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Abstract

We develop a theory for double diffusive convection in a double

porosity material which contains Brinkman terms. The Soret effect

is included whereby a temperature gradient may directly influence

salt concentration. The boundary conditions on the temperature and

salt fields are of general type. Continuous dependence is established

upon the Soret coefficient and upon the coefficients in the boundary

conditions.

1 Introduction

Solutions to problems involving flow in double porosity, or bidisperse, mate-
rials are proving to be invaluable in modern life. Such theories have appli-
cations to many important areas such as chemical engineering, Enterŕıa et
al. [1], Huang et al. [2], Ly et al. [3]; in landslides, Borja et al. [4], Scotto
di Santolo and Evangelista [5]; in self ignition of stockpiled coal, Hooman &
Maas [6]; in land drainage and ensuring stormwater runoff does not pollute,
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Haws et al. [7], Jensen et al. [8]; in ensuring clean drinking water from an
aquifer, Ghasemizadeh et al. [9], Fretwell et al. [10]; and there are many
others.

A theory for flow in a bidisperse porous medium was proposed by Nield &
Kuznetsov, see e.g. [12, 13], and the references therein, see also Nield[11]. In
particular, Nield and Kuznetsov [12] produced a theory based on Brinkman
porous media where temperature effects were paramount. Inclusion of tem-
perature(s) is very important since thermal stresses can induce cracking and
lead to the production of micro pores, see e.g. Gelet et al. [14], Kim and
Hosseini [15], Rees et al. [16]. The theory of Nield and Kuznetsov has macro
pores and smaller micro pores which lead to macro porosity, Φ, and micro
porosity, ǫ. They have independent velocity, temperature and pressure fields
in both the macro and micro pores, denoted by Uf

i , T
f and pf , and by Up

i , T
p

and pp, where f denotes macro pores while p represents the micro pores.
For many real life problems we believe a single temperature may suffice,

while retaining independent velocity and pressure fields in the macro and
micro pores. This approach has been applied successfully to various problems
using Darcy porous media theory by Falsaperla et al. [17], Franchi et al. [18],
Gentile and Straughan [19, 20], and by Straughan [22, 23, 24, 25, 26]. In
this work we adopt a single temperature but we employ a Brinkman porous
medium theory in both the macro and micro pores, in keeping with the
original work of Nield and Kuznetsov [12]. It is worth pointing out that there
are many situations where Brinkman theory is relevant, see e.g. Barletta et
al. [27], Falsaperla et al. [28], Nield [29], and Rees [30].

We actually develop a Brinkman theory for the problem of thermosolutal
flow in a bidisperse porous medium, where both salt and temperature field
effects are present. In the single porosity case such effects are well known,
see e.g. Barletta and Nield [31], Deepika [32], Nield and Kuznetsov [13].
To achieve our goal we employ a Boussinesq approximation in the buoyancy
(body force) terms to allow us to include temperature and salt fields in a
linear manner. The Boussinesq approximation is discussed at length in fluid
mechanics and flows in single porosity media by Barletta [33], and by Nield
and Barletta [34].

The analysis in this work is motivated primarily by a paper of Nield and
Kuznetsov [13] who study double diffusive convection in a single porosity
porous material with general boundary conditions and they discover that in
a certain parameter range this problem can become singular. Our goal is to
study continuous dependence upon boundary coefficients. Thus, our study
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is one of continuous dependence upon the model itself. Hirsch and Smale
[35] pose the problem of what effect does changing the model have upon the
solutions. In many ways continuous dependence of the solution in changes
in the differential equations or boundary conditions is as important as con-
tinuous dependence upon the initial data, or stability. In fact, continuous
dependence on the model occupies much recent research, see e.g. Celik and
Hoang [36], Ciarletta et al.[37], Franchi et al. [18], Gentile and Straughan
[21], Harfash [38], Hoang and Thinh [39], Kalantarova and Ugurlu [40], Li et
al. [41], Liu [42], Liu and Xiao [43], Liu et al [44], Scott [45], Varsakelis and
Papalexandris [46], Wang and Su [47].

Thus, we now present a model for double diffusive flow in a bidisperse
porous medium where we allow for a Soret effect. The Soret effect is when
a temperature gradient induces a change in solute concentration. This is
manifest as a cross diffusion term which leads to complications in the analysis.
Our goal is to demonstrate continuous dependence of the solution to the
model in changes in the coefficients in the boundary conditions and also
upon the Soret coefficient.

2 Governing equations

The basic equations governing the double diffusive flow in a double porosity
material with Brinkman effects are now presented. Let T (x, t) be the tem-
perature, let C be the concentration of solute, Uf

i and Up
i are the velocities

in the macro and micro pores, and pf and pp are the pressures in the macro
and micro pores. The equations are

µ̃∆Uf
i −

µ

Kf
Uf
i − ζ(Uf

i − Up
i )− pf, i + giT − hiC = 0 ,

Uf
i, i = 0 ,

µ̃∆Up
i −

µ

Kp
Up
i − ζ(Up

i − Uf
i )− pp, i + giT − hiC = 0 ,

Up
i, i = 0 ,

(ρc)mT, t + (ρc)f (U
f
i + Up

i )T, i = κm∆T ,

ǫ1C, t + (Uf
i + Up

i )C, i = ǫ2∆C + S∆T .

(1)

where f and p refer to macro and micro quantities, µ̃ is the Brinkman viscosity
coefficient, µ is the dynamic viscosity of the saturating fluid, Kf and Kp
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are permeabilities, ζ is an interaction coefficient, ρc denotes the product of
the density and specific heat at constant pressure with f denoting the fluid
whereas m denotes a suitably averaged value in the porous medium. The
term κm is an averaged value of the thermal conductivity, ǫ1 and ǫ2 arise
from the equation for the solute, S is the Soret coefficient, and gi and hi are
gravity terms which arise through use of a Boussinesq approximation. The
Boussinesq approximation is discussed in detail in [33], Gouin and Ruggeri
[?], Gouin et al. [?], Nield and Barletta [34] Rajagopal et al. [?, ?].

Without loss of generality for the problem under consideration here we
suppose that

|g| ≤ 1 , |h| ≤ 1 . (2)

Throughout the article standard indicial notation is employed together with
the Einstein summation convention, and ∆ is the Laplace operator.

Equations (1)1,2 are the balance of momentum and conservation of mass in
the macro pores, while (1)3,4 are the balance of momentum and conservation
of mass in the micro pores, as derived by Nield and Kuznetsov [12]. Equation
(1)5 is the balance of energy for a single temperature, cf. Falsaperla et al.
[28], Gentile and Straughan [19], and (1)6 is the equation governing the solute
concentration, see Straughan [23, 25], although we point out only Nield and
Kuznetsov [12] employ Brinkman terms, the other writers restrict attention
to Darcy theory.

It is convenient to replace Uf
i and Up

i by ui and vi and to substitute
µ/Kf and µ/Kp by µ and γ. We further divide the equation for T by κm and
define α = (ρc)f/κm, and rescale the time so that the term T, t has coefficient
one. In this way, for the purpose of a continuous dependence analysis, the
equations for double diffusive flow in a bidisperse porous medium may be
written as

µ̃∆ui − µui − ζ(ui − vi)− p, i + giT − hiC = 0 ,

ui, i = 0 ,

µ̃∆vi − γvi − ζ(vi − ui)− q, i + giT − hiC = 0 ,

vi, i = 0 ,

T, t + α(ui + vi)T, i = ∆T ,

ǫ1C, t + (ui + vi)C, i = ǫ2∆C + S∆T .

(3)

Let T be an arbitrary positive number (fixed). Equations (3) hold on a
bounded domain Ω ∈ R

3 for time t ∈ (0, T ]. On the boundary of Ω, Γ, we
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suppose that

ui = 0 , vi = 0 , x ∈ Γ , t ∈ (0, T ] , (4)

while the temperature and concentration satisfy the general boundary con-
ditions

∂T

∂n
= −L(T − Ta) , x ∈ Γ , t ∈ (0, T ] , (5)

and
∂C

∂n
= −M(C − Ca) , x ∈ Γ , t ∈ (0, T ] , (6)

The coefficients L and M are given, and Ta and Ca are known ambient val-
ues. The derivative with respect to n is the unit outward normal derivative.
Conditions (5) and (6) correspond to the boundary conditions employed by
Nield and Kuznetsov [13] for a single porosity material.

The initial conditions are

T (x, 0) = T0(x) , C(x, 0) = C0(x) , x ∈ Ω. (7)

Our goal is to derive continuous dependence results on the Soret coefficient
S, together with dependence on the boundary coefficients L and M .

3 A priori estimates

In this section we derive a priori estimates on the temperature T , and on the
salt concentration C, these estimates being essential for continuous depen-
dence.

Let ‖ · ‖ and (·, ·) denote the norm and inner product on L2(Ω) and let
‖ · ‖4 denote the norm on L4(Ω).

The first estimate proceeds by multiplying (3)5 by T and integrating over
Ω. After using the boundary conditions (4) and (5) and integrating by parts
one may arrive at

d

dt

1

2
‖T‖2 + ‖∇T‖2 + L

∮

Γ

T (T − Ta)dA = 0 .

Use the arithmetic-geometric mean inequality on the term involving T Ta to
find

d

dt

1

2
‖T‖2 + ‖∇T‖2 +

L

2

∮

Γ

T 2 dA ≤
L

2

∮

Γ

T 2

a dA .
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Upon integration of this inequality we obtain our first a priori estimate,

‖T‖2 + 2

∫ t

0

‖∇T‖2 ds+ L

∫ t

0

∮

Γ

T 2 dA ds ≤ D1(t) , (8)

where D1(t) is the data term

D1(t) = ‖T0‖
2 + L

∫ t

0

∮

Γ

T 2

a dA ds .

Next, we multiply (3)5 by T 3 and integrate over Ω. After integration by parts
and use of (4) and (5) one finds

d

dt

1

4
‖T‖4

4
+ 3

∫

Ω

T 2T, iT, i dx+ L

∮

Γ

T 4dA = L

∮

Γ

T 3Ta dA .

Employ Young’s inequality in the form T 3Ta ≤ T 4/2 + 27 T 4
a/32 to obtain

d

dt

1

4
‖T‖4

4
+ 3

∫

Ω

T 2T, iT, i dx+
L

2

∮

Γ

T 4dA =
27

32
L

∮

Γ

T 4

a dA .

Upon integration this furnishes the a priori bound

‖T‖44 + 12

∫ t

0

∫

Ω

T 2|∇T |2 dx ds+ 2L

∫ t

0

∮

Γ

T 4 dA ds ≤ D2(t) , (9)

where the data term D2(T ) is given by

D2(t) = ‖T0‖
4

4
+

27L

8

∫ t

0

∮

Γ

T 4

a dA ds .

To derive the next a priori bound we multiply (3)6 by C and integrate over
Ω. After integration by parts and simultaneously employing (4)–(6) one may
see that

d

dt

ǫ1
2
‖C‖2 + ǫ2‖∇C‖2 + ǫ2M

∮

Γ

C2dA =

= ǫ2M

∮

Γ

CCadA− S(∇C,∇T )− SL

∮

Γ

CT dA+ SL

∮

Γ

CTada .

We now employ the arithmetic-geometric mean inequality on the terms on
the right to arrive at

ǫ1
2

d

dt
‖C‖2 +

ǫ2
2
‖∇C‖2 +

Mǫ2
2

∮

Γ

C2dA ≤

≤ Mǫ2

∮

Γ

C2

adA+
2S2L2

Mǫ2

∮

Γ

T 2

a dA+
S2

2ǫ2
‖∇T‖2 +

2S2L

Mǫ2

∮

Γ

T 2dA .
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This inequality is now integrated in time and we add to this a suitable mul-
tiple of inequality (8), this multiple we call ω. In this way, for a constant ω
given by

ω = max

{

S2

2ǫ2
,
4S2L

Mǫ2

}

we may derive the third a priori estimate

ǫ1‖C‖2 + ǫ2

∫ t

0

‖∇C‖2 ds+Mǫ2

∫ t

0

∮

Γ

C2 dA ds ≤ D3(t) , (10)

where the data term D3 is given by

D3(t) = 2Mǫ2

∫ t

0

∮

Γ

C2

a dA ds+ ǫ1‖C0‖
2 +

4S2L2

Mǫ2

∫ t

0

∮

Γ

T 2

a dA ds .

The constant ω has to be large enough that it ensures the terms in
∫ t

0
‖∇T‖2ds

and
∫ t

0

∮

Γ
T 2dA ds in (8) dominate the equivalent terms on the right of the

inequality which arises.

4 Continuous dependence

Denote the boundary-initial problem consisting of equations (3) together with
conditions (4)–(7) by P. Let {u1

i , v
1
i , p1, q1, T1, C1} be a solution of P with

initial data T0, C0 and values of the coefficients L, M and S being L1, M1,
S1. Let {u

2

i , v
2

i , p2, q2, T2, C2} be another solution to P with the same initial
data but now the values for the boundary and Soret coefficients L, M and S
are L2, M2, S2. Define the difference variables

{

ωi, ri, π
f , πp, θ, φ

}

and l, m,
s by

wi = u1

i − u2

i , ri = v1i − v2i , πf = p1 − p2 ,

πp = q1 − q2 , θ = T1 − T2 , φ = C1 − C2 ,

l = L1 − L2 , m = M1 −M2 , s = S1 − S2 .
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The boundary-initial value problem for the difference solution may be written
as

0 = µ̃∆wi − µwi − ζ(wi − ri)− πf
, i + giθ − hiφ ,

wi, i = 0 ,

0 = µ̃∆ri − γri − ζ(ri − wi)− πp
, i + giθ − hiφ ,

ri, i = 0 ,

θ, t + α(wi + ri)T1, i + α(u2

i + v2i )θ, i = ∆θ ,

ǫ1φ, t + (wi + ri)C1, i + (u2

i + v2i )φ, i = ǫ2∆φ+ s∆T1 + S2∆θ ,

(11)

together with the boundary and initial conditions,

wi = 0 , ri = 0 , x ∈ Γ ,

∂θ

∂n
= −L1θ − T2l + Tal , x ∈ Γ ,

∂φ

∂n
= −M1φ− C2m+ Cam, x ∈ Γ ,

(12)

and
θ(x, 0) = 0 , φ(x, 0) = 0 , x ∈ Ω. (13)

To establish continuous dependence we multiply (11) 1by wi and integrate
over Ω, and we then multiply (11)3 by ri and integrate over Ω. After inte-
gration by parts and use of the boundary conditions we may add the results
to obtain

µ̃‖∇w‖2+µ̃‖∇r‖2+µ‖w‖2+γ‖r‖2+ζ‖w−r‖2 = (giθ, wi+ri)−(hiφ, wi+ri) .

Next, let k = µ−1+γ−1 and then use the arithmetic-geometric mean inequal-
ity on the right together with the bounds on gi and hi to find

1

2

(

µ‖w‖2 + γ‖r‖2
)

+ ζ‖w− r‖2 + µ̃
(

‖∇w‖2 + ‖∇r‖2
)

≤ k
(

‖θ‖2 + ‖φ‖2
)

(14)
Now, multiply (11)5 by θ and integrate over Ω. After integration by parts
and use of the boundary conditions one may arrive at

d

dt

1

2
‖θ‖2 + ‖∇θ‖2 + L1

∮

Γ

θ2dA = α

∫

Ω

wiT1θ, i dx

+ α

∫

Ω

riT1θ, i dx− l

∮

Γ

T2θ dA+ l

∮

Γ

Taθ dA .

(15)

8



We use the arithmetic-geometric mean inequality on the last two terms on
the right. To handle the nonlinear terms we use the arithmetic-geometric
mean inequality as follows

∫

Ω

wiT1θ, i dx ≤
1

2ξ

∫

Ω

|w|2|T1|
2dx+

ξ

2
‖∇θ‖2 , (16)

for ξ > 0 at our disposal. Then use the Cauchy-Schwarz inequality followed
by the Sobolev inequality ‖w‖4 ≤ c1‖∇w‖ to see that

∫

Ω

|w|2|T1|
2dx ≤ ‖w‖2

4
‖T1‖

2

4
≤ c2

1
‖∇w‖2‖T1‖

2

4
.

Upon using this in (16) we obtain

∫

Ω

wiT1θ, i dx ≤
c21
2ξ

‖∇w‖2‖T1‖
2

4
+

ξ

2
‖∇θ‖2 . (17)

A similar inequality is derived for the ri term, and then, setting ξ = 1/2,
from (15) we easily obtain

d

dt
‖θ‖2 + ‖∇θ‖2 + L1

∮

Γ

θ2dA ≤ 2α2c21‖∇w‖2‖T1‖
2

4

+ 2α2c2
1
‖∇r‖2‖T1‖

2

4
+

2

L1

l2
∮

Γ

T 2

a dA+
2

L1

l2
∮

Γ

T 2

2
dA .

(18)

We now employ (14) in (18), integrate the result, and use (8) to arrive at

‖θ‖2 +

∫ t

0

‖∇θ‖2ds+ L1

∫ t

0

∮

Γ

θ2dA ds ≤

≤
2α2c2

1
k

µ̃

∫ t

0

‖T1‖
2

4

(

‖θ‖2 + ‖φ‖2
)

ds

+
2

L1

l2
∫ t

0

∮

Γ

T 2

a dA ds+
2

L1L2

l2D1(t) .

(19)

To proceed we now multiply (11)6 by φ and integrate over Ω. After
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integration by parts and use of the boundary conditions we derive

ǫ1
2

d

dt
‖φ‖2 + ǫ2‖∇φ‖2 + ǫ2M1

∮

Γ

φ2dA = −

∫

Ω

(wi + ri)φC1, i dx

− s(∇φ,∇T1)−mǫ2

∮

Γ

C2φ dA+mǫ2

∮

Γ

Caφ dA− L1s

∮

Γ

T1φ dA

+ L1s

∮

Γ

Taφ dA− lS2

∮

Γ

T2φ dA+ lS2

∮

Γ

Taφ dA

− S2L1

∮

Γ

φθ dA− S2(∇φ,∇θ) .

(20)

The nonlinear terms are handled as follows. Firstly use the Cauchy-Schwarz
inequality

−

∫

Ω

wiφC1, i dx ≤ ‖∇C1‖

(
∫

Ω

|w|2φ2dx

)1/2

≤ ‖∇C1‖‖w‖3‖φ‖6 , (21)

where ‖ · ‖p is the norm in Lp(Ω).
Now use the Cauchy-Schwarz inequality for w, namely

∫

Ω

|w|3dx ≤ V 1/2

(
∫

Ω

|w|6dx

)1/2

,

where V is the Lebesgue measure of Ω. Hence, thanks to the Sobolev in-
equality

‖w‖3 ≤ V 1/6‖w‖6 ≤ V 1/6c1‖∇w‖ .

Now the Sobolev inequality is applied to φ in the form

‖φ‖6 ≤ ĉ2‖φ‖W 1,2 = ĉ2

(
∫

Ω

|∇φ|2dx+

∫

Ω

φ2dx

)1/2

.

The Poincaré inequality holds for a constant λ1 in the form

λ1

∫

Ω

φ2dx ≤

∫

Ω

|∇φ|2dx+

∮

Γ

φ2dA .

Therefore

‖φ‖6 ≤ c2

√

‖∇φ‖2 +

∮

Γ

φ2dA (22)
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where c2 = ĉ2
(

1 + λ−1

1

)1/2
.

Next, use (22) in (21) together with the estimate for ‖w‖3 followed by
the arithmetic-geometric mean inequality,

−

∫

Ω

wi φC1, i dx ≤ c1c2V
1/6‖∇C1‖‖∇w‖

√

‖∇φ‖2 +

∮

Γ

φ2dA

≤
c21 c

2

2 V
1/3

2ξ
‖∇C1‖

2‖∇w‖2 +
ξ

2

(

‖∇φ‖2 +

∮

Γ

φ2dA

)

where ξ =????. We now employ (14) to obtain

−

∫

Ω

wi φC1, i dx ≤
c2
1
c2
2
V 1/3k

2 ξµ̃

(

‖θ‖2 + ‖φ‖2
)

‖∇C1‖
2

+
ξ

2

(

‖∇φ‖2 +

∮

Γ

φ2dA

)

.

(23)

A similar inequality is derived for the ri term. Then (23) and the analogous
inequality for the ri term are employed in (20). After use of the arithmetic-
geometric inequality together with (8)–(10) we integrate (20) and obtain

‖φ‖2 +
ǫ2
ǫ1

∫ t

0

‖∇φ‖2ds+M1

ǫ2
ǫ1

∫ t

0

∮

Γ

φ2dA ≤

δ

∫ t

0

(‖θ‖2 + ‖φ‖2)‖∇C1‖
2ds

+m2D4(t) + l2D5(t) + s2D6(t)

+
S2L1γ8

ǫ1

∫ t

0

∮

Γ

θ2dA ds+
S2γ7
ǫ1

∫ t

0

‖∇θ‖2ds ,

(24)

where δ = 4c2
1
c2
2
V 1/3k/ǫ1µ̃, and γ7, γ8 > 0 are at our disposal, and D4–D6 are

the data terms

D4(t) =
D3(t)

M2ǫ1γ1
+

ǫ2
ǫ1γ2

∫ t

0

∮

Γ

C2

adA ds ,

D5(t) =
S2

ǫ1γ5L2

D1(t) +
S2

ǫ1γ6

∫ t

0

∮

Γ

T 2

a dA ds ,

D6(t) =
D1(t)

ǫ1γ3
+

L1

ǫ1γ4

∫ t

0

∮

Γ

T 2

a dA ds+
D1(t)

2γ9ǫ1
,

(25)
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for γ1, γ2, γ5, γ6, γ3, γ4, γ9 > 0 to be selected opportunely.
For a constant A > 0 we now form A(19)+ (24). After a judicious choice

of coefficients, namely

γ1 = γ2 =
ǫ1M1

14ǫ2
, γ3 = γ4 =

ǫ1M1

14L1

, γ5 = γ6 =
ǫ1M1

14S2

,

γ7 =
4S2

ǫ2
, γ8 =

14S2L1

ǫ1M1

and γ9 =
ǫ2
2

,

(26)

we derive the inequality

‖φ‖2 + ‖θ‖2 +
ǫ2
ǫ1

∫ t

0

‖∇φ‖2ds+M1

ǫ2
ǫ1

∫ t

0

∮

Γ

φ2dA ds

+
1

2

∫ t

0

‖∇θ‖2ds+
L1

2

∫ t

0

∮

Γ

θ2dA ds ≤ D4(t)m
2

+D7(t)l
2 +D6(t)s

2 +

∫ t

0

(

‖θ‖2 + ‖φ‖2
)

χ(s) ds ,

(27)

where D7(t) is a data term,

D7(t) = D5(t) +
2

L1L2

D1(t) +
2

L1

∫ t

0

∮

Γ

T 2

a dA ds ,

and where

χ(s) = δ‖∇C1‖
2 +

α2c2
1
k

µ̃
‖T1‖

2

4
.

Observe that the data termsD1, . . . , D7, involve ‖T0‖
2, ‖C0‖

2, ‖T0‖
4

4
,
∫ t

0

∮

Γ
T 2

a dAds,
∫ t

0

∮

Γ
T 4

a dAds,
∫ t

0

∮

Γ
C2

adAds. Thus since t ∈ [0, T ) we may replace D4, D6

and D7 by the constants D̄4 = D4(T ), D̄6 = D6(T ), D̄7 = D7(T ). Then
using Gronwall’s inequality, see e.g. [48], we derive

‖φ(t)‖2 + ‖θ(t)‖2 ≤ K(D̄4m
2 + D̄7l

2 + D̄6s
2), (28)

where the data constant K has form

K = 1 +

∫ T

0

χ(t) exp
(

∫ t

0

χ(s)ds
)

dt.

We note that ‖T1‖
4

4
≤ D2(t) and

∫ t

0
‖∇C1‖

2ds ≤ D3(t), and so K is a data
term.

Inequality (28) demonstrates continuous dependence of a solution to P
upon the boundary parameters L and M and upon the Soret coefficient S.
Upon employingi eqref25 and (28) one may also obtain a continuous depen-
dence estimate for

∫ t

0
‖∇φ‖2ds,

∫ t

0

∮

φ2dAds,
∫ t

0
‖∇θ‖2ds and

∫ t

0

∮

θ2dAds.
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2465. (doi:10.1007/s00023-013-0307-z)

[39] Hoang L., Thinh, K. 2019 Global estimates for generalized Forchheimer
flows of slightly compressible fluids. J. d’Analyse Mathematique 137,
1–55.

[40] Kalantarova, J, Ugurlu, D. 2019 Structural stability and stabilization of
solutions of the reversible three - component Gray - Scott system. Math
Meth Appl Sci. 42, 3687 - 3699. (https://doi.org/10.1002/mma.5605z)

[41] Li, L., Yang, X.G., Li, X.Z., Yan, X.J., Lu, Y.J. 2019 Dynamics and
stability of the 3D Brinkman - Forchheimer equation with variable delay.
Asymptotic Analysis 113, 167 - 194.

[42] Liu Y. 2017 Continuous dependence for a thermal convection model
with temperature-dependent solubility. Appl. Math. Comput. 308, 18-
30. (https://doi:10.1016/j.amc.2017.03.004)

[43] Liu, Y, Xiao, S. 2018 Structural stability for the Brinkman
fluid interfacing with a Darcy fluid in an unbounded do-
main. Nonlinear Analysis: Real World Applications 42, 308–333.
(https://doi.org/10.1016/j.nonrwa.2018.01.007)

[44] Liu, Y, Xiao, S, and Lin Y. 2018 Continuous dependence for the
Brinkman - Forchheimer fluid interfacing with a Darcy fluid in a
bounded domain. Mathematics and Computers in Simulation (MAT-
COM) 150, 66–82. (https://doi.org/10.1016/j.matcom.2018.02.009)

[45] Scott, N L. 2013 Continuous dependence on boundary re-
action terms in a porous medium of Darcy type. Journal

17



of Mathematical Analysis and Applications 399, 667–675.
(https://doi.org/10.1016/j.jmaa.2012.10.054)

[46] Varsakelis, C, Papalexandris, M V. 2017 On the well-posedness of
the Darcy-Brinkman-Forchheimer equations for coupled porous media-
clear fluid flow. Nonlinearity 30, 1449-1464. (https://doi:10.1088/1361-
6544/aa5ecf)

[47] Wang, S., Su, X. 2019 The Cauchy problem for the dissipative Boussi-
nesq equation. Nonlinear Anal. Real World Applications 45, 116-141.

[48] Dragomir, S S. Some Gronwall Type Inequalities and Applications,
RGMIA Monographs, Victoria Univ., 2002.

18


