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Abstract 
Motivation: The Robinson-Foulds (RF) metric is widely used by biologists, linguists and chemists to 

quantify similarity between pairs of phylogenetic trees. The measure tallies the number of bipartition 

splits that occur in both trees—but this conservative approach ignores potential similarities between 

almost-identical splits, with undesirable consequences. ‘Generalized’ RF metrics address this short-

coming by pairing splits in one tree with similar splits in the other. Each pair is assigned a similarity 

score, the sum of which enumerates the similarity between two trees. The challenge lies in quantify-

ing split similarity: existing definitions lack a principled statistical underpinning, resulting in misleading 

tree distances that are difficult to interpret. Here, I propose probabilistic measures of split similarity, 

which allow tree similarity to be measured in natural units (bits). 

Results: My new information theoretic metrics outperform alternative measures of tree similarity 

when evaluated against a broad suite of criteria, even though they do not account for the non-

independence of splits within a single tree. Mutual clustering information exhibits none of the undesir-

able properties that characterise other tree comparison metrics, and should be preferred to the RF 

metric. 

Availability: The methods discussed in this paper are implemented in the R package ‘TreeDist’, ar-

chived at https://dx.doi.org/10.5281/zenodo.3528123 
Contact: martin.smith@durham.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

Phylogenetic trees represent the history of bifurcating lineages, such as 

species, languages, or cancerous cells. The comparison of phylogenetic 

trees underpins a diverse set of scientific enquiries (summarized in 

Böcker et al., 2013; Bogdanowicz and Giaro, 2013, 2017). Of the many 

methods that compare labelled phylogenetic trees with unweighted edges 

(e.g. Farris, 1973; Finden and Gordon, 1985; Meacham and Estabrook, 

1985; Penny and Hendy, 1985; Steel and Penny, 1993; Bluis and Shin, 

2003), the most widely used is the split-based symmetric distance (RF 

metric) of Robinson and Foulds (1981). 

The RF metric quantifies the dissimilarity between a pair of trees by 

summing the number of splits (bipartitions of the set of leaves, corre-

sponding to clades in rooted trees) that are unique to either tree. This 

uncompromising position overlooks potential similarities between non-

identical splits, with the undesirable consequence that two trees that 

differ only in the position of a single leaf may exhibit the maximum RF 

distance.  

‘Generalized’ RF metrics mitigate this issue by pairing similar splits 

between two trees. Each pair of splits is allocated a similarity score; the 

sum of scores when splits are optimally matched defines the overall 

similarity between two trees. Split similarity can be expressed as the size 

of the largest split consistent with two input splits (Bogdanowicz and 

Giaro, 2013, 2012). More sophisticated methods normalize this score 

against the Jaccard index (Nye et al., 2006), or raise this normalized 

value to some arbitrary exponent (Böcker et al., 2013). All such values 

lack a natural unit; depend on chosen exponent and the number of leaves; 

and fail to reflect similarities in split geometry. 

I suggest that the information content (sensu Shannon, 1948) of the 

largest, or, better still, the most informative, split consistent with both 

input splits represents a more principled statistical definition of split 

similarity, measurable in non-arbitrary units (bits). Even simpler would 

be to directly measure the information that two splits hold in common, 
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using either the phylogenetic (sensu Steel and Penny, 2006) or clustering 

(Meilǎ, 2007; Vinh et al., 2010) concepts of information. Each of these 

approaches gives rise to a novel generalized RF metric. 

2 System and methods 

Let T1 and T2 be unrooted phylogenetic trees with labelled leaves X. 

(Note that an unrooted tree can be converted to an equivalent rooted tree 

by attaching a dummy leaf to the root node.) Each edge of an unrooted 

tree divides the leaf set X into two subsets A and B, and can be expressed 

as a split S = A|B. A split is trivial if A or B contains fewer than two 

leaves; each non-trivial split in a tree corresponds to an internal edge. 

Two splits conflict if they cannot both occur in a single tree. 

A pairing (S1, S2) contains one non-trivial split from each tree. A 

matching, m, is a set of pairings in which no split occurs more than once. 

The score of a matching is the sum of the scores allocated to each of its 

pairings. A matching is optimal if its score is the best possible for two 

trees; this score provides the overall similarity score for those trees. 

2.1 Phylogenetic information 

Define the phylogenetic probability of a split S = A|B, PPhy(S), as the 

probability that a uniformly chosen binary tree on X contains the split, 

𝑃𝑃ℎ𝑦(𝑆) =
(2|𝐴| − 3)‼ (2|𝐵| − 3)‼

(2|𝑋|− 5)‼
 

where the double factorial n!! = n × (n – 2)!!, with 1!! = 0!! = 1. The 

phylogenetic information content of a split is then h(S) = −log(PPhy(S)) 

(Steel and Penny, 2006). Base two logarithms yield units of bits. 

The phylogenetic information content of a split can be used to score a 

pairing of a split in T1 with an identical split in T2. Assigning pairings of 

non-identical splits a score of zero yields an ‘information-corrected’ 

Robinson-Foulds (ICRF) similarity measure.  

The Matching Split Distance (Bogdanowicz and Giaro, 2012) can be 

modified by scoring each pairing (S1, S2) with the phylogenetic infor-

mation content of the most informative split congruent with both S1 and 

S2—namely, the most informative of (A1 ∩ A2 | B1 ∩ B2) and (A1 ∩ B2 | 

B1 ∩ A2). I term the score of the optimal matching the Matching Split 

Information (MSI) score. 

Let PPhy(S1, S2) denote the probability that a uniformly chosen binary 

tree includes the splits S1 and S2. If S1 = S2, then PPhy(S1, S2) = PPhy(S1). If  

S1 and S2 conflict, PPhy(S1, S2) = 0. Otherwise, without loss of generality, 

label S1 and S2 such that A1 ⊇ A2 (and consequently, B1 ⊆ B2). Any tree 

including S1 and S2 contains one edge that divides A1 and B1, and one 

edge that divides A2 and B2. Severing these edges (such that each be-

comes two edges, each terminating at a new, distinctly labelled, ‘dum-

my’ leaf) will result in three unrooted binary trees, whose leaves com-

prise: (i), B1 plus a ‘dummy’ leaf (|B1| + 1 leaves); (ii), A2 plus a ‘dum-

my’ leaf (|A2| + 1 leaves); (iii) the leaves that belong to neither B1 nor A2, 

plus two ‘dummy’ leaves (|A1| − |A2| + 2 leaves). Because there are 

(2n − 5)‼ unrooted binary trees on n leaves, 

𝑃𝑃ℎ𝑦(𝑆1, 𝑆2) =
(2(|𝐵1|+1) − 5)‼ (2(|𝐴2|+1) − 5)‼ (2(|𝐴1| − |𝐴2| + 2) − 5)‼

(2|𝑋| − 5)‼
 

Shared phylogenetic information is the information common to S1 and 

S2, defined as hshared = 0 if S1 and S2 conflict, h(S1) + h(S2) − h(S1, S2) 

otherwise, where h(S1, S2) = −log(PPhy(S1, S2)). The different phylogenetic 

information hdifferent is h(S1) + h(S2) if S1 and S2 conflict, h(S1, S2) − hshared 

otherwise. Summing hshared across each pairing in an optimal matching 

yields the shared phylogenetic information (SPI) score. 

The SPI score measures how much the information shared between 

splits in a pair of trees narrows down the set of candidates that could be 

the historically ‘true’ tree, corresponding to the philosophy that phyloge-

netics seeks to reconstruct the single tree that accurately represents his-

torical events. 

2.2 Clustering information 

A split A|B is a bipartition and, hence, a clustering that divides leaves X 

into exactly two clusters, A and B. Let PCl(A) denote the probability that 

a randomly selected leaf belongs to A, PCl(A) = |A| ÷ |X|, and PCl(B) the 

corresponding probability for cluster B. The entropy associated with S is 

given by − PCl(A) log PCl(A) − PCl(B) log PCl(B). The mutual clustering 

information (Meilǎ, 2007; Vinh et al., 2010) between paired splits S1 and 

S2, ICl(S1;S2), describes the extent to which knowledge of A1 and B1 re-

duces uncertainty regarding the composition of A2 and B2; that is to say, 

how much more likely is an observer to assign a leaf to the correct clus-

ter in S2 if they know which cluster it belongs to in S1? This is given 

mathematically by: 

𝐼𝐶𝑙(𝑆1; 𝑆2) =  𝑃𝐶𝑙(𝐴1, 𝐴2) log
𝑃𝐶𝑙(𝐴1, 𝐴2)

𝑃𝐶𝑙(𝐴1)𝑃𝐶𝑙(𝐴2)
+  𝑃𝐶𝑙(𝐴1, 𝐵2) log

𝑃𝐶𝑙(𝐴1, 𝐵2)

𝑃𝐶𝑙(𝐴1)𝑃𝐶𝑙(𝐵2)
+ 

 𝑃𝐶𝑙(𝐵1, 𝐴2) log
𝑃𝐶𝑙(𝐵1, 𝐴2)

𝑃𝐶𝑙(𝐵1)𝑃𝐶𝑙(𝐴2)
+  𝑃𝐶𝑙(𝐵1, 𝐵2) log

𝑃𝐶𝑙(𝐵1, 𝐵2)

𝑃𝐶𝑙(𝐵1)𝑃𝐶𝑙(𝐵2)
 

where PCl(A1, A2) = |A1 ∩ A2| ÷ |X| denotes the probability that a point 

belongs to cluster A1 in S1 and to A2 in S2. 

The mutual clustering information (MCI) score of two trees is the 

score of the optimal matching when each pairing (S1, S2) is assigned the 

score ICl(S1;S2). The MCI score corresponds to a viewpoint that sees the 

goal of phylogenetics as reconstructing relationships between leaves; 

simply put, the metric measures the extent to which two trees agree on 

how leaves should be grouped. 

2.3 Calculating distance from similarity 

These information-based measures indicate the extent to which splits in 

one tree contain information about splits in the other; higher values sig-

nify more similar trees. A similarity score can be converted to a distance 

by subtraction from a maximum value, which may also be used to nor-

malize the scores. There are several approaches to calculating such a 

maximum, not all of which satisfy the axioms of metric space. 

Half the information content (or entropy, for mutual clustering infor-

mation) of all the splits in both trees, by analogy with the variation of 

information metric (Meilǎ, 2007), gives a suitable maximum; subtracting 

similarity scores from this value gives a distance that is trivially shown 

to satisfy d(x, y) = 0  x = y and d(x, y) = d(y, x), and can be shown to 

satisfy the triangle inequality by lemma 3.2 of Bogdanowicz and Giaro 

(2012). I term the corresponding distance metrics to the MSI, SPI and 

MCI the matching split information distance (MSID), the phylogenetic 

information distance (PID), and the clustering information distance 

(CID). 

In cases where one tree can be deemed ‘correct’—for instance, studies 

that test the efficacy of phylogenetic methods by analysing datasets 

simulated on a known tree (Kuhner and Felsenstein, 1994; Smith, 

2019a), or comparisons between inferred trees and a trusted reference 

topology (Pompei et al., 2011)—a metric may not be desired. Subtract-

ing the similarity score from the information content of all splits in the 

‘correct’ tree gives the distance from the ‘correct’ tree to a reconstructed 
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tree, reflecting the amount of information that has been correctly recon-

structed. 

3 Results 

I evaluated the performance of the information-based tree distance met-

rics against a suite of desiderata. The question of which tree distance 

method is ‘best’ depends somewhat on context, but my proposed criteria 

go some way to evaluate whether a metric is consistent, readily interpret-

able, versatile, and quick to calculate. I compared the information-based 

metrics to some popular alternative measures: the generalised RF metric 

of Nye et al. (2006); the Jaccard-Robinson-Foulds (JRF) metric (Böcker 

et al., 2013), with k = 4 and k = 2 (for computational efficiency, ‘arbore-

al’ matchings were not imposed; pairings of conflicting splits were either 

permitted, ‘conflict-ok’, or prohibited, ‘no-conflict’); the Matching Splits 

(MS) distance (Bogdanowicz and Giaro, 2012); the Quartet divergence 

(QD) (Estabrook et al., 1985; Smith, 2019a); the path distance (Steel and 

Penny, 1993) (also termed the patristic distance, nodal distance, cladistic 

distance or tip distance); approximations to the NNI, SPR and TBR 

rearrangement distances (Li et al., 1996; Hein, 1990); the size (MAST) 

and phylogenetic information content (MASTI) of the maximum agree-

ment subtree; and the symmetric partition (RF) distance (Robinson and 

Foulds, 1981). Distances were calculated using the R packages ‘phan-

gorn’, ‘TreeDist’, ‘TBRDist’, and ‘Quartet’ (Schliep, 2011; Sand et al., 

2014; Whidden and Matsen, 2017; Smith, 2019b, 2019c, 2020a); repro-

ducible analyses are archived (Smith, 2020b). All analyses were con-

ducted on unrooted binary trees, but can be generalised to rooted trees by 

designating one leaf as the ‘root’. 

3.1 Consistency 

In this context, a consistent metric assigns higher distances to trees that 

are more different. Because phylogenetic trees occupy a non-Euclidian 

geometry, it can be difficult to rank the degree to which certain pairs of 

trees differ. Nevertheless, uncontroversial examples can be derived by 

modifying one tree to create a second: larger modifications should corre-

spond to larger differences between an original and modified tree. 

3.1.1 Length of move 

A tree can be modified by repositioning a single subtree: the further a 

subtree is moved, the more different the resulting tree. I generated seven-

teen eleven-tip trees that differ only in the position of their eleventh leaf 

(the smallest possible subtree). The move length between any pair of 

these trees is defined as the number of nodes that must be traversed to 

travel from the position of the eleventh leaf in one tree to its position in 

the second. I define a mis-ordering as a case where the distance between 

a pair of trees is not strictly larger than the distance between every tree 

pair with a shorter move length, or a case where the distance is not strict-

ly smaller than that between every tree pair with a greater move length. 

In this test, the RF, ICRF, JRF, MSID and NNI distances contained no 

mis-orderings. Mis-orderings were increasingly frequent in the CID (8 of 

a possible 545), Nye et al. (24), PID (84), quartet (94), path (126) and 

MS (354) distances. Because the SPR, TBR and MAST distances allo-

cate all non-identical tree pairs in this test an equal distance score, they 

are insensitive to move length. 

Figure 1. Trees produced by moving one leaf (▽), exchanging two leaves (△), and moving three leaves (+) should exhibit progressively great-

er distances from the pectinate starting tree, whilst being less distant than trees drawn at random. Histograms and box-and-whisker plots depict 

distances between the reference tree and 100 000 trees drawn at random from the uniform distribution of binary trees on the same leaves.  
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3.1.2. Number of leaves moved 

Moving a small subtree a specified distance should represent a smaller 

change than moving a large subtree the same distance (unless the larger 

subtree contains a sizeable proportion of the leaves in the tree). I added a 

pair of leaves adjacent to the eleventh leaf in each of the seventeen pre-

vious trees, to produce trees T1..T17. From these trees, I created two 

further sets of trees by moving either one leaf (the eleventh, for set 

U1..U17) or two leaves (the newly added pair, for set V1..V17) to each of 

the nineteen edges. I removed from each set V1..V17 the two trees that 

could alternatively have been generated by moving a single leaf, and also 

removed the corresponding trees from U1..U17. I consider a metric to be 

consistent where the distance from Ti to each tree in Ui (i.e. one leaf 

moved a certain distance) is strictly less than the distance from Ti to the 

corresponding tree in Vi (i.e. two leaves moved to the same location). 

The PID, CID, ‘conflict-ok’ JRF and path measures are consistent in 

all 289 cases. Inconsistency is increasingly frequent in the ‘no-conflict’ 

JRF distance (7 cases, k = 2; 17, k = 4); the MAST and quartet distances 

(17); MSID (23), Nye (24), MS (34) and ICRF (146). The NNI, SPR, 

TBR and RF measures assign equal distances regardless of the number 

of leaves moved, so never satisfy this aspect of consistency. 

3.1.3. Number of moves made 

A single move of a certain length ought to result in a smaller difference 

than two moves of the same magnitude. As a simple example, using two 

moves to exchange a pair of leaves represents a larger change than using 

one move to reposition one leaf adjacent to the second—but the RF, 

ICRF, NNI and TBR metrics assign these changes the same score (Fig. 

1). Moving a third leaf should further increase tree distance, but when 

that leaf lies between two that were previously exchanged, methods that 

prohibit pairings of conflicting splits fail to recover higher distances 

(Fig. 1). 

It is possible to broaden the scope of this criterion and employ the 

number of rearrangements as a measure of tree dissimilarity (e.g. the ‘n-

away’ of Kuhner and Yamato, 2015, and the SPR distance). However, 

because this approach does not consider the magnitude of individual 

Distance MSID PID CID Nye Jco2 Jco4 Jnc2 Jnc4 RF ICRF MS QD MAST NNI SPR TBR Path 

Length of move: 

Mis-orderings (0–545) 0 84 8 24 0 0 0 0 0 0 354 94 480 480 480 480 126 

No. leaves moved: 

Inconsistent cases (0–289) 23 0 0 24 7 17 7 17 289 146 34 17 17 289 289 289 0 

No. moves made: 

1 < 2 < 3 moves OK 2=3 OK OK OK OK 2=3 2=3 1=2=3 1=2=3 OK OK OK 1=2=3 OK 1=2 OK 

Saturation: 11-leaf trees with 

max score (1–100 000) 1 36 1 2 1 1 36 36 86336 13044 11 1 6154 86336 2388 7474 1 

Sensitivity: 

Distinct values (1–100 000) 24167 26478 28939 4381 27789 28781 19221 20488 6 208 28 200 7 16 5 7 302 

Shape independence: 

r² 0.013 0.010 0.010 0.014 0.004 0.002 0.010 0.004 0.019 0.248 0.066 0.000 0.008 0.016 0.010 0.001 0.485 

Leaf addition clusters: 

Mean rank (1–14) 4.62 6.50 4.46 4.66 5.40 8.08 7.36 9.52 13.84 16.34 7.26 5.14 – 13.38 12.18 11.58 14.14 

LLI clusters: 

Mean rank (1–14) 5.45 13.75 7.10 4.15 5.00 6.75 11.48 10.83 10.98 16.03 3.83 9.55 – 11.15 9.23 11.40 11.90 

SPR clusters: 

Mean rank (1–14) 9.46 7.10 5.96 3.76 2.60 4.70 2.76 5.96 11.24 15.58 14.84 12.38 – 10.82 13.00 10.72 16.14 

Cluster recovery: 

Mean rank 6.51 9.15 5.84 4.19 4.30 6.51 7.20 8.77 12.02 15.98 8.64 9.02 – 11.78 11.47 11.23 14.06 

Bullseye subsampling: Success 

rate (50 leaves, 0–1000) 639 651 650 644 631 635 642 629 410 638 636 626 498 444 406 398 633 

Bullseye miscoding: Success 

rate (50 leaves, 0–1000) 902 937 941 961 955 931 965 929 781 785 777 809 622 802 613 693 704 

Bullseye subsampling: 

Accuracy (ρ) 0.69 0.71 0.71 0.70 0.70 0.67 0.71 0.67 0.60 0.64 0.67 0.62 0.52 0.60 0.33 0.44 0.62 

Bullseye miscoding: 

Accuracy (ρ) 0.91 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.90 0.75 0.79 0.86 0.79 0.90 0.72 0.84 0.60 

Manual rearrangement:  

Kendall's τ 0.78 0.80 0.85 0.80 0.78 0.75 0.77 0.73 0.67 0.50 0.70 0.82 0.80 0.84 0.73 0.85 0.57 

Units Bits Bits Bits None None None None None 

Arbi-

trary Bits None Bits 

Arbi-

trary Operations  None 

Random distances: 

IQ range (% of median) 2.10 1.00 1.60 1.90 1.20 0.60 1.20 0.50 0.00 3.50 5.90 1.70 21.10 0.00 3.00 2.60 10.60 

Polytomies OK OK OK OK OK OK OK OK OK OK OK OK OK No No No OK 

Calculation speed: 

20 leaves / µs 35 31 78 45 73 86 60 38 21 37 28 1800 5300 120 130 370 13 

Calculation speed: 

50 leaves / µs 190 110 410 200 430 1200 300 760 26 66 68 2100 23000 140 1000 710 20 

 

Table 1. Evaluation of metrics against the desiderata summarised in the discussion. Darker greens denote better performance against each criterion. The 

best-performing NNI and TBR approximation was used in each case. JcoX, JncX denote JRF ‘conflict ok’ and ‘no conflict’ variants, with k = X. 
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moves, it does not fully capture the difference between two trees: for 

example, one major rearrangement that moves many leaves a large dis-

tance may change a tree more profoundly than many minor rearrange-

ments that move few leaves short distances. 

3.1.4. Saturation 

For most measures, fewer than 0.04% of 100 000 uniformly sampled 11-

leaf trees are allocated the maximum distance from a pectinate reference 

tree (Table 1). The exceptions are the SPR (2.4%), MAST (6.2%), TBR 

(7.4%), ICRF (13%), RF (86%) and NNI (86%) distances, which thus 

have a limited capacity to discriminate between very different pairs of 

trees.  

3.1.5. Sensitivity 

High resolution allows the discrimination of small differences in tree 

similarity. In a comparison of 100 000 uniformly sampled 11-leaf trees 

to a pectinate reference tree, fewer than eight distinct distance values 

were reported by the MAST, MASTI, NNI (lower bound), SPR, TBR 

and RF measures. Progressively more sensitivity was expressed in the 

MS (28 distinct values), Quartet (200), ICRF (210) and path (300) 

measures, but generalized RF distances displayed much greater sensitivi-

ty (Nye et al: 4 400 distinct values; JRF and information-based 

measures: 19 000–29 000 values; Table 1). 

3.1.6. Independence from tree shape 

For each of the four tree shapes on eight leaves, I labelled leaves at ran-

dom until I had generated 100 distinct trees. I measured the distance 

from each tree to each of the other 399 trees, and fitted a linear model to 

evaluate what proportion of the variance between distances could be 

explained by the shape of the trees being compared. Tree shape has 

essentially no influence on the quartet distance, and makes a negligible 

(< 2%) contribution to most other distances (RF, JRF, PID, MSID, CID, 

Nye, MAST, NNI, SPR and TBR). However, tree shape accounts for 

6.6% of the variance in the MS distance, 25% of the variance of the 

ICRF distance, and 48% of the variance in the path distance. 

3.1.7. Consistent cluster recovery 

Distance measurements allow clusters of similar trees to be identified. I 

tested each metric in its ability to recover clusters of similar trees gener-

ated using three approaches (Lin et al., 2012). For the first test, I gener-

ated 500 datasets of 100 trees with n = 40 leaves. Each set of trees was 

created by randomly selecting two k-leaf ‘skeleton’ trees, where k ranges 

from 0.3 n to 0.9 n. From each skeleton, 50 trees were generated by 

adding each of the remaining n − k leaves in turn at a uniformly selected 

point on the tree. For the second and third test, each dataset was con-

structed by selecting at random two 40-leaf trees. From each starting 

tree, I generated 50 trees by conducting k leaf-label interchange (LLI) 

operations (test two) or k subtree prune and regraft (SPR) operations (test 

three) on the starting tree. An LLI operation swaps the positions of two 

randomly selected leaves, without affecting tree shape; an SPR operation 

moves a subtree to a new location within the tree. 

For each dataset, I calculated the distance between each pair of trees. 

Trees were then partitioned into clusters using five methods, using the R 

packages ‘stats’ and ‘cluster’ (R Core Team, 2019; Maechler et al., 

2019): spectral clustering (von Luxburg, 2007), partitioning around 

medoids (Reynolds et al., 2006), and hierarchical clustering using com-

plete, single and average linkage (Stockham et al., 2002; Lin et al., 

2012). I define the success rate of each distance measure as the propor-

tion of datasets in which every tree generated from the same skeleton 

was placed in the same cluster. Figure 2 shows the success rate for each 

experiment, averaged across all five clustering methods. The Nye, CID 

and ‘conflict-ok’ JRF methods perform best across all three experiments 

(mean rank across all clustering methods and experiments: 3.5; 5.5; 3.7–

6.1 / 20); the SPR, TBR, NNI, RF and path distances are consistently 

worst (mean rank > 10). The ‘no-conflict’ JRF and PID, which both 

penalize the pairing of conflicting splits, are in the bottom quartile of 

methods under this experiment, though they perform better than most 

methods under the other two experiments.  

Figure 2. Cluster recovery results. Successful cluster recovery rate for 

each tree distance metric under (a), test one: add 40 − k leaves to two k-

leaf skeletons; (b), test two: conduct k LLI operations on two 40-leaf 

skeletons; (c), test three: conduct k SPR operations on two 40-leaf skele-

tons. 

3.1.8. Consistent with trees inferred from simulated data 

I implemented ‘bullseye’ tests (Kuhner and Yamato, 2015) by drawing 

1 000 n-leaf trees at random from the uniform distribution (n = 5, 10, 20, 

50), and using these trees to simulate phylogenetic characters under the 

Jukes-Cantor model. I then inferred trees from increasingly degraded 

versions of these datasets in which either a subset of characters had been 

removed, or a subset of character state tokens modified. On the basis that 

a decrease in dataset quality produces a concomitant deterioration in the 

quality of inference, consistent distance metrics should rank trees in-

ferred from datasets that are more degraded as being further from the 

reference tree (Kuhner and Yamato, 2015). 

I used two approaches to simulating and degrading datasets. For the 

‘subsampling’ approach, I simulated sequences of 2 000 base pairs (us-

ing ‘phangorn’ function simSeq()), and degraded matrices by deleting 

200 base pair positions at a time, leaving sequences of 1 800, 1 600, …, 

200 base pairs. For the ‘miscoding’ approach, I simulated 2 000 binary 
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characters, and degraded matrices by switching the state of 2%, 4%, ..., 

18% of tokens (0↔1), selected randomly across leaves and characters. 

Trees were inferred from the resultant datasets using a parsimony opti-

mality criterion with an implied weight concavity constant (Goloboff, 

1993) of six. Tree search was conducted in TNT (Goloboff and Catalano, 

2016, available with the sponsorship of the Willi Hennig Society) using 

the tree drift, tree fusing, sectorial search (Goloboff, 1999) and parsimo-

ny ratchet (Nixon, 1999) algorithms. Parsimony was chosen over model-

based tree reconstruction methods due to its computational efficiency. 

I used two methods to evaluate the performance of each distance 

measure. Firstly (after Kuhner and Yamato, 2015), I paired each dataset 

with a dataset that had 400 fewer characters (’subsampling’ experiment), 

or 2 percentage points more tokens switched (‘miscoding’ experiment). 

For each pair, I recorded a success where a tree inferred from the more 

degraded dataset was further from the reference tree, and a failure other-

wise. On this basis, the CID, PID, MSID, and JRF, quartet and ICRF 

metrics were equally good (within error) in the subsampling experiments 

(Fig. 3a–d); they were also the best methods in the miscoding experiment 

(Fig. 3f–i), though the MSID, quartet and ICRF distances displayed 

progressively worse performance in larger trees. The path and MS meth-

ods performed relatively well; the MAST, RF and rearrangement dis-

tances markedly worse. 

Secondly, I used Spearman’s rank correlation to compare the ranking 

of dataset quality with the ranking of distances of inferred trees. With 

larger trees (20+ leaves), the CID, PID, MSID, and JRF performed best 

in the subsampling experiment (Fig. 3e) and miscoding experiment (Fig. 

3j). 

3.1.9. Artificial tree rearrangement 

I generated a chain of 100 50-leaf trees, starting from a pectinate tree and 

deriving each tree in turn by performing an SPR operation on the previ-

ous tree. A consistent measure of tree similarity should correlate with the 

number of SPR operations separating a pair of trees in this chain. This 

said, because one SPR operation may counteract some of the difference 

introduced by a previous one, perfect correlation is unlikely. A Kendall’s 

rank correlation coefficient of τB > 0.8 was obtained between the number 

of SPR operations and the CID, TBR, NNI (tight bound), quartet and 

PID measures (Table 1). τB exceeded 0.7 for the MAST, Nye, MSID, 

JRF, SPR and MS measures, and was lower for the RF and NNI (loose 

bounds) (τB = 0.67), path (0.57) and ICRF (0.50) measures. 

Figure 3. Results of ‘bullseye’ tests. (a–d), success rate for each tree distance metric when comparing pairs of datasets differing in size by 

400 base pairs; (f–i), success rates when comparing pairs of datasets differing by 2% in proportion of erroneous tokens; (e, j), accuracy of each 

method in ranking trees inferred from progressively degraded datasets according to the degree of dataset degradation. Good methods are accu-

rate, with high success rates. 
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3.2 Readily interpretable 

Although distances do not need meaningful units in order to rank pairs of 

trees in order of similarity, it is nevertheless desirable for the value of a 

tree distance metric to have a straightforward meaning (Bogdanowicz 

and Giaro, 2013) whose value is easily contextualized. 

3.2.1. Units 

The RF, JRF, MS, MAST, Nye and path distances employ arbitrary 

units, making their values difficult to interpret. The RF metric is particu-

larly problematic, as its seemingly straightforward units are in fact bi-

ased to afford increased significance to splits that are less even, and thus 

more likely to be contradicted by chance (Bogdanowicz and Giaro, 2013; 

Smith, 2019a). Equivalently, the NNI, SPR and TBR distances can only 

be considered to have meaningful units (‘number of rearrangement oper-

ations’) if all rearrangements are treated as equal in magnitude. 

The value of the MS distance is also difficult to interpret, because 

compatible splits (e.g. AB|CDEFGHI=ABCDE|FGHI, difference = 3) 

can be marked as more different than perfectly incompatible splits 

(AB|CDEFGHI=AE|BCDFGHI, difference = 2). 

The quartet distance is more promising: each quartet statement speci-

fies one of three equiprobable relationships between four leaves and thus 

represents log2(3) bits of information—notwithstanding double-counting 

of information arising when non-independent quartets are treated as 

independent (Rineau et al., 2020). Even if the absolute value of the quar-

tet distance has been considered confusing, its normalized value is sim-

ple to comprehend—it reflects the probability that the relationships be-

tween four randomly selected leaves are the same on both trees, and thus 

has a clearly defined range ([0, 1]) and expected value (⅓). 

Explicitly information-based measures are also measured in bits; this 

natural unit corresponds to an equivalent degree of difference for any 

pair of trees, no matter their number of leaves. This said, the non-

independence of splits within a given tree leads again to some double-

counting of information. The mutual information between entire trees, 

rather than one split at a time, would be more meaningful still—if only it 

were readily calculated. 

3.2.2. Context 

In order to evaluate whether a given distance is large or small, it is nec-

essary to understand the range of values that a metric can take. In most 

circumstances, the expected value of a pair of random trees provides 

better context than the maximum distance that is theoretically possible: it 

is more common to ask how likely a certain tree difference is to have 

arisen by chance than how far it lies from a maximum value. 

The expected similarity of a pair of trees sampled from the uniform 

distribution can only be calculated exactly for the quartet metric. I ap-

proximated the expected similarity for other distances by taking the 

median distance between 1 000 pairs of uniformly sampled n-leaf trees. 

For most measures, random tree pairs have a score very close to the 

median (interquartile range < 4% of median value). The exceptions are 

the MS, MAST, path and MASTI distances, whose wider interquartile 

range (respectively 5.9%, 8.5%, 11%, and 14% of median value) makes 

it difficult to evaluate the meaning of these metrics with reference to the 

expected value for a random tree pair. Moreover, as the diameters of the 

MS and path metrics cannot be easily calculated, their absolute values 

are also difficult to interpret. 

3.3 Versatile 

Rearrangement distances are not defined on non-binary trees; other met-

rics can compare trees that contain polytomies, and are thus more versa-

tile. 

3.4 Quick to calculate 

Where large numbers of tree comparisons are required, computational 

efficiency is important. I recorded the time taken to calculate the distance 

between 990 pairs of 20-leaf and 50-leaf trees in R on a desktop comput-

er with 8.47 GB of RAM and an Intel Core™ i7-3770 3.40GHz CPU. 

Starting from a pectinate tree, I conducted 44 SPR operations, recording 

the tree after each operation, and compared each pair of non-identical 

trees; the resultant 990 comparisons thus include tree pairs with both 

small and large distances. The fastest methods were the path (mean over 

ten iterations: 20 leaves, 13 µs; 50 leaves, 20 µs), RF (21 & 26 µs) and 

MS (28 & 68 µs); all other methods had a run time of ≤ 80 µs (20 leaves) 

and ≤ 500 µs (50 leaves) except the JRF with k = 4 (‘no-conflict’: 38 & 

760 µs; ‘conflict-ok’: 86 & 1 200 µs), rearrangement (NNI: 120 & 

120 µs; SPR: 130 & 1 000 µs; TBR: 370 & 710 µs), quartet (1 800 & 

2 100 µs) and MAST (5 300 & 23 000 µs) distances. 

4 Evaluation 

Most tree distance metrics exhibit minimal correlation with one another 

(adjusted r² < 0.3; Supplementary Figs 1–2), indicating that different 

measures capture different aspects of tree similarity and encounter dif-

ferent biases and errors. In particular, the widely used Robinson-Foulds 

and SPR metrics exhibit counterintuitive behaviour in a wide range of 

situations, whereas the path distance performs particularly poorly in 

practical applications (Table 1). The use of these unreliable and poten-

tially misleading measures of tree similarity should be discouraged. 

Correlation is somewhat higher between generalized Robinson-Foulds 

distances, reflecting their shared approach of matching similar splits. 

Jaccard-Robinson-Foulds distances converge on the RF distance as k 

increases, and, where pairings of conflicting splits are permitted and k → 

1, on the Nye et al. distance. In turn, the Nye et al. method correlates 

closely (adjusted r² > 0.7) with the information-based MSID, PID and 

CID distances, which each avoid the issues that distort the RF metric. 

Because the PID does not recognize any similarity between conflicting 

splits, it still results in counterintuitive tree distances in certain cases. As 

such, the CID and MSID are the only natural measures of splitwise tree 

similarity to display all the expectations of behaviour considered herein 

(Table 1). They are continuous, and thus capable of unbridled precision; 

they are difficult to saturate, with actively contradictory trees receiving 

higher distance scores than random trees; they are readily normalized; 

and partition size effects are explicitly accounted for by the information-

theoretic underpinning. Pragmatically, they are among the most con-

sistent methods for ranking the similarity of trees inferred from simulat-

ed datasets. The CID marginally outperforms the MSID on each criterion 

considered herein, justifying a slightly longer calculation time. As such, I 

recommend mutual clustering information as the most appropriate meas-

ure of tree similarity based on matching splits between trees, and its 

complement, the clustering information distance, as an intuitive and 

meaningful metric for tree distance. 
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