ates the disjoint union G1 + G2 of G1 and G2 , that is, the graph with vertex set
V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) . We denote the disjoint union of r cop-
ies of G1 by rG1 . The join operation adds an edge between every vertex of G1 and
every vertex of G2 . A graph G is a cograph if G can be generated from K1 by a
sequence of join and union operations. A graph is a cograph if and only if it is
P4-free (see, for example, [5]).

The following lemma is well known, but we include a short proof for
completeness.

Lemma 1 Every connected P4-free graph on at least two vertices has a spanning
complete bipartite subgraph which can be found in polynomial time.

Proof Let G be a connected P4-free graph on at least two vertices. Then G is the join
of two graphs G[X] and G[Y]. Hence, G has a spanning complete bipartite subgraph
with partition classes X and Y. Note that this implies that G is disconnected. In order
to find a (not necessarily unique) spanning complete bipartite subgraph of G with
partition classes X and Y in polynomial time, we put the vertices of one connected
component of G in X and all the other vertices of G in Y. ◻

Grzesik et al. [20] gave a polynomial-time algorithm for finding a maximum
independent set of a P6-free graph in polynomial time. As the complement
V(G) ⧵ I of every independent set I of a graph G is a vertex cover, their result
implies that Vertex cOVer is polynomial-time solvable on P6-free graphs. Using
the folklore trick mentioned in Remark 3 (see also, for example, [24, 27]) their
result can also be formulated as follows.

Theorem 1 [20] For every s ≥ 0 , Vertex CoVer can be solved in polynomial time on
(sP1 + P6)-free graphs.

1 3

Algorithmica

We recall also that cOnnected Vertex cOVer is polynomial-time solvable on
(sP1 + P5)-free graphs [24]. We will need the extension version of this result. Its
proof is based on a straightforward adaption of the proof for cOnnected Vertex
cOVer on (sP1 + P5)-free graphs [24] (see “Appendix” for a proof).

Theorem 2 [24] For every s ≥ 0 , ConneCted Vertex CoVer extension can be solved
in polynomial time on (sP1 + P5)-free graphs.

3 The Case H = P4

Recall that Brandstädt and Kratsch [4] proved that Feedback Vertex Set and Odd
cycle tranSVerSal can be solved in polynomial time on permutation graphs, which
form a superclass of the class of P4-free graphs. Hence, we obtain the following
proposition.

Proposition 1 [4] Feedback Vertex Set and Odd cycle tranSVerSal can be
solved in polynomial time on P4-free graphs.

In this section, we prove that the (extension versions of the) connected variants of
Feedback Vertex Set and Odd cycle tranSVerSal are also polynomial-time solv-
able on P4-free graphs. We make use of Proposition 1 in the proofs.

Theorem 3 ConneCted FeedbaCk Vertex set extension can be solved in polynomial
time on P4-free graphs.

Proof Let G = (V ,E) be a P4-free graph on n vertices and let W be a subset of V. By
Remark 1, we may assume that G is connected. By Lemma 1, in polynomial time we
can find a spanning complete bipartite subgraph G� = (X, Y ,E�) , and we note that,
by definition, every edge in G′ is dominating. Below, in Step 1, in polynomial time
we compute a smallest connected feedback vertex set of G that contains W and inter-
sects both X and Y. In Step 2, in polynomial time we compute a smallest connected
feedback vertex set of G that contains W and that is a subset of either X or Y (if such
a set exists). Then the smallest set found is a smallest connected feedback vertex set
of G that contains W.

Step 1 Compute a smallest connected feedback vertex set S of G such that W ⊆ S ,
S ∩ X ≠ � and S ∩ Y ≠ �.

We perform Step 1 as follows. Consider two vertices u ∈ X and v ∈ Y . We
shall describe how to find a smallest connected feedback vertex set of G that con-
tains W ∪ {u, v} . We find a smallest feedback vertex set S′ in G − (W ∪ {u, v}) .
As G − (W ∪ {u, v}) is P4-free, this takes polynomial time by Proposition 1. Then
S� ∪W ∪ {u, v} is a smallest feedback vertex set of G that contains W ∪ {u, v} and is

 Algorithmica

1 3

connected, since uv is a dominating edge. By repeating this polynomial-time proce-
dure for all O(n2) possible choices of u and v, we will find S in polynomial time.

Step 2 Compute a smallest connected feedback vertex set S of G such that S ⊆ X or
S ⊆ Y .

For Step 2 we describe only the S ⊆ X case, as the S ⊆ Y case is symmetric. Thus
we may assume that W ⊆ X , otherwise no such set exists. Clearly, we may also
assume that G[Y] contains no cycles. If G[Y] contains an edge it follows that S = X ,
otherwise G − S would contain a triangle. Suppose instead that Y is an independ-
ent set. If |Y| = 1 , then X ⧵ S must be an independent set, otherwise G − S contains
a triangle. So S is a smallest connected vertex cover of G[X] that contains W. As
G[X] is P4-free, we can find such an S in polynomial time by Theorem 2. If |Y| ≥ 2 ,
then |X ⧵ S| ≤ 1 , as otherwise G − S contains a 4-cycle. Thus, we check, in polyno-
mial time, if there exists a vertex x ∈ X ⧵W , such that X ⧵ {x} is connected. If so,
S = X ⧵ {x} . ◻

Theorem 4 ConneCted odd CyCle transVersal extension can be solved in polyno-
mial time on P4-free graphs.

Proof We only provide an outline, as the proof follows that of Theorem 3. We per-
form the same two steps. In Step 1, we need to find a smallest odd cycle transver-
sal S′ in G − (W ∪ {u, v}) and can again apply Proposition 1. In Step 2, we again
note that if G[Y] contains an edge, then S = X . Suppose that Y is an independent
set. Then G − S contains no odd cycles if and only if X ⧵ S is independent, so S is a
smallest connected vertex cover of G[X] that contains W. (That is, the |Y| = 1 case
from the proof of Theorem 3 can be used for all values of |Y|, as we are no longer
concerned with whether G − S might contain cycles of even length.) ◻

4 The Case H = sP1 + P3

In this section, we will prove that Feedback Vertex Set and Odd cycle tranSVer-
Sal and their connected variants can be solved in polynomial time on (sP1 + P3)-free
graphs. We need three structural results. First, let us define a function c on the non-
negative integers by c(s) ∶= max{3, 2s − 1} . We will use this function c throughout
the remainder of this section, starting with the following lemma.

Lemma 2 Let s ≥ 0 be an integer. Let G be a bipartite (sP1 + P3)-free graph. If G
has a connected component on at least c(s) vertices, then there are at most s − 1
other connected components of G and each of them is on at most two vertices.

Proof First note that the s = 0 case of the lemma is trivially true, as every connected
component of a bipartite P3-free graph has at most two vertices.

1 3

Algorithmica

Suppose, for contradiction, that G has a connected component C1 on at least c(s)
vertices and a connected component C2 on at least three vertices. As C1 is bipartite
and contains at least 2s − 1 vertices, C1 contains a independent set of s vertices that
induce sP1 . As C2 is bipartite and contains at least three vertices, C2 has a vertex v
of degree at least 2, and so v and two of its neighbours induce a P3 . Thus G is not
(sP1 + P3)-free, a contradiction.

Similarly, if G contains a connected component C1 on at least c(s) ≥ 3 vertices,
then this component contains an induced P3 . Since G is (sP1 + P3)-free, G can con-
tain at most s − 1 connected components other than C1 . ◻

The internal vertices and leaves of a tree are the vertices of degree at least 2 and
degree 1, respectively.

Lemma 3 Let s ≥ 0 be an integer. Let T be an (sP1 + P3)-free tree. Then T has at
most 4s internal vertices.

Proof Let U be the set of internal vertices of T. Suppose that |U| ≥ 4s + 1 ≥ 1 . We
will show that this leads to a contradiction. As a path with at least 4s + 1 internal
vertices contains an induced sP1 + P3 , we may assume that T is not a path and so has
at least three leaves. Hence |V(T)| ≥ 4s + 4.

Let X and Y be the two bipartition sets of T, and assume without loss of generality
that |X| ≥ 2s + 2 . For Z ∈ {X, Y} , let LZ and UZ be the leaves and internal vertices
of T that belong to Z. If there is a vertex in Y of degree at least 2 that is anti-com-
plete to a set of s vertices of X, then T contains an induced sP1 + P3 , a contradiction.
Therefore we may assume that every vertex of Y either has degree at least |X| − s + 1
or is in LY . Then

Thus we have |X| − 1 ≥ |X||UY | − s|UY | and we rearrange to see that

Since |X| ≥ 2s + 2 , we have that |UY | < 2 . First suppose |UY | = 0 . Then |UX| ≤ 1
and |LX| = 0 , or |UX| = 0 and |LX| ≤ 1 . Both cases contradict the assumption that X
has at least 2s + 2 vertices. Now suppose |UY | = 1 . Then, by our assumption that

|X| + |UY | + |LY | − 1 =|X| + |Y| − 1

=|V(T)| − 1

=|E(T)|

=
∑

v∈Y

deg(v)

≥

∑

v∈UY

(|X| − s + 1) + |LY |

=(|X| − s + 1)|UY | + |LY |
=|X||UY | − s|UY | + |UY | + |LY |.

|UY | ≤
|X| − 1

|X| − s
= 1 +

s − 1

|X| − s
.

 Algorithmica

1 3

|U| ≥ 4s + 1 , we have that |UX| ≥ 4s and so |LY | ≥ |UX| ≥ 4s . Now it is easy to find
an induced sP1 + P3 (see Fig. 1), and this contradiction completes the proof. ◻

The bound of 4s in Lemma 3 is not tight but, as we shall see later, it suffices
for our purposes.

Lemma 4 Let s ≥ 0 be an integer. Let G be a connected (sP1 + P3)-free graph,
and let U be a set of vertices in G. Then there is a set of vertices R in G such that
G[R ∪ U] is connected and |R| ≤ 2s2 − 2s + 3.

Proof If G[U] is connected, then let R = � . Otherwise, since G cannot now be a
complete graph, it contains an induced path P on three vertices in G. The num-
ber of connected components of G[U] that do not contain a vertex that is either
in P or adjacent to a vertex of P in G is at most s − 1 , otherwise G contains an
induced sP1 + P3 . Let R contain the vertices of P and the internal vertices of short-
est paths in G from P to each set of vertices that induces a connected component
of G[U]. As at most s − 1 of these shortest paths have more than zero internal ver-
tices, and as each contains at most 2s internal vertices (any longer path contains an
induced sP1 + P3), it follows that |R| ≤ 3 + 2s(s − 1) = 2s2 − 2s + 3 . As G[R ∪ U] is
connected, the lemma is proved. ◻

We now prove our four results. For the connected variants, we consider the
more general extension versions.

Theorem 5 For every s ≥ 0 , FeedbaCk Vertex set can be solved in polynomial time
on (sP1 + P3)-free graphs.

Fig. 1 The structure of the
tree T in the proof of Lemma 3
in the case when |U

Y
| = 1 . The

set L
X
 is an independent set of

vertices that each are adjacent
to the unique vertex y ∈ U

Y
 .

The set L
Y
 is partitioned into

independent sets of vertices that
have the same neighbour in U

X
 .

The vertices y, x, z, together
with s vertices of L

y
 not adjacent

to x, induce an sP1 + P3 in T
(which leads to the desired
contradiction in the proof)

y

x
z

≥ 4s

LX UY UX LY

1 3

Algorithmica

Proof Let s ≥ 0 be an integer, and let G = (V ,E) be an (sP1 + P3)-free graph. We
must show how to find a smallest feedback vertex set of G. We will in fact show how
to find a largest induced forest of G, the complement of a smallest feedback vertex
set. The proof is by induction on s. If s = 0 , then we can use Proposition 1. We now
assume that s ≥ 1 and that we have a polynomial-time algorithm for finding a largest
induced forest in ((s − 1)P1 + P3)-free graphs. Our algorithm performs the following
two steps in polynomial time. Together, these two steps cover all possibilities.

Step 1 Compute a largest induced forest F such that every connected component
of F has at least c(s) vertices.

By Lemma 2 we know that F will be connected, and so by Lemma 3 F will be
a tree with at most 4s internal vertices. We consider every possible choice U of a
non-empty set of at most 4s vertices. There are O(n4s) choices. If U induces a tree,
we will find a largest induced tree whose internal vertices all belong to U. This can
be found by adding to U the largest possible set of vertices that are independent and
belong to the set R of vertices in G − U that each have exactly one neighbour in U.
That is, we need a largest independent set in G[R] and, by Theorem 1, such a set can
be found in polynomial time.

Step 2 Compute a largest induced forest F such that F has a connected component
with at most c(s) − 1 vertices.

We consider every possible choice of a non-empty set T of at most c(s) − 1 verti-
ces and discard those that do not induce a tree. There are O(nc(s)−1) choices for T. Let
U = N(T) , and let G� = G − (T ∪ U) . Then G′ is ((s − 1)P1 + P3)-free. Thus we can
find a largest induced forest F′ of G′ in polynomial time and F� + G[T] is a largest
induced forest of G among those that have G[T] as a connected component. ◻

Theorem 6 For every s ≥ 0 , ConneCted FeedbaCk Vertex set extension can be
solved in polynomial time on (sP1 + P3)-free graphs.

Proof There are similarities to the proof of Theorem 5, but more arguments are
needed. Let s ≥ 0 be an integer, let G = (V ,E) be a connected (sP1 + P3)-free graph
and let W be a subset of V. We must show how to find a smallest connected feedback
vertex set of G that contains W in polynomial time. We show how to solve the com-
plementary problem in polynomial time: how to find a largest induced forest F of G
that does not include any vertex of W and V ⧵ F is connected. We will say that an
induced forest F is good if it has these two properties. ◻

Our algorithm performs the following three steps in polynomial time. Together,
these three steps cover all possibilities.

Step 1 Compute a largest good induced forest F such that there is a connected
component of F that has at least c(s) vertices.

By Lemma 2 we know that F has exactly one connected component on at
least c(s) and there are at most s − 1 other connected components of F, each on at

 Algorithmica

1 3

most two vertices. By Lemma 3, the connected component on at least c(s) vertices
has at most 4s internal vertices. We consider O(n4s+2(s−1)) choices of a non-empty
set U of at most 4s vertices that induces a tree and a set U′ of at most 2(s − 1) ver-
tices that induces a disjoint union of vertices and edges such that U ∪ U� does not
intersect W, U is disjoint from U′ and no vertex of U has a neighbour in U′ . Let R be
the set of vertices that each have exactly one neighbour in U and no neighbour in U′ ,
but do not belong to W. We then add to U ∪ U� the largest possible set L of verti-
ces that are independent and belong to the set R such that G − (L ∪ U ∪ U�) is con-
nected. This is achieved by taking the complement of the smallest connected vertex
cover of G − (U ∪ U�) that contains V ⧵ (R ∪ U ∪ U�) . By Theorem 2, this can be
done in polynomial time.

Step 2 Compute a largest good induced forest F such that F has at most s − 1 con-
nected components and each connected component has at most c(s) − 1 vertices.

Since the number of vertices in F is bounded by the constant (s − 1)(c(s) − 1) , we
can simply check all sets containing at most that many vertices to see if they induce
such a good forest.

Step 3 Compute a largest good induced forest F such that F has at least s con-
nected components and each connected component has at most c(s) − 1 vertices.

We consider O(ns(c(s)−1)) choices of a non-empty set L of at most s(c(s) − 1) ver-
tices. We reject L unless G[L] is a good induced forest on s connected components
with no connected component of more than c(s) − 1 vertices. Assuming our choice
of L is correct, the connected components of G[L] will become connected compo-
nents of G[F].

Let U = N(L) and note that no vertex of U is in F. If G − U is a good forest, then
we are done. Otherwise we consider every set R of at most 2s2 − 2s + 3 vertices of
G − (L ∪ U ∪W) such that G[R ∪ U ∪W] is connected; see also Fig. 2. We note that
if there is a largest induced forest F such that the connected components of G[L] are
also connected components of G[F], then Lemma 4 applied to G − F implies that
such a set R exists.

Let S = R ∪ U ∪W . If G − S is a forest, then we are done. Otherwise note that
G − (L ∪ S) is the disjoint union of one or more complete graphs: G − (L ∪ S) cannot
contain an induced P3 , as it is anti-complete to L which contains an induced sP1.

As G is connected, each of the complete graphs in G − (L ∪ S) contains at least
one vertex that is adjacent to some vertex of S. Hence in polynomial time we can
find a set S′ of vertices containing all but min{2, |X|} vertices from each of the com-
plete graphs X in such a way that G[S ∪ S�] is connected. Then G − (S ∪ S�) is a larg-
est good induced forest that contains L and no vertex of R ∪ U.

After considering each of the O(n2s2−2s+3) choices for R, in polynomial time we
find a largest good induced forest that contains L and no vertex of U. After consider-
ing each of the O(ns(c(s)−1)) choices for L, we find in polynomial time a largest good

1 3

Algorithmica

induced forest that has at least s connected components, each with at most c(s) − 1
vertices. ◻

Theorem 7 For every s ≥ 0 , odd CyCle transVersal can be solved in polynomial
time on (sP1 + P3)-free graphs.

Proof Let s ≥ 0 be an integer, and let G = (V ,E) be an (sP1 + P3)-free graph. We
must describe how to find a smallest odd cycle transversal of G. If s = 0 , then we
can use Proposition 1. We now assume that s ≥ 1 and use induction. We will in fact
describe how to solve the complementary problem and find a largest induced bipar-
tite subgraph of G. The proof is by induction on s and our algorithm performs two
steps in polynomial time, which together cover all possibilities.

Step 1 Compute a largest induced bipartite subgraph B such that every connected
component of B has at least c(s) vertices.

By Lemma 2, we know that B will be connected. Hence, B has a unique biparti-
tion, which we denote {X, Y} . We first find a largest induced bipartite subgraph B

Fig. 2 The decomposition of the (sP1 + P3)-free graph G, as given in Step 3 of the algorithm from the
proof of Theorem 6

 Algorithmica

1 3

that is a star: we consider each vertex x and find a largest induced star centred at x
by finding a largest independent set in N(x). This can be done in polynomial time by
Theorem 1.

Next, we find a largest induced bipartite subgraph B that is not a star. We consider
each of the O(n2) choices of edges xy of G and find a largest induced connected
bipartite subgraph B such that x ∈ X and y ∈ Y and neither x nor y has degree 1 in B
(since B is not a star, it must contain such a pair of vertices). Note that the number
of vertices in X non-adjacent to y is at most s − 1 , otherwise B induces an sP1 + P3 .
Similarly there are at most s − 1 vertices in Y non-adjacent to x. We consider each
of the O(n2s−2) possible pairs of disjoint sets X′ and Y ′ , which are each independ-
ent sets of size at most s − 1 such that X� ∪ Y � is anti-complete to {x, y} . We will
find a largest induced bipartite subgraph with partition classes X and Y such that
{x} ∪ X� ⊆ X and {y} ∪ Y � ⊆ Y and every vertex in X ⧵ X′ is adjacent to y and every
vertex in Y ⧵ Y ′ is adjacent to x. That is, we must find a largest independent set in
both N(x) ⧵ N({y} ∪ Y �) and N(y) ⧵ N({x} ∪ X�) ; see Fig. 3 for an illustration. This
can be done in polynomial time, again by applying Theorem 1.

Step 2 Compute a largest induced bipartite subgraph B such that B has a con-
nected component with at most c(s) − 1 vertices.

Fig. 3 An illustration of Step 1 of the algorithm in the proof of Theorem 7. Full and dotted lines indicate
when two sets are complete or anti-complete to each other, respectively. The absence of a full or dotted
lines indicates that edges may or may not exist between two sets

1 3

Algorithmica

We consider each of the O(nc(s)−1) possible choices of a non-empty set L of at
most c(s) − 1 vertices and discard those that do not induce a bipartite graph. We
will find the largest B that has G[L] as a connected component. Let U = N(L) , and
let G� = G − (L ∪ U) . As G′ is ((s − 1)P1 + P3)-free, we can find a largest induced
bipartite subgraph B′ of G′ in polynomial time and B� + G[L] is a largest induced
bipartite subgraph among those that have G[L] as a connected component. ◻

Theorem 8 For every s ≥ 0 , ConneCted odd CyCle transVersal extension can be
solved in polynomial time on (sP1 + P3)-free graphs.

Proof Let s ≥ 0 be an integer, let G = (V ,E) be a connected (sP1 + P3)-free graph
and let W be a subset of V. We must describe how to find a smallest connected odd
cycle transversal of G that contains W. We will solve the complementary problem:
how to find a largest induced bipartite graph of G that does not include any vertex
of W and whose complement is connected. We will say that an induced bipartite
graph B is good if it has these two properties. Our algorithm consists of three steps,
which can each be performed in polynomial time and which together cover all the
possible cases.

Step 1 Compute a largest good induced bipartite subgraph B such that B has a
bipartition {X, Y} in which one set, say X, has size |X| ≤ s . (Note that this includes
the case when every connected component of B has at most two vertices and B has
at most s connected components.)

We consider O(ns) choices of an independent set X of at most s vertices of G
that does not intersect W. We wish to find Y, the largest possible independent set
in G − (W ∪ X) such that G − (X ∪ Y) is connected. By Theorem 2, we can do this
in polynomial time by computing a minimum connected vertex cover of G − X
that contains W and taking its complement (in G − X).

Step 2 Compute a largest good induced bipartite subgraph B such that B has
at least s connected components and each connected component has at most two
vertices.

Note that 2 ≤ c(s) − 1 . The algorithm mimics Step 3 of the algorithm in the
proof of Theorem 6, but checks for a good bipartite graph instead of a good forest.

Step 3 Compute a largest good induced bipartite subgraph B such that there is a
connected component of B that has at least three vertices and B has a bipartition
{X, Y} with |X| ≥ s + 1 and |Y| ≥ s + 1.

It is in this case that we must do most of the work in proving the theorem, and
here we will need ideas beyond those already met in this section.

As B contains a connected component on at least three vertices, it will contain
an induced P3 and so |X| ≥ 1 and |Y| ≥ 1 . We consider O(n2s+2) choices of disjoint

 Algorithmica

1 3

independent sets X′ and Y ′ that each contain s + 1 vertices of G and do not inter-
sect W. If G[X� ∪ Y �] contains an induced P3 , our aim is to compute a largest good
induced bipartite graph B with bipartition {X, Y} such that X′ ⊆ X and Y ′ ⊆ Y ;
otherwise we discard the choice of X′, Y ′.

We define (see also Fig. 4) a partition of V ⧵ (X� ∪ Y �):

There are a number of steps where our procedure branches as we consider all pos-
sible ways of choosing whether or not to add certain vertices to B. Note that assum-
ing our choice of X′ and Y ′ is correct, no vertex of U can be in B. If we decide that a
vertex will not be in B, we will then add it to U.

Step 3.1. Reduce Z to the empty set.
Notice that Z does not contain an independent set on more than s − 1 verti-

ces otherwise G[X� ∪ Y � ∪ Z] would contain an induced sP1 + P3 . We consider
O(n2s−2) choices of disjoint independent sets ZX and ZY that are each subsets of Z
and each contain at most s − 1 vertices. We move the vertices of ZX and ZY by
adding them to X′ and Y ′ , respectively. We move the vertices of Z ⧵ (ZX ∪ ZY) by
adding them to U. If after this process is complete there are vertices in VX ∪ VY
with neighbours in both X′ and Y ′ , we move these vertices by adding them to U.
We note that now:

• Z is the empty set,
• VX still contains vertices with neighbours in X′ but not in Y ′,

U =(N(X�) ∩ N(Y �)) ∪W

VX =N(X�) ⧵ (Y � ∪ N(Y �) ∪W)

VY =N(Y �) ⧵ (X� ∪ N(X�) ∪W)

Z =V ⧵ (X� ∪ Y � ∪ N(X�) ∪ N(Y �) ∪W)

Fig. 4 The decomposition of G in Step 3. Full and dotted lines indicate when two sets are complete or
anti-complete to each other, respectively. The absence of a full or dotted line indicates that edges may
or may not exist between two sets. The circles in V

X
 and V

Y
 represent disjoint unions of complete graphs

1 3

Algorithmica

• VY still contains vertices with neighbours in Y ′ but not in X′ , and
• U contains vertices that will not be in B.

So our task is to decide how best to add vertices of VX to Y ′ and vertices of VY to X′ ,
but first there is another step: as G − B must be connected, and G[U] is a subgraph
of G − B , we choose some vertices that will not be in B, but will connect together
the connected components of G[U]. This will not be possible if the vertices of U
belong to more than one connected component of G − (X� ∪ Y �) . Hence, in that case
we discard this choice of ZX , ZY.

Step 3.2. Make G[U] connected.
We consider O(n2s2−2s+3) choices of sets R of vertices of G − (X� ∪ Y �) such that

each contains at most 2s2 − 2s + 3 vertices. If G[R ∪ U] is connected, we move the
vertices of R by adding them to U, and so G[U] becomes connected. Note that since
all vertices of U are in the same connected component of G − (X� ∪ Y �) , Lemma 4
implies that at least one such set R can be found.

Step 3.3. Add vertices from VX to Y ′ and from VY to X′.
We note that G[VX] is P3-free, as no vertex of VX has a neighbour in Y ′ , |Y ′| ≥ s ,

and G is (sP1 + P3)-free. By symmetry, G[VY] is P3-free. Thus both G[VX] and G[VY]
are disjoint unions of complete graphs. Note that B can contain at most one vertex
from each of these complete graphs. We consider two subcases.

Step 3.3.a. Compute a largest good induced bipartite subgraph B with bipartition
{X, Y} such that X′ ⊆ X , Y ′ ⊆ Y and G − B contains no edges between VX and VY.

As G − B must be connected, each clique of VX and VY that contains at least two
vertices must contain a vertex adjacent to U (otherwise such a set B cannot exist).
Thus we can form X from X′ by adding to X′ one vertex from each clique of VY and
form Y by adding to Y ′ one vertex from each clique of VX in such a way that G − B
is connected. (If we do this, it is possible that G − B will contain an edge from VX
to VY , but then this solution is at least as large as one where such edges are avoided.)

Step 3.3.b. Compute a largest good induced bipartite subgraph B with bipartition
{X, Y} such that X′ ⊆ X , Y ′ ⊆ Y and G − B has an edge xy where x ∈ VX , y ∈ VY.

We consider O(n2) choices of an edge xy, x ∈ VX , y ∈ VY . Let vX ∈ X� be a neigh-
bour of x and note that vX , x and y induce a P3 in G. Therefore x must be complete
to all but at most s − 1 cliques of VY . By symmetry, y must be complete to all but at
most s − 1 cliques of VX . A clique in VX or VY is bad if it is not complete to y or x,
respectively. Note that the cliques containing x and y may be bad. We move x and y
to U.

We consider O(n2s−2) choices of a set S of at most 2s − 2 vertices that each belong
to a distinct bad clique and move each to X′ or Y ′ if they are in VY or VX respectively.
We move the other vertices of the bad cliques to U. If the vertices of U are not in
the same connected component of G − (X� ∪ Y �) , we discard this choice of S. We

 Algorithmica

1 3

consider O(n2s2−2s+3) choices of sets R′ of vertices of G − (X� ∪ Y �) such that each
contains at most 2s2 − 2s + 3 vertices. If G[R� ∪ U] is connected we move the ver-
tices of R′ to U, so G[U] becomes connected. Since the vertices of U are in the
same connected component of G − (X� ∪ Y �) , Lemma 4 implies that at least one such
set R′ can be found.

Note that some cliques might have been completely removed from VX and VY by
the choice of R′ . It only remains to pick one vertex from each remaining clique of VX
and VY , and add these vertices to Y ′ or X′ , respectively to finally obtain B. As all ver-
tices in these cliques are adjacent to x or y we know that G − B will be connected.
 ◻

5 The Case H = P6

In this section we prove that Odd cycle tranSVerSal and cOnnected Odd cycle
tranSVerSal are NP-hard on (P2 + P5,P6)-free graphs. We do this by modifying the
construction used in [29] for proving that these two problems are NP-complete on
P13-free segment graphs.

Theorem 9 odd CyCle transVersal and ConneCted odd CyCle transVersal are NP-
complete on (P2 + P5,P6)-free graphs.

Proof Both problems are readily seen to belong to NP. To prove NP-hardness we
reduce from Vertex cOVer, which is known to be NP-complete [16]. Let (G, k) be
an instance of Vertex cOVer. Let n and m be the number of vertices and edges,
respectively, in G. Let v1,… , vn be the vertices of G. We construct a graph G∗
from G as follows.

1. For i ∈ {1,… , n} create vertices ai, bi, ci, xi and yi . Let A, B, C, X and Y be the sets
of, respectively, ai , bi , ci , xi and yi vertices.

2. For i, j ∈ {1,… , n} , add the edges xiyj and biyj (so we make Y complete to both X
and B).

3. For each i ∈ {1,… , n} , add edges xiai, xibi, aibi, bici, ciyi (a vertex gadget, see also
Fig. 5a and note that bi is adjacent to yi by the previous step).

4. For each edge vivj in G with i < j , add a vertex di,j adjacent to both xi and yj (an
edge gadget, see also Fig. 5b). Let D be the set of di,j vertices.

Fig. 5 The two gadgets used in
the proof of Theorem 9

1 3

Algorithmica

We first claim that the following statements are equivalent:

 (i) G has a vertex cover of size at most k;
 (ii) G∗ has an odd cycle transversal of size at most n + k;
 (iii) G∗ has a connected odd cycle transversal of size at most n + k.

The implication (iii) ⇒ (ii) is trivial. Below we prove (i) ⇒ (iii) and (ii) ⇒ (i).

(i) ⇒ (iii). Suppose that G has a vertex cover Q of size at most k. We define the set

and observe that |S| = 2|Q| + (n − |Q|) = n + |Q| ≤ n + k and that S is connected.
We claim that S is an odd cycle transversal of G∗ . This can be seen as follows. The
only induced odd cycles in G∗ are the three triangles in each vertex gadget and the
triangle in each edge gadget. By construction of S, for every i ∈ {1,… , n} , either S
contains both xi and yi or S contains bi , thus every triangle in every vertex gadget
intersects S. Furthermore, since Q is a vertex cover of G, for every edge gadget
{xi, yj, di,j} , either xi ∈ S or yj ∈ S . Therefore S intersects every odd cycle in G∗.

(ii) ⇒ (i). Suppose that G∗ has an odd cycle transversal S of size at most n + k .
Consider an edge gadget on {xi, yj, di,j} . If di,j ∈ S then S� ∶= (S ⧵ {di,j}) ∪ {xi}
is an odd cycle transversal of G with |S′| ≤ |S| . We may therefore assume that S
contains no vertices of D. For i ∈ {1,… , n} , the vertex bi intersects all odd cycles
in the vertex gadget on {ai, bi, ci, xi, yi} . If bi ∉ S then |S ∩ {ai, bi, ci, xi, yi}| ≥ 2
since S intersects all induced odd cycles of the vertex gadget. Note that {xi, yi} inter-
sects all odd cycles of the vertex gadget. Therefore, if |S ∩ {ai, bi, ci, xi, yi}| ≥ 2 ,
then S� ∶= (S ⧵ {ai, bi, ci}) ∪ {xi, yi} is an odd cycle transversal of G∗ with
|S′| ≤ |S| . We may therefore assume that for every i ∈ {1,… , n} , either bi ∈ S or
{xi, yi} ⊆ S and there are no other vertices in S. Let BS = B ∩ S , XS = S ∩ X and
YS = S ∩ Y . Then |S| = |BS| + |SX| + |SY | = n + |SX| . Let Q =

⋃
xi∈S

{vi} . Then
|Q| = |SX| = |S| − n ≤ n + k − n = k.

We claim that Q is a vertex cover of G. This can be seen as follows. Consider an
edge vivj of G (without loss of generality assume i < j). Then |{xi, yj, di,j} ∩ S| ≥ 1 ,
as S is an odd cycle transversal of G∗ . By assumption on S, di,j ∉ S and if yj ∈ S then
xj ∈ S . It follows that xi ∈ S or xj ∈ S and so vi ∈ Q or vj ∈ Q . We conclude that Q
is a vertex cover of G of size at most k.

It only remains to show that G∗ is (P2 + P5,P6)-free. Suppose, for contra-
diction, that H ∈ {P2 + P5,P6} is an induced subgraph of G∗ . Every ver-
tex in A ∪ C ∪ D has degree 2 and its two neighbours are adjacent. There-
fore no vertex in V(H) ∩ (A ∪ C ∪ D) is an internal vertex of a path of H.
That is, if x ∈ V(H) ∩ (A ∪ C ∪ D) then x has degree 1 in H. Furthermore,
A ∪ C ∪ D is an independent set in G∗ . Hence, if H = P2 + P5 , then at most one

S =
⋃

vi∈Q

{xi, yi} ∪
⋃

vi∉Q

{bi}

 Algorithmica

1 3

vertex of the P2 connected component of H can be in A ∪ C ∪ D . We conclude that
G∗[V(H) ∩ (B ∪ X ∪ Y)] contains an induced subgraph H′ on four vertices that is iso-
morphic to P1 + P3 if H = P2 + P5 or P4 if H = P6 . Since Y is an independent set
and B ∪ X is a perfect matching, H′ must contain at least one vertex of B ∪ X and at
least one vertex of Y. As Y is complete to B ∪ X , we find that H′ contains either C4
or K1,3 as a (not necessarily induced) subgraph, a contradiction. This completes the
proof. ◻

The proof of Theorem 9 gives a slightly stronger result if we assume the Exponen-
tial Time Hypothesis (ETH). The ETH is one of standard assumptions in complexity
theory which, along with the sparsification lemma, implies that 3-Sat with n vari-
ables and m clauses cannot be solved in 2o(n+m) time [22, 23]. The number of vertices
in the graph G∗ constructed in the proof of Theorem 9 is 5n + m . Thus an algorithm
solving (cOnnected) Odd cycle tranSVerSal on (P2 + P5,P6)-free graphs with n
vertices in time 2o(n) could be used to solve Vertex cOVer on graphs with n vertices
and m edges in 2o(n+m) time. However, such a fast algorithm for Vertex cOVer does
not exist unless the ETH fails [11]. Thus we get the following statement.

Corollary 1 Odd cycle tranSVerSal and cOnnected Odd cycle tranSVerSal can-
not be solved in 2o(n) time on (P2 + P5,P6)-free graphs with n vertices, unless the
ETH fails.

6 Conclusions

We proved polynomial-time solvability of Feedback Vertex Set and Odd cycle
tranSVerSal on H-free graphs when H = sP1 + P3 and polynomial-time solvability
of their connected variants on H-free graphs, when H = P4 or H = sP1 + P3 ; see
also Table 1, where we place these results in the context of known results for these
problems on H-free graphs. We also showed that Odd cycle tranSVerSal and cOn-
nected Odd cycle tranSVerSal are NP-complete on (P2 + P5,P6)-free graphs.

Natural cases for future work are the cases when H = sP1 + P4 for s ≥ 1 and
H = P5 for all four problems (in particular the case when H = P5 is the only open
case for Odd cycle tranSVerSal and cOnnected Odd cycle tranSVerSal restricted
to Pr-free graphs). Note that Lemma 2 does not hold on (sP1 + P4)-free graphs: the
disjoint union of any number of arbitrarily large stars is even P4-free.

Recall that Vertex cOVer and cOnnected Vertex cOVer are polynomial-time
solvable even on (sP1 + P6)-free graphs [20] and (sP1 + P5)-free graphs [24],
respectively, for every s ≥ 0 . In contrast to the case for Odd cycle tranSVerSal and
cOnnected Odd cycle tranSVerSal, it is not known whether there is an integer r for
which any of the problems Vertex cOVer, Feedback Vertex Set or their connected
variants is NP-complete on Pr-free graphs. Determining whether such an r exists is
an interesting open problem.

1 3

Algorithmica

We note that a similar complexity study has also been undertaken for the inde-
pendent variants of the problems Feedback Vertex Set and Odd cycle tranSVer-
Sal.3 In particular, independent Feedback Vertex Set and independent Odd cycle
tranSVerSal are polynomial-time solvable on P5-free graphs [3], but their complex-
ity status is unknown on P6-free graphs. It is not known whether there is an integer r
such that independent Feedback Vertex Set or independent Odd cycle tranSVer-
Sal is NP-complete on Pr-free graphs.

We conclude that in order to make any further progress, we must better under-
stand the structure of Pr-free graphs. This topic has been well studied in recent
years, see also for example [17, 19]. However, more research and new approaches
will be needed.

Acknowledgements The research in this paper received support from the Leverhulme Trust (RPG-2016-
258). The second author was supported the Research Council of Norway via the project CLASSIS, grant
number 249994. The last author was supported by Polish National Science Centre Grant No. 2018/31/D/
ST6/00062. An extended abstract of this paper appeared in the proceedings of FCT 2019 [13].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendix: The Proof of Theorem 2

We will adapt, in a straightforward way, the proof from [24] for showing that cOn-
nected Vertex cOVer is polynomial-time solvable on (sP1 + P5)-free graphs for
every s ≥ 1.

We need the following definitions and lemmas. Let G = (V ,E) be a graph. The
contraction of an edge uv ∈ E deletes the vertices u and v and replaces them by a
new vertex made adjacent to precisely those vertices that were adjacent to u or v
in G (without introducing self-loops or multiple edges). Recall that a linear forest is
the disjoint union of one or more paths. The following lemma is a straightforward
observation.

Lemma 5 Let H be a linear forest and let G be a connected H-free graph. Then the
graph obtained from G after contracting an edge is also connected and H-free.

We need the following lemmas given in [24].

3 independent Vertex cOVer can be seen as 2-cOlOuring, with the additional restriction that one of the
colours can be used at most k times. This problem is polynomial-time solvable.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Algorithmica

1 3

Lemma 6 [24] Let s ≥ 0 and let G be a connected (sP1 + P5)-free graph. Then G
has a connected dominating set D that is either a clique or has size at most
2s2 + s + 3 . Moreover, D can be found in O(n2s2+s+3) time.

Lemma 7 [24] Let J be an independent set in a connected graph G such that J has
a vertex y that is adjacent to every vertex of G − J . Let J′ consist of those vertices of
J ⧵ {y} that have two adjacent neighbours in G − J (or equivalently, in G). Then a
subset S of the vertex set of G is a connected vertex cover of G that contains J if and
only if S ⧵ J′ is a connected vertex cover of G − J� that contains J ⧵ J′.

We also need an auxiliary problem defined in [24]. Let G be a connected graph,
let J ⊆ VG be a subset of the vertex set of G and let y be a vertex of J. We call say
that a triple (G, J, y) is cover-complete if it has the following three properties:

(a) J is an independent set;
(b) y is adjacent to every vertex of G − J;
(c) the neighbours of each vertex in J ⧵ {y} form an independent set in G − J.

This leads to the following optimization problem:

We also need the following two lemmas.

Lemma 8 [24] Let (G, {y}, y) be a cover-complete triple, where G is an (sP1 + P5)-free
graph for some s ≥ 0 . Then it is possible to compute a smallest connected vertex cover
of G that contains y in O(ns+14) time.

Lemma 9 [24] For every s ≥ 0 , cOnnected Vertex cOVer cOmpletiOn can
be solved in O(n2s+19) time for cover-complete triples (G, J, y), where G is an
(sP1 + P5)-free graph.

We are now ready to prove Theorem 2, which we restate below. The proof
mimics the proof of [24].

Theorem 2 (restated) For every s ≥ 0 , ConneCted Vertex CoVer extension can be
solved in polynomial time on (sP1 + P5)-free graphs.

Proof Let G be an (sP1 + P5)-free graph on n vertices for some s ≥ 0 and let
W ⊆ V(G) be a subset of vertices of G. We may assume without loss of generality
that G is connected. By Lemma 6 we can first compute in O(n2s2+s+3) time a con-
nected dominating set D that either has size at most 2s2 + s + 3 or is a clique. We

1 3

Algorithmica

note that, if D is a clique, any vertex cover of G contains all but at most one vertex
of D. This leads to a case analysis where we guess the subset D∗ ⊆ D ⧵W of verti-
ces not in a smallest connected vertex cover of G that contains W. That is, we choose
a set of at most one vertex if D is a clique and a set of at most |D ⧵W| vertices oth-
erwise, and eventually look at all such sets. As |D ⧵W| ≤ |D| ≤ 2s2 + s + 3 if D is
not a clique, the number of guesses is O(n2s2+s+3) . For each guess of D∗ , we compute
a smallest connected vertex cover SD∗ that contains all vertices of (D ⧵ D∗) ∪W and
no vertex of D∗ . Then, at the end, we return one that has minimum size overall. In
particular we note that, since D is a connected dominating set of G, D ∪W is also a
connected dominating set of G.

Let D∗ be a guess. Before we start our case analysis we first prove the follow-
ing claim.

Claim 1 We may assume, at the expense of an O(n16s3+4) factor in the running time,
that D ⧵ D∗ is connected.

We prove Claim 1 as follows. Suppose D ⧵ D∗ is not connected. Recall that G[D]
is either a complete graph or has size at most 2s2 + s + 3 . In the first case, G[D ⧵ D∗]
is connected. Hence, the second case applies so D has size at most 2s2 + s + 3 .
Let v ∈ D ⧵ D∗ . As G is (sP1 + P5)-free, G is also P5+2s-free. Hence, for each
u ∈ D ⧵ (D∗ ∪ {v}) , every connected vertex cover of G contains a path of at most
5 + 2s − 1 vertices that connects u to v. We will guess all these u − v-paths (using
only vertices from G − D∗) and add their vertices to D. As the number of paths is
at most 2s2 + s + 2 , this branching adds an O(n(5+2s−3)(2s2+s+2)) = O(n16s

3+4) factor
to our running time and increases our set D by at most 24s3 extra vertices. We have
proven Claim 1.

We distinguish two cases.

Case 1 D∗ = �.
We compute a minimum vertex cover S′ of G − (D ∪W) in polynomial time by

Theorem 1. To be more precise, this takes O(ns+14) time by using the same argu-
ments as in the proof of Lemma 8 (see [24]). Clearly S� ∪ D ∪W is a vertex cover
of G. As D is a connected dominating set, S� ∪ D ∪W is even a connected vertex
cover of G. Let S� = S� ∪ D ∪W . As S′ is a minimum vertex cover of G − (D ∪W) ,
S∅ is a smallest connected vertex cover of G that contains all vertices of D ∪W . We
remember S∅ . Note that S∅ is found in O(ns+14) time.

Case 2 1 ≤ |D∗| ≤ |D| (recall that |D| ≤ 2s2 + s + 3).
Recall that we are looking for a smallest connected vertex cover of G that contains

every vertex of (D ⧵ D∗) ∪W , but does not contain any vertex of D∗ . Hence D∗ must
be an independent set, disjoint from W, and G − D∗ must be connected (if one of
these conditions is false, then we stop considering the guess D∗). Moreover, a vertex

 Algorithmica

1 3

cover that contains no vertex of D∗ must contain all vertices of NG(D
∗) . Hence we

can safely contract not only any edge between two vertices of (D ⧵ D∗) ∪W , but also
any edge between two vertices in NG(D

∗) or between a vertex of (D ⧵ D∗) ∪W and a
vertex in NG(D

∗) . We perform edge contractions recursively and as long as possible
while remembering all the edges that we contract. This takes O(n) time. Let G∗ be
the resulting graph.

Note that the set D∗ still exists in G∗ , as we did not contract any edges with an
endpoint in D∗ . By Claim 1, the set D ⧵ D∗ in G corresponds to exactly one vertex
of G∗ . We denote this vertex by y. The set W of G corresponds to an independent set
of G∗ . We denote this set by W∗ . We observe the following equivalence, which is
obtained after uncontracting all the contracted edges.

Claim 2 Every smallest connected vertex cover of G∗ that contains {y} ∪W∗ and that
does not contain any vertex of D∗ corresponds to a smallest connected vertex cover
of G that contains (D ⧵ D∗) ∪W and that does not contain any vertex of D∗ , and vice
versa.

As we obtained G∗ in O(n) time, and we can also uncontract all contracted edges
in O(n) time, Claim 2 tells us that we may consider G∗ instead of G. As G is con-
nected and (sP1 + P5)-free, G∗ is also connected and (sP1 + P5)-free by Lemma 5.

We write J∗ = NG∗ (D∗) ∪W∗ and note that y belongs to NG∗ (D∗) ⊆ J∗ as D is con-
nected in G. We now consider the graph G∗ − D∗ . As G − D∗ is connected, G∗ − D∗
is connected. By Claim 2, our new goal is to find a smallest connected vertex cover
of G∗ − D∗ that contains J∗ . By our procedure, J∗ is an independent set of G∗ − D∗ .
As D dominates G, we find that D ⧵ D∗ dominates every vertex of G − D∗ that is not
adjacent to a vertex of D∗ . Hence the vertex y, which corresponds to the set D ⧵ D∗ ,
is adjacent to every vertex of (G∗ − D∗) − J∗ in the graph G∗ − D∗.

Let J ⊆ J∗ consist of y and those vertices in J∗ whose neighbourhood in
G∗ − D∗ is an independent set. As y is adjacent to every vertex of (G∗ − D∗) − J∗ in
G∗ − D∗ , and we can remember the set J∗ ⧵ J , we can apply Lemma 7 and remove
J∗ ⧵ J . That is, it suffices to find a smallest connected vertex cover of the graph
G� = (G∗ − D∗) − (J∗ ⧵ J) that contains J.

As J∗ is an independent set of G∗ − D∗ , we find that J is an independent set of G′ .
By definition, y ∈ J . As y is adjacent to every vertex of (G∗ − D∗) − J∗ in G∗ − D∗ ,
we find that y is adjacent to every vertex in G� − J . By definition, the neighbours of
each vertex in J ⧵ {y} form an independent set in G� − J . Hence the triple (G�, J, y) is
cover-complete. This means that we can apply Lemma 9 to find in O(n2s+19) time a
smallest connected vertex cover S′ of G′ that contains J.

We translate S′ in constant time into a smallest connected vertex cover S∗ of
G∗ − D∗ that contains J∗ by adding J∗ ⧵ J to S′ . We translate S∗ in O(n) time into
a smallest connected vertex cover SD∗ of G that contains (D ⧵ D∗) ∪W but no ver-
tex of D∗ by uncontracting any contracted edges. It takes O(n2s+19) time to find the
set SD∗.

1 3

Algorithmica

As mentioned, at the end we pick a smallest set of the sets SD∗ . This set is
then a smallest connected vertex cover of G that contains W. As there are
O(n2s

2+s+3
⋅ n16s

3+4) such sets, each of which is found in O(n2s+19) time, the total run-
ning time is O(n21s3+26) . The correctness of our algorithm follows immediately from
the above case analysis and the description of the cases. ◻

Note that the algorithm given in Theorem 2 not only solves the decision problem,
but also finds a minimum connected vertex cover of a given (sP1 + P5)-free graph in
polynomial time.

References

 1. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Net-
works 19(2), 247–253 (1989)

 2. Belmonte, R., van ’t Hof, P., Kamiński, M., Paulusma, D.: The price of connectivity for feedback
vertex set. Discrete Appl. Math. 217, 132–143 (2017)

 3. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback ver-
tex set for P5-free graphs. Algorithmica 81(4), 1342–1369 (2019)

 4. Brandstädt, A., Kratsch, D.: On the restriction of some NP-complete graph problems to permutation
graphs. In: Proceedings of FCT 1985, LNCS, vol. 199, pp. 53–62 (1985)

 5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, volume 3 of SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

 6. Camby, E.: Price of connectivity for the vertex cover problem and the dominating set problem: con-
jectures and investigation of critical graphs. Graphs Comb. 35(1), 103–118 (2019)

 7. Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The price of connectivity for vertex cover. Discrete
Math. Theor. Comput. Sci. 16(1), 207–224 (2014)

 8. Camby, E., Schaudt, O.: The price of connectivity for dominating set: upper bounds and complexity.
Discrete Appl. Math. 177, 53–59 (2014)

 9. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–28),
2581–2590 (2010)

 10. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected trans-
versals in graphs: new hardness results and tractable cases using the price of connectivity. Theor.
Comput. Sci. 705, 75–83 (2018)

 11. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms, 1st edn. Springer, Berlin (2015)

 12. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected ver-
tex cover problem in graphs and hypergraphs. J. Discrete Algorithms 8(1), 36–49 (2010)

 13. Feghali, C., Johnson, M., Paesani, G., Paulusma, D.: On cycle transversals and their connected vari-
ants in the absence of a small linear forest. In: Proceedings of FCT 2019, LNCS vol. 11651, pp.
258–273 (2019)

 14. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: complexity and algo-
rithms. J. Discrete Algorithms 7(2), 149–167 (2009)

 15. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl.
Math. 32(4), 826–834 (1977)

 16. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems.
Theor. Comput. Sci. 1(3), 237–267 (1976)

 17. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of
colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017)

 18. Grigoriev, A., Sitters, R.: Connected feedback vertex set in planar graphs. In: Proceedings of WG
2009, LNCS, vol. 5911, pp. 143–153 (2010)

 19. Groenland, C., Okrasa, K., Rzążewski, P., Scott, A.D., Seymour, P.D., Spirkl, S.T.: H-colouring
P
t
-free graphs in subexponential time. Discrete Appl. Math. 267, 184–189 (2019)

 Algorithmica

1 3

 20. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum
weight independent set on P6-free graphs. Proc. SODA 2019, 1257–1271 (2019)

 21. Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: The price of connectivity for cycle trans-
versals. Eur. J. Comb. 58, 203–224 (2016)

 22. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375
(2001)

 23. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.
Comput. Syst. Sci. 63(4), 512–530 (2001)

 24. Johnson, M., Paesani, G., Paulusma, D.: Connected vertex cover for (sP1 + P5)-free graphs. Algo-
rithmica 82(1), 20–40 (2020)

 25. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B
28(3), 284–304 (1980)

 26. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set.
Theor. Comput. Sci. 461, 65–75 (2012)

 27. Mosca, R.: Stable sets for (P6,K2,3)-free graphs. Discussiones Mathematicae Graph Theory 32,
387–401 (2012)

 28. Munaro, A.: Boundary classes for graph problems involving non-local properties. Theor. Comput.
Sci. 692, 46–71 (2017)

 29. Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homomorphism problem in
string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020)

 30. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universi-
tatis Carolinae 15, 307–309 (1974)

 31. Priyadarsini, P.L.K., Hemalatha, T.: Connected vertex cover in 2-connected planar graph with maxi-
mum degree 4 is NP-complete. Int. J. Math. Phys. Eng. Sci. 2(1), 51–54 (2008)

 32. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile.
Discrete Math. 29(1), 53–76 (1980)

 33. Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen.
Ph.D. thesis, Universität Paderborn (1983)

 34. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal
independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

 35. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set
problem for graphs with no vertex degree exceeding three. Discrete Math. 72(1–3), 355–360 (1988)

 36. Watanabe, T., Kajita, S., Onaga, K.: Vertex covers and connected vertex covers in 3-connected
graphs. In: Proceedings of IEEE International Sympoisum on Circuits and Systems 1991, vol. 2, pp.
1017–1020 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	On Cycle Transversals and Their Connected Variants in the Absence of a Small Linear Forest
	Abstract
	1 Introduction
	1.1 The Graph H Contains a Cycle or Claw
	1.2 The Graph H Is a Linear Forest
	1.3 Our Results

	2 Preliminaries
	3 The Case H = P4
	4 The Case H = sP1 + P3
	5 The Case H = P6
	6 Conclusions
	Acknowledgements
	References

