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An effective equidistribution result for SL(2,R) � (R2)⊕k and
application to inhomogeneous quadratic forms

Andreas Strömbergsson and Pankaj Vishe

Abstract

Let G = SL(2,R) � (R2)⊕k and let Γ be a congruence subgroup of SL(2,Z) � (Z2)⊕k. We prove
a polynomially effective asymptotic equidistribution result for special types of unipotent orbits
in Γ\G which project to pieces of closed horocycles in SL(2,Z)\ SL(2,R). As an application,
we prove an effective quantitative Oppenheim-type result for the quadratic form (m1 − α)2 +
(m2 − β)2 − (m3 − α)2 − (m4 − β)2, for (α, β) ∈ R2 of Diophantine type, following the approach
by Marklof [Ann. of Math. 158 (2003) 419–471] using theta sums.

1. Introduction

The results of Ratner on measure rigidity and equidistribution of orbits of a unipotent flow
[31, 32], play a fundamental role in homogeneous dynamics. These results also have many
applications outside of dynamics, ranging from problems in number theory to mathematical
physics. In recent years, there has been an increased interest in obtaining effective versions of
Ratner’s results in special cases, that is, to provide an explicit rate of density or equidistribution
for the orbits of a (non-horospherical) unipotent flow (cf. [3, 6, 13, 20, 27, 30, 38]). In
particular, in [3, 38], effective equidistribution results were obtained for orbits of a 1-parameter
unipotent flow on SL(2,Z) � Z2\SL(2,R) � R2, using Fourier analysis and methods of from
analytic number theory, and in the very recent paper [30], building on similar methods, effective
equidistribution of diagonal translates of certain orbits in SL(3,Z) � Z3\SL(3,R) � R3 was
established. Our purpose in the present paper is to prove results of a similar nature for
homogeneous spaces of the group G = SL(2,R) � (R2)⊕k for k � 2, and to apply these to
derive an effective quantitative Oppenheim-type result for a certain family of inhomogeneous
quadratic forms of signature (2,2). Here, (R2)⊕k denotes the direct sum of k copies of R2, each
provided with the standard action of SL(2,R).

We now turn to a precise description of our setting. We represent vectors by column matrices.
Throughout the paper, we will identify (R2)⊕k with R2k, so that the action of G′ := SL(2,R)
is given by (

a b
c d

)(
x
x′

)
=

(
ax + bx′

cx + dx′

)
for

(
a b
c d

)
∈ G′, x,x′ ∈ Rk.

The elements of

G = SL(2,R) � (R2)⊕k
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Göran Gustafsson Foundation (KVA) at KTH and by the EPSRC programme grant EP/J018260/1.

C� 2020 The Authors. Journal of the London Mathematical Society is copyright C�London Mathematical
Society. This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12316&domain=pdf&date_stamp=2020-04-07
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are then represented by pairs (M,v) ∈ G′ × R2k, with a multiplication law

(M,v)(M ′,v′) = (MM ′,v + Mv′).

Let

a(y) =
(√

y 0
0 1/

√
y

)
and u(x) =

(
1 x
0 1

)
(y > 0, x ∈ R).

We will always view G′ = SL(2,R) as a subgroup of G through M �→ (M,0); in particular, a(y)
and u(x) are also elements of G. We set

Γ = SL(2,Z) � (Z2)⊕k.

In our notation, this is the subgroup of all (M,v) ∈ G with M ∈ SL(2,Z) and v ∈ Z2k. Given
a subgroup Γ of Γ of finite index, we consider the homogeneous space

X = Γ\G.

As we will detail below, this space is a torus bundle over a finite cover of the familiar 3-
dimensional homogeneous space SL(2,Z)\SL(2,R) classifying unimodular lattices in R2. We
fix μ to be the (left and right invariant) Haar measure on G, normalized so as to induce a
probability measure on X, which we also denote by μ.

The following equidistribution result is a special case of [5, Theorem 3]†; alternatively
it may be deduced (with some work) as a consequence of [36, Theorem 1.4]. Note that
both [5, Theorem 3] and [36, Theorem 1.4] depend crucially on Ratner’s classification of
invariant measures.

For any a, b ∈ Rk we denote by ab the standard scalar product, ab = a1b1 + · · · + akbk.

Theorem 1.1. Let Γ be a subgroup of Γ = SL(2,Z) � (Z2)⊕k of finite index. Fix ξ = (
ξ1

ξ2
)

in R2k subject to the condition that there does not exist any m ∈ Zk \ {0} for which both
mξ1 and mξ2 are integers. Then for any Borel probability measure λ on R which is absolutely
continuous with respect to the Lebesgue measure, and any bounded continuous function f on
X = Γ\G,

lim
y→0+

∫
R

f(Γ(12, ξ)u(x)a(y)) dλ(x) =
∫
X

f dμ. (1)

In view of the relation

u(x)a(y) = a(y)u(y−1x),

the integration in the left-hand side of (1) is along an orbit of the unipotent flow

U t : Γg �→ Γgu(t) (t ∈ R)

on X. Let D : G → G′ be the natural projection sending (M,v) to M ; then D(Γ) is a finite
index subgroup of SL(2,Z), and D induces a projection map from X to X ′ := D(Γ)\G′, which
we also call D; this realizes X as a torus bundle over the space X ′, which in turn is a finite
cover of SL(2,Z)\SL(2,R). The orbits which appear in (1) are exactly those orbits of the flow

†Apply [5, Theorem 3] with d = 2 and M = 12 and use the anti-automorphism (M, (
x
x′)) �→ ( tM, tM(

x′
−x

))

of G to translate from the setting with G/Γ in [5] into our setting with X = Γ\G. As noted in [5, Remark 7.2],
the proof of [5, Theorem 3] extends trivially to the case when Γ is an arbitrary subgroup of SL(2,Z) � (Z2)⊕k

of finite index.
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U t which project to a closed horocycle in X ′ around its cusp at ∞. Letting y decrease toward
zero means that we are considering expanding translates of the initial orbit x �→ Γ(12, ξ)u(x).

Let us note that the condition imposed on ξ in Theorem 1.1 cannot be weakened. Indeed,
for any m ∈ Zk \ {0}, set

Xm :=
{

Γ
(
M,

(
v1

v2

))
: M ∈ SL(2,R), mv1 ∈ Z, mv2 ∈ Z

}
.

This is a closed embedded submanifold of codimension 2 in X. If both mξ1 and mξ2 are
integers, then

Γ(12, ξ)u(x)a(y) ∈ Xm for all x ∈ R, y > 0, (2)

and therefore the curve certainly cannot become equidistributed in X, that is, (1) fails for some
f . (For example, consider any bounded continuous f � 0 such that f|Xm

≡ 0 while
∫
X
f dμ >

0.)
Marklof in [24, Theorem 5.7] proved Theorem 1.1 in the special case of ξ1 = 0, and then in

[25, Theorem 3.1] in the special case of ξ2 = 0. Note that if ξ1 = 0, the condition on ξ2 in the
theorem becomes that 1 together with the k components of ξ2 should be linearly independent
over Q (and vice versa if ξ2 = 0). Our main results in the present paper are in Theorems 1.2
and 1.3, which give effective versions of these two special cases of Theorem 1.1, under the
further requirement that Γ is a congruence subgroup of Γ.

To prepare for the statement of the main theorems we introduce some further notation. For
a positive integer N , Γ(N) denotes the principal congruence subgroup of SL(2,Z) of level N :

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod N

}
.

We will consider X = Γ\G where Γ is a subgroup of Γ of the form Γ = Γ(N) � Z2k. (The case
of an arbitrary congruence subgroup of Γ can easily be reduced to the case of Γ = Γ(N) � Z2k,
by using the fact that for any q ∈ Z+, the map (M,v) �→ (M, qv) is an automorphism of G.)

We introduce the following cuspidal height function, for (M,v) ∈ G:

Y(M,v) = Y(M) = sup{Im γM(i) : γ ∈ SL(2,Z)}, (3)

where in the right-hand side, we use the standard action of G′ = SL(2,R) on the Poincaré upper
half plane H = {τ = u + iv ∈ C : v > 0}. Then Y(M,v) �

√
3/2 for all (M,v) ∈ G. Note that

Y(M,v) depends only on the coset Γ(M,v), and in particular Y can be viewed as a function
on X. Given p1, p2, . . . ∈ X, we have Y(pj) → ∞ if and only if the sequence p1, p2, . . . leaves
all compact subsets of X.

For m � 0 and a ∈ R, we let Cm
a (X) be the space of all m times continuously differentiable

functions on X, all of whose derivatives up to order m are 	 Y−a throughout X. In more
precise terms, let g be the Lie algebra of G, and fix a basis X1, . . . , X2k+3 of g (we make a
definite choice of this basis; cf. (18)). Each Y ∈ g can be realized as a left invariant differential
operator on functions on G, and thus also a differential operator on X = Γ\G, which we will
also denote by Y . For any f ∈ Cm(X), set

‖f‖Cm
a

:=
∑

ord(D)�m

sup
p∈X

|Y(p)a(Df)(p)|, (4)

where the sum is taken over all monomials in X1, . . . , X3+2k of degree � m. In particular,
‖ · ‖C0

0
is the supremum norm. Then Cm

a (X) is the space of all f ∈ Cm(X) with ‖f‖Cm
a
< ∞.
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For any integer n � 0 and real numbers a � 0 and p ∈ [1,+∞], we introduce the weighted
Sobolev norm Sp,a,n(h) on functions h ∈ Cn(R) through

Sp,a,n(h) =
n∑

j=0

‖(1 + |x|)a ∂jh(x)‖Lp .

For x ∈ R let 〈x〉 denote the distance to the nearest integer; 〈x〉 = minn∈Z |x− n|. Given
β > k, ξ ∈ Rk, T > 0, we define

δβ,ξ(T ) =
∑

r∈Zk\{0}
‖r‖−β

∞∑
j=1

1 + log+
(

T 〈jrξ〉
j

)
j2 + Tj〈jrξ〉 , (5)

where log+(x) := log(x) for x > 1 and log+(x) := 0 for x ∈ [0, 1]. Since log+(x) < x (∀x > 0),
one has

δβ,ξ(T ) � Ck,β :=
∑

r∈Zk\{0}
‖r‖−β

∞∑
j=1

j−2 < ∞, (6)

for all ξ and T .
We now state our two main theorems.

Theorem 1.2 (Effective version of Theorem 1.1 when ξ1 = 0). Let k � 2 and Γ = Γ(N) �

Z2k. Fix ε > 0 and an integer β � max(8 − k, 1 + k), and set m = 3(β + k + 1) and a = (β −
1)/2. Then for any f ∈ Cm

a (X), h ∈ C2(R) with S∞,2+ε,2(h) < ∞, ξ2 ∈ Rk and y > 0, we have∣∣∣∣∫
R

f

(
Γ
(

12,

(
0
ξ2

))
u(x)a(y)

)
h(x) dx−

∫
X

f dμ

∫
R

h dx

∣∣∣∣
	 ‖f‖Cm

a
S∞,2+ε,2(h)

(
δβ,ξ2

(y−
1
2 ) + y

1
4−ε

)
, (7)

where the implied constant depends only on k, N , ε, β.

Theorem 1.3 (Effective version of Theorem 1.1 when ξ2 = 0). Let k � 2 and Γ = Γ(N) �

Z2k. Fix ε > 0 and an integer β � max(7 − k, 1 + k), and set m = 3(β + k) + 2 and a = (β −
1)/2. Then for any f ∈ Cm

a (X), h ∈ C2(R) with S1,0,2(h) < ∞, ξ1 ∈ Rk and y > 0, we have∣∣∣∣∫
R

f

(
Γ
(

12,

(
ξ1

0

))
u(x)a(y)

)
h(x) dx−

∫
X

f dμ

∫
R

h dx

∣∣∣∣
	 ‖f‖Cm

a
S1,0,2(h)

(
δβ,ξ1

(y−
1
2 ) + y

1
4−ε

)
, (8)

where the implied constant depends only on k, N , ε, β.

Let us make some comments on these results. First, note that for any fixed ξ2 ∈ Rk and
β > k, one has δβ,ξ2

(y−1/2) → 0 as y → 0 if and only if rξ2 /∈ Q for all r ∈ Zk \ {0}. Hence,
Theorem 1.2 indeed gives an effective version of Theorem 1.1 in the special case when Γ is
a congruence subgroup of Γ and ξ1 = 0. Similarly, Theorem 1.3 gives an effective version of
Theorem 1.1 when ξ2 = 0. Second, as we will explain in Section 3 (see especially Lemmata 3.1
and 3.3, and the relation (28)), for a sufficiently large β and ξ2 subject to a Diophantine
condition, the majorant function δβ,ξ2

(T ) has a power rate decay in T as T → ∞. In particular,
for any ε > 0, δβ,ξ2

(T ) 	 T ε−1 holds for all ξ2 ∈ Rk outside a set of Hausdorff dimension < k.
Note that for any such β and ξ2, the bound in Theorem 1.2 decays like y

1
4−ε as y → 0. An

analogous statement holds for Theorem 1.3.
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One should also note that the integral in Theorem 1.3 (but not the one in Theorem 1.2)
runs over a closed orbit in X; indeed the point Γ

(
12, (

ξ1
0 )

)
u(x) is invariant under x �→ x + N ,

since u(t)(ξ1
0 ) = (ξ1

0 ), ∀t, and u(N) ∈ Γ(N). Hence, it is only natural that the bound obtained
in Theorem 1.3 is invariant under translations of h.

We have made no effort to optimize the dependence on the test functions f and h in the
theorems; rather, we have simply imposed as much smoothness and decay of these as needed
to comfortably reach the best decay rate with respect to y that our method can give.

The proofs of Theorems 1.2 and 1.3 are given in Sections 4–8; the basic approach is to
use Fourier decomposition with respect to the torus fiber variable, just as in [38]; however,
there are several new difficulties that have to be tackled. In particular, the Γ

′
-orbits in Z2k,

which are used to partition the Fourier decomposition, are more complicated for k � 2 than
for k = 1: There are two types of orbits, which we call ‘A-orbits’ and ‘B-orbits’, where B-orbits
only appear for k � 2 (cf. Section 4). Establishing cancelation in the contribution from the
B-orbits requires a novel treatment, which we give in Section 8. The treatment of the A-orbits
(cf. Section 7) becomes more delicate for k � 2 than for k = 1, and this is where we need to
require that the test function f decays sufficiently rapidly in the cusp (cf. the parameter ‘a’ in
Theorems 1.2 and 1.3); this is not needed for k = 1. Other differences versus [38] are that we
consider congruence subgroups and not just Γ = SL(2,Z) � (Z2)⊕k itself, and the fact that the
Diophantine conditions are more complicated in the present paper, as they concern vectors in
Rk.

As will be seen, in the present paper we make crucial use of the assumptions in Theorems 1.2
and 1.3 that either ξ1 = 0 or ξ2 = 0. It is an interesting problem to seek a more general
treatment so as to obtain an effective version of Theorem 1.1 for general ξ1, ξ2. We have some
preliminary results on this problem and hope to return to it in a later paper.

We next turn to an application of Theorem 1.2: Following an approach introduced by Marklof
in [24] using theta series, we will prove an effective quantitative Oppenheim-type result for the
inhomogeneous quadratic form

Q(x1, x2, x3, x4) = (x1 − α)2 + (x2 − β)2 − (x3 − α)2 − (x4 − β)2 (9)

for a fixed vector (α, β) ∈ R2 subject to Diophantine conditions. Recall that the original
Oppenheim conjecture states that for any indefinite nondegenerate homogeneous quadratic
form Q̃ in n � 3 variables, not proportional to a rational form, Q̃(Zn) is dense in R. This
was proved in celebrated work by Margulis [21]. An effective version of this result has more
recently been obtained by Lindenstrauss and Margulis, [20]. A quantitative (but non-effective)
version of the Oppenheim conjecture for forms of signature (p, q) with p � 3 and q � 1 was
proved by Eskin, Margulis and Mozes, [7], and extended to forms of signature (2,2) subject
to a Diophantine condition in [8]. Similar quantitative results were later proved also for
inhomogeneous quadratic forms by Margulis and Mohammadi [22]; in particular the result
proved by Marklof [24] for the form Q in (9) is a special case of the results in [22]; however,
the method of proof in [22] is different and does not involve theta series.

Effective quantitative results for indefinite forms in n � 5 variables have been proved by
Götze and Margulis [11]. However, we are not aware of any previous effective quantitative
results for forms in 3 or 4 variables.

Returning to the form Q in (9), for f ∈ Cc(R4), g ∈ C(R) ∩ L1(R) and T > 0, set

Nα,β(f, g, T ) :=
1
T 2

∑
m∈Z4\Δ

f(T−1m)g(Q(m)), (10)

where Δ := {(m1,m1) : m1 ∈ Z2}. We also set

λf :=
1
2

∫ ∞

0

∫ 2π

0

∫ 2π

0

f(r cos ζ1, r sin ζ1, r cos ζ2, r sin ζ2) dζ1 dζ2 r dr. (11)
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One verifies easily that

lim
T→∞

1
T 2

∫
R4

f
(
T−1x

)
g(Q(x)) dx = λf

∫
R

g(r) dr.

We say that ξ ∈ Rk is κ-Diophantine if there exists a constant c > 0 such that ‖qξ −m‖ �
cq−κ for all q ∈ Z+ and m ∈ Zk (cf. [23, Section 1.5]†). We also say that ξ is [κ; c]-Diophantine
in this case. The smallest possible value for κ is κ = k−1, and on the other hand Lebesgue-
almost every ξ ∈ Rk is (k−1 + ε)-Diophantine for every ε > 0. In Section 3, we will also discuss
a different (also standard) Diophantine condition, which is more directly connected to the
decay properties of δβ,ξ(T ).

In Section 9, we prove the following effective quantitative Oppenheim result for the form Q.

Theorem 1.4. There exists an absolute constant B > 0 such that for any [κ; c]-Diophantine
vector (α, β) ∈ R2 with |α|, |β| � 1, any f ∈ C1

c(R
4) with support contained in the unit ball

centered at the origin, any g ∈ C3(R) with S1,2,3(g) < ∞, and any T � 1,∣∣∣∣Nα,β(f, g, T ) − λf

∫
R

g(s) ds
∣∣∣∣ 	 4∑

j=1

∥∥∥∥ ∂

∂xj
f

∥∥∥∥
L∞

S1,2,3(g)κ c−
1
κ δ6,(α,β)(T )1/(Bκ), (12)

where the implied constant is absolute.

The assumption in Theorem 1.4 that supp(f) is contained in the unit ball simplifies the
statement of the theorem, but can easily be weakened by an a posteriori scaling argument;
furthermore one can remove the assumption that (α, β) ∈ [−1, 1]2, as long as T is large
compared to ‖(α, β)‖ (cf. Corollary 9.12).

As we will show in Section 9.5, by a standard approximation argument, Theorem 1.4 implies
the following effective counting result. For real numbers a < b and T > 0, set

Nα,β(a, b, T ) :=
1
T 2

#
{
x ∈ Z4 \ Δ : ‖x‖ < T, a < Q(x) < b

}
. (13)

(One could also replace the ball {‖x‖ < T} in (13) by a more general expanding region in R4;
however, in order to keep the presentation simple we will not elaborate on this.)

Corollary 1.5. There exists an absolute constant B′ > 0 such that for any [κ; c]-
Diophantine vector (α, β) ∈ [−1, 1]2 and any real numbers a < b and T � 1,∣∣∣Nα,β(a, b, T ) − π2

2 (b− a)
∣∣∣ 	 (1 + |a| + |b|)3κc− 1

κ δ6,(α,β)(T )1/(B
′κ), (14)

where the implied constant is absolute.

Note that the right-hand sides of (12) and (14) tend to zero as T → ∞ (keeping all other data
fixed) whenever 1, α, β are linearly independent over Q and the vector (α, β) is κ-Diophantine
for some κ. If (α, β) furthermore satisfies a Diophantine condition of the type discussed in
Section 3, then we even have a power rate decay with respect to T in (12) and (14). In
particular, by a result of Schmidt [34] (or [33]), we have a power rate decay with respect to
T whenever α, β are algebraic numbers such that 1, α, β are linearly independent over Q (cf.
Remark 4).

†Note that our κ corresponds to ‘κ− 1’ in [23, Section 1.5]. Both of these conventions are common in the
literature, and we made our choice so as to make the statement of Theorem 1.4 and later results as simple
as possible.
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Remark 1. The actual powers for the decay with respect to T which we obtain in
Theorem 1.4 and Corollary 1.5 are quite small and depend strongly on the a and m appearing
in the Cm

a -norm in Theorem 1.2 (which, as we remarked above, we have not attempted to
optimize) (cf. Lemma 9.8 and Remark 12). It is an interesting problem to seek the maximal
power η such that the difference in (12) decays like T−η, for any fixed (α, β) subject to an
appropriate Diophantine condition and any sufficiently nice test functions f and g.

Remark 2. The relation limT→∞ Nα,β(a, b, T ) = π2

2 (b− a) also holds for (α, β) κ-
Diophantine with 1, α, β linearly dependent over Q, except that for certain such pairs α, β,
the definition of Nα,β(a, b, T ) in (13) has to be modified by removing one more exceptional
subspace besides Δ. This follows as a special case of the (ineffective) result of Margulis and
Mohammadi [22, Theorem 1.9]†. The reason why Theorem 1.4 and Corollary 1.5 fail to give the
desired limiting result in the case when 1, α, β are linearly dependent over Q is that as a crucial
step in the proof, Theorem 1.2 is applied with ξ2 = (αβ), and as we discussed in connection with
Theorem 1.1 (cf. (2)), the asymptotic equidistribution therein fails when 1, α, β are Q-linearly
dependent. This situation is discussed in [24, Appendix A], and as indicated there, and carried
out in some special cases, it is possible to extend the proof method of [24] to the case of Q-
linear dependence, by utilizing equidistribution in the appropriate homogeneous submanifold
of Γ\G. It would be interesting to make this approach effective, that is, to seek a satisfactory
effective version of the statement that limT→∞ Nα,β(a, b, T ) = π2

2 (b− a) for all κ-Diophantine
vectors (α, β) ∈ R2.

It should be noted that some Diophantine condition on (α, β) is certainly necessary
in order for limT→∞ Nα,β(a, b, T ) = π2

2 (b− a) to hold (cf. [24, Theorem 1.13, Section 9].
By contrast, the non-quantitative result that Q(Z4) is dense in R, and in fact even
lim infT→∞ Nα,β(a, b, T ) � π2

2 (b− a) for all a < b, is known to hold for all irrational vectors
(α, β), that is, for all (α, β) ∈ R2 \ Q2. This is a special case of [22, Theorem 1.4].

Finally, let us note that Theorem 1.4 implies an effective version of the main theorem of
[24], which says that under explicit Diophantine conditions on (α, β) ∈ R2, the local two-
point correlations of the sequence given by the values of Q1(m,n) = (m− α)2 + (n− β)2, with
(m,n) ∈ Z2, are those of a Poisson process — a result which partly confirms a conjecture of
Berry and Tabor [1] on quantized integrable systems. For fixed (α, β) ∈ R2, denote by 0 � λ1 �
λ2 � · · · → ∞ the sequence of values of Q1(m,n) for (m,n) ∈ Z2, counted with multiplicity.
One easily verifies that the asymptotic density of this sequence is π:

#{j : λj � Λ} = #{(m,n) ∈ Z2 : (m− α)2 + (n− β)2 < Λ} ∼ πΛ as Λ → ∞.

For a given interval [a, b] ⊂ R, the pair correlation function is then defined as

R2[a, b](Λ) =
1
πΛ

#
{
(j, k) ∈ (Z+)2 : j �= k, λj , λk < Λ; λj − λk ∈ (a, b)

}
. (15)

In Section 9.5, we will prove the following.

Corollary 1.6. There exists an absolute constant B′′ > 0 such that for any [κ; c]-
Diophantine vector (α, β) ∈ R2, and any real numbers a < b and Λ � 1,

|R2[a, b](Λ) − π(b− a)| 	 (1 + |a| + |b|)3κc− 1
κ δ6,(α,β)(T )1/(B

′′κ), (16)

where the implied constant is absolute.

†The notion of ξ ∈ Rk being ‘κ-Diophantine’ in [22] is different from the one which we have defined; however,
it is easy to verify that if ξ is κ-Diophantine in the sense of [22, Definition 1.7], then ξ is (κ− 1)-Diophantine
in our sense, and if ξ is κ-Diophantine in our sense, then ξ is k(κ + 1)-Diophantine in the sense of [22,
Definition 1.7]. One also verifies by a direct computation that the form Q in (9) with (α, β) /∈ Q2 admits at
most one more exceptional subspace in the sense of [22, p. 124(bottom)] besides Δ = {(m1,m1) : m1 ∈ Z2},
and such an exceptional subspace can only occur when 1, α, β are linearly dependent over Q.
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This corollary indeed gives an effective version of Marklof [24, Theorem 1.8], as well as of
[23, Theorem 1.6] in the case k = 2, since the right-hand side of (16) tends to zero as T → ∞
for any fixed κ-Diophantine vector (α, β) (any κ) such that 1, α, β are linearly independent
over Q.

The main result in Marklof [23, Theorem 1.6] generalizes [24, Theorem 1.8] to the case
of the local pair correlation density of the sequence ‖m−α‖k (m ∈ Zk) for any k � 2 (and
also for k = 2 it is a stronger result, since the Diophantine condition imposed on the vector
(α, β) ∈ R2 is weaker). Unfortunately, it seems that Theorem 1.2 above cannot be used to
prove an effective version of this more general result when k � 3. The reason is that the key
equidistribution result required, [23, Theorem 5.1], concerns the integral

yσ
∫
R

f
(
Γ
(
12,

( 0
ξ2

))
u(x)a(y)

)
h(yσx) dx (17)

with σ = k
2 − 1, that is, the integral which appears in Theorem 1.2 but with the function h

replaced by x �→ yσh(yσx). With this choice, the S∞,2+ε,2-norm in the right-hand side of (7)
grows rapidly as y → 0, making the bound useless. This failure may at first seem surprising,
since the factor yσ means, when σ > 0, that we are considering a unipotent orbit expanding
at a faster rate than for σ = 0, so the result can be expected to be easier (or at least not more
difficult) to prove. However, there is a genuine difference between x near zero and x far from zero
in the integrand in (17); for example, for any u(n) ∈ Γ, using u(n)

(
12, (

0
ξ2

)
)

=
(
12, (

nξ2
ξ2

)
)
u(n),

we have

f
(
Γ
(
12,

( 0
ξ2

))
u(x)a(y)

)
= f

(
Γ
(
12,

(
nξ2

ξ2

))
u(x + n)a(y)

)
.

It is clear from this that if one would solve the aforementioned problem of proving an effective
version of Theorem 1.1 in the general case with both ξ1, ξ2 allowed to be non-zero, this can be
expected to also lead to an effective version of [23, Theorem 5.1], and so, with further work,
should also lead to an effective version of [23, Theorem 1.6] for general k � 2.

2. Some notation

We use the standard notation A = O(B) or A 	 B meaning |A| � CB for some constant
C > 0. We shall also use A � B as a substitute for A 	 B 	 A. The implicit constant C will
always be allowed to depend on k and N without any explicit mention. If we wish to indicate
that C also depends on some other quantities f, g, h, we will use the notation A 	f,g,h B or
A = Of,g,h(B).

Recall from Section 1 that G′ = SL(2,R) and G = G′ � R2k. Let g be the Lie algebra of G;
it may be naturally identified with the space sl(2,R) ⊕ R2k, with Lie bracket [(X,v), (Y,w)] =
(XY − Y X,Xw − Y v) (see, for example, [19, Proposition 1.124]). Using this notation, we fix
the following basis of g:

X1 =
((

0 1
0 0

)
,0

)
; X2 =

((
0 0
1 0

)
,0

)
; X3 =

((
1 0
0 −1

)
,0

)
; (18)

X3+	 =
(

0,
(
e	
0

))
; X3+k+	 =

(
0,

(
0
e	

))
(� = 1, . . . , k).

Here, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., ek = (0, . . . , 0, 1) are the standard basis vectors
of Rk.
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We set

Γ
′
= SL(2,Z) and Γ′ = Γ(N), so that Γ = Γ

′
� Z2k and Γ = Γ′ � Z2k

(cf. Section 1). Given a function f on X = Γ\G, we will often view f as a function on G through
f(g) = f(Γg), and we will write f(M,v) in place of f((M,v)), for (M,v) ∈ G. Furthermore,
given any R ∈ Γ

′
, we set

fR(M,v) := f(R−1(M,v)) = f(R−1M,R−1v). (19)

Since Γ′ is normal in Γ
′
, fR is also left Γ-invariant, that is, fR can be viewed as a function on

X. Note also that ‖fR‖Cm
a

= ‖f‖Cm
a

for all m � 0, a ∈ R.

3. Linear form Diophantine conditions

Given real numbers κ � k and α � 1, we say that a vector ξ ∈ Rk is κ-LFD (short for κ-linear
form Diophantine) if there is a constant c > 0 such that

〈rξ〉 � c‖r‖−κ for all r ∈ Zk \ {0}, (20)

and we say that ξ is (κ, α)-LFD if there is a constant c > 0 such that

〈jrξ〉 � cj−α‖r‖−κ for all j ∈ Z+, r ∈ Zk \ {0}. (21)

Recall here that for x ∈ R, 〈x〉 denotes the distance to the nearest integer, and rξ is the scalar
product, rξ = r1ξ1 + · · · + rkξk. The condition in (20) is very standard in the Diophantine
approximation literature; however, we are not aware of any discussion of the more general
condition in (21). When (20) holds, we will say that ξ is [κ; c]-LFD, and similarly when (21)
holds, we will say that ξ is [(κ, α); c]-LFD. Note that being [κ; c]-LFD is equivalent to being
[(κ, α); c]-LFD for any α � κ. Hence, the notion of being [(κ, α); c]-LFD is mainly relevant
when 1 � α < κ, and in this case the condition (21) is equivalent to the same condition with
r restricted to being a primitive vector in Zk (namely, a vector with gcd(r1, . . . , rk) = 1).

Note that if ξ is (κ, α)-LFD, then ξ is also κ-LFD and furthermore each co-ordinate ξ	 of ξ
is an α-LFD (⇔ α-Diophantine) real number (apply (21) with r = e	). Hence, if either κ = k
or α = 1, then the set of (κ, α)-LFD ξ ∈ Rk has Lebesgue measure zero [16, 17, 29]. On the
other hand, if both κ > k and α > 1, then the complement of that set has Lebesgue measure
zero, and moreover, it has Hausdorff dimension strictly less than k.

Lemma 3.1. If κ > k and α > 1, then the Hausdorff dimension of the set of all ξ ∈ Rk which
are not (κ, α)-LFD equals k − 1 + max

(
k+1
κ+1 ,

2
α+1

)
.

Proof. The set in the statement of the Lemma contains the set of all ξ ∈ Rk which are not
κ-LFD, and the latter set has (Hausdorff) dimension k − 1 + k+1

κ+1 (cf. Bovey and Dodson [2]).
Furthermore, taking r = e1 in (21) we see that the set in the statement of the lemma contains
the set of all ξ ∈ Rk for which ξ1 is not α-LFD, and this set has dimension k − 1 + 2

α+1 .
Hence, it remains to prove that the dimension in the statement of the lemma is bounded

above by k − 1 + max
(
k+1
κ+1 ,

2
α+1

)
. It suffices to consider ξ ∈ [0, 1)k. Set

Δj,r,m =
{
ξ ∈ [0, 1)k : |jrξ −m| < j−α‖r‖−κ

}
.

Then every non-(κ, α)-LFD ξ in [0, 1)k belongs to Δj,r,m for infinitely many (j, r,m) ∈ Z+ ×
(Zk \ {0}) × Z. Note also that Δj,r,m = ∅ unless |m| 	 j‖r‖, and for any (j, r,m) ∈ Z+ × (Zk \
{0}) × Z, if we set � = �j,r = j−α−1‖r‖−κ−1, then the set Δj,r,m can be covered by 	 �1−k

open hypercubes each having sides of length 	 �, with the normal to each face being parallel
to a co-ordinate axis. If s > k − 1 + max

(
k+1
κ+1 ,

2
α+1

)
, then the total s-volume of the family of
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hypercubes obtained as (j, r,m) runs through Z+ × (Zk \ {0}) × Z (subject to Δj,r,m �= ∅) is

	
∞∑
j=1

∑
r∈Zk\{0}

j‖r‖ · (j−α−1‖r‖−κ−1
)1−k+s

< ∞.

Note also that for any δ > 0 there are only a finite number of non-empty sets Δj,r,m satisfying
�j,r � δ; hence every non-(κ, α)-LFD ξ ∈ [0, 1)k is contained in the union of hypercubes in the
above family restricted by �j,r < δ. It follows that for every s > k − 1 + max

(
k+1
κ+1 ,

2
α+1

)
, the

s-dimensional outer Hausdorff measure of the set of all non-(κ, α)-LFD ξ in [0, 1)k equals zero.
This completes the proof. �

We will need the following auxiliary result.

Lemma 3.2. Let η ∈ R, c > 0, κ � 1, and assume that 〈jη〉 � cj−κ for all j ∈ Z+. Then

∞∑
j=1

1
j2 + Tj〈jη〉 	 (cT )−

2
1+κ log2(2 + T ) for all T > 0. (22)

(The bound is essentially optimal. Indeed, if 〈jη〉 � cj−κ holds for some j, then for
T = j1+κ/c, already the term 1

j2+Tj〈jη〉 is bounded below by 1
2 (cT )−

2
1+κ .)

Proof. We assume cT > 1 since otherwise the bound is trivial. Note that the assumptions
of the lemma imply that η is irrational, and 0 < c � 〈η〉 � 1

2 . Thus, T > 2.
Let pk/qk be the kth convergent of the (simple) continued fraction expansion of η (see, for

example, [14, Chapter X]; in particular 1 = q0 � q1 < q2 < · · · ). For any � � 1 we have

∑
1�j�q�/2

1
j〈jη〉 =

	∑
k=1

∑
qk−1/2<j�qk/2

1
j〈jη〉 	

	∑
k=1

q−1
k−1

∑
1�j�qk/2

1
〈jη〉 	

	∑
k=1

qk log qk
qk−1

,

where the last bound follows from [28, Lemma 4.8], since |η − pk

qk
| < 1

qkqk+1
[14, Theorem 171].

But for every k � 1 we have cq−κ
k−1 � 〈qk−1η〉 < q−1

k , that is, qk < c−1qκk−1; hence we get

∑
1�j�q�/2

1
j〈jη〉 	 c−1(log q	)

	∑
k=1

qκ−1
k−1 	 c−1(log q	)2qκ−1

	−1 , (23)

where we used the fact that q	 is bounded below by the �th Fibonacci number.
Next note that for any � � 1 and h � 1, by [28, Lemma 4.9],∑
hq�+1�j�(h+1)q�

1
j2 + Tj〈jη〉 � 1

Thq	

q�∑
r=1

min
(

T

hq	
,

1
〈(hq	 + r)η〉

)
	 1

(hq	)2
+

log q	
Th

. (24)

Similarly, ∑
q�/2<j�q�

1
j2 + Tj〈jη〉 	 1

Tq	

q�∑
r=1

min
(
T

q	
,

1
〈rη〉

)
	 1

q2
	

+
log q	
T

. (25)

Adding (25) and (24) for all h � T/q	, we obtain∑
q�/2<j�T

1
j2 + Tj〈jη〉 	 1

q2
	

+
log q	 log(1 + T

q�
)

T
. (26)
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Now choose � � 1, so that q	−1 � (cT )
1

1+κ < q	. Then q	 < c−1qκ	−1 � (cT )−
1

κ+1T < T . Now
(22) follows from (23), (26) and the bound

∑
j>T j−2 	 T−1. �

We now give a result on the rate of decay of the majorant function δβ,ξ(T ) (cf. (5)), assuming
that ξ is of an appropriate LFD type. In fact, we consider the following slightly simpler
majorant:

δ̃β,ξ(T ) =
∑

r∈Zk\{0}
‖r‖−β

∞∑
j=1

1
j2 + Tj〈jrξ〉 . (27)

Note that δβ,ξ(T ) and δ̃β,ξ(T ) decay with very similar rates, since

δ̃β,ξ(T ) � δβ,ξ(T ) � (2 log T )δ̃β,ξ(T ), ∀T � e. (28)

Lemma 3.3. For any κ � k, α � 1 and β > k + 2κ
1+α , if ξ ∈ Rk is [(κ, α); c]-LFD, then

δ̃β,ξ(T ) 	β,κ,α (cT )−
2

1+α log2(2 + T ) for all T > 0.

Proof. Using Lemma 3.2 and the assumption that ξ is [(κ, α); c]-LFD, we have
∞∑
j=1

1
j2 + Tj〈jrξ〉 	 (c‖r‖−κT )−

2
1+α log2(2 + T ), for each r ∈ Zk \ {0}.

Multiplying by ‖r‖−β and adding over all r ∈ Zk \ {0}, we obtain the stated bound. �

Remark 3. A standard argument also shows that given any β > k and ε > 0, the bound
δβ,ξ(T ) 	 T ε−1 as T → ∞ holds for Lebesgue almost all ξ ∈ Rk. We here give an outline of the
proof: One verifies that for T large,

∫
[0,1]k

δ̃β,ξ(T ) dξ 	 T
1
3 ε−1, and hence the set of ξ ∈ [0, 1]k

satisfying δ̃β,ξ(T ) � T
2
3 ε−1 has Lebesgue measure 	 T− 1

3 ε. The sum of these measures over
T = 21, 22, 23, . . . is finite, and so, by Borel–Cantelli, for almost every ξ ∈ [0, 1]k there is some
M ∈ Z+ such that δ̃β,ξ(2m) < (2m)

2
3 ε−1 for all integers m � M , and thus δ̃β,ξ(T ) < 2T

2
3 ε−1

for all (real) T � 2M . The desired claim then follows using (28) and the fact that δβ,ξ(T ) is
invariant under ξ �→ ξ + m, m ∈ Zk.

Remark 4. By Schmidt, [34], if ξ1, . . . , ξk are (real) algebraic numbers such that 1, ξ1, . . . , ξk
are linearly independent over Q, then ξ is κ-LFD (and thus [κ, κ]-LFD) for every κ > k. Hence,
for such a ξ, Lemma 3.3 implies that for any β > k

(
1 + 2

1+k

)
and ε > 0 we have δβ,ξ(T ) 	ξ,β,ε

T ε− 2
k+1 for all T > 0. In connection with Theorem 1.4, it should be noted that any such ξ is

also κ-Diophantine for every κ > k−1; again (cf. [34]).

4. Fourier decomposition with respect to the torus variable

We now start with the proof of Theorems 1.2 and 1.3. In this section, which generalizes [38,
Section 4], we consider the Fourier decomposition of a given test function on X with respect
to the torus variable, and prove bounds on the resulting Fourier coefficients. Some parts of our
discussion is a close mimic of [38, Section 4], but there are also some new aspects that have to
be considered; see, in particular, all of Section 4.2.

To start with, we consider an arbitrary function f ∈ C(Z2k\G), where Z2k is viewed as
a subgroup of G through n �→ (12,n). We view f as a function on G by composing with the
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projection G �→ Z2k\G. Then f(M, ξ) = f((12,n)(M, ξ)) = f(M, ξ + n) for all n ∈ Z2k, which
means that for any fixed M ∈ G′, ξ �→ f(M, ξ) is a function on the torus T2k = Z2k\R2k. We
write f̂(M,m) for the Fourier coefficients in the torus variable:

f̂(M,m) =
∫
Z2k\R2k

f(M, ξ)e(−mξ) dξ, M ∈ G′, m ∈ Z2k. (29)

Here, dξ denotes Lebesgue measure on R2k. Thus, for f ∈ Ck+1(Z2k\G) we have [12,
Theorem 3.2.16]

f(M, ξ) =
∑

m∈Z2k

f̂(M,m)e(mξ), (30)

with a uniform absolute convergence† over (M, ξ) in any compact subset of G. (Indeed, the
function ξ �→ f(M, ξ) is in Ck+1(T2k), with ‖f(M, ·)‖Ck+1(T2k) depending continuously on M ∈
G′.)

If f is also invariant under some T ∈ Γ
′
= SL(2,Z), this leads to a corresponding invariance

relation for f̂(M,m):

Lemma 4.1. For any T ∈ Γ
′
, if f ∈ C(Z2k\G) is left T -invariant, then

f̂(TM,m) = f̂(M, tTm), ∀M ∈ G′, m ∈ Z2k, (31)

where tT is the transpose of T .

Proof. We have

f̂(TM,m) =
∫
T2k

f(TM, ξ)e(−mξ) dξ =
∫
T2k

f(TM,Tξ)e(−m(Tξ)) dξ

=
∫
T2k

f(T (M, ξ))e(−m(Tξ)) dξ =
∫
T2k

f(M, ξ)e(−m(Tξ)) dξ,

where in the second equality we used the fact that ξ �→ Tξ is a diffeomorphism of T2k preserving
dξ, and in the last equality we used the fact that f is left T -invariant. Using m(Tξ) = ( tTm)ξ
we obtain (31). �

Because of Lemma 4.1, if f ∈ Ck+1(Γ\G), then it is convenient to group the terms in (30)
together according to the orbits for the action of Γ

′
on Z2k. We call an orbit for this action an

A-orbit if it contains some element of the form (0r), where r ∈ Zk \ {0}. Every other non-zero
orbit is called a B-orbit.

Lemma 4.2. Every B-orbit contains an element η = (qr) (q = t(q1, . . . , qk), r = t(r1, . . . , rk))
with the property that there are some 1 � �1 < �2 � k such that rj = 0 for all j < �1, qj = 0
for all j < �2, and r	1 > 0, 0 � r	2 < |q	2 |.

Proof. Let η = (qr) be an element in a B-orbit. Then η �= 0, and we may take �1 to be the

smallest index for which
(
q�1
r�1

)
�=

(
0
0

)
. After replacing η by Tη for an appropriate T ∈ Γ

′
we

can ensure that q	1 = 0 and r	1 > 0, while clearly still qj = rj = 0 for all j < �1. Now since η
is not in an A-orbit, we cannot have qj = 0 for all j, and we take �2 > �1 to be the smallest
index for which q	2 �= 0. Finally, by replacing η by (1 0

x 1)η for an appropriate x ∈ Z we can make
0 � r	2 < |q	2 | hold, while qj and rj for j < �2 remain unchanged. �

†For any fixed ordering of Z2k.
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Let us fix, once and for all, a set of representatives Ak, Bk ⊂ Z2k such that Ak contains
exactly one element from each A-orbit and Bk contains exactly one element from each B-orbit,
and furthermore each η ∈ Ak is of the form η = (0r) and each η ∈ Bk has the property described
in Lemma 4.2.

Lemma 4.3. The stabilizer in Γ
′
of any η ∈ Ak equals

{
(1 0
n 1) : n ∈ Z

}
. The stabilizer in Γ

′

of any η ∈ Bk is trivial.

Proof. Immediate verification. �

The lemma implies that we can decompose Z2k as a disjoint union of singleton sets as
follows:

Z2k = {0}
⊔ ⎛⎝ ⊔

η∈Ak

⊔
T∈Γ

′
∞\Γ′

{ tTη}
⎞⎠ ⊔ ⎛⎝ ⊔

η∈Bk

⊔
T∈Γ

′
{ tTη}

⎞⎠, (32)

where Γ
′
∞\Γ′

denotes any set of representatives for the right cosets inside Γ
′
of the subgroup

Γ
′
∞ :=

{(
1 n
0 1

)
: n ∈ Z

}
. (33)

Grouping together the terms in (30) according to (32), and then applying Lemma 4.1, we get,
for any f ∈ Ck+1(Γ\G):

f(M, ξ) = f̂(M,0) +
∑
η∈Ak

∑
T∈Γ

′
∞\Γ′

f̂(TM,η)e(( tTη)ξ) +
∑
η∈Bk

∑
T∈Γ

′
f̂(TM,η)e(( tTη)ξ).

(34)

If k = 1, then Bk = ∅ and (34) can be seen to agree with [38, Lemma 4.1]. However, Bk is
easily seen to be nonempty for every k � 2.

We now wish to give a similar decomposition of a general function f ∈ Ck+1(X). Recall
that X = Γ\G and Γ = Γ′ � Z2k with Γ′ = Γ(N), a normal subgroup of Γ

′
= SL(2,Z). For

any subgroup H of G′ and any subset A ⊂ G′ satisfying HA = A, we denote by H\A a set
of representatives for the distinct cosets Ha (a ∈ A). We also write Γ

′
∞\Γ′

/Γ′ for a set of
representatives for the double cosets of the form Γ

′
∞RΓ′ with R ∈ Γ

′
. Let

Γ′
∞ := Γ′ ∩ Γ

′
∞ =

{(
1 Nn
0 1

)
: n ∈ Z

}
.

One then verifies that
⊔

R∈Γ
′
∞\Γ′

/Γ′
⊔

T∈Γ′∞\Γ′R{T} is a set of representatives for Γ
′
∞\Γ′

. Hence,
from (32) we get

Z2k = {0}
⊔ ⎛⎝ ⊔

η∈Ak

⊔
R∈Γ

′
∞\Γ′

/Γ′

⊔
T∈Γ′∞\Γ′R

{ tTη}
⎞⎠ ⊔ ⎛⎝ ⊔

η∈Bk

⊔
R∈Γ

′
/Γ′

⊔
T∈Γ′R

{ tTη}
⎞⎠.

(35)

Using Γ′R = RΓ′ and t(Rγ)η = tγ( tRη) for γ ∈ Γ′, this formula is seen to provide a decompo-
sition of Z2k into orbits for the action of tΓ′ = Γ′. In order to get a convenient corresponding
partition of the sum in (30), recall (19), and note that for any R ∈ Γ

′
, M ∈ G′, m ∈ Z2k we

have

f̂R(M,m) = f̂(R−1M, tRm).
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This is proved by a computation similar to the proof of Lemma 4.1. Using Lemma 4.1, we get
f̂(M, tγ tRη) = f̂R(RγM,η) for all γ ∈ Γ′, or in other words:

f̂(M, tTη) = f̂R(TM,η), ∀R ∈ Γ
′
, T ∈ Γ′R, M ∈ G′, η ∈ Z2k. (36)

Now from (30), (35) and (36) we get

f(M, ξ) = f̂(M,0) +
∑
η∈Ak

∑
R∈Γ

′
∞\Γ′

/Γ′

∑
T∈Γ′∞\Γ′R

f̂R(TM,η)e(( tTη)ξ)

+
∑
η∈Bk

∑
R∈Γ

′
/Γ′

∑
T∈Γ′R

f̂R(TM,η)e(( tTη)ξ). (37)

Note here that for any η ∈ Ak and R ∈ Γ
′
, the function M �→ f̂R(M,η) is left Γ′

∞-invariant,
by (36) and Lemma 4.3. However, for η ∈ Bk there is no such invariance present.

4.1. Bounds when η ∈ Ak

We now give bounds on f̂(T,η) for η ∈ Ak.

Lemma 4.4. For any m � 0, α ∈ R�0, r ∈ Zk \ {0} and f ∈ Cm
α (X), we have∣∣∣∣f̂((

a b
c d

)
,

(
0
r

))∣∣∣∣ 	m,α ‖f‖Cm
α
‖r‖−m(c2 + d2)−

m
2 min

(
1, (c2 + d2)α

)
. (38)

Proof. The left invariant differential operator corresponding to Y ∈ g is given by
Y f(g) = limt→0(f(g exp(tY )) − f(g))/t. In particular, if we parameterize G as

((
a b
c d

)
, (yz)

)
,

where y = t(y1, . . . , yk) and z = t(z1, . . . , zk), then (cf. (18))

X3+	 = a
∂

∂y	
+ c

∂

∂z	
and X3+k+	 = b

∂

∂y	
+ d

∂

∂z	
, � ∈ {1, . . . , k}. (39)

Now

f̂

((
a b
c d

)
,

(
0
r

))
=

∫
Tk

∫
Tk

f

((
a b
c d

)
,

(
y
z

))
e(−rz) dy dz,

and hence by repeated integration by parts we have

(2πir	c)m · f̂
((

a b
c d

)
,

(
0
r

))
=

∫
Tk

∫
Tk

[Xm
3+	f ]

((
a b
c d

)
,

(
y
z

))
e(−rz) dy dz

and

(2πir	d)m · f̂
((

a b
c d

)
,

(
0
r

))
=

∫
Tk

∫
Tk

[Xm
3+k+	f ]

((
a b
c d

)
,

(
y
z

))
e(−rz) dy dz.

Hence,

|r	|m max(|c|m, |d|m) ·
∣∣∣∣f̂((

a b
c d

)
,

(
0
r

))∣∣∣∣ � (2π)−m‖f‖Cm
α
Y
((

a b
c d

))−α

,

for each � ∈ {1, . . . , k}. Using Y(
(
a b
c d

)
) � max(

√
3/2, (c2 + d2)−1), we get (38). �
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Using Lemma 4.4 we immediately obtain bounds on derivatives of f̂(·, ·) with respect to the
first variable. We express these in terms of Iwasawa co-ordinates, that is we write (by a slight
abuse of notation)

f̂(u, v, θ;η) := f̂

((
1 u
0 1

)(√
v 0

0 1/
√
v

)(
cos θ − sin θ
sin θ cos θ

)
,η

)
, (40)

for u ∈ R, v > 0, θ ∈ R/2πZ, η ∈ Z2k.

Lemma 4.5. For any α ∈ R�0, r ∈ Zk \ {0}, integers m, �1, �2, �3 � 0 and f ∈ Cm+	
α (X),

where � = �1 + �2 + �3, we have∣∣∣∣∣
(

∂

∂u

)	1( ∂

∂v

)	2( ∂

∂θ

)	3

f̂

(
u, v, θ;

(
0
r

))∣∣∣∣∣ 	m,	,α ‖f‖Cm+�
α

‖r‖−mv
m
2 −	1−	2 min(1, v−α).

(41)

Proof. This is just as in [38, Lemmas 4.3 and 4.4]. �

4.2. Bounds when η ∈ Bk

We now give bounds on f̂(T,η) when η ∈ Bk. We will use the Frobenius matrix norm,

‖T‖ := tr
(
T tT

)
=

√
a2 + b2 + c2 + d2, T =

(
a b
c d

)
∈ G′.

In Iwasawa co-ordinates, we have, for any u ∈ R, v > 0, θ ∈ R/2πZ,∥∥∥∥(1 u
0 1

)(√
v 0

0 1/
√
v

)(
cos θ − sin θ
sin θ cos θ

)∥∥∥∥ =

√
u2 + v2 + 1

v
. (42)

This is verified by a quick computation, where the first step is to use the fact that the matrix
U = (cos θ − sin θ

sin θ cos θ ) lies in SO(2), that is, U tU = 12.
We have the following analogue of Lemma 4.4.

Lemma 4.6. For any η ∈ Bk, m � 0, f ∈ Cm
0 (X) and T ∈ G′,∣∣∣f̂(T,η)

∣∣∣ 	m

‖f‖Cm
0

(‖T‖ + ‖η‖/‖T‖)m . (43)

Remark 5. As a consequence, for any 0 < β < 1
2 we have∣∣∣f̂(T,η)

∣∣∣ 	m

‖f‖Cm
0

‖T‖m(1−2β)‖η‖mβ
.

Proof. We write η = (qr) and T = (a b
c d). Repeated integration by parts gives (cf. the proof

of Lemma 4.4)

(2πi(q	a + r	c))m · f̂(T,η) =
∫
Tk

∫
Tk

[Xm
3+	f ]

(
T,

(
y
z

))
e

(
−η

(
y
z

))
dy dz

and

(2πi(q	b + r	d))m · f̂(T,η) =
∫
Tk

∫
Tk

[Xm
3+k+	f ]

(
T,

(
y
z

))
e

(
−η

(
y
z

))
dy dz.
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Hence, if we write η(	) := (q�r�) ∈ R2, then we conclude that for each � ∈ {1, . . . , k} and for each
column vector v of T , we have ∣∣∣f̂(T,η)

∣∣∣ � ‖f‖Cm
0

(2π)m|η(	)v|m . (44)

Now fix a column vector v of T with the largest norm. Then ‖T‖ �
√

2‖v‖. By our definition
of Bk, η has the property described in Lemma 4.2, that is, there are 1 � �1 < �2 � k such that
rj = 0 for all j < �1, qj = 0 for all j < �2, and r	1 > 0, 0 � r	2 < |q	2 |. In particular, the vectors
η(	1) and η(	2) are non-zero, hence both have length � 1, and the angle between the lines Rη(	1)

and Rη(	2) in R2 is > π
4 . Hence, the normal line to v in R2 has an angle � π

8 to at least one of
the lines Rη(	1) and Rη(	2), and it follows that at least one of the scalar products η(	1)v and
η(	2)v has an absolute value � sin(π8 )‖v‖. Hence, using (44) we get

∣∣∣f̂(T,η)
∣∣∣ 	m

‖f‖Cm
0

‖T‖m . (45)

Next let v′ be the other column vector of T , and let α ∈ (0, π
2 ] be the angle between the

lines Rv and Rv′; then ‖v‖‖v′‖ sinα = 1, since detT = 1. Let � ∈ {1, . . . , k} be the index for
which ‖η(	)‖ is maximal; then ‖η‖ �

√
k‖η(	)‖. Now the normal line to η(	) in R2 must have

an angle � α
2 to at least one of the lines Rv and Rv′. Hence, either

|η(	)v| � ‖η(	)‖‖v‖ sin(α2 ) > 1
2‖η(	)‖‖v‖ sinα =

‖η(	)‖
2‖v′‖ � ‖η‖

2
√
k‖T‖

or else

|η(	)v′| � ‖η(	)‖‖v′‖ sin(α2 ) > 1
2‖η(	)‖‖v′‖ sinα =

‖η(	)‖
2‖v‖ � ‖η‖

2
√
k‖T‖ .

Applying (44) for the appropriate column vector of T we get∣∣∣f̂(T,η)
∣∣∣ 	m

‖f‖Cm
0

(‖η‖/‖T‖)m . (46)

Together, (45) and (46) imply (43). �

Using Iwasawa co-ordinates, the bound in Remark 5 can be expressed as follows, for any
0 < β < 1

2 (cf. (42)):

∣∣∣f̂(u, v, θ;η)
∣∣∣ 	m ‖f‖Cm

0

(
v

u2 + v2 + 1

)m( 1
2−β)

‖η‖−mβ . (47)

Arguing again as in [38, Lemmas 4.3 and 4.4], we now obtain the following bound on derivatives.

Lemma 4.7. Fix 0 < β < 1
2 and integers m, �1, �2, �3 � 0. For any η ∈ Bk and f ∈ Cm+	

0 (X),
where � = �1 + �2 + �3, we have∣∣∣∣∣

(
∂

∂u

)	1( ∂

∂v

)	2( ∂

∂θ

)	3

f̂(u, v, θ;η)

∣∣∣∣∣ 	m,	 ‖f‖Cm+�
0

v−	1−	2

(
v

u2 + v2 + 1

)m( 1
2−β)

‖η‖−mβ .
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5. Obtaining the leading term

Our task is to study the integral∫
R

f(Γ (12, ξ)u(x)a(y))h(x) dx =
∫
R

f

(
Γ
((√

y x/
√
y

0 1/
√
y

)
, ξ

))
h(x) dx. (48)

We may assume 0 < y � 1 from the start, since (7) and (8) are otherwise trivial (indeed, the
left-hand sides of (7) and (8) are always 	 ‖f‖C0

0
S∞,0,2(h)). Decomposing f as in (37), we get

that (48) is

=
∫
R

f̂

((√
y x/

√
y

0 1/
√
y

)
,0

)
h(x) dx

+
∑
η∈Ak

∑
R∈Γ

′
∞\Γ′

/Γ′

∑
T∈Γ′

∞\Γ′

T≡R mod N

e(( tTη)ξ)
∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx

+
∑
η∈Bk

∑
R∈Γ

′
/Γ′

∑
T∈Γ

′
T≡R mod N

e(( tTη)ξ)
∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx. (49)

Here, the change of order of summation and integration will be justified by an absolute
convergence which holds for any f and h as in Theorems 1.2 or 1.3 (see Lemmata 7.3 and
8.2 as well as (102) and (103)).

Recall that M �→ f̂(M,0) is invariant under Γ′ = Γ(N); hence the first integral in (49) is
simply a weighted average along a closed horocycle in Γ′\G′, a case which has been thoroughly
studied in the literature (for arbitrary lattices in G′ = SL(2,R)) (see, in particular, [4, 9, 37]).
By the bound by Kim and Sarnak [18] toward the Ramanujan conjecture, the smallest non-zero
eigenvalue of the Laplace operator on the hyperbolic surface Γ(N)\H satisfies λ1 � 1

4 − ( 7
64 )2.

Using this in [37, Theorem 1, Rem. 3.4], we obtain∫
R

f̂

((√
y x/

√
y

0 1/
√
y

)
,0

)
h(x) dx =

∫
Γ\G

f dμ

∫
R

h dx + O
(
‖f‖C4

0
S1,0,1(h) y

1
2− 7

64

)
. (50)

Remark 6. Note that in the more general setting of Theorem 1.1, we could have, for
example, Γ = Λ � (Z2)⊕k with Λ being a non-congruence subgroup of SL(2,Z). If we would
seek to extend the present methods to that case, when carrying out this first step of using
equidistribution on Λ\SL(2,R), we would obtain an analogue of (50) with an error term
decaying as O(yc(Λ)) for some 0 < c(Λ) � 1

2 . However, in this case it is known that for certain
choices of Λ the spectral gap for Λ\SL(2,R) can be made arbitrarily small [35], meaning that
there is no uniform lower bound on the exponent c(Λ).

6. Cancellation in an exponential sum

In this section, we derive bounds on certain exponential sums which give nontrivial cancellations
in various sums that arise frequently in our arguments in the rest of the paper. Recall that
Γ
′
= SL(2,Z) and Γ′ = Γ(N). Let R =

(
a0 b0
c0 d0

) ∈ Γ
′
be given. We set [R] := Γ′R = RΓ′; this is

the set of all matrices in Γ
′
which are congruent to R modulo N . We let Γ′

∞\[R] be a set of
representatives for the right cosets of Γ′

∞ contained in [R], and let Γ′
∞\[R]/Γ′

∞ be a set of
representatives for the double cosets of the form Γ′

∞TΓ′
∞ with T ∈ [R]. For any given integer
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c ≡ c0 mod N , we consider the following subsets:

[Γ′
∞\[R] ; c] :=

{(
a1 b1
c1 d1

)
∈ Γ′

∞\[R] : c1 = c

}
and

[Γ′
∞\[R]/Γ′

∞ ; c] :=
{(

a1 b1
c1 d1

)
∈ Γ′

∞\[R]/Γ′
∞ : c1 = c

}
.

Note that [Γ′
∞\[R]/Γ′

∞ ; c] is a finite set. We introduce the symbol
∑(1) to denote summation

over all matrices in [Γ′
∞\[R] ; c], and

∑(2) to denote summation over all matrices in
[Γ′

∞\[R]/Γ′
∞ ; c]. Note that the summation range in both

∑(1) and
∑(2) depend implicitly

on c, N and R.

Remark 7. In the rest of this section, we will assume c �= 0. Note that we have an obvious
bijection, T �→ −T , between the two sets [Γ′

∞\[R] ; c] and [Γ′
∞\[−R] ; −c]. Hence, without loss

of generality we may assume c > 0.

For any N,R, c as above with c > 0, and m,n ∈ Z, we introduce the following generalized
Kloosterman sum:

S(m,n; c;R,N) =
∑(
a b
c d

)(2)
e

(
m

d

cN
+ n

a

cN

)
. (51)

This sum is well defined, since, for
(
a b
c d

) ∈ [Γ′
∞\[R]/Γ′

∞ ; c], both d mod cN and a mod cN are
independent of the choice of coset representative. We begin by deriving bounds for the sums
S(m,n; c;R,N).

Lemma 6.1. Let c and N be positive integers, let R =
(
a0 b0
c0 d0

) ∈ Γ
′
with c0 ≡ c mod N , and

let M1,M2 be coprime positive integers such that cN = M1M2. Then

S(m,n; c;R,N) = S(m,M
2

2n;K3;R1,K1)S(m,M
2

1n;K4;R2,K2), (52)

where K1 = (N,M1),K2 = (N,M2),K3 = (c,M1),K4 = (c,M2), and M1 ∈ Z is a multiplica-
tive inverse of M1 mod M2, M2 ∈ Z is a multiplicative inverse of M2 mod M1, and

R1 ≡
(
M2a0 K4b0
K3 M2d0

)
mod K1, R2 ≡

(
M1a0 K3b0
K4 M1d0

)
mod K2. (53)

Note that the existence of matrices R1, R2 ∈ Γ
′

satisfying (53) is guaranteed (see, for
example, [26, Theorem 4.2.1]).

Proof. By a straightforward analysis one verifies that the map
(
a b
c d

) �→
〈a mod cN, d mod cN〉 gives a bijection from [Γ′

∞\[R]/Γ′
∞ ; c] onto the set U [c,N ; a0, b0, d0]

consisting of all pairs 〈a, d〉 in (Z/cNZ)2 satisfying a ≡ a0 mod N , d ≡ d0 mod N and
ad ≡ 1 + b0c mod cN . Hence,

S(m,n; c;R,N) =
∑

〈a,d〉∈U [c,N ;a0,b0,d0]

e

(
m

d

cN
+ n

a

cN

)
. (54)

The formula (52) now follows since the map

〈〈a, d〉, 〈a′, d′〉〉 �→ 〈M2M
2

2a + M1M
2

1a
′,M2d + M1d

′〉
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is a bijection from U
[
K3,K1;M2a0,K4b0,M2d0

]× U
[
K4,K2;M1a0,K3b0,M1d0

]
onto

U [c,N ; a0, b0, d0], with inverse 〈A,D〉 �→ 〈〈M2A,M2D〉, 〈M1A,M1D〉〉. �

For n a positive integer, we write σ(n) for the number of (positive) divisors of n, and σ1(n)
for their sum: σ(n) =

∑
d|n 1 and σ1(n) =

∑
d|n d.

We now use the multiplicativity relation to prove that the generalized Kloosterman sums
satisfy a Weil-type bound (cf. (55)), and to give an explicit formula in the case n = 0.

Lemma 6.2. For any m,n ∈ Z, c,N ∈ Z+ and R =
(
a0 b0
c0 d0

) ∈ Γ
′
with c0 ≡ c mod N ,

|S(m,n; c;R,N)| 	N σ(c)(m,n, c)1/2c1/2, (55)

where σ(c) is the number of (positive) divisors of c. Moreover, in the case n = 0, if we write
c = c1c2 with c1, c2 ∈ Z+, c1 | N∞ † and (c2, N) = 1, then

S(m, 0; c;R,N) = I(c1 |m) μ

(
c

(c,m)

)
φ(c2)c1

φ(c/(c,m))
e

(
m
c2d0

c1N

)
, (56)

where I(·) is the indicator function and c2 is a multiplicative inverse of c2 mod N . In
particular,

|S(m, 0; c;R,N)| � (c,m). (57)

Proof. Let c1, c2 be as in the statement of the lemma, and set N ′ = (c∞1 , N) and N ′′ = N/N ′.
Applying Lemma 6.1 twice, first with M1 = c1N , M2 = c2 and next with M1 = c1N

′, M2 = N ′′,
we get

S(m,n; c;R,N) = S(m,n′; c1;R′, N ′)S(m,n′′; 1;R′′, N ′′)S(m,n2; c2;R2, 1), (58)

for some n′, n′′, n2 ∈ Z and R′, R′′, R2 ∈ Γ
′
. Here, |S(m,n′′; 1;R′′, N ′′)| = 1, and the third factor

is a standard Kloosterman sum; S(m,n2; c2;R2, 1) = S(m,n2; c2). Regarding the first factor,
elementary arguments give, with R′ =

(
a′ b′
c′ d′

)
:

S(m,n′; c1;R′, N ′) = e

(
n′ d′b

′

N ′

) ∑
d∈Z/c1N

′
Z

d≡d′ mod N ′

e

(
m

d

c1N ′ + n′ d

c1N ′

)
,

=
e(n′d′b′/N ′)

N ′
∑

j∈Z/N ′Z

e

(
−jd′

N ′

)
S(m + jc1, n

′; c1N ′).

Now (55) follows using Weil’s bound on the standard Kloosterman sum [39], [15, Chapter 11.7].
Also (56) and (57) follow, using basic facts about Ramanujan sums (see, for example, [15,
Chapter 3.2]). �

We are now set to state and prove the main lemma in this section.

Lemma 6.3. Let N, c ∈ Z+ and R =
(
a0 b0
c0 d0

) ∈ Γ
′
, with c0 ≡ c mod N . Write c = c1c2, where

c1 | N∞ and (c2, N) = 1. Let F (x1, x2) be a function in C4(R × (R/NZ)) such that F and its
derivatives ∂j

x1
∂k
x2
F for j, k � 2 are in L1(R × (R/NZ)). Then for any subset K ⊂ Z and any

α ∈ R,

†That is, c1 | N� for all sufficiently large �; equivalently, each prime divisor of c1 divides N .
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∑(1)(
a b
c d

) e(dα)F
(
d

c
,
a

c

)

=
∑
m∈K
c1|m

(∫
R×(R/Z)

F (Nx1, Nx2)e((cNα−m)x1) dx1 dx2

)
μ

(
c

(c,m)

)
φ(c2)c1

φ(c/(c,m))
e

(
mc2d0

c1N

)

+O
(‖F‖L1 + ‖∂2

x1
F‖L1

) ∑
m∈Z\K

(c,m)
1 + |m− cNα|2 + O

(‖∂2
x2
F‖L1 + ‖∂2

x1
∂2
x2
F‖L1

)
σ(c)

√
c,

(59)

where c2 is a multiplicative inverse of c2 mod N .

We remark that the sum in the left-hand side of (59) is well defined, since, for(
a b
c d

) ∈ [Γ′
∞\[R] ; c], both d and the congruence class of a modulo cN are independent of the

choice of a coset representative.

Proof. Set

H(x1, x2) =
∑
	∈Z

f(x1 + �, x2), where f(x1, x2) := F (Nx1, Nx2)e(cNαx1). (60)

Note that since f ∈ C4 ∩L1(R × (R/Z)); the sum defining H(x1, x2) is absolutely convergent
for almost all (x1, x2) ∈ R × (R/Z), and any H ∈ L1(R2/Z2). We will use the notation
Fj,k = ∂j

x1
∂k
x2
F and fj,k = ∂j

x1
∂k
x2
f . In order to get a stronger convergence statement, we note

that

|f(x1, x2)| �
∫ x1+

1
2

x1− 1
2

(|f(r, x2)| + |f1,0(r, x2)|) dr. (61)

This follows by integrating the inequality |f(x1, x2)| � |f(r, x2)| +
∫ x1

r
|f1,0(t, x2)| |dt| over

r ∈ (x1 − 1
2 , x1 + 1

2 ). Similarly, we have |fj,0(r, x2)| �
∫
R/Z

(|fj,0(r, s)| + |fj,1(r, s)|) ds, and
using this in (61), we obtain the following elementary Sobolev embedding-type inequality:

|f(x1, x2)| �
∫ x1+

1
2

x1− 1
2

∫
R/Z

(|f(r, s)| + |f1,0(r, s)| + |f0,1(r, s)| + |f1,1(r, s)|) ds dr. (62)

Using (62) and the fact that fj,k ∈ L1(R × (R/Z)) for j, k � 1, we conclude that the sum in
(60) is absolutely convergent for all (x1, x2), uniformly over (x1, x2) in any compact set. In
particular, the function H(x1, x2) is defined everywhere on R2/Z2, and is continuous.

Consider the Fourier coefficients of H,

am,n =
∫
R2/Z2

H(x1, x2)e(−mx1 − nx2) dx1 dx2

=
∫
R×(R/Z)

F (Nx1, Nx2)e((cNα−m)x1 − nx2) dx1 dx2. (63)

Note that for any j � 1 and k � 2,∫
R/Z

|Fj,k(x1, Nx2)| dx2 → 0 as x1 → ±∞. (64)
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This follows by applying (61) to Fj,k(x1, Nx2) and using Fj,k, Fj+1,k ∈ L1(R × (R/NZ)). We
may now integrate by parts repeatedly in (63), using (64) to justify convergence, to obtain

am,n =
N j+k

(2πi)j+k(m− cNα)jnk

∫
R×R/Z

Fj,k(Nx1, Nx2)e((cNα−m)x1 − nx2) dx1 dx2, (65)

for any 0 � j, k � 2 and any integers m,n subject to m �= cNα if j > 0 and n �= 0 if k > 0.
Using this formula for j ∈ {0, 2} and k = 2 gives

|am,n| 	N (‖F0,2‖L1 + ‖F2,2‖L1)min(1, |m− cNα|−2)n−2, ∀m ∈ Z, n ∈ Z \ {0}. (66)

Similarly, using (65) for j ∈ {0, 2} and k = 0,

|am,0| 	N (‖F‖L1 + ‖F2,0‖L1)min(1, |m− cNα|−2), ∀m ∈ Z. (67)

These bounds imply that the Fourier series of H is absolutely convergent; and since H is
continuous, H is in fact equal to its Fourier series at every point (see, for example, [12,
Proposition 3.1.14]):

H(x1, x2) =
∑

m,n∈Z

am,ne(mx1 + nx2). (68)

Now we consider the sum in the left-hand side of (59). We have∑(1)(
a b
c d

) e(dα)F
(
d

c
,
a

c

)
=

∑(2)(
a b
c d

) ∑
	∈Z

F

(
d + �cN

c
,
a

c

)
e(α(d + �cN)) =

∑(2)(
a b
c d

) H

(
d

cN
,
a

cN

)
.

(69)

Here, all sums are absolutely convergent, since the sum in (60) is absolutely convergent and∑(2) runs over a finite set. Substituting (68) in the last sum, and using (51), we obtain∑(1)(
a b
c d

) e(dα)F
(
d

c
,
a

c

)
=

∑
m,n∈Z

am,nS(m,n; c;R,N). (70)

Now we bound the contribution from all terms with n �= 0 in (70) using (66), (55) and∑
n
=0(m,n, c)1/2n−2 �

∑
n
=0 |n|−3/2 	 1, while the terms with n = 0 are handled using (63)

and (56) when m ∈ K, and using (67) and (57) when m /∈ K. In this way, we obtain (59). �

Remark 8. If c < 0, R =
(
a0 b0
c0 d0

) ∈ Γ
′
and c0 ≡ c mod N , then we see from Remark 7 that

the sum
∑(1)

e(dα)F
(
d
c ,

a
c

)
remains the same if we replace 〈c,R, α〉 by 〈−c,−R,−α〉; after this

replacement, Lemma 6.3 applies to the sum.

Lemma 6.3 will suffice for most parts of our discussion. However, at one step in the treatment
of the sum over Bk in (49), we will need a more delicate estimate. The point here is to obtain
a bound which only involves derivatives ∂	1

x1
∂	2
x2
F with �2 as small as possible. Lemma 6.3

requires using �2 = 2 but the following lemma will effectively allow us to take �2 = 1
2 + ε (see

also Remark 11). We define a mixed L1,L2 norm for functions F on R × R/NZ as follows:

‖F‖L1,2 =

(∫
R/NZ

(∫
R

|F (x1, x2)| dx1

)2

dx2

)1/2

.
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Lemma 6.4. Let 0 < ε < 1 and let N, c,R be as before. Let F (x1, x2) be a function in
C3(R × (R/NZ)) such that ‖∂j

x1
∂k
x2
F‖L1,2 < ∞ for j � 2, k � 1. Then for any α ∈ R,∣∣∣∣∣∣∣∣

∑(1)(
a b
c d

) e(dα)F
(
d

c
,
a

c

)∣∣∣∣∣∣∣∣ 	ε (‖F‖L1 + ‖∂2
x1
F‖L1)

∑
	∈Z

(c, �cNα + ��)
1 + �2

+
(‖F‖L1,2 + ‖∂2

x1
F‖L1,2

) 1−ε
2

(‖∂x2F‖L1,2 + ‖∂2
x1
∂x2F‖L1,2

) 1+ε
2 σ(c)3/2

√
c. (71)

Proof. Note that ‖Fj,k‖L1 �
√
N‖Fj,k‖L1,2 by Cauchy–Schwarz. Hence, as in the proof of

Lemma 6.3, H(x1, x2) in (60) is a well-defined continuous function on R2/Z2, and its Fourier
coefficients am,n satisfy (65) for any j � 2, k � 1; that is,

am,n =
N j+k

(2πi)j+k(m− cNα)jnk

∫
R/Z

Fm,j,k(x2)e(−nx2) dx2,

where Fm,j,k(x2) =
∫
R
Fj,k(Nx1, Nx2)e((cNα−m)x1) dx1 is a function on R/Z. This gives a

relation between am,n and the nth Fourier coefficient of Fm,j,k. Using this relation for j ∈ {0, 2}
and applying Parseval’s identity, for any k � 0 and m ∈ Z, we get∑

n∈Z\{0}
n2k|am,n|2 	k,N (‖Fm,0,k‖2

L2 + ‖Fm,2,k‖2
L2)min(1, |m− cNα|−4)

	N (‖F0,k‖2
L1,2 + ‖F2,k‖2

L1,2)min(1, |m− cNα|−4). (72)

Using this bound,
∑

n
=0 |am,n| � (
∑

n
=0 |n|−2)
1
2 (

∑
n
=0 n

2|am,n|2)
1
2 , and (67), we conclude that

the Fourier series of H is absolutely convergent, and hence as in the proof of Lemma 6.3, we
again have ∑(1)(

a b
c d

) e(dα)F
(
d

c
,
a

c

)
=

∑
m,n∈Z

am,nS(m,n; c;R,N). (73)

Using (67) and (57) for n = 0, and the generalized Weil bound (55) for n �= 0, we see that (73)
is

	 (‖F‖L1 + ‖F2,0‖L1)
∑
	∈Z

(c, �cNα + ��)
1 + �2

+ σ(c)
√
c
∑
m∈Z

∑
n
=0

|am,n|
√

(n, c). (74)

Note that for any integer m,

∑
n
=0

|am,n|
√

(n, c) �

√√√√∑
n
=0

(n, c)
|n|1+ε

√∑
n
=0

|am,n|2|n|1+ε.

Now, since 0 < ε < 1, we may apply Hölder’s inequality with p = 2
1−ε and q = 2

1+ε , to get

∑
n
=0

|am,n|2|n|1+ε =
∑
n
=0

|am,n| 2p ·
(
|am,n| 2q |n|1+ε

)
�

⎛⎝∑
n
=0

|am,n|2
⎞⎠ 1

p
⎛⎝∑

n
=0

|am,n|2|n|(1+ε)q

⎞⎠ 1
q

	 (‖F‖L1,2 + ‖F2,0‖L1,2)1−ε(‖F0,1‖L1,2 + ‖F2,1‖L1,2)1+ε(1 + |cNα−m|)−4
.
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Here, in the last step we use the Parseval bound, (72), for k = 0 and k = 1. Furthermore,∑
n
=0

(n, c)
|n|1+ε

= 2
∑
d|c

∑
m�1

(m,c)=d

d

m1+ε
� 2

∑
d|c

d

∞∑
k=1

1
(kd)1+ε

	ε

∑
d|c

d−ε � σ(c).

Hence, for any m,∑
n
=0

|am,n|
√

(n, c)

	ε (‖F‖L1,2 + ‖F2,0‖L1,2)
1−ε
2 (‖F0,1‖L1,2 + ‖F2,1‖L1,2)

1+ε
2 (1 + |cNα−m|)−2

√
σ(c).

Using this bound in (74), we obtain (71). �

7. The contribution from Ak-orbits

7.1. The case of Diophantine ξ2

We next study the sum in the second line of (49). This sum will be bounded by a generalization
of the method in [38]. We first prove a bound which is adequate for any ξ = (ξ1

ξ2
) ∈ R2k for

which ξ2 has good Diophantine properties. This bound will be used in the special case ξ1 = 0
in the proof of Theorem 1.2. We note that we allow the special case k = 1 in the present section,
to allow comparison with [38, Proposition 8.3] (cf. Remark 10).

Proposition 7.1. Fix an integer m � max(8, k + 3) and real numbers a ∈ (k2 − 1
2 ,

m
2 − 1)

and ε > 0. Then for any f ∈ Cm
a (X), h ∈ C2(R) with S1,0,2(h) < ∞, ξ = (ξ1

ξ2
) ∈ R2k and

0 < y � 1, we have∑
η∈Ak

∑
R∈Γ

′
∞\Γ′

/Γ′

∑
T∈Γ′∞\[R]

e(( tTη)ξ)
∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx

	m,a,ε ‖f‖Cm
a
S1,0,2(h)

(
δ̃2a+1,ξ2

(y−
1
2 ) + y

1
4−ε

)
. (75)

(Recall that the majorant function δ̃β,ξ2
(T ) was introduced in (27).)

To start with the proof of Proposition 7.1, let us fix some η = (0r) ∈ Ak and R = (a0 b0
c0 d0

) ∈ Γ
′
.

Using the notation introduced in Section 6, the corresponding inner sum in (75) can be written
as ∑

c∈c0+NZ

∑(1)(
a b
c d

)
∫
R

f̂R

((
a b
c d

)(√
y x/

√
y

0 1/
√
y

)
,

(
0
r

))
e

((
cr
dr

)
ξ

)
h(x) dx. (76)

The contribution from the terms with c = 0 can be bounded easily. Indeed, there are at most
two such terms in (76), and by Lemma 4.4 and the remarks below (19), for any b ∈ Z we have∫

R

∣∣∣∣f̂R(
±
(

1 b
0 1

)(√
y x/

√
y

0 1/
√
y

)
,

(
0
r

))
h(x)

∣∣∣∣ dx 	 ‖h‖L1‖f‖Cm
0
ym/2‖r‖−m. (77)

Using this with m = k + 1 and adding over all η ∈ Ak, we see that the contribution from all
the terms with T = (∗ ∗

0 ∗) in the second line of (49) is O(‖h‖L1‖f‖Ck+1
0

y(k+1)/2), which is clearly
subsumed by the bound in (75).
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Hence, from now on we focus on the terms with c �= 0. The following lemma expresses the
integral in (76) in the Iwasawa notation (cf. (40)).

Lemma 7.2. For any
(
a b
c d

) ∈ G′ with c > 0, any y > 0 and any f ∈ C(G′),∫
R

f

((
a b
c d

)(√
y x/

√
y

0 1/
√
y

))
h(x) dx =

∫ π

0

f

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ

)
h

(
−d

c
+ y cot θ

)
y dθ

sin2 θ
,

in the sense that if either of the integrals is absolutely convergent then so is the other, and the
equality holds.

Remark 9. In the case c < 0 one obtains exactly the same formula, except that
∫ π

0
is

replaced by
∫ 0

−π
in the right-hand side.

Proof. See [38, Lemma 6.1]. �

We now prove that we have an absolute convergence in the left-hand side of (75); this fact
is important in order to justify the manipulations which we will carry out later.

Lemma 7.3. Set m = max(3, k + 1). Then for any f ∈ Cm
0 (X) and any h ∈ C1(R) with

S1,0,1(h) < ∞, the expression∑
η∈Ak

∑
R∈Γ

′
∞\Γ′

/Γ′

∑
T∈Γ′∞\[R]

∫
R

∣∣∣∣f̂R(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x)

∣∣∣∣ dx (78)

is finite for all y > 0. If, furthermore, f ∈ Cm
a (X) for some a and m subject to a � 0, a > k

2 − 1
and m > 2a + 2, then the expression in (78) stays bounded as y → 0.

(Note that the lemma in particular applies to any f and h as in Proposition 7.1.)

Proof. As previously, we write T =
(
a b
c d

)
. The contribution from terms with c = 0 in (78)

is treated by (77). Thus, we only consider the terms with c > 0; the terms with c < 0 can be
dealt with similarly. By Lemma 7.2, and since Γ

′
∞\Γ′

/Γ′ is finite, it suffices to prove that for
each fixed R =

(
a0 b0
c0 d0

) ∈ Γ
′
∞\Γ′

/Γ′,∑
r∈Zk\{0}

∑
c≡c0 mod N

c>0

∑(1)(
a b
c d

)
∫ π

0

∣∣∣∣f̂R(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;

(
0
r

))
h

(
−d

c
+ y cot θ

)∣∣∣∣ y dθ

sin2 θ
< ∞.

(79)

By Lemma 4.5 (and the observations below (19)), for any m � 0 and a ∈ R�0 we have∣∣∣∣f̂R(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣ 	 ‖f‖Cm
a
‖r‖−m

( | sin θ|
c
√
y

)m

min

(
1,

( | sin θ|
c
√
y

)−2a
)
,

uniformly over u ∈ R. Using this bound for both m = 0 and a general m � 0, we conclude∣∣∣∣f̂R(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣
	 ‖f‖Cm

a
min

(
‖r‖−m

( | sin θ|
c
√
y

)m

, ‖r‖−m

( | sin θ|
c
√
y

)m−2a

,

( | sin θ|
c
√
y

)−2a
)
. (80)
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We decompose the innermost sum in (79) in the same way as in (69), and then use the fact
that ∑

n∈Z

|h(δ + n)| � S1,0,1(h), ∀δ ∈ R, (81)

which holds since |h(α)| � ∫ α+1/2

α−1/2
(|h(x)| + |h′(x)|) dx for all α ∈ R. From the proof of

Lemma 6.1, we also have

#[Γ′
∞\[R]/Γ′

∞ ; c] = #U [c,N ; a0, b0, d0] � c.

Hence, we conclude that if f ∈ Cm
a (X) and S1,0,1(h) < ∞, then the left-hand side of (79) is

	
∑

r∈Zk\{0}

∞∑
c=1

c

∫ π

0

min

(
‖r‖−m

( | sin θ|
c
√
y

)m

, ‖r‖−m

( | sin θ|
c
√
y

)m−2a

,

( | sin θ|
c
√
y

)−2a
)

y dθ

sin2 θ
.

Assuming m > 2a + 2, we get (cf. Lemma 7.4)

	
∑

r∈Zk\{0}

∞∑
c=1

cy

⎧⎪⎨⎪⎩
‖r‖−m(c

√
y)−m if 1 � c

√
y

‖r‖−m(c
√
y)2a−m if ‖r‖−1 � c

√
y � 1

‖r‖−2a−1(c
√
y)−1 if c

√
y � ‖r‖−1

⎫⎪⎬⎪⎭
	

∑
r∈Zk\{0}

min
(‖r‖−2−2a, ‖r‖−my1+a−m

2
)
.

(Here, m > 2a + 1 suffices for the first step, while m > 2a + 2 is needed to get the last bound.)
The last sum converges provided that either m > k or 2a + 2 > k; and if 2a + 2 > k, then it
also stays bounded as y → 0. �

In the proof above, we used the following bound, which we will need again later.

Lemma 7.4. Fix a � 0 and m > 2a + 1. Then for any u > 0 and r � 1, we have∫ π

0

min

(
r−m

( | sin θ|
u

)m

, r−m

( | sin θ|
u

)m−2a

,

( | sin θ|
u

)−2a
)

dθ

sin2 θ

	

⎧⎪⎨⎪⎩
r−mu−m if 1 � u

r−mu2a−m if r−1 � u � 1
r−2a−1u−1 if u � r−1.

Proof. This is a straightforward case-by-case analysis. �

We continue with the proof of Proposition 7.1. Using Lemma 7.2 and Remark 9, the sum in
(76), excluding all terms with c = 0, can be expressed as∑
c≡c0 mod N

c>0

∫ π

0

∑(1)(
a b
c d

) h

(
−d

c
+ y cot θ

)
f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;

(
0
r

))
e

((
cr
dr

)
ξ

)
y dθ

sin2 θ

+
∑

c≡c0 mod N
c<0

∫ 0

−π

∑(1)(
a b
c d

) h

(
−d

c
+ y cot θ

)
f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;

(
0
r

))
e

((
cr
dr

)
ξ

)
y dθ

sin2 θ
.

(82)
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Here, the change of order of summation and integration is justified by Lemma 7.3. We will only
deal with the first sum in (82); the second sum can be dealt with similarly (cf. Remark 8). By
Lemma 6.3 (applied with K = ∅ and α = rξ2), for any positive integer c ≡ c0 mod N and any
θ ∈ (0, π), we have

∑(1)(
a b
c d

) h

(
−d

c
+ y cot θ

)
f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;

(
0
r

))
e(crξ1 + drξ2)

	 S1,0,2(h)

(∫
R/NZ

∣∣∣∣f̂R(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣ du
)∑

	∈Z

(c, �cNrξ2 + ��)
1 + �2

(83)

+ S1,0,2(h)

(∫
R/NZ

∣∣∣∣ ∂2

∂u2
f̂R

(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣ du
)
σ(c)

√
c.

Here, we will use the bound (80). By a similar application of Lemma 4.5 as in (80), we have
for any m′ ∈ Z�6 and a′ ∈ R�0, uniformly over u ∈ R:

∣∣∣∣ ∂2

∂u2
f̂R

(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣
	 ‖f‖Cm′

a′
‖r‖−4 min

(
‖r‖6−m′

( | sin θ|
c
√
y

)m′−6

, ‖r‖6−m′
( | sin θ|

c
√
y

)m′−6−2a′

,

( | sin θ|
c
√
y

)−2a′)
.

Using these bounds, we conclude that the first sum in (82) is

	 S1,0,2(h)

{
‖f‖Cm

a

∞∑
c=1

∫ π

0

min

(
‖r‖−m

( | sin θ|
c
√
y

)m

, ‖r‖−m

( | sin θ|
c
√
y

)m−2a

,

( | sin θ|
c
√
y

)−2a
)

× y dθ

sin2 θ

∑
	∈Z

(c, �cNrξ2 + ��)
1 + �2

+ ‖f‖Cm′
a′
‖r‖−4

∞∑
c=1

∫ π

0

min

(( | sin θ|
‖r‖c√y

)m′−6

, ‖r‖6−m′
( | sin θ|

c
√
y

)m′−6−2a′

,

( | sin θ|
c
√
y

)−2a′)

× y dθ

sin2 θ
σ(c)

√
c

}
. (84)

By Lemma 7.4, assuming m > 2a + 1 and m′ > 2a′ + 7, (84) is

	 ‖f‖Cm
a
S1,0,2(h)‖r‖−my1+a−m

2

∞∑
c=1

c−1
(
(‖r‖√y)−1 + c

)1+2a−m ∑
	∈Z

(c, �cNrξ2 + ��)
1 + �2

+ ‖f‖Cm′
a′
S1,0,2(h)‖r‖2−m′

y4+a′−m′
2

∞∑
c=1

(
(‖r‖√y)−1 + c

)7+2a′−m′
σ(c)√

c
. (85)
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Lemma 7.5. Fix β > 1. Then for any α ∈ R and X > 0,

∞∑
c=1

c−1(X + c)−β
∑
k∈Z

(c, k)
1 + |k − cα|2 	β

{
X1−β

∑∞
j=1

(
j2 + Xj〈jα〉)−1

if X � 1
1 if X < 1.

(86)

Proof. If β ∈ Z, then this is [38, Lemma 8.2] (with η = 1 and m = β + 1). The proof extends
without changes to the case of an arbitrary real β > 1. �

Lemma 7.6. For any X > 0 and β > 1
2 ,

∞∑
c=1

(X + c)−β σ(c)√
c

	β

{
X

1
2−β log(1 + X) if X � 1

1 if X < 1.

Proof. See [38, Lemma 8.1]. This follows by using
∑

1�c�x σ(c) 	 x log(1 + x), ∀x � 1 (see,
for example, [15, (1.75)]), and integration by parts. �

Using Lemmas 7.5 and 7.6, and assuming from now on that m > 2a + 2 and m′ > 2a′ + 15
2 ,

we find that (85) (and thus (84)) is

	 ‖f‖Cm
a
S1,0,2(h)‖r‖−my1+a−m

2

{
(‖r‖√y)m−2a−2 ∑∞

j=1 min(j−2,
‖r‖√y

j〈jrξ2〉 ) if ‖r‖√y � 1

1 if ‖r‖√y > 1

}

+ ‖f‖Cm′
a′
S1,0,2(h)‖r‖2−m′

y4+a′−m′
2

×
{

(‖r‖√y)m
′−2a′− 15

2 log(1 + (‖r‖√y)−1) if ‖r‖√y � 1
1 if ‖r‖√y > 1

}

	 ‖f‖Cm
a
S1,0,2(h)‖r‖−2a−1

{∑∞
j=1 min(j−2,

√
y

j〈jrξ2〉 ) if ‖r‖√y � 1

(‖r‖√y)2a+1−m√
y if ‖r‖√y > 1

}

+ ‖f‖Cm′
a′
S1,0,2(h)‖r‖2−m′

y4+a′−m′
2

{
(‖r‖√y)m

′−2a′− 15
2 −ε if ‖r‖√y � 1

1 if ‖r‖√y > 1

}
. (87)

In order to obtain a bound on the left-hand side of (75), we have to sum over R running
through the finite set Γ

′
∞\Γ′

/Γ′, and add over all η ∈ Ak, which means that r runs through a
subset of Zk \ {0}. For this to give a satisfactory result, we have to assume 2a + 1 > k, while in
the second bound we choose a′ = max(k2 − 11

4 , 0); with this choice, m′ = max(8, k + 3) satisfies
the condition m′ > 2a′ + 15

2 . Adding now over R and η, we conclude that the left-hand side
of (75) is 	 ‖f‖Cm

a
S1,0,2(h)δ̃2a+1,ξ2

(y−
1
2 ) + ‖f‖Cm′

a′
S1,0,2(h)y

1
4−ε. Finally, we note that a > a′,

and so if we also assume m � m′, then ‖f‖Cm′
a′

	 ‖f‖Cm
a

, and we obtain the bound stated in
Proposition 7.1.

Remark 10. In (87), the somewhat crude inequality min
(
j−2,

‖r‖√y

j〈jrξ2〉
)
�

‖r‖min
(
j−2,

√
y

j〈jrξ2〉
)

was used. In the special case k = 1, by avoiding using this bound
one can keep a = 0 in the treatment, that is, no cuspidal decay of f has to be required (cf.
[38, Proposition 8.3]). Note also that [38, Proposition 8.3] has a better dependence on the
test function h (called ‘ν’ in [38]) than Proposition 7.1, namely, essentially, ‘S1,0,1+ε(h)’ in
place of S1,0,2(h). We have avoided this in the present paper for simplicity of presentation.
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7.2. The case ξ2 = 0

In this case, we prove the following bound.

Proposition 7.7. Fix an integer m � max(8, k + 3) and real numbers a ∈ (k2 − 1
2 ,

m
2 − 1)

and ε > 0. Then for any f ∈ Cm
a (X), h ∈ C2(R) with S1,0,2(h) < ∞, ξ = (ξ1

0 ) ∈ R2k and
0 < y � 1, we have∑

η∈Ak

∑
R∈Γ

′
∞\Γ′

/Γ′

∑
T∈Γ′∞\[R]

e(( tTη)ξ)
∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx

	m,a,ε ‖f‖Cm
a
S1,0,2(h)

(
δ2a+1,ξ1

(y−
1
2 ) + y

1
4−ε

)
. (88)

Proof. Arguing as in the proof of Proposition 7.1, we arrive again at the expression in (82),
where we now have (crdr)ξ = crξ1. Applying Lemma 6.3 with α = 0 and K = {0} gives, for any
positive integer c ≡ c0 mod N , decomposed as c = c1c2 where c1 | N∞ and (c2, N) = 1, and
any θ ∈ (0, π):∑(1)(

a b
c d

) h

(
−d

c
+ y cot θ

)
f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;

(
0
r

))

= c1φ(c2)
∫
R

h(−Nx1 + y cot θ)dx1

∫
R/Z

f̂R

(
Nx2,

sin2 θ

c2y
, θ;

(
0
r

))
dx2

+ O

(
S1,0,2(h)

∫
R/NZ

∣∣∣∣f̂R(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣ du
) ∑

	∈Z\{0}

(c, �)
1 + �2

+ O

(
S1,0,2(h)

∫
R/NZ

∣∣∣∣ ∂2

∂u2
f̂R

(
u,

sin2 θ

c2y
, θ;

(
0
r

))∣∣∣∣ du
)
σ(c)

√
c. (89)

Note here that the error term in the last line is the same as in the last line in (83); hence it
can be bounded as before (cf. (84) and (87)). In the remaining error term in (89), we have∑

	∈Z\{0}

(c, �)
1 + �2

� 2
∑
m|c

∞∑
n=1

m

(mn)2
	

∑
m|c

1
m

� σ(c).

We can now argue as in the proof of Proposition 7.1, but instead of Lemma 7.5 using the simple
bound

‖r‖−my1+a−m
2

∞∑
c=1

c−1
(
(‖r‖√y)−1 + c

)1+2a−m

σ(c) 	
{
‖r‖−1−2a−εy

1−ε
2 if ‖r‖√y � 1

‖r‖−my1+a−m
2 if ‖r‖√y � 1,

which is valid under the assumption that m > 2a + 1, and for any fixed ε > 0. This leads to
the conclusion that the contribution from the error terms in the last two lines of (89) to the
left-hand side of (88) is

	 ‖f‖Cm
a
S1,0,2(h)y

1
2−ε + ‖f‖Cm′

a′
S1,0,2(h)y

1
4−ε,

with a = k
2 − 1

2 , m = k + 1, a′ = max(k2 − 11
4 , 0) and m′ = max(8, k + 3). This is clearly

subsumed by the right-hand side of (88).
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Now, it only remains to consider the first line in the right-hand side of (89). The contribution
from this line to the expression in the first line of (82) can be written as follows, after expressing
the indicator function of c ≡ c0 mod N as N−1

∑
b mod N e(b(c− c0)/N):

1
N2

∫
R

h(x) dx
∑

b mod N

e

(
−bc0

N

)∫ π

0

∫
R/Z

∑
c>0

e(cα)c1φ(c2)f̂R

(
Nx2,

sin2 θ

c2y
, θ;

(
0
r

))
dx2

y dθ

sin2 θ
,

(90)

where α := rξ1 + b/N . We will use integration by parts to handle the sum over c. Thus, we
let

Bα(X) =
∑

1�c�X

e(cα)c1φ(c2) =
∑

1�c2�X
(c2,N)=1

∑
1�c1�X/c2

c1|N∞

e(c1c2α)c1φ(c2).

We have the following bound, analogous to [38, Lemma 9.2].

Lemma 7.8. For any α ∈ R, and X � 1,

Bα(X) 	 X2
∑

1�j�X

min
(

1
j2

,
1

Xj〈jα〉
)
.

Proof. For any c2 > 0, we have φ(c2) =
∑

d|c2 μ(c2/d)d. Using this formula and substituting
c2 = jd, we get

Bα(X) =
∑

1�j�X
(j,N)=1

μ(j)
∑

1�d�X/j
(d,N)=1

∑
1�c1�X/(jd)

c1|N∞

dc1e(jdc1α) =
∑

1�j�X
(j,N)=1

μ(j)
∑

1�k�X/j

ke(jkα). (91)

However, for any j, n ∈ Z+, ∑
1�k�n

ke(jkα) 	 min
(
n2,

n

〈jα〉
)
.

(See the proof of [38, Lemma 9.2].) Applying this bound to (91), we get the lemma. �

For any m � 0 and a ∈ R�0, by Lemma 4.5 we have (in a similar way as in (80))

∂

∂X
f̂R

(
Nx2,

sin2 θ

X2y
, θ;

(
0
r

))

	 ‖f‖Cm+1
a

X−1 min

(
‖r‖−m

( | sin θ|
X
√
y

)m

, ‖r‖−m

( | sin θ|
X
√
y

)m−2a

,

( | sin θ|
X
√
y

)−2a
)
. (92)

Using summation by parts in (90) (justified using (92) and Bα(X) 	 X2), we have∑
c>0

e(cα)c1φ(c2)f̂R

(
Nx2,

sin2 θ

c2y
, θ;

(
0
r

))
= −

∫ ∞

1

(
∂

∂X
f̂R

(
Nx2,

sin2 θ

X2y
, θ;

(
0
r

)))
Bα(X) dX.

Furthermore, Lemma 7.4 implies that for m > 2a + 1,∫ π

0

min

(
‖r‖−m

( | sin θ|
X
√
y

)m

, ‖r‖−m

( | sin θ|
X
√
y

)m−2a

,

( | sin θ|
X
√
y

)−2a
)

y dθ

sin2 θ

	 X−1‖r‖−my1+a−m
2

(
(‖r‖√y)−1 + X

)1+2a−m

.
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Hence, also using Lemma 7.8 and 〈jα〉 = 〈j(rξ1 + b/N)〉 � N−1〈jNrξ1〉, we find that the
expression in (90) is

	 S1,0,0(h)‖f‖Cm+1
a

y1+a−m
2

‖r‖m
∫ ∞

1

(
(‖r‖√y)−1 + X

)1+2a−m ∑
1�j�X

min
(

1
j2

,
1

Xj〈jNrξ1〉
)
dX.

(93)

Lemma 7.9. Assume m > 2a + 2. Then for any β ∈ R and U > 0 we have∫ ∞

1

(U + X)1+2a−m
∑

1�j�X

min
(

1
j2

,
1

Xj〈jβ〉
)
dX

	m,a (U + 1)2+2a−m
∞∑
j=1

min
(

1
j2

,
1

Uj〈jβ〉
)(

1 + log+

(
U〈jβ〉

j

))
. (94)

Proof. Changing the order of summation and integration, the left-hand side of (94) becomes
∞∑
j=1

∫ ∞

j

(U + X)1+2a−m min
(

1
j2

,
1

Xj〈jβ〉
)
dX.

Here, for each j � U we use (U + X)1+2a−m � X1+2a−m and min( 1
j2 ,

1
Xj〈jβ〉 ) � j−2, to see

that
∫ ∞
j

· · · dX � j2a−m. On the other hand, for j < U we have∫ ∞

j

· · · dX � U1+2a−m

∫ U

j

min
(

1
j2

,
1

Xj〈jβ〉
)
dX + min

(
1
j2

,
1

Uj〈jβ〉
)∫ ∞

j

X1+2a−m dX

	 U2+2a−m min
(

1
j2

,
1

Uj〈jβ〉
)(

1 + log+

(
U〈jβ〉

j

))
,

where the last bound is proved by splitting into the two cases U � j
〈jβ〉 and U > j

〈jβ〉 and
evaluating the integrals. The proof of the lemma is completed by adding up our bounds over
all positive integers j, and noticing that

∑
j�U j2a−m 	 (U + 1)1+2a−m, which is bounded

above by the contribution from j = 1 in the right-hand side of (94). �

Assuming now m > 2a + 2, using the lemma we get, via (93), that the expression in (90) is

	 S1,0,0(h)‖f‖Cm+1
a

(1 + ‖r‖√y)2+2a−m

‖r‖2+2a

∞∑
j=1

min
(

1
j2

,
‖r‖√y

j〈jNrξ1〉
)(

1 + log+

( 〈jNrξ1〉
‖r‖√yj

))

	 S1,0,0(h)‖f‖Cm+1
a

(1 + ‖r‖√y)2+2a−m

‖r‖2+2a

∞∑
j=1

min
(

1
j2

,
‖r‖√y

j〈jrξ1〉
)(

1 + log+

( 〈jrξ1〉
‖r‖√yj

))
.

(95)

(Indeed, the last bound holds even if the last sum over j is restricted to j = N, 2N, 3N, . . ..)
Finally, we have to add this bound over all R in the finite set Γ

′
∞\Γ′

/Γ′, and over all η ∈ Ak,
which means that r runs through a subset of Zk \ {0}. Comparing with the definition (5),
assuming now a > k−1

2 (that is, 2a + 1 > k), we immediately find that the sum of the bound
in (95) over all r ∈ Zk with 0 < ‖r‖ < y−1/2 is

	 S1,0,0(h)‖f‖Cm+1
a

δ2a+1,ξ1
(y−

1
2 ). (96)
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On the other hand, for r with ‖r‖ � y−1/2, the sum over j in (95) equals
∑∞

j=1 j
−2 = π2/6,

and hence the sum of the bound in (95) over all such r is, assuming m > k

	 S1,0,0(h)‖f‖Cm+1
a

∑
r∈Z

k

(‖r‖�y−1/2)

‖r‖−my1+a−m
2 	 S1,0,0(h)‖f‖Cm+1

a
y1+a− k

2 .

However, this is subsumed by the bound (96), since a > k−1
2 and δμ,ξ(T ) � (T + 1)−1 for all

T > 0 (as is clear by taking r = e1, j = 1 in (5)). Hence, for any fixed a > k−1
2 and m > 2a + 2,

m ∈ Z, we have proved that the contribution from the first line in the right-hand side of (89) to
the left-hand side of (88) is bounded by (96). This completes the proof of Proposition 7.7. �

8. The contribution from Bk-orbits

8.1. The case ξ1 = 0

In this section, we will bound the sum in the third line of (49). We will assume k � 2 throughout
this section, since Bk is empty for k = 1. We will prove the following.

Proposition 8.1. Let k � 2. Fix a real number ε > 0 and an integer m � max(8, 2k + 1).
For any f ∈ C3m+3

0 (X), h ∈ C1(R) with S∞,2+ε,1(h) < ∞, ξ2 ∈ Rk and 0 < y � 1, we have∑
η∈Bk

∑
R∈Γ

′
/Γ′

∑
T∈[R]

e

(
( tTη)

(
0
ξ2

))∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx

	m,ε ‖f‖C3m+3
0

S∞,2+ε,1(h)
(
δm−k,ξ2

(y−
1
2 ) + y

1
4−ε

)
. (97)

Note that Theorem 1.2 follows from Proposition 8.1 together with Proposition 7.1 and the
relations (49) and (50).

To start the proof of Proposition 8.1, note that taking β = 1
3 in Lemma 4.7, replacing m by

3m and using the remarks below (19), we get∣∣∣∂	1
u ∂	2

v ∂	3
θ f̂R(u, v, θ;η)

∣∣∣ 	m,	 ‖f‖C3m+�
0

‖η‖−m v−	1−	2

(
v

u2 + v2 + 1

)m/2

, (98)

for all R ∈ Γ
′
, u ∈ R, v > 0, θ ∈ R/2πZ, η ∈ Bk and �1, �2, �3 � 0, with � = �1 + �2 + �3.

Any T =
(
a b
c d

) ∈ Γ
′
with c = 0 can be expressed as T = ε

(
1 n
0 1

)
, where ε ∈ {−1, 1} and n ∈ Z,

and the contribution from these T to the left-hand side of (97) is

	
∑
η∈Bk

∑
ε∈{−1,1}

∑
n∈Z

∫
R

∣∣∣∣f̂R(
ε

(√
y (x + n)/

√
y

0 1/
√
y

)
,η

)
h(x)

∣∣∣∣ dx, (99)

wherein R denotes the unique element in our chosen system of representatives Γ
′
/Γ′ satisfying

R ≡ ε
(
1 n
0 1

)
mod N . Using (98) and m � 2k + 1, we get that the sum in consideration is

	 ‖f‖C3m
0

∑
η∈Bk

‖η‖−m

∫
R

∑
n∈Z

ym/2

(1 + |x + n|)m |h(x)| dx 	 ‖f‖C3m
0

y
m
2

∑
η∈Bk

‖η‖−m

∫
R

|h(x)| dx

	 ‖f‖C3m
0

‖h‖L1y
m
2 . (100)

This is clearly subsumed by the bound in (97).
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Hence, from now on we focus on the terms for T =
(
a b
c d

)
with c �= 0 in the left-hand side of

(97). We will restrict to the case c > 0; the case c < 0 can be handled completely analogously.
We fix some η = (qr) ∈ Bk and R =

(
a0 b0
c0 d0

) ∈ Γ
′
. Using Lemma 7.2, the inner sum can be

expressed as:∑(
a b
c d

)
∈[R]

c>0

e((bq + dr)ξ2)
∫ π

0

f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
h

(
−d

c
+ y cot θ

)
y dθ

sin2 θ
. (101)

Let us first record a trivial upper bound on (101), variants of which will be used repeatedly
below.

Lemma 8.2. For any η ∈ Bk and R ∈ Γ
′
/Γ′,∑(

a b
c d

)
∈[R]

c>0

∫ π

0

∣∣∣∣f̂R(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
h

(
−d

c
+ y cot θ

)∣∣∣∣ y dθ

sin2 θ

	m ‖f‖C3m
0

S∞,2,0(h)‖η‖−m. (102)

Proof. We overestimate the sum by letting 〈a, c, d〉 run through all integer triples with c > 0
and ad ≡ 1 mod c. Using (98) we then get that the left-hand side of (102) is

	 ‖f‖C3m
0

‖η‖−m
∞∑
c=1

∑
d∈Z

(d,c)=1

∫ π

0

∑
n∈Z

(
v

u2
n + v2 + 1

)m/2 ∣∣∣∣h(−d

c
+ y cot θ

)∣∣∣∣ y dθ

sin2 θ
, (103)

where v = v(y, c, θ) = sin2 θ
c2y and un = un(y, c, d, θ) = n + α

c − sin 2θ
2c2y , with α = α(c, d) being the

unique integer between 1 and c satisfying αd ≡ 1 mod c. But here∑
n∈Z

(
v

u2
n + v2 + 1

)m/2

	
∑
n∈Z

|un|�1+v

(
v

v2 + 1

)m/2

+
∑
n∈Z

|un|>1+v

(
v

u2
n

)m/2

	 min
(
v

m
2 , v1−m

2
)
,

(104)

where we used the fact that m > 2k � 2. Furthermore, if S∞,2,0(h) < ∞, then we have∑
d∈Z

∣∣∣∣h(−d

c
+ y cot θ

)∣∣∣∣ � S∞,2,0(h)
∑
d∈Z

(
1 +

∣∣∣∣−d

c
+ y cot θ

∣∣∣∣)−2

	 S∞,2,0(h)c. (105)

Hence, we obtain that (103) is

	 ‖f‖C3m
0

S∞,2,0(h)‖η‖−my

∞∑
c=1

c

∫ π

0

min
(
v

m
2 , v1−m

2
) dθ

sin2 θ
. (106)

However, ∫ π

0

min
(
v

m
2 , v1−m

2
) dθ

sin2 θ
	 min

(
(c
√
y)−1, (c

√
y)−m

)
, (107)

as one verifies by treating the two cases c2y � 1 and c2y < 1 separately, and in the latter case,
splitting the interval for θ into the parts {θ : | sin θ| < c

√
y} and {θ : | sin θ| � c

√
y}. Now the

lemma follows by using (107) in (106). �
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Adding the bound in Lemma 8.2 over all R ∈ Γ
′
/Γ′ and η ∈ Bk (again using m > 2k), we

immediately see that the sum in the left-hand side of (97) stays bounded as y → 0. In order to
show that the sum actually decays as y → 0, we have to establish cancellation in (101).

It will be convenient later (cf. Lemma 8.4) to note that we may restrict the integral in (101)
to those θ ∈ (0, π) which satisfy y| cot θ| � 1. Indeed, if y| cot θ| > 1, then | sin θ| < y, and we
note that for any c � 1 we have, with v = sin2 θ

c2y as in the proof of Lemma 8.2,∫
0<θ<π

(| sin θ|<y)

min
(
v

m
2 , v1−m

2
) dθ

sin2 θ
=

∫
0<θ<π

(| sin θ|<y)

v
m
2

dθ

sin2 θ
	m c−my

m
2 −1.

Using this bound in place of (107) in the proof of Lemma 8.2, we conclude that the contribution
from θ with y| cot θ| > 1 in (101) is 	 ‖f‖C3m

0
S∞,2,0(h)‖η‖−mym/2. Adding this over R and

η as in the left-hand side of (97), we again obtain a bound which is (by far) subsumed by the
bound in (97).

Let us also note that if T =
(
a b
c d

)
in (101) has d = 0, then necessarily c = 1, and inspecting

the proof of Lemma 8.2 we see that the contribution from all such T in (101) is 	
‖f‖C3m

0
S∞,2,0(h)‖η‖−m√

y. This gives a contribution 	 ‖f‖C3m
0

S∞,2,0(h)
√
y in the left-hand

side of (97), which is ok. Hence, from now on we may consider the sum in (101) restricted by
d �= 0.

Next we will make use of the approximation a
c = 1+bc

dc ≈ b
d . The error in doing so is controlled

by the following lemma.

Lemma 8.3. Assuming that m � 4, we have∑(
a b
c d

)
∈[R]

c>0, d 
=0

∫ π

0

∣∣∣∣f̂R(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
− f̂R

(
b

d
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)∣∣∣∣
×

∣∣∣∣h(−d

c
+ y cot θ

)∣∣∣∣ y dθ

sin2 θ
	m ‖f‖C3m+1

0
S∞,2,0(h)

√
y log(2 + y−1)

‖η‖m . (108)

Proof. For any
(
a b
c d

) ∈ Γ
′

with c, d �= 0 we have, letting J be the interval with endpoints
a
c − sin 2θ

2c2y and b
d − sin 2θ

2c2y , and using a
c − b

d = 1
dc and (98),∣∣∣∣f̂R(

a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
− f̂R

(
b

d
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)∣∣∣∣
	 1

|dc| sup
x∈J

∣∣∣∣∂xf̂R(
x,

sin2 θ

c2y
, θ;η

)∣∣∣∣ 	 ‖f‖C3m+1
0

‖η‖−m|c|−1v−1

(
v

u2 + v2 + 1

)m/2

,

with v = sin2 θ
c2y and u = a

c − sin 2θ
2c2y . (We used the crude bound |d|−1 � 1, and the fact that

(u + ξ)2 + 1 � u2 + 1 for all u ∈ R, |ξ| � 1.) Hence, arguing as in the proof of Lemma 8.2, and
using the same notation ‘un’ as there, we find that the left-hand side of (108) is

	 ‖f‖C3m+1
0

‖η‖−m
∞∑
c=1

c−1
∑
d∈Z

(d,c)=1

∫ π

0

∑
n∈Z

v−1

(
v

u2
n + v2 + 1

)m/2 ∣∣∣∣h(−d

c
+ y cot θ

)∣∣∣∣ y dθ

sin2 θ
.

The rest of the proof is very similar to Lemma 8.2, except that we now use∫ π

0

min
(
v

m
2 −1, v−

m
2
) dθ

sin2 θ
	 min

(
(c
√
y)−1, (c

√
y)2−m

)
in place of (107). �
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Adding the bound in Lemma 8.3 over all R ∈ Γ
′
/Γ′ and η ∈ Bk gives a

bound‖f‖C3m+1
0

S∞,2,0(h)
√
y log(2 + y−1), and this is subsumed by the bound in (97).

Hence, from now on we may replace a
c by b

d in (101). Restricting the summation to d > 0
(the case d < 0 being completely analogous), and writing Iy := {θ ∈ (0, π) : y| cot θ| � 1}, the
resulting sum is:

∑(
a b
c d

)
∈[R]

c>0, d>0

e((bq + dr)ξ2)
∫
Iy

f̂R

(
b

d
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
h

(
−d

c
+ y cot θ

)
y dθ

sin2 θ
.

Replacing 〈a, b, c, d〉 by 〈−b, d,−a, c〉 in this sum gives, with R̃ :=
(−c0 −a0

d0 b0

)
:

=
∑(

a b
c d

)
∈[ ˜R]

a<0, c>0

e((dq + cr)ξ2)
∫
Iy

f̂R

(
d

c
− sin 2θ

2a2y
,
sin2 θ

a2y
, θ;η

)
h
( c

a
+ y cot θ

) y dθ

sin2 θ

=
∑

c≡d0 mod N
c>0

e(crξ2)
∫
Iy

∑(˜1)(
a b
c d

) e(dqξ2)Fc,θ

(
d

c
,
a

c

)
y dθ

sin2 θ
, (109)

where
∑(˜1) is the same as

∑(1) (cf. p. 16) but using R̃ in place of R, and for any c ∈ Z+ and
θ ∈ (0, π), Fc,θ(x1, x2) is the function on R × (R/NZ) given by

Fc,θ(x1, x2) :=
∑

s∈x2+NZ

s<0

f̂R

(
x1 − sin 2θ

2yc2s2
,
sin2 θ

yc2s2
, θ;η

)
h

(
1
s

+ y cot θ
)
. (110)

(Note that Fc,θ also depends on N, y,R,η.) Using |f̂R(u, v, θ;η)| 	 min(v, v−1)m/2 (cf. (98)),
we see that the sum defining Fc,θ(x1, x2) is absolutely convergent, and that Fc,θ(x1, x2) is
continuous on R × (R/NZ). If Fc,θ is sufficiently differentiable with the first few derivatives
being in L1,2, then we may apply Lemma 6.4, to see that, for any 0 < ε < 1

2 ,

∑(˜1)(
a b
c d

) e(dqξ2)Fc,θ

(
d

c
,
a

c

)
	ε (‖Fc,θ‖L1 + ‖∂2

x1
Fc,θ‖L1)

∑
	∈Z

(c, �cNqξ2 + ��)
1 + �2

+
(‖Fc,θ‖L1,2 + ‖∂2

x1
Fc,θ‖L1,2

) 1
2−ε(‖∂x2Fc,θ‖L1,2 + ‖∂2

x1
∂x2Fc,θ‖L1,2

) 1
2+ε

σ(c)3/2
√
c. (111)

Bounds on the L1,2-norms of derivatives of Fc,θ are provided by the following lemma.

Lemma 8.4. For any integer � with 1 � � < 1
2 (m− 1), we have Fc,θ ∈ C	(R × (R/NZ))

provided that f ∈ C3m+	
0 (X) and h ∈ C	(R) with S∞,0,	(h) < ∞. Furthermore, for any

integers �1, �2 � 0, and a ∈ R�0, 0 < ε < 1, if � = �1 + �2, m > 2� + 1, f ∈ C3m+	
0 , h ∈ C	2(R),

S∞,a,	2(h) < ∞ and y| cot θ| � 1, then we have⎛⎝∫
R/NZ

(∫
R

∣∣∣∣∣ ∂	1+	2

∂x	1
1 ∂x	2

2

Fc,θ(x1, x2)

∣∣∣∣∣ dx1

)2

dx2

⎞⎠1/2

	m,	,ε ‖f‖C3m+�
0

S∞,a,	2(h)‖η‖−m
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×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

| sin θ|−	2
(

| sin θ|
c
√
y

)1−	2+
ε
2

if c
√
y � | sin θ|

| sin θ|−	2
(

| sin θ|
c
√
y

) 1
2+a−	2

{
1 +

(
| sin θ|
c
√
y

)m− 1
2−a−2	1+	2

}
if | sin θ| � c

√
y � 1(

| sin θ|
c
√
y

) 1
2+a−2	2

{
1 + | sin θ|−	2

(
| sin θ|
c
√
y

)m− 1
2−a−2	1+2	2

}
if c

√
y � 1.

(112)

Proof. By repeated differentiation we obtain, for any �1 � 0 and �2 � 1,

∂	

∂x	1
1 ∂s	2

(
f̂R

(
x1 − sin 2θ

2yc2s2
,
sin2 θ

yc2s2
, θ;η

)
h

(
1
s

+ y cot θ
))

=
∑

1�α+β+γ�	2

K
(	2)
α,β,γ

(sin 2θ)α(sin θ)2β

(yc2s2)α+βsγ+	2

[
∂	1+α
1 ∂β

2 f̂R

](
x1 − sin 2θ

2yc2s2
,
sin2 θ

yc2s2
, θ;η

)

× h(γ)

(
1
s

+ y cot θ
)
, (113)

where 〈α, β, γ〉 runs through all triples of nonnegative integers satisfying 1 � α + β + γ � �2,
each coefficient K

(	2)
a,β,γ is an integer, and ∂1 and ∂2 denote differentiation with respect to the

first and second argument of f̂R. Using (98), we find that the absolute value of (113) is

	m,	 ‖f‖C3m+�
0

‖η‖−m

((
x1 − sin 2θ

2yc2s2

)2

+
(

sin2 θ

yc2s2

)2

+ 1

)−m
2 (

sin2 θ

yc2s2

)m
2 −	1

|s|−	2

×
∑

1�α+β+γ�	2

| sin θ|−α|s|−γ

∣∣∣∣h(γ)

(
1
s

+ y cot θ
)∣∣∣∣. (114)

Here, the sum in the second line is �	2

∑	2
γ=0 | sin θ|γ−	2 |s|−γ |h(γ)(s−1 + y cot θ)|. On the other

hand for �2 = 0, the left-hand side of (113) trivially equals [∂	1
1 f̂R](. . .)h(s−1 + y cot θ), and

thus the bound in (114) is again valid, with the last sum replaced by ‘|h(s−1 + y cot θ)|’.
Now assume S∞,0,	2(h) < ∞. Then the bound in (114) is 	 |s|−m+2	1−	2 for |s| � 1 and

	 |s|m+2	1−2	2 for 0 < |s| � 1, uniformly with respect to x1 ∈ R when keeping all other
parameters fixed. Hence, if m > max(2�1 − �2 + 1,−2�1 + 2�2), then the sum obtained by a
term-wise application of ∂	/(∂x	1

1 ∂x	2
2 ) in (110) is absolutely convergent, uniformly with respect

to (x1, x2) ∈ R × (R/NZ), and defines a continuous function of (x1, x2). (The continuity along
the line x2 = 0 holds since the bound in (114) tends to 0 as |s| → 0.) In particular, if m > 2� + 1
and S∞,0,	(h) < ∞, then it follows that Fc,θ ∈ C	 and that (∂	1+	2/(∂x	1

1 ∂x	2
2 ))Fc,θ may be

computed by term-wise differentiation in the sum in (110), for any �1, �2 � 0 with �1 + �2 � �.
We now turn to the proof of the bound (112). Using S∞,a,	2(h) < ∞, y| cot θ| � 1 and (114),

we see that (113) is 	m,	 B(x1, s), where

B(x1, s) := ‖f‖C3m+�
0

S∞,a,	2(h)‖η‖−m

((
x1 − sin 2θ

2yc2s2

)2

+
(

sin2 θ

yc2s2

)2

+ 1

)−m
2

×
(

sin2 θ

yc2s2

)m
2 −	1

|s|−	2

	2∑
γ=0

| sin θ|γ−	2 |s|−γ+a(1 + |s|)−a. (115)
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This bound is also valid when �2 = 0. Next, using the fact that
∫
R
(u2 + A)−m/2 du 	 A(1−m)/2

for all A � 1, we have
∫
R
B(x1, s) dx1 	m,	 B1(s), where

B1(s) := ‖f‖C3m+�
0

S∞,a,	2(h)‖η‖−m

(
1 +

(
sin2 θ

yc2s2

)2
) 1−m

2 (
sin2 θ

yc2s2

)m
2 −	1

|s|−	2

×
	2∑

γ=0

| sin θ|γ−	2 |s|−γ+a(1 + |s|)−a. (116)

It follows that the left-hand side of (112), after squaring, is

	m,	

∫
R/NZ

⎛⎜⎝∫
R

∑
s∈x2+NZ

s<0

B(x1, s) dx1

⎞⎟⎠
2

dx2 	m,	

∫
R/NZ

⎛⎜⎝ ∑
s∈x2+NZ

s<0

B1(s)

⎞⎟⎠
2

dx2

	ε

∫
R/NZ

∑
s∈x2+NZ

s<0

B1(s)2(1 + |s|)1+ε dx2 =
∫ 0

−∞
B1(s)2(1 + |s|)1+ε ds

= ‖f‖2
C3m+�

0
S∞,a,	2(h)2‖η‖−2m

	2∑
γ=0

| sin θ|2(γ−	2)

×
∫ ∞

0

(
1 +

(
sin2 θ

yc2s2

)2
)1−m(

sin2 θ

yc2s2

)m−2	1

s−2	2−2γ+2a(s + 1)1+ε−2a ds. (117)

Using m > 2� + 3
2 > 2� + 1 + ε

2 , we find that the integral in the last line of (117) is

	m,	,ε

⎧⎪⎪⎨⎪⎪⎩
(

| sin θ|√
yc

)2−2	2−2γ+ε

if | sin θ|√
yc � 1(

| sin θ|√
yc

)−2	2−2γ+2a+1

+
(

| sin θ|√
yc

)2m−4	1
if | sin θ|√

yc � 1.

Carrying out the addition over γ, we obtain the bound in (112). �

Note that Lemma 8.4 also applies to give a bound on ‖∂	1
x1
∂	2
x2
Fc,θ‖L1 , since ‖F‖L1 �√

N‖F‖L1,2 for any function F on R × (R/NZ), by Cauchy–Schwarz. However, in the case
c
√
y � | sin θ|, we need to get rid of the ε-power in (112). Thus, we prove.

Lemma 8.5. For any integers �1 � 0 and m > 2�1 + 1, for any f ∈ C3m+	1
0 (X) and

h ∈ C	1(R) with S∞,0,0(h) < ∞, if 0 < c
√
y � | sin θ|, then∫

R/NZ

∫
R

∣∣∣∣∣ ∂	1

∂x	1
1

Fc,θ(x1, x2)

∣∣∣∣∣ dx1 dx2 	m,	1 ‖f‖
C

3m+�1
0

S∞,0,0(h)‖η‖−m | sin θ|
c
√
y

. (118)

Proof. Following the proof of Lemma 8.4, we see that the left-hand side of (118) is
	 ∫ 0

−∞ B1(s) ds, where B1(s) is given by (116) (with a = �2 = 0). This integral is bounded
by a direct computation, and we obtain the bound in (118). �

We are now ready to complete the proof of Proposition 8.1. Take m � max(8, 2k + 1),
2 < a < 3 and ε, ε′ ∈ (0, 1

2 ); also take f ∈ C3m+3
0 (X) and h ∈ C1(R) with S∞,a,1(h) < ∞. Let
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ξ2 ∈ Rk and 0 < y � 1 be given. By Lemmata 8.4 and 8.5, we have for every c ∈ Z+ and every
θ with y| cot θ| � 1 (and using the fact that m− a− 9

2 > 0),

‖Fc,θ‖L1 + ‖∂2
x1
Fc,θ‖L1 	m,ε′ ‖f‖C3m+2

0
S∞,a,0(h)‖η‖−m

⎧⎨⎩
| sin θ|
c
√
y if c

√
y � | sin θ|(

| sin θ|
c
√
y

) 1
2+a

if | sin θ| � c
√
y.

Therefore,∫
Iy

(‖Fc,θ‖L1 + ‖∂2
x1
Fc,θ‖L1

) y dθ

sin2 θ

	m,a ‖f‖C3m+2
0

S∞,a,0(h)‖η‖−my

{
(c
√
y)−1(1 + log((c

√
y)−1)) if c

√
y � 1

(c
√
y)−

1
2−a if c

√
y � 1.

(119)

Lemma 8.4 also gives (again using m− a− 9
2 > 0, and also using the fact that if c

√
y � 1, then

| sin θ|−1
( | sin θ|

c
√
y

)m−a− 5
2 � | sin θ|−1 | sin θ|

c
√
y � 1)(‖Fc,θ‖L1,2 + ‖∂2

x1
Fc,θ‖L1,2

) 1
2−ε(‖∂x2Fc,θ‖L1,2 + ‖∂2

x1
∂x2Fc,θ‖L1,2

) 1
2+ε

	m,ε′ ‖f‖C3m+3
0

S∞,a,1(h)‖η‖−m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
| sin θ|− 1

2−ε
(

| sin θ|
c
√
y

) 1
2+ε′−ε

if c
√
y � | sin θ|

| sin θ|− 1
2−ε

(
| sin θ|
c
√
y

)a−ε

if | sin θ| � c
√
y � 1(

| sin θ|
c
√
y

)a− 1
2−2ε

if c
√
y � 1.

(120)

This leads to (using a > 2 > 3
2 + ε)∫

Iy

(‖Fc,θ‖L1,2 + ‖∂2
x1
Fc,θ‖L1,2

) 1
2−ε(‖∂x2Fc,θ‖L1,2 + ‖∂2

x1
∂x2Fc,θ‖L1,2

) 1
2+ε y dθ

sin2 θ

	m,a,ε ‖f‖C3m+3
0

S∞,a,1(h)‖η‖−my

{
(c
√
y)−

3
2−ε if c

√
y � 1

(c
√
y)−a+ 1

2+2ε if c
√
y � 1.

(121)

Let us now also assume ε < a−2
3 . Then −a + 1

2 + 2ε < − 3
2 − ε, and using (111), (119) and

(121), it follows that the expression in (109) is

	m,a,ε ‖f‖C3m+3
0

S∞,a,1(h)‖η‖−m
∞∑
c=1

{
y

3
4− a

2 c−1(y−
1
2 + c)

1
2−a

(
1 + log+

(
1

c
√
y

))

×
∑
	∈Z

(c, �cNqξ2 + ��)
1 + �2

+ y
1
4− ε

2 c−1− ε
2

}
. (122)

We now need the following modification of Lemma 7.5.

Lemma 8.6. Fix β > 1. Then for any α ∈ R and X � 1 we have

∞∑
c=1

c−1(X + c)−β

(
1 + log+

(
X

c

))∑
k∈Z

(c, k)
1 + |k − cα|2 (123)

	β X1−β
∞∑
j=1

min
(

1
j2

,
1

Xj〈jα〉
)(

1 + log+

(
X〈jα〉

j

))
.
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Proof. The proof of [38, Lemma 8.2] carries over with easy modifications. The main new
technicality is to verify the bound

∞∑
d=1

(X + �d)−β

1 + (d〈�α〉)2
(

1 + log+

(
X

�d

))

	β

⎧⎪⎪⎨⎪⎪⎩
X1−β�−1 if 1 � X/� � 〈�α〉−1

X−β〈�α〉−1
(
1 + log

(
X〈	α〉

	

))
if 〈�α〉−1 < X/�

�−β if X/� < 1,

valid for all d, � ∈ Z+. �

Using Lemma 8.6 (with β = a− 1
2 ), it follows that (122), and hence also (109), is

	a,ε ‖f‖C3m+3
0

S∞,a,1(h)‖η‖−m

⎧⎨⎩
∞∑
j=1

min
(

1
j2

,

√
y

j〈jqξ2〉
)(

1 + log+

( 〈jqξ2〉
j
√
y

))
+ y

1
4− ε

2

⎫⎬⎭.

(We replaced ‘Nqξ2’ by qξ2 through the same type of estimate as in (95).) Adding the
last bound over R ∈ Γ

′
/Γ′ and η ∈ Bk, using

∑
η∈Z2k\{0} ‖η‖−m < ∞ and

∑
r∈Zk ‖(qr)‖−m 	

‖q‖k−m for every q ∈ Zk \ {0}, and noticing that a and ε can be taken arbitrarily near 2
and 0, respectively, we obtain the bound in Proposition 8.1. This completes the proof of
Proposition 8.1, and also of Theorem 1.2.

Remark 11. We now explain why we had to use Lemma 6.4 in place of Lemma 6.3 in the
above proof of Proposition 8.1. One can prove a bound for the L1-norm of ∂	1

x1
∂	2
x2
Fc,θ which is

very similar to the bound in Lemma 8.4, and in the case c
√
y � 1 this leads to a bound∫

0<θ<π
(y| cot θ|�1)

‖∂	1
x1
∂	2
x2
Fc,θ‖L1

y dθ

sin2 θ
	 y(c

√
y)−1−	2 .

Multiplying this with σ(c)3/2
√
c and adding over c (cf. (109) and (111)) gives (if �2 > 1

2 ) a
bound y(1−	2)/2, which is insufficient. Indeed, Lemma 6.3 requires us to take �2 as large as 2.
Using instead the L1,2-norm and Lemma 6.4 means that we can effectively take �2 to be as
small as 1

2 + ε, leading to the final bound y
1
4− ε

2 . (One could sharpen Lemma 6.3 to a bound
of the same style as in Lemma 6.4 but only involving the L1-norm; this would allow us to use
‘�2 = 1 + ε’; however, this would still not be sufficient.)

8.2. The case ξ2 = 0

The treatment in this case is quite a bit easier than that for ξ1 = 0. We prove the following
bound.

Proposition 8.7. Let k � 2. Fix a real number ε > 0 and an integer m � max(7, 2k + 1).
For any f ∈ C3m+2

0 (X), h ∈ C2(R) with S1,0,2(h) < ∞, ξ1 ∈ Rk and 0 < y � 1, we have∑
η∈Bk

∑
R∈Γ

′
/Γ′

∑
T∈[R]

e

(
( tTη)

(
ξ1

0

))∫
R

f̂R

(
T

(√
y x/

√
y

0 1/
√
y

)
,η

)
h(x) dx

	m,ε ‖f‖C3m+2
0

S1,0,2(h)
(
δ̃m−k,ξ1

(y−
1
2 ) + y

1
4−ε

)
. (124)
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Note that Theorem 1.3 follows from Proposition 8.7 together with Proposition 7.7 and the
relations (49) and (50).

Proof. The beginning of the proof of Proposition 8.1 carries over without changes; the first
difference is that in place of (101) we get:∑(

a b
c d

)
∈[R]

c>0

e((aq + cr)ξ1)
∫ π

0

f̂R

(
a

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
h

(
−d

c
+ y cot θ

)
y dθ

sin2 θ
. (125)

Interchanging the roles of a and d in the summation, we see that (125) can be alternatively
expressed as:∑

c≡c0 mod N
c>0

e(crξ1)
∫ π

0

∑(˜1)(
a b
c d

) e(dqξ1)f̂R

(
d

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
ν
(
−a

c
+ y cot θ

) y dθ

sin2 θ
,

(126)

where ν(x) =
∑

n∈Z
h(x + nN) (a function on R/NZ) and where

∑(˜1) is the same as
∑(1) (cf.

p. 16) but using R̃ := (d0 b0
c0 a0

) in place of R = (a0 b0
c0 d0

). Now by Lemma 6.3 we have, for any c and
θ appearing above:∑(˜1)(

a b
c d

) e(dqξ1)f̂R

(
d

c
− sin 2θ

2c2y
,
sin2 θ

c2y
, θ;η

)
ν
(
−a

c
+ y cot θ

)

	
{∫

R

∣∣∣∣f̂R(
u,

sin2 θ

c2y
, θ;η

)∣∣∣∣ du +
∫
R

∣∣∣∣ ∂2

∂u2
f̂R

(
u,

sin2 θ

c2y
, θ;η

)∣∣∣∣ du}

×
(
‖ν‖L1(R/NZ)

∑
	∈Z

(c, �cNqξ1 + ��)
1 + �2

+ ‖ν′′‖L1(R/NZ)σ(c)
√
c

)
.

Using (98) and writing v = sin2 θ
c2y , for any � � 0, we get:∫

R

∣∣∣∣ ∂	

∂u	
f̂R

(
u,

sin2 θ

c2y
, θ;η

)∣∣∣∣ du 	 ‖f‖C3m+�
0

‖η‖−mv−	+m
2

∫
R

(u2 + v2 + 1)−
m
2 du

	 ‖f‖C3m+�
0

‖η‖−m min

(( | sin θ|
c
√
y

)−2	+m

,

( | sin θ|
c
√
y

)2−2	−m
)
,

and thus

∑
	∈{0,2}

∫
R

∣∣∣∣ ∂	

∂u	
f̂R

(
u,

sin2 θ

c2y
, θ;η

)∣∣∣∣ du 	 ‖f‖C3m+2
0

‖η‖−m

⎧⎪⎨⎪⎩
(

| sin θ|
c
√
y

)m−4

if | sin θ|
c
√
y � 1(

| sin θ|
c
√
y

)2−m

if | sin θ|
c
√
y � 1.

Using also

∫ π

0

⎧⎪⎨⎪⎩
(

| sin θ|
c
√
y

)m−4

if | sin θ|
c
√
y � 1(

| sin θ|
c
√
y

)2−m

if | sin θ|
c
√
y � 1

⎫⎪⎬⎪⎭ y dθ

sin2 θ
	 ymin

(
(c
√
y)−1, (c

√
y)4−m

)
	 y3−m

2 c−1(y−
1
2 + c)5−m,
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we conclude that (125) is

	 ‖f‖C3m+2
0

‖η‖−my3−m
2

{
S1,0,0(h)

∞∑
c=1

c−1(y−
1
2 + c)5−m

∑
	∈Z

(c, �cNqξ1 + ��)
1 + �2

+ S1,0,2(h)
∞∑
c=1

(y−
1
2 + c)5−m σ(c)√

c

}
,

and by Lemmas 7.5 and 7.6 (using m � 7), this is

	 ‖f‖C3m+2
0

S1,0,2(h)‖η‖−m

⎧⎨⎩
∞∑
j=1

1
j2 + y−1/2j〈jqξ1〉

+ y
1
4−ε

⎫⎬⎭.

Adding this bound over R ∈ Γ
′
/Γ′ and η ∈ Bk, using

∑
r∈Zk ‖(qr)‖−m 	 ‖q‖k−m for every

q ∈ Zk \ {0}, and
∑

η∈Z2k\{0} ‖η‖−m < ∞ (these hold since m > 2k), we obtain the bound in
Proposition 8.7. This also completes the proof of Theorem 1.3. �

9. Application to a quantitative Oppenheim result

Our goal in this section is to prove Theorem 1.4, by making Marklof’s approach from [24]
effective. This will involve an application of Theorem 1.2 at a key step.

9.1. Set-up

Let H = {τ = u + iv ∈ C : v > 0}, the Poincaré upper half plane. Let k be a positive integer
and let S(Rk) be the Schwartz space of functions on Rk which, together with their derivatives,
decrease rapidly at infinity. A central role in the approach of [24] is played by the Jacobi theta
sum, Θf (τ, φ; ξ). It is defined by the following formula, for any f ∈ S(Rk), τ = u + iv ∈ H,
φ ∈ R and ξ = (ξ1

ξ2
) ∈ R2k:

Θf (τ, φ; ξ) = vk/4
∑

m∈Zk

fφ((m− ξ2)v
1/2) e( 1

2‖m− ξ2‖2u + m · ξ1), (127)

where, for φ in any interval νπ < φ < (ν + 1)π (ν ∈ Z), fφ is given by the formula

fφ(w) =
∫
Rk

Gφ(w,w′)f(w′) dw′,

with the integral kernel

Gφ(w,w′) = e

(
−k(2ν + 1)

8

)
| sinφ|−k/2e

[ 1
2 (‖w‖2 + ‖w′‖2) cosφ−w ·w′

sinφ

]
, (128)

while for φ = νπ (ν ∈ Z) we have fφ(w) = e(−kν
4 )f((−1)νw). The operators Uφ : f �→ fφ form

a 1-parameter group of unitary operators on L2(Rk); in particular, Uφ ◦ Uφ′
= Uφ+φ′

for any
φ, φ′ ∈ R (see [24, Sections 3–4]).

For any f, g ∈ S(Rk), the product Θf (τ, φ; ξ)Θg(τ, φ; ξ) depends only on φ mod 2π and may
thus be viewed as a function on G = SL(2,R) � R2k through the Iwasawa parameterization
(cf. (40))

(τ, φ, ξ) �→
((

1 u
0 1

)(√
v 0

0 1/
√
v

)(
cosφ − sinφ
sinφ cosφ

)
, ξ

)
, where τ = u + iv.
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By [24, Proposition 4.9], this function ΘfΘg ∈ C∞(G) is in fact left Γk invariant, where

Γk =
{((

a b
c d

)
,

(
abs
cds

)
+ m

)
:
(
a b
c d

)
∈ SL(2,Z), m ∈ Z2k

}
(129)

with s := t(1/2, . . . , 1/2) ∈ Rk. The group Γk is a finite index subgroup of SL(2,Z) � ( 1
2Z)2k,

and contains Γθ � Z2k as an index 3 subgroup, where Γθ is the theta group, that is,

Γθ =
{(

a b
c d

)
∈ SL(2,Z) : ab ≡ cd ≡ 0 mod 2

}
.

See [24, Lemmata 4.11 and 4.12].
For the proof of Theorem 1.4, we will eventually specialize to k = 2: The starting point for

the method developed in [24] is the following identity†, valid for any f, g ∈ S(R2), h ∈ L1(R),
T > 0 and ξ2 ∈ R2:∫

R

Θf

(
u + T−2i, 0;

(
0
ξ2

))
Θg

(
u + T−2i, 0;

(
0
ξ2

))
h(u) du

=
1
T 2

∑
m1∈Z2

∑
m2∈Z2

f
(
T−1(m1 − ξ2)

)
g(T−1(m2 − ξ2)) ĥ

(
− 1

2 Q

(
m1

m2

))
, (130)

where Q is the inhomogeneous quadratic form on R4 given by (9) with ξ2 = (αβ) ∈ R2, that is,

Q

(
x1

x2

)
= ‖x1 − ξ2‖2 − ‖x2 − ξ2‖2, ∀x1,x2 ∈ R2. (131)

The formula (130) follows by replacing Θf and Θg by their defining sums (cf. (127)) and
changing the order of summation and integration.

The key step in [24] is then to determine the limit of the left-hand side of (130) as
T → ∞, by using the invariance properties of the function ΘfΘg and an equidistribution
result as in Theorem 1.1 above (with ξ1 = 0); this is where we will apply our effective result,
Theorem 1.2, instead. A central difficulty in [24] comes from the fact that the theta functions
Θf ,Θg are unbounded; thus one needs to truncate the function ΘfΘg in the cusp before the
equidistribution result can be applied, and then bound the error caused by the truncation. In
fact it turns out that one picks up an explicit extra contribution from the part of the integral
in (130) over a tiny interval |u| 	 T−(1+ε), whereas the error caused by the truncation for the
remaining part of the integral can be proved to be appropriately small, provided that ξ2 is
Diophantine. The treatment of these matters in [24] is already in principle effective, and so our
work concerning the truncation error will essentially only consist in keeping more explicit track
on how the bounds in [24] depends on various parameters (see, in particular, Proposition 9.6).
Also, for the application of Theorem 1.2, we require precise bounds on derivatives of the
function ΘfΘg; this is worked out in Lemma 9.2.

9.2. Bounds for the derivatives of ΘfΘg

Although we will eventually specialize to k = 2, we will consider a general k ∈ Z+ as long as
this causes no extra work. We will use the same notation Sp,a,n as introduced in Section 1 also

†See [24, Section 2.3], where the identity (130) appears in the special case when f(x) ≡ ψ1(‖x‖2), g(x) ≡
ψ2(‖x‖2) and using a slightly different notation than in (130). Note that we write ĥ(s) =

∫
R
h(u)e(−su) du

in (130), in line with previous definitions in our paper, whereas a different normalization of ĥ is used in [24,
p. 423(top)].
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for the corresponding weighted Sobolev norm of a function f ∈ Cn(Rk) with k � 2; namely

Sp,a,n(f) =
∑
|γ|�n

‖(1 + ‖x‖)a ∂γf(x)‖Lp . (132)

Here, we use standard multi-index notation, that is, γ runs through k-tuples of nonnegative
integers, |γ| = γ1 + · · · + γk and ∂γ = ∂γ1

x1
· · · ∂γk

xk
. Note that if a(� 0) is an integer then (see,

for example, [10, Chapter 8.1, Exercise 1]),

Sp,a,n(f) �
∑
|β|�n

∑
|β′|�a

‖xβ′
∂βf(x)‖Lp �

∑
|β|�n

∑
|β′|�a

‖∂β(xβ′
f(x))‖Lp , (133)

where the implied constant may depend on p, a, n, k. In particular, for p = 2, combining (133)
with the Plancherel theorem, we have

S2,a,n(f) � S2,n,a(f̂), (134)

where f̂(y) =
∫
Rk f(x)e(−xy) dx is the Fourier transform of f . We also record the following

basic Sobolev embedding inequality which we will use several times: For any a ∈ R�0, n ∈ Z�0

and f ∈ S(Rk),

S∞,a,n(f) 	 S2,a,n+k/2�+1(f), (135)

where the implied constant may depend on k, a, n. The proof of (135) is completely
elementary: Set m := �k/2� + 1; then (1 + ‖x‖)−m ∈ L2, and so by Fourier inversion and
Cauchy–Schwarz,

‖f‖L∞ � ‖f̂‖L1 �
∥∥∥(1 + ‖x‖)m · f̂

∥∥∥
L2

∥∥∥(1 + ‖x‖)−m
∥∥∥

L2
	 S2,m,0(f̂) 	 S2,0,m(f). (136)

This proves (135) when a = n = 0. In the case of general a and n, one notes that S∞,a,n(f) 	∑
|γ|�n ‖(1 + ‖x‖2)a/2 · ∂γf‖L∞ , and then applies (136) to (1 + ‖x‖2)a/2 · ∂γf .
We will often work with the Sobolev norms S2,a,a on functions in Ca(Rk), and we introduce

the notation ‖ · ‖L2
a

for these. Thus, for any integer a � 0 and f ∈ Ca(Rk),

‖f‖L2
a

:= S2,a,a(f) =
∑
|β|�a

‖(1 + ‖x‖)a∂βf(x)‖L2 . (137)

Given f ∈ S(Rk), we view fφ(w) as a function on the space Rk+1, given by the co-ordinates
(w, φ). Thus, ∂βfφ(w) for β ∈ (Z�0)k+1 denotes ∂β1

w1
· · · ∂βk

wk
∂
βk+1
φ fφ(w). The following lemma

corresponds to [24, Lemma 4.3], but extended to arbitrary derivatives of fφ and with the
implied constant made more precise.

Lemma 9.1. Let A ∈ Z�0, β ∈ (Z�0)k+1 and a ∈ Z, a > A + k
2 + 4|β|. Then for any

f ∈ S(Rk), w ∈ Rk and φ ∈ R,

|∂βfφ(w)| 	A,β ‖f‖L2
a
(1 + ‖w‖)−A.

Proof. For φ in any interval νπ + 1
100 < φ < (ν + 1)π − 1

100 , ν ∈ Z, we use

∂βfφ(w) =
∫
Rk

(
∂βGφ(w,w′)

)
f(w′) dw′,
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with Gφ(w,w′) as in (128), and with ∂β acting on the k + 1 variables w1, . . . , wk, φ. One proves
by induction that

∂βGφ(w,w′) = Gφ(w,w′)
Pβ(w,w′, sinφ, cosφ)

(sinφ)2|β|
,

where Pβ is a polynomial in 2k + 2 variables, with complex coefficients which only depend on
k and β, and only containing terms wα1

1 · · ·wαk

k w′
1
αk+1 · · ·w′

k
α2k(sinφ)α2k+1(cosφ)α2k+2 with∑2k

1 αj � 2|β|. Integrating by parts n � 0 times with respect to w′
j for some j, it follows that

∂βfφ(w) =
e
(− 1

8k(2ν + 1)
)

| sinφ|k/2
(

sinφ

2πiwj

)n ∫
Rk

K(w,w′, φ) e
[
−w ·w′

sinφ

]
dw′

where

K(w,w′, φ) =

(
∂

∂w′
j

)n(
e

[ 1
2 (‖w‖2 + ‖w′‖2) cosφ

sinφ

]
Pβ(w,w′, sinφ, cosφ)

(sinφ)2|β|
f(w′)

)
and so

|K(w,w′, φ)| 	β,n (1 + ‖w‖)2|β|
n∑

	=0

(1 + ‖w′‖)2|β|+	

∣∣∣∣∣∣
(

∂

∂w′
j

)n−	

f(w′)

∣∣∣∣∣∣
for all w,w′ ∈ Rk and φ ∈ (νπ + 1

100 , (ν + 1)π − 1
100 ). If ‖w‖ � 1, then we apply the above with

n = A + 2|β| and j being the index for which |wj | = max(|w1|, . . . , |wk|); if ‖w‖ < 1, then we
instead use n = 0. The desired bound follows using the Cauchy–Schwarz inequality combined
with the fact that (1 + ‖w′‖)− k+ε

2 ∈ L2(Rk) for any ε > 0.
To treat the remaining values of φ, we use the fact that fφ+π

2
= e−

1
4πkiUφf̂ ; hence by what

we have already proved, |∂βfφ(w)| 	 ‖f̂‖L2
a
(1 + ‖w‖)−A for φ in any interval (ν − 1

2 )π + 1
100 <

φ < (ν + 1
2 )π − 1

100 , ν ∈ Z, and the desired bound follows using (134). �

Using Lemma 9.1, we now obtain bounds on arbitrary derivatives of the function
ΘfΘg ∈ C∞(G). Recall that we write

∑
ord(D)�m to denote a sum over all monomials D of

degree � m in the fixed basis X1, . . . , X3+2k of g (cf. (18)).

Lemma 9.2. Let f, g ∈ S(Rk). Let m and a be integers satisfying m � 0 and a > 3
2k + 6m +

1. Then for any (τ, φ, ξ) ∈ G with v = Im τ � 1
2 ,∑

ord(D)�m

∣∣(D(ΘfΘg)
)
(τ, φ; ξ)

∣∣ 	m ‖f‖L2
a
‖g‖L2

a
vm+ 1

2k. (138)

Next let A and a be integers satisfying A � 1 and a > 3
2k + 2A. Then for any (τ, φ, ξ) ∈ G with

v = Im τ � 1
2 ,∣∣∣∣∣∣(ΘfΘg)(τ, φ; ξ) − vk/2

∑
m∈Zk

fφ((m− ξ2)v
1/2)gφ((m− ξ2)v1/2)

∣∣∣∣∣∣ 	A ‖f‖L2
a
‖g‖L2

a
v−A,

(139)

and if furthermore ξ2 ∈ n + [− 1
2 ,

1
2 ]k and n ∈ Zk, then∣∣∣(ΘfΘg)(τ, φ; ξ) − vk/2fφ((n− ξ2)v

1/2)gφ((n− ξ2)v1/2)
∣∣∣ 	A ‖f‖L2

a
‖g‖L2

a
v−A. (140)
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Proof. Recall that we write τ = u + iv. We have

ΘfΘg(τ, φ; ξ) = vk/2
∑

m1,m2∈Zk

fφ((m1 − ξ2)v
1/2)gφ((m2 − ξ2)v1/2)

× e
(

1
2 (‖m1 − ξ2‖2 − ‖m2 − ξ2‖2)u + (m1 −m2) · ξ1

)
= vk/2

∑
m1,m2∈Zk

fφ((m1 − ξ2)v
1/2)gφ((m2 − ξ2)v1/2)

× e
(

1
2 (m1 −m2)((m1 + m2 − 2ξ2)u + 2ξ1)

)
=

∑
m,m′∈Zk

vk/2fφ((m− ξ2)v
1/2)gφ((m−m′ − ξ2)v1/2) e

(
m′ · ((m− 1

2m
′ − ξ2)u + ξ1)

)
:=

∑
m,m′∈Zk

Fm,m′(τ, φ; ξ),

say. Note that Fm,0(τ, φ; ξ) = vk/2fφ((m− ξ2)v1/2)gφ((m− ξ2)v1/2).
In the (u + iv, φ; ξ)-co-ordinates with ξ = t(ξ1, . . . , ξ2k), the Lie derivatives X1, . . . , X3+2k

are given by

X1 = v(cos 2φ)∂u − v(sin 2φ)∂v − (sinφ)2∂φ;

X2 = v(cos 2φ)∂u − v(sin 2φ)∂v + (cosφ)2∂φ;

X3 = 2v(sin 2φ)∂u + 2v(cos 2φ)∂v + (sin 2φ)∂φ;⎧⎨⎩X3+	 =
(

v cosφ+u sinφ√
v

)
∂ξ� +

(
sinφ√

v

)
∂ξk+�

X3+k+	 =
(

−v sinφ+u cosφ√
v

)
∂ξ� +

(
cosφ√

v

)
∂ξk+�

(� ∈ {1, 2, . . . , k}).

(The formulae for X1, X2, X3 are standard and may, for example, easily be derived using the
formulae in the proof of [38, Lemma 6.1] and X2 −X1 =

(
0 −1
1 0

)
= ∂φ. Regarding X3+	 and

X3+k+	, cf. (39).) Using the automorphy of ΘfΘg, it is enough to prove (138) when |u| � 1
2

and ‖ξ‖ 	 1. Using the above formulae we then get, for any monomial D in X1, . . . , X3+2k

with d1 factors in {X1, X2, X3} and d2 factors in {X4, . . . , X3+2k}:
|DFm,m′(τ, φ; ξ)| 	 vd1+

1
2d2

∑
|α|�d1

∑
|β|�d2

∣∣∣∂α1
u ∂α2

v ∂α3
φ ∂β1

ξ1
· · · ∂β2k

ξ2k
Fm,m′(u + iv, φ; ξ)

∣∣∣, (141)

where α runs through multi-indices in (Z�0)3 and β runs through multi-indices in (Z�0)2k.
Next, from the definition of Fm,m′(τ, φ; ξ), by a standard computation, we obtain∣∣∣∂α1

u ∂α2
v ∂α3

φ ∂β1
ξ1

· · · ∂β2k
ξ2k

Fm,m′(u + iv, φ; ξ)
∣∣∣ 	 (1 + ‖m‖ + ‖m′‖)2|α|+|β|

v(k+|β|)/2

×
∑

|β′|+|β′′|�|α|+|β|

∣∣∣(∂β′
fφ)((m− ξ2)v

1/2)(∂β′′
gφ)((m−m′ − ξ2)v

1/2)
∣∣∣,

where β′ and β′′ run through multi-indices in (Z�0)k+1, with ∂β′
and ∂β′′

having the same
meaning as in Lemma 9.1. Applying now Lemma 9.1, with any fixed integers A and a subject
to A � 0 and a > A + k

2 + 4(d1 + d2), we get

|DFm,m′(τ, φ; ξ)| 	 ‖f‖L2
a
‖g‖L2

a
vd1+d2+

1
2k(1 + ‖m‖ + ‖m′‖)2d1+d2

× (1 + ‖m− ξ2‖v1/2)
−A

(1 + ‖m−m′ − ξ2‖v1/2)−A.
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Let d = d1 + d2 = deg(D). Using 1 + ‖m‖ + ‖m′‖ 	 (1 + ‖m‖)(1 + ‖m−m′‖) we obtain∣∣(D(ΘfΘg)
)
(τ, φ; ξ)

∣∣ 	 ‖f‖L2
a
‖g‖L2

a
vd+

1
2k

∑
m,m′∈Zk

(1 + ‖m‖)2d−A(1 + ‖m−m′‖)2d−A.

Taking here A = 2d + k + 1, we obtain (138).
For the remaining bounds, we apply Lemma 9.1 with fixed integers A′ � 0 and a > A′ + k

2 .
For any (m,m′) satisfying ‖m− ξ2‖ + ‖m−m′ − ξ2‖ � 1

2 this leads to

|Fm,m′(τ, φ; ξ)| = vk/2
∣∣∣fφ((m− ξ2)v

1/2)gφ((m−m′ − ξ2)v
1/2)

∣∣∣
	 ‖f‖L2

a
‖g‖L2

a
v(k−A′)/2(1 + ‖m− ξ2‖)−A′

(1 + ‖m−m′ − ξ2‖)−A′
.

In particular, this holds for all (m,m′) with m′ �= 0. Hence, taking A′ = k + 2A, we obtain
(139). Similarly, if ξ2 ∈ n + [− 1

2 ,
1
2 ]k, then we note that ‖m− ξ2‖ + ‖m−m′ − ξ2‖ � 1

2 holds
for all (m,m′) except (m,m′) = (n, 0), and we thus obtain (140). �

9.3. Bounds on the truncation error

Let us fix, once and for all, a C∞ function g1 : R>0 → [0, 1] satisfying g1|(0,1] ≡ 0 and
g1|[2,∞) ≡ 1. For any Y � 1, we define gY : R>0 → [0, 1], gY (y) := g1(y/Y ), so that gY |(0,Y ] ≡ 0
and gY |[2Y,∞) ≡ 1. Next, we define the function XY : G → R�0 through

XY (τ, φ; ξ) = XY (τ) =
∑

γ∈(±Γ
′
∞)\ SL(2,Z)

gY (Im γτ). (142)

Note here that (±Γ
′
∞) =

{±(
1 n
0 1

)
: n ∈ Z

}
(cf. (33)). The function XY is smooth and SL(2,Z)-

invariant. For any τ ∈ H, there is (since Y � 1) at most one term in the sum in (142) which
gives a non-zero contribution. In particular, XY (g) ∈ [0, 1] for all g ∈ G. Also, in terms of the
cuspidal height function Y (cf. (3)), we have XY (g) = 0 whenever Y(g) � Y and XY (g) = 1
whenever Y(g) � 2Y .

Lemma 9.3. For any Y � 1 and any monomial D in X1, . . . , X3+2k of degree � m, DXY is
a bounded function on G with ‖DXY ‖L∞ 	m 1.

Proof. Since XY (and thus (DXY )) is SL(2,Z)-invariant, it suffices to consider points (τ, φ, ξ)
with τ = u + iv belonging to the standard fundamental domain for SL(2,Z), that is, |u| � 1

2
and |τ | � 1. Then we may in fact assume v > 1, since otherwise (τ, φ, ξ) is not in the support
of XY . However, for v > 1 we have

XY (τ, φ; ξ) = gY (v) = g1

(
Im

(
Y −1/2 0

0 Y 1/2

)
(τ)

)
.

Since D is left invariant, this implies that ‖DXY ‖L∞ = ‖DX̃1‖L∞ , where X̃1 is the function
X̃1 : G → [0, 1], (τ, φ, ξ) �→ g1(Im τ). This L∞-norm is clearly finite, and independent of Y . �

For ξ = (ξ1
ξ2

) ∈ R2k and γ =
(∗ ∗
c d

) ∈ SL(2,Z), we introduce the short-hand notation
ξγ := cξ1 + dξ2. We also write vγ := Im γτ when τ = u + iv ∈ H. Given Y � 1 and f ∈ C(Rk)
with S∞,A,0(f) < ∞ for some A > k, we define the function Ff,Y : G → C by (cf. [24, 6.2])

Ff,Y (τ, φ; ξ) = Ff,Y (τ ; ξ) :=
∑

γ∈Γ
′
∞\ SL(2,Z)

∑
m∈Zk

f
(
(ξγ + m)v1/2

γ

)
vk/2γ gY (vγ). (143)
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This series is absolutely convergent, and Ff,Y is left Γ invariant. In fact, we will only use Ff,Y

for functions f � 0; then of course Ff,Y � 0.
As in [23, 6.3; 24, 6.4], we have the explicit formula

Ff,Y (τ ; ξ) =
∑

m∈Zk

{
f
(
(ξ2 + m)v1/2

)
+ f

(
(−ξ2 + m)v1/2

)}
vk/2gY (v)

+
∑

m∈Zk

{
f

(
(ξ1 + m)

v1/2

|τ |
)

+ f

(
(−ξ1 + m)

v1/2

|τ |
)}

vk/2

|τ |k gY

(
v

|τ |2
)

(144)

+
∑

(c,d)∈Z
2

gcd(c,d)=1
c,d 
=0

∑
m∈Zk

f

(
(cξ1 + dξ2 + m)

v1/2

|cτ + d|
)

vk/2

|cτ + d|k gY
(

v

|cτ + d|2
)
.

The following lemma shows that for an appropriate choice of f∗, the function Ff∗,Y controls
the error when truncating ΘfΘg at height � Y .

Lemma 9.4. Let f, g ∈ S(Rk) and let A and a be integers satisfying A � 1 and a > 3
2k + 2A.

Set f∗(w) = supφ∈R

∣∣fφ( 1
2w)gφ( 1

2w)
∣∣. Then for any Y � 1,

XY (τ)
∣∣(ΘfΘg)(τ, φ; ξ)

∣∣ � Ff∗,Y (τ ; 2ξ) + OA

(‖f‖L2
a
‖g‖L2

a
Y −A

)
, ∀(τ, φ, ξ) ∈ G. (145)

(Here, Ff∗,Y (τ ; 2ξ) is well defined, since S∞,A′,0(f∗) < ∞ for all A′ > 0 by Lemma 9.1.)

Proof. See [24, 8.4.3]. For any (τ, φ, ξ), with τ lying in the standard fundamental domain
F for SL(2,Z), F = {τ = u + iv ∈ H : |u| � 1

2 , |τ | � 1}, it follows from the definition of f∗

together with (139) in Lemma 9.2 that

∣∣(ΘfΘg)(τ, φ; ξ)
∣∣ � vk/2

∑
m∈Zk

f∗
(
2(m− ξ2)v

1/2
)

+ OA

(‖f‖L2
a
‖g‖L2

a
v−A

)
.

Multiplying this inequality with gY (v) and comparing with (144), we obtain that (145) holds
for all (τ, φ, ξ) ∈ G with τ ∈ F , since XY (τ) = gY (v) for all such τ . But both sides in (145)
are functions of (τ, φ, ξ) ∈ G which are Γk left invariant (for the function F̂f∗,Y (τ ; ξ) :=
Ff∗,Y (τ ; 2ξ) this is noted in [23, 6.9-10; 24, 7.5-6]); hence the inequality holds for all
(τ, φ, ξ) ∈ G. �

The following lemma is a more explicit version of [23, Lemma 6.5]. Recall that our κ
corresponds to ‘κ− 1’ in [23].

Lemma 9.5. Let A > k. Then for any [κ; c]-Diophantine α ∈ Rk, and any D,T � 1,

D∑
d=1

∑
m∈Zk

(1 + T‖dα + m‖)−A 	k,A

⎧⎪⎨⎪⎩
DAκ+1(cT )−A if Dκ+A−1 � cT

1 if Dκ � cT � Dκ+A−1

D(cT )−1/κ if cT � Dκ.

(146)

Proof. Since α is [κ; c]-Diophantine, ‖dα + m‖ � cd−κ for all integers d � 1 and m ∈ Zk.
Also for each fixed d, there is at most one m ∈ Zk in the box −dα + (− 1

2 ,
1
2 )k, and in particular
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there is at most one m ∈ Zk with ‖dα + m‖ < 1
2 . Hence, for d ∈ {1, . . . , D},∑

m∈Zk

(1 + T‖dα + m‖)−A 	k,A (1 + Tcd−κ)−A + T−A 	A

(
Dκ

cT

)A

,

where in the last inequality, we use the fact that Dκ/c > 1 (note that α being [κ; c]-Diophantine
implies c � 1

2 ). Adding the above bound over d = 1, . . . , D, we obtain that the left-hand side
of (146) is 	 DAκ+1(cT )−A.

To prove another bound on the same sum, for any fixed b ∈ Z, we start by considering the
set

Mb =
{
T ((b + d)α + m) : d ∈ Z, 0 � d � (cT )1/κ, m ∈ Zk

}
. (147)

The distance between any two distinct points in this set is bounded from below by

min
{
T‖qα + n‖ : q ∈ Z, n ∈ Zk, |q| � (cT )1/κ, [q �= 0 or n �= 0]

}
� min

(
T, min

0<q�(cT )1/κ
Tcq−κ

)
� 1,

where the first inequality holds since α is [κ; c]-Diophantine. (Note also that there is no double
representation in (147), that is, T ((b + d)α + m) is an injective function of 〈d,m〉 ∈ Z × Zk.)
Hence, for any R � 1, Mb contains 	k Rk points with ‖x‖ � R, and so by a standard dyadic
decomposition we have ∑

x∈Mb

(1 + ‖x‖)−A 	k,A 1. (148)

Now by appropriate choices of b, the sum in (146) can be majorized by 1 + D(cT )−1/κ sums
as in (148).

We have thus proved that the left-hand side of (146) is always 	 DAκ+1(cT )−A, and also
that it is 	 1 + D(cT )−1/κ. Splitting into cases depending on which bound is strongest, we
obtain the statement in (146). �

The following proposition is an effective version of [24, Proposition 6.5], and is the central
result needed to bound the error caused by truncating the function ΘfΘg in the integral (130).
We here specialize to the case k = 2; the case k � 3 involves in principle the same computations,
however, there are several differences in the detailed analysis (cf. [23, Proposition 6.4]).

Proposition 9.6. Let k = 2 and let ξ2 ∈ R2 be [κ; c0]-Diophantine. Let Y � 1, 0 < v � Y ,
A > 2, B � 1, and H � 1. Then for any f ∈ C(R2) with S∞,A,0(f) < ∞, and any bounded
function h : R → R with support contained in [−H,H],∫

|u|>Bv

Ff,Y

(
u + iv;

(
0
ξ2

))
h(u) du

	A S∞,A,0(f)‖h‖L∞

{
B−1 + H

(
H−1c−1

0 v
1
2

) 1
κ+1+A−1

+ Hκc
− 1

κ
0 Y − 1

2κ

}
. (149)

We remark that the integral in (149) vanishes if Y −1 � v � Y ; hence the bound in (149) is
mainly relevant when v < Y −1.

Proof. Without loss of generality, let us assume that f is positive and even, that is, f � 0
and f(−w) = f(w). Recall the expansion (144), and note that the terms with gY (v) vanish
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since v � Y ; hence we are left with

Ff,Y

(
τ ;

(
0
ξ2

))
= 2

∑
m∈Z2

f

(
m

v1/2

|τ |
)

v

|τ |2 gY
(

v

|τ |2
)

+ 2
∑

(c,d)∈Z
2

gcd(c,d)=1
c>0,d 
=0

∑
m∈Z2

f

(
(dξ2 + m)

v1/2

|cτ + d|
)

v

|cτ + d|2 gY
(

v

|cτ + d|2
)
. (150)

The contribution from the first sum in (150) to the integral in (149) is∫
|u|>Bv

∑
m∈Z2

f

(
m

v1/2

|τ |
)

v

|τ |2 gY
(

v

|τ |2
)
h(u) du

=
∫
|t|>B

∑
m∈Z2

f

(
m

v1/2(t2 + 1)1/2

)
1

t2 + 1
gY

(
1

v(t2 + 1)

)
h(vt) dt. (151)

Using |f(x)| � S∞,A,0(f)(1 + ‖x‖)−A and A > 2, we have∑
m∈Z2

f

(
m

v1/2(t2 + 1)1/2

)
	A S∞,A,0(f)

uniformly over all v, t subject to v−1/2(t2 + 1)−1/2 � 1; and for all other pairs v, t the factor
gY

(
1

v(t2+1)

)
vanishes (since Y � 1). Hence, (151) is

	A S∞,A,0(f)‖h‖L∞

∫
|t|>B

dt

t2 + 1
	 S∞,A,0(f)‖h‖L∞B−1.

The contribution from the remaining double sum in (150) to the integral in (149) is bounded
above by (we drop the condition |u| > Bv in the integral):∫

R

∑
(c,d)∈Z

2

gcd(c,d)=1
c>0,d 
=0

∑
m∈Z2

f

(
(dξ2 + m)

v1/2

|cτ + d|
)

v

|cτ + d|2 gY
(

v

|cτ + d|2
)
h(u) du

=
∑

(c,d)∈Z
2

gcd(c,d)=1
c>0,d 
=0

1
c2

∫
R

∑
m∈Z2

f

(
dξ2 + m√
c2v(t2 + 1)

)
gY

(
1

c2v(t2 + 1)

)
h

(
vt− d

c

)
dt

t2 + 1
, (152)

where we changed the order of integration and summation and then substituted u = vt− d
c .

The gY -factor in the above expression vanishes unless t belongs to the set

Ic =
{
t ∈ R :

1
c2v(t2 + 1)

> Y

}
=

{
t ∈ R :

√
t2 + 1 < (vY )−

1
2 c−1

}
.

Furthermore, the factor h(vt− d
c ) vanishes unless |vt− d

c | � H, and for t ∈ Ic this forces∣∣∣∣dc
∣∣∣∣ � H +

√
v

c
√
Y

� H + 1 � 2H.



EFFECTIVE EQUIDISTRIBUTION AND APPLICATION TO QUADRATIC FORMS 191

Also using f(x) � S∞,A,0(f)(1 + ‖x‖)−A, we conclude that the expression in (152) is

� S∞,A,0(f)‖h‖L∞

∞∑
c=1

1
c2

∫
Ic

∑
0<|d|�2Hc

∑
m∈Z2

(
1 +

‖dξ2 + m‖√
c2v(t2 + 1)

)−A
dt

t2 + 1
.

Applying Lemma 9.5 with

D = 2Hc and T =
1√

c2v(t2 + 1)
,

and both α = ξ2 and α = −ξ2, we get

	A S∞,A,0(f)‖h‖L∞

∞∑
c=1

c−2

(∫
I1,c

DAκ+1(c0T )−A dt

t2 + 1
+

∫
I2,c

dt

t2 + 1

+
∫
I3,c

D(c0T )−δ dt

t2 + 1

)
, (153)

where δ := 1/κ and

I1,c =
{
t ∈ Ic :

√
t2 + 1 � c0(v

1
2 c)−1D−(κ+A−1)

}
;

I2,c =
{
t ∈ Ic : c0(v

1
2 c)−1D−(κ+A−1) <

√
t2 + 1 � c0(v

1
2 c)−1D−κ

}
;

I3,c =
{
t ∈ Ic : c0(v

1
2 c)−1D−κ �

√
t2 + 1

}
.

We discuss the three integrals in (153) one by one. First, note that I1,c �= ∅ implies

c � C1 :=
(
(2H)−(κ+A−1)c0v

− 1
2
)1/(κ+1+A−1), and for each such c, t ∈ I1,c implies

√
t2 + 1 �

(C1/c)κ+1+A−1
. Hence,

∞∑
c=1

c−2

∫
I1,c

DAκ+1(c0T )−A dt

t2 + 1

�
∑

1�c�C1

c−2 ·DAκ+1c−A
0 v

A
2 cA

∫
I1,c

(t2 + 1)
A
2 −1 dt

	A

∑
1�c�C1

c−2 ·DAκ+1c−A
0 v

A
2 cA(C1/c)

(κ+1+A−1)(A−1)

= (2H)κ+A−1
c−1
0 v

1
2

∑
1�c�C1

cκ+A−1−1 	 (2H)κ+A−1
c−1
0 v

1
2Cκ+A−1

1 = C−1
1 .

Turning to the integral over I2,c, the fact that t ∈ I2,c forces
√
t2 + 1 > (C1/c)κ+1+A−1

, with
C1 as above. Therefore, we see that

∞∑
c=1

c−2

∫
I2,c

dt

t2 + 1
�

∑
1�c�C1

c−2(C1/c)−(κ+1+A−1) +
∑
c>C1

c−2 	 C−1
1 .
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Finally, for the integral over I3,c we have, using only I3,c ⊂ Ic,

∞∑
c=1

c−2

∫
I3,c

D(c0T )−δ dt

t2 + 1
� 2Hc−δ

0 v
δ
2

∫
R

⎛⎝ ∑
1�c<(vY (t2+1))−1/2

cδ−1

⎞⎠(t2 + 1)
δ
2−1 dt

	 Hc−δ
0 v

δ
2

∫
R

(vY (t2 + 1))−
δ
2

δ
(t2 + 1)

δ
2−1 dt 	 Hκc−δ

0 Y − δ
2 .

Hence, we obtain the bound in (149). �

Next, we note that Proposition 9.6 can be extended in a straightforward manner to the case
of functions h which do not have compact support but decay appropriately at infinity:

Corollary 9.7. Let ξ2 ∈ R2 be [κ; c0]-Diophantine. Let Y � 1, 0 < v � Y , A > 2 and
B � 1. Then for any f ∈ C(R2) with S∞,A,0(f) < ∞ and any function h : R → R with
S∞,2,0(h) < ∞,∫

|u|>Bv

Ff,Y

(
u + iv;

(
0
ξ2

))
h(u) du

	A S∞,A,0(f)S∞,2,0(h)
{
B−1 +

(
c−1
0 v

1
2

) 1
κ+1+A−1

+ κc
−1/κ
0 Y − 1

2κ

}
. (154)

Proof. Decompose the function h as h = h0 + h1 + · · · where h0 = h · χ[−1,1] and hj = h ·(
χ[−2j ,−2j−1) + χ(2j−1,2j ]

)
for j � 1; then apply Proposition 9.7 to bound the contribution from

each function hj , using supphj ⊂ [−2j , 2j ] and ‖hj‖L∞ 	 S∞,2,0(h)2−2j . �

9.4. Proof of Theorem 1.4

We are now ready to give the proof of Theorem 1.4. The first step is to give an effective rate
for the convergence of the integral in (130) to its limit; this is obtained in Proposition 9.10.
The proof of this proposition is divided into two lemmas, Lemma 9.8 which concerns the part
of the integral where u is not very near zero, and Lemma 9.9 which concerns the remaining
part. These two lemmas are (in principle) effective versions of [24, Corollary 7.4] and [24,
Lemma 8.3], respectively.

Throughout this section, we let Γ = Γ(2) � Z4, and G = SL(2,R) � (R2)⊕2. Recall that
ΘfΘg is a left Γ2 invariant function on G, with Γ2 as in (129); thus in particular, it is left
invariant under Γ = Γ(2) � Z4. As always, we let μ be the probability measure on Γ\G induced
by an appropriately normalized Haar measure on G (which we also denote by μ).

Lemma 9.8. Let f, g ∈ S(R2) and h ∈ C2(R), and assume S∞,3,2(h) < ∞. Let ξ2 ∈ R2 be
[κ; c]-Diophantine. Then for any v ∈ (0, 1] and any real number B subject to

1 � B � 1
2 v

− 1
2

(
1
4 δ6,ξ2

(
v−

1
2

) 1
2
) κ

1+61κ

, (155)

we have∣∣∣∣∣
∫
|u|>Bv

Θf

(
u + iv, 0;

(
0
ξ2

))
Θg

(
u + iv, 0;

(
0
ξ2

))
h(u) du−

∫
Γ\G

ΘfΘg dμ

∫
R

h du

∣∣∣∣∣
	 ‖f‖L2

167
‖g‖L2

167
S∞,3,2(h)

(
κc−

1
κ δ6,ξ2

(
v−

1
2

) 1
127 κ

+ B−1

)
. (156)
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Remark 12. As will be seen in the proof, the (quite small) power 1
127κ which we obtain in

(156) depends strongly on which Cm
a -norm of the test function (that is, F̃ below) is required

to bound in the effective equidistribution result of Theorem 1.2. Since we did not make any
effort to optimize the a and m in Theorem 1.2, we do not attempt to optimize the decay rate
with respect to v in Lemma 9.8 nor in Lemma 9.9 or Proposition 9.10. We instead focus on
giving results which are simple to state, yet explicit.

Proof. Let F = ΘfΘg. Also, for Y � 1 a real number which we will choose below (cf. (161)),
let F̃ = (1 −XY ) · F , that is,

F̃ (τ, φ, ξ) = (1 −XY (τ)) · (ΘfΘg)(τ, φ; ξ).

Then both F and F̃ are Γ2 left invariant functions on G; in particular, they are left invariant
under Γ = Γ(2) � Z4. Our choice of Y will be such that

Y � 1
2(B2 + 1)v

. (157)

Then for all u with |u| � Bv, we have

Im
((

0 −1
1 0

)
(u + iv)

)
=

v

u2 + v2
� 1

(1 + B2)v
� 2Y � 2, and thus XY (u + iv) = 1

(cf. the discussion below (142)). Hence,
∫
|u|>Bv

F̃ (u + iv, 0; ξ)h(u) du =
∫
R
F̃ (u +

iv, 0; ξ)h(u) du, and so by Theorem 1.2, applied with β = 6, m = 27 and a = 5/2, we
have ∫

|u|>Bv

F̃

(
u + iv, 0;

(
0
ξ2

))
h(u) du

=
∫

Γ\G
F̃ dμ

∫
R

h(u) du + Oε

(
‖F̃‖C27

5/2
S∞,3,2(h)

(
δ6,ξ2

(v−
1
2 ) + v

1
4−ε

))
. (158)

In order to bound ‖F̃‖C27
5/2

, we apply Lemma 9.3 and (138) in Lemma 9.2, together with the

fact that F and F̃ are Γ2-invariant. It follows that for any integer a > 4 + 6 · 27 = 166,∑
ord(D)�27

∣∣∣(DF̃ )(M, ξ)
∣∣∣ 	 ‖f‖L2

a
‖g‖L2

a
Y(M)28, ∀(M, ξ) ∈ G.

Hence, since the support of F̃ is contained in {Y(M) � 2Y },
‖F̃‖C27

5/2
	 ‖f‖L2

a
‖g‖L2

a
Y 61/2.

Next, we bound the error caused by replacing F̃ by F in the two integrals
∫
Γ\G F̃ dμ and∫

|u|>Bv
F̃
(
u + iv, 0; ( 0

ξ2
)
)
h(u) du in (158). First note that by Lemma 9.4, we have∣∣∣F (τ, φ; ξ) − F̃ (τ, φ; ξ)

∣∣∣ � Ff∗,Y (τ ; 2ξ) + O
(
‖f‖L2

6
‖g‖L2

6
Y −1

)
, ∀(τ, φ; ξ) ∈ G, (159)

with f∗(w) := supφ∈R

∣∣fφ( 1
2w)gφ( 1

2w)
∣∣. Hence,∣∣∣∣∣

∫
|u|>Bv

F̃

(
u + iv, 0;

(
0
ξ2

))
h(u) du−

∫
|u|>Bv

F

(
u + iv, 0;

(
0
ξ2

))
h(u) du

∣∣∣∣∣
�

∫
|u|>Bv

Ff∗,Y

(
u + iv;

(
0

2ξ2

))
|h(u)| du + O

(
‖f‖L2

6
‖g‖L2

6
‖h‖L1 Y −1

)
.
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Note that since ξ2 is [κ; c]-Diophantine, 2ξ2 is [κ; 2−κc]-Diophantine. Hence, applying
Corollary 9.7 with A = 3, and noticing that S∞,3,0(f∗) 	 ‖f‖L2

4
‖g‖L2

4
by Lemma 9.1, we get∫

|u|>Bv

Ff∗,Y

(
u + iv;

(
0

2ξ2

))
|h(u)| du

	 ‖f‖L2
4
‖g‖L2

4
S∞,2,0(h)

{
B−1 +

(
c−1v

1
2

)1/(κ+ 4
3 )

+ κ c−
1
κY − 1

2κ

}
.

Also by (159) we have∫
Γ\G

∣∣∣F − F̃
∣∣∣ dμ �

∫
Γ\G

Ff∗,Y (τ ; 2ξ) dμ(τ, φ; ξ) + O
(
‖f‖L2

6
‖g‖L2

6
Y −1

)
.

Here, one computes, by a standard unfolding argument (cf. [23, 6.2]),∫
Γ\G

Ff∗,Y (τ ; 2ξ) dμ =
∫

Γ\G
Ff∗,Y (τ ; ξ) dμ =

3
πY

∫ ∞

0

g1(y)
dy

y2

∫
R2

f∗ dw 	 ‖f‖L2
4
‖g‖L2

4
Y −1.

We combine the above bounds with (158), where we also use the fact that δβ,ξ2
(T ) � T−1

(∀T � 1), which follows by just considering the terms corresponding to r = ±e1 and j = 1 in
(5). We then get, with a = 167:∣∣∣∣∣

∫
|u|>Bv

F

(
u + iv, 0;

(
0
ξ2

))
h(u) du−

∫
Γ\G

F dμ

∫
R

h du

∣∣∣∣∣
	ε ‖f‖L2

a
‖g‖L2

a
S∞,3,2(h) δ6,ξ2

(v−
1
2 )

1
2−2ε Y

61
2 + ‖f‖L2

6
‖g‖L2

6
‖h‖L1Y −1 (160)

+ ‖f‖L2
4
‖g‖L2

4
S∞,2,0(h)

{
B−1 +

(
c−1v

1
2

)1/(κ+ 4
3 )

+ κ c−
1
κY − 1

2κ

}
.

In order to minimize the order of magnitude of the maximum of δ6,ξ2
(v−

1
2 )

1
2−2εY

61
2 and

Y − 1
2κ , we now make the choice

Y :=
(

1
3 δ6,ξ2

(v−
1
2 )

1
2−2ε

)− 2κ
1+61κ

. (161)

Because of the factor 1
3 in this expression, we are guaranteed to have Y � 1, as required

above. Indeed, one verifies
∑

r∈Z2\{0} ‖r‖−6
∑∞

j=1 j
−2 < 9; hence δ6,ξ2

(T ) < 9 for all T � 1
(cf. (6)). Furthermore, our assumption (155) ensures that (157) is fulfilled, so long as 92ε � 4

3 .

Note also that Y − 1
2κ � Y −1 (since κ � 1

2 ) and
(
c−1v

1
2
)1/(κ+ 4

3 ) 	 κ c−
1
κY − 1

2κ (since κ � 1
2 ,

0 < c < 2−1/2 < 1 and δ6,ξ2
(v−

1
2 )

1
2−2ε � v

1
4−ε � v

1
4 ). Finally, we take ε = 1

508 and note that
we then have (1

2 − 2ε) 1
1+61κ � 1

127κ , since κ � 1
2 ; also 92ε � 4

3 as required above. Hence, the
bound (156) now follows from (160). �

Lemma 9.9. Suppose f, g ∈ S(R2). Let h ∈ C1(R) with h and h′ bounded. Then for any
ξ = ( 0

ξ2
), v ∈ (0, 1] and B ∈ [1, v−1/2], we have∫

|u|<Bv

Θf (u + iv, 0; ξ)Θg(u + iv, 0; ξ)h(u) du = λf,g h(0) + O
(
‖f‖L2

6
‖g‖L2

6
S∞,0,1(h)B−1

)
,

where

λf,g =
∫ ∞

0

(∫ 2π

0

f(r cos ζ, r sin ζ) dζ
)(∫ 2π

0

g(r cos ζ, r sin ζ) dζ
)
r dr. (162)



EFFECTIVE EQUIDISTRIBUTION AND APPLICATION TO QUADRATIC FORMS 195

Proof. Recall that the function ΘfΘg is left Γ2 invariant; in particular, it is invariant under
left multiplication by

((
0 −1
1 0

)
,0

) ∈ Γ2, and so

Θf (τ, 0; ξ)Θg(τ, 0; ξ) = Θf

(
−1
τ
, arg τ ;

(−ξ2

0

))
Θg

(
−1
τ
, arg τ ;

(−ξ2

0

))
,

for all τ = u + iv ∈ H. By (140) in Lemma 9.2 (applied with A = 1), if Im(−1/τ) � 1
2 , then

the last expression equals

farg τ (0)garg τ (0)
v

|τ |2 + O

(
‖f‖L2

6
‖g‖L2

6

|τ |2
v

)
.

Note that |u| � v1/2 � 1 implies Im(−1/τ) � 1
2 , that is, the above holds for all τ ∈ H with

|u| � v1/2 � 1. Hence, we get∫
|u|<Bv

Θf (u + iv, 0; ξ)Θg(u + iv, 0; ξ)h(u) du

=
∫
|u|<Bv

v

|τ |2 farg τ (0)garg τ (0)h(u) du + O
(
‖f‖L2

6
‖g‖L2

6
‖h‖L∞B3v2

)
.

Using polar co-ordinates we get (cf. [24, p. 457])

farg τ (0)garg τ (0) =
|τ |2
v2

π2 ψ̂1

( u

2v

)
ψ̂2

( u

2v

)
,

where ψ1(r) := 1
2π

∫ 2π

0
f
(√

r(cos ζ, sin ζ)
)
dζ, ψ2(r) := 1

2π

∫ 2π

0
g
(√

r(cos ζ, sin ζ)
)
dζ, and

ψ̂j(u) :=
∫ ∞
0

e(ur)ψj(r) dr. Therefore, using also h(u) = h(0) + O
(‖h′‖L∞ |u|),∫

|u|<Bv

v

|τ |2 farg τ (0)garg τ (0)h(u) du =
π2h(0)

v

∫
|u|<Bv

ψ̂1

( u

2v

)
ψ̂2

( u

2v

)
du

+ O

(
‖h′‖L∞

v

∫
|u|<Bv

|u|
∣∣∣∣ψ̂1

( u

2v

)
ψ̂2

( u

2v

)∣∣∣∣ du
)
. (163)

To bound the last error term, first replace the integration variable u by 2vu; then use the
fact that by integration by parts we have |ψ̂j(u)| 	 ∫ ∞

0

(|ψj | + |ψ′
j |
)
dr · min(1, |u|−1). Here,∫ ∞

0
|ψ1| dr � 1

π‖f‖L1 , while∫ ∞

0

|ψ′
1(r)| dr � 1

2π

∫ ∞

0

∫ 2π

0

(∣∣(∂x1f)
(√

r(cos ζ, sin ζ)
)∣∣ +

∣∣(∂x2f)
(√

r(cos ζ, sin ζ)
)∣∣) dζ dr

2
√
r

=
1
2π

∫
R2

(|(∂x1f)(x)| + |(∂x2f)(x)|) dx

‖x‖ 	 S∞,0,1(f) + S1,0,1(f) 	 ‖f‖L2
6
.

(The next to last bound follows by splitting the domain of integration into the two parts
{‖x‖ � 1} and {‖x‖ > 1}, and the last bound follows from (135).) Similarly for ψ2. Hence, the
error term in (163) is

	 ‖f‖L2
6
‖g‖L2

6
‖h′‖L∞ v log(B + 2).

Finally, we are left with

π2h(0)
v

∫
|u|<Bv

ψ̂1

( u

2v

)
ψ̂2

( u

2v

)
du = π2h(0)

∫
|u|<B

ψ̂1

(u
2

)
ψ̂2

(u
2

)
du

= π2h(0)

(∫ ∞

−∞
ψ̂1

(u
2

)
ψ̂2

(u
2

)
du + O

(
‖f‖L2

6
‖g‖L2

6

∫
|u|>B

|u|−2 du

))
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= 2π2h(0)
∫ ∞

0

ψ1(r)ψ2(r) dr + O
(
‖f‖L2

6
‖g‖L2

6
|h(0)|B−1

)
= λf,gh(0) + O

(
‖f‖L2

6
‖g‖L2

6
|h(0)|B−1

)
,

where in the next to last equality we used Parseval’s identity.
Collecting the above results, and noticing that v log(B + 2) 	 B−1 and B3v2 � B−1 because

of 1 � B � v−1/2, we obtain the statement of the lemma. �

Proposition 9.10. Let f, g ∈ S(R2) and h ∈ C2(R), and assume S∞,3,2(h) < ∞. Let
ξ2 ∈ R2 be [κ; c]-Diophantine. Then for any v ∈ (0, 1],∫

R

Θf

(
u + iv, 0;

(
0
ξ2

))
Θg

(
u + iv, 0;

(
0
ξ2

))
h(u) du

=
∫
R2

f(x)g(x) dx
∫
R

h du + λf,g h(0) (164)

+ O
(
‖f‖L2

167
‖g‖L2

167
S∞,3,2(h)κc−

1
κ δ6,ξ2

(v−
1
2 )

1
127 κ

)
.

Proof. By [24, Lemma 8.2] (see also [23, Lemma 7.2]),∫
Γ\G

ΘfΘg dμ =
∫
R2

f(x)g(x) dx.

Therefore, the proposition follows from Lemmas 9.8 and 9.9, applied with

B = 1
2 v

− 1
2

(
1
4 δ6,ξ2

(
v−

1
2

) 1
2
) κ

1+61κ

, (165)

as long as this number satisfies B � 1. Indeed, from the observations below (161) we see that
the number B in (165) satisfies B � v−

1
2 , as is required in Lemma 9.9. Furthermore, using

δ6,ξ2
(T ) � T−1 ∀T � 1 (as noted in the proof of Lemma 9.8) and κ

2(1+61κ) + 1
127κ < 1, it follows

that B−1 	 δ6,ξ2
(v−

1
2 )

1
127 κ , so that we indeed obtain the error bound in the last line of (164).

It remains to consider the case when the number B in (165) is less than 1. Using δ6,ξ2
(v−

1
2 ) �

v
1
2 it then follows that v is bounded below by some positive absolute constant. Hence, by (138)

in Lemma 9.2 and the Γk invariance of ΘfΘg, we have
∣∣∣Θf

(
u + iv, 0; ( 0

ξ2
)
)
Θg

(
u + iv, 0; ( 0

ξ2
)
)∣∣∣ 	

‖f‖L2
5
‖g‖L2

5
for all u ∈ R, and so the left-hand side of (164) is 	 ‖f‖L2

5
‖g‖L2

5
S∞,2,0(h).

Furthermore, from (162) together with
∣∣∫ 2π

0
f(r cos ζ, r sin ζ) dζ

∣∣ � S∞,2,0(f) · (1 + r)−2 	
‖f‖L2

2
· (1 + r)−2 (cf. (135)) and the corresponding bound for g, it follows that |λf,gh(0)| 	

‖f‖L2
2
‖g‖L2

2
‖h‖L∞ . Finally,

∣∣∫
R2 f(x)g(x) dx

∫
R
h du

∣∣ 	 ‖f‖L2‖g‖L2S∞,2,0(h). Hence, (164)
holds trivially in this case. �

With Proposition 9.10 established, the proof of Theorem 1.4 can now be completed by a
sequence of approximation steps.

Proof of Theorem 1.4. Let (α, β) ∈ R2 be given as in the statement of the theorem, and set
ξ2 = (αβ). By (130) and Proposition 9.10, writing g1 and g2 in place of f and g, respectively,
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we have for any g1, g2 ∈ S(R2), h ∈ C2(R) with S∞,3,2(h) < ∞, and T � 1:

1
T 2

∑
m1∈Z2

∑
m2∈Z2

g1

(
T−1(m1 − ξ2)

)
g2

(
T−1(m2 − ξ2)

)
ĥ

(
− 1

2 Q

(
m1

m2

))

=
∫
R2

g1(x)g2(x) dx · ĥ(0) + λg1,g2h(0) (166)

+ O
(
‖g1‖L2

167
‖g2‖L2

167
S∞,3,2(h)κc−

1
κ δ

1
127 κ

)
,

where we use the short-hand notation δ := δ6,ξ2
(T ). Let us consider the contribution from all

terms with m2 = m1 in sum in the left-hand side. Set G := g1g2 ∈ S(R2). Note that

G(T−1x) =
∫
x+[0,1]2

G(T−1y) dy + O

(
S∞,3,1(G)

T (1 + T−1‖x‖)3
)
, ∀x ∈ R2.

Adding this relation over all x = m1 − ξ2 (m1 ∈ Z2), and noticing
∑

(1 + T−1‖m1 −
ξ2‖)−3 	 T 2, we get

1
T 2

∑
m1∈Z2

(g1g2)(T−1(m1 − ξ2)) =
∫
R2

g1g2 dx + O
(
S∞,3,1(g1g2)T−1

)
.

We multiply this identity by ĥ(0), and note that the error term is then subsumed by the
error term in (166), since S∞,3,1(g1g2) �

∑1
m=0 S∞, 32 ,m

(g1)S∞, 32 ,1−m(g2) 	 ‖g1‖L2
3
‖g2‖L2

3
(cf.

(135)). Hence, subtracting the resulting identity from (166), we obtain

1
T 2

∑
m1∈Z2

∑
m2∈Z

2

m2 
=m1

g1

(
T−1(m1 − ξ2)

)
g2

(
T−1(m2 − ξ2)

)
ĥ

(
− 1

2 Q

(
m1

m2

))

= λg1,g2h(0) + O
(
‖g1‖L2

167
‖g2‖L2

167
S∞,3,2(h)κc−

1
κ δ

1
127 κ

)
. (167)

Next, we take g1, g2 in (167) to be given by gj(x) := fj(x + T−1ξ2) for some f1, f2 ∈ S(R2).
Recall that ξ2 = (αβ), and by assumption in Theorem 1.4 this vector lies in [−1, 1]2. Hence,
‖gj‖L2

167
	 ‖fj‖L2

167
and ‖gj − fj‖L∞ 	 S∞,0,1(fj)T−1, for j = 1, 2. Inspecting the definition

of λf,g in (162) it follows that

|λg1,g2 − λf1,f2 | 	 (S∞,3,0(g1)S∞,0,1(f2) + S∞,0,1(f1)S∞,3,0(f2))T−1

∫ ∞

0

(1 + r)−3r dr

	 ‖f1‖L2
3
‖f2‖L2

3
T−1.

Hence,

1
T 2

∑
m1∈Z2

∑
m2∈Z

2

m2 
=m1

f1(T−1m1) f2(T−1m2) ĥ
(
− 1

2 Q

(
m1

m2

))

= λf1,f2h(0) + O
(
‖f1‖L2

167
‖f2‖L2

167
S∞,3,2(h)κc−

1
κ δ

1
127κ

)
. (168)

Next, take h to be given by h(u) = 1
2 ĝ(

1
2u), where g is any function in C3(R) with S1,2,3(g) <

∞. Then h(j)(u) = 1
2

∫ ∞
−∞ g(s) (−πis)je(− 1

2us) ds (j ∈ {0, 1, 2}), and so, by integration by
parts, (πiu)mh(j)(u) = 1

2

∫ ∞
−∞

(
dm

dsm

{
g(s) (−πis)j

})
e(− 1

2us) ds (j ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}).
It follows from these identities that S∞,3,2(h) 	 S1,2,3(g). Furthermore, by Fourier inversion,
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g(s) = ĥ(− 1
2s). Let us also write f1 ⊗ f2 for the function in S(R4) given by (f1 ⊗ f2)(

x1
x2

) =

f1(x1)f2(x2). Comparing (11) and (162) we then have λf1,f2 = 2λf1⊗f2 . Comparing also with
(10), we obtain

Nα,β(f1 ⊗ f2, g, T ) = λf1⊗f2 ĝ(0) + O
(
‖f1‖L2

167
‖f2‖L2

167
S1,2,3(g)κc−

1
κ δ

1
127κ

)
. (169)

It will be useful to note the following consequence of (169).

Lemma 9.11. For any [κ; c]-Diophantine vector (α, β) ∈ [−1, 1]2, any g ∈ C1(R) with
S1,2,1(g) < ∞, and any R � 1,∑

m∈Z
4\Δ

‖m‖�R

|g(Q(m))| 	 S1,2,1(g)
(
1 + κc−

1
κ δ6,ξ2

(R)
1

127κ

)
R2, (170)

where the implied constant is absolute.

Proof. A standard construction shows that there exists a function g̃ ∈ C∞(R) satisfying
g̃ � |g| and S1,2,3(g̃) 	 S1,2,1(g), with an absolute implied constant. Fix a choice of a non-
negative function f ∈ C∞

c (R2) satisfying f(x) = 1 for all x with ‖x‖ � 1. Applying (169) with
T = R, f1 = f2 = f and g̃ in place of g gives (cf. (10))

1
R2

∑
m∈Z4\Δ

[f ⊗ f ](R−1m)g̃(Q(m)) 	 ‖g̃‖L1 + S1,2,3(g̃)κc−
1
κ δ6,ξ2

(R)
1

127κ .

Using ‖g̃‖L1 � S1,2,3(g̃) 	 S1,2,1(g) and the fact that [f ⊗ f ](R−1m) � 1 whenever ‖m‖ � R,
we obtain (170). �

Remark 13. By contrast, if (α, β) is not Diophantine then the left-hand side of (170) may
grow more rapidly than R2 as R → ∞ (cf. [24, Section 9]).

We now continue with the proof of Theorem 1.4. Take f ∈ C1
c(R

4) with support contained
in the unit ball centered at the origin. We wish to go from (169) to an asymptotic formula for
Nα,β(f, g, T ). Fix, once and for all, a function φ ∈ C∞

c (R2) with support contained in the unit
ball centered at the origin and satisfying

∫
R2 φ(x) dx = 1. Then for an appropriate number

0 < η < 1 (to be fixed below) we define φη ∈ C∞
c (R2) by φη(x) := η−2φ(η−1x), and set

f̃ := f ∗ (φη ⊗ φη).

Note that for any x,y ∈ R4 with (φη ⊗ φη)(x− y) �= 0 one has ‖y − x‖ �
√

2 η and thus
|f(y) − f(x)| 	 S∞,0,1(f) · η; hence∣∣∣f(x) − f̃(x)

∣∣∣ 	 S∞,0,1(f) · η, ∀x ∈ R4. (171)

Therefore, by (11) and using the fact that the supports of both f and f̃ are contained in the
ball {‖x‖ � 3},

|λf − λ
˜f | 	 S∞,0,1(f) · η,
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and also, by (10),∣∣∣Nα,β(f, g, T ) −Nα,β(f̃ , g, T )
∣∣∣ 	 S∞,0,1(f) η

T 2

∑
m∈Z

4\Δ
‖m‖�3T

|g(Q(m))|

	 S∞,0,1(f)S1,2,1(g)
(
1 + κc−

1
κ δ6,ξ2

(T )
1

127κ

)
η,

where the last bound follows from Lemma 9.11 and the fact that δβ,ξ(T ) is essentially a
decreasing function of T , in the sense that

δβ,ξ(T ′) < 2δβ,ξ(T ) for any 0 < T � T ′ (172)

(this follows from (6) and the fact that 1+log+ y
1+y < 2 1+log+ x

1+x whenever 0 < x � y).

Next, using f̃ := f ∗ (φη ⊗ φη) we have

Nα,β(f̃ , g, T ) =
∫
R4

f(y)Nα,β

(
φη,y1

⊗ φη,y2
, g, T

)
dy,

where φη,a(x) = φη(x− a) for x,a ∈ R2, and as usual we write y = (y1
y2

) ∈ R4 with y1,y2 ∈ R2.
Hence, by (169),

Nα,β(f̃ , g, T ) = λ
˜f ĝ(0) + O

(∫
R4

|f(y)|‖φη,y1
‖L2

167
‖φη,y2

‖L2
167

S1,2,3(g)κc−
1
κ δ

1
127κ dy

)
. (173)

Here, we have ‖φη,b‖L2
a
�a (1 + ‖b‖)aη−a−1 (∀b ∈ R2); hence, using also the assumption about

the support of f , ∫
R4

|f(y)|‖φη,y1
‖L2

167
‖φη,y2

‖L2
167

dy 	 ‖f‖L∞η−336.

Combining the above bounds, we obtain

|Nα,β(f, g, T ) − λf ĝ(0)| 	 ‖f‖L∞S1,2,3(g)κc−
1
κ δ

1
127κ η−336

+ S∞,0,1(f)S1,2,3(g)
(
1 + κc−

1
κ δ

1
127κ

)
η

	 S∞,0,1(f)S1,2,3(g)κc−
1
κ

(
δ

1
127κ η−336 + η

)
.

Note also that S∞,0,1(f) 	 ∑4
j=1

∥∥∂xj
f
∥∥

L∞ , since we assume that the support of f is contained
in the unit ball. Choosing η = (1

9 δ)
1

337·127κ (this number satisfies 0 < η < 1, by an observation
which we made below (161)), we now obtain the bound in Theorem 1.4 with B = 42799. �

9.5. Consequences of Theorem 1.4

Let us start by showing that the assumptions in Theorem 1.4 on f having a fixed compact
support and (α, β) satisfying |α|, |β| � 1, can both be weakened by simple a posteriori
arguments:

Corollary 9.12. Let B > 0 be as in Theorem 1.4, and let ε > 0. Then for any [κ; c]-
Diophantine vector ξ = (α, β) ∈ R2, any f ∈ C1(R4) with S∞,3+ε,1(f) < ∞, any g ∈ C3(R)
with S1,2,3(g) < ∞, and any T � max(1, ε‖ξ‖),∣∣∣∣Nα,β(f, g, T ) − λf

∫
R

g(s) ds
∣∣∣∣ 	ε S∞,3+ε,1(f)S1,2,3(g)κc−

1
κ

(
δ6,ξ(T )1/(Bκ) +

‖ξ‖
T

)
. (174)
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We stress that the implied constant in (174) depends only on ε.

Proof. Let us first keep f as in Theorem 1.4, but allow ξ = (α, β) ∈ R2 to be outside [−1, 1]2.
Choose k ∈ Z2, so that the vector (α′, β′) := ξ − k lies in [−1, 1]2, and so that k = 0 if already
ξ ∈ [−1, 1]2. Of course (α′, β′) is [κ; c]-Diophantine just like ξ, and δ6,(α′,β′)(T ) = δ6,ξ(T ) for
all T . Recall that the inhomogeneous form Q is defined by (9); let Q′ be the corresponding
form coming from (α′, β′), that is, Q′(x) ≡ Q(x + (k,k)). Then

Nα,β(f, g, T ) −Nα′,β′(f, g, T ) =
1
T 2

∑
m∈Z4\Δ

(
f
(
T−1(m + (k,k))

)− f(T−1m)
)
g(Q′(m)).

Here, ∣∣f(T−1(m + (k,k))
)− f(T−1m)

∣∣ 	 4∑
j=1

∥∥∂xj
f
∥∥

L∞
‖k‖
T

. (175)

Furthermore, since f is supported in the unit ball, the difference in (175) vanishes whenever
‖m‖ � T +

√
2‖k‖. Hence, using Lemma 9.11 and 1 + κc−

1
κ δ6,ξ2

(R)
1

127κ 	 κc−
1
κ (the latter

holds because of (6), and since κ � 1
2 and 0 < c < 2−1/2 < 1), we get

|Nα,β(f, g, T ) −Nα′,β′(f, g, T )| 	
4∑

j=1

∥∥∂xj
f
∥∥

L∞S1,2,1(g)κc−
1
κ

(
T + ‖k‖

T

)2 ‖k‖
T

.

Note that ‖k‖ 	 ‖ξ‖, and ‖ξ‖ � ε−1T by assumption; thus
(T+‖k‖

T

)2 ‖k‖
T 	ε

‖ξ‖
T . Combining

the above with Theorem 1.4 applied to (α′, β′), we conclude that∣∣∣∣Nα,β(f, g, T ) − λf

∫
R

g(s) ds
∣∣∣∣ 	ε

4∑
j=1

∥∥∂xj
f
∥∥

L∞ S1,2,3(g)κc−
1
κ

(
δ6,(α,β)(T )1/(Bκ) +

‖ξ‖
T

)
,

(176)

for all T � max(1, ε‖ξ‖).
We next wish to extend the bound to more general functions f , as in the statement of the

corollary. To achieve this, we will use the fact that both Nα,β(f, g, T ) and λf transform in an
obvious manner under scaling of the function f . Indeed, introducing the scaling operator δR
(for any R > 0) acting on Cc(R4) through [δRf ](x) := f(Rx), we have by immediate inspection
in (10) and (11):

Nα,β(δRf, g, T ) = R−2Nα,β(f, g, T/R) (T > 0) (177)

and

λδRf = R−2λf . (178)

Now let f ∈ C1(R4) with S∞,3+ε,1(f) < ∞ be given. We will decompose f dyadically radially,
using a partition of unity. Fix a C∞ function ϕ : R → [0, 1] satisfying ϕ(r) = 0 for r � 0.1
and ϕ(r) = 1 for r � 0.9, and then define the C∞-functions ϕ0, ϕ1, . . . : R → [0, 1] through
ϕ0(r) = 1 − ϕ(r − 1) and

ϕj(r) =

{
ϕ(r − 2j−1) if r < 2j

1 − ϕ(r − 2j) if r � 2j
(j = 1, 2, 3, . . . , r ∈ R).

Then suppϕ0 ⊂ (−∞, 2) and suppϕj ⊂ (2j−1, 2j + 1) for all j � 1; furthermore
∞∑
j=0

ϕj(r) = 1 (∀r ∈ R), and ‖ϕ′
j‖L∞ = ‖ϕ′‖L∞ (j = 1, 2, 3, . . .).
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Then define fj ∈ C1
c(R

4) through fj(x) := ϕj(‖x‖)f(x). Then f(x) =
∑∞

j=0 fj(x), and it
follows that

Nα,β(f, g, T ) =
∞∑
j=0

Nα,β(fj , g, T ) and λf =
∞∑
j=1

λfj . (179)

(To prove the first relation one uses (10); the change of order of summation is justified
since we have absolute convergence;

∑∞
j=0

∑
m∈Z4\Δ

∣∣fj(T−1m)g(Q(m))
∣∣ < ∞. This absolute

convergence follows from ‖fj‖L∞ 	 S∞,3,0(f)2−3j and the fact that the support of fj is
contained in the ball of radius 2j+1 about the origin, combined with the bound∑

m∈Z
4\Δ

‖m‖�S

∣∣g(Q(m))
∣∣ 	 S2

for S large, which follows from (176) by the argument in the proof of Lemma 9.11. The
justification of the second relation in (179) is similar but easier.)

We also set

f̃j := δ2j+1fj .

Then f̃j ∈ C1
c(R

4) and the support of f̃j is contained in the unit ball centered at 0. Hence,
(176) applies to f̃j , yielding∣∣∣∣Nα,β(f̃j , g, T ) − λ

˜fj

∫
R

g(s) ds
∣∣∣∣ 	ε

4∑
k=1

∥∥∥∂xk
f̃j

∥∥∥
L∞

S1,2,3(g)κc−
1
κ

(
δ6,(α,β)(T )1/(Bκ) +

‖ξ‖
T

)
(180)

for all T � max(1, ε‖ξ‖). Here,

4∑
k=1

∥∥∥∂xk
f̃j

∥∥∥
L∞

= 2j+1
4∑

k=1

‖∂xk
fj‖L∞ 	 S∞,3+ε,1(f) · 2−(2+ε)j . (181)

Indeed, for x �= 0 we have
∣∣∂xk

ϕj(‖x‖)
∣∣ =

∣∣ϕ′
j(‖x‖)xk

∣∣/‖x‖ � ‖ϕ′‖L∞ , while at x = 0
∂xk

ϕj(‖x‖) vanishes; hence

4∑
k=1

‖∂xk
fj‖L∞ 	 sup

{
|f(x)| +

4∑
k=1

|∂xk
f(x)| : x ∈ R4, ‖x‖ ∈ suppϕj

}
,

and (181) follows since ‖x‖ ∈ suppϕj implies 1 + ‖x‖ � 2j . Combining (180) and (181) with
(177) and (178), we obtain∣∣∣∣Nα,β(fj , g, 2−j−1T ) − λfj

∫
R

g(s) ds
∣∣∣∣

	 2−εjS∞,3+ε,1(f)S1,2,3(g)κc−
1
κ

(
δ6,(α,β)(T )1/(Bκ) +

‖ξ‖
T

)
. (182)

This holds for all T � max(1, ε‖ξ‖). We replace T by 2j+1T in (182), use (172), and finally
add over all j, using (179). This gives (174). �

Finally, we give the proofs of Corollaries 1.5 and 1.6.

Proof of Corollary 1.5. Let χ : R4 → {0, 1} be the characteristic function of the unit ball
and let χ(a,b) : R → {0, 1} be the characteristic function of the interval (a, b). For η, η′ > 0
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(two constants which we will fix below) we choose f± ∈ C∞
c (R4), so that 0 � f− � χ � f+ � 1

and f−(x) = 1 whenever ‖x‖ � 1 − η and f+(x) = 0 whenever ‖x‖ � 1 + η, and we choose
g± ∈ C∞

c (R), so that 0 � g− � χ(a,b) � g+ � 1 and g−(s) = 1 whenever a + η′ � s � b− η′

and g+(s) = 0 whenever s � a− η′ or s � b + η′. (Thus, if η > 1, we may take f− ≡ 0 and if
η′ > 1

2 (b− a) we may take g− ≡ 0.) These functions can be chosen, so that S∞,4,1(f±) 	 η−1

and S1,2,3(g±) 	 (
1 + |a| + |b|)2(

b− a + η′−2), so long as η, η′ 	 1. By construction, we have

Nα,β(f−, g−, T ) � Nα,β(a, b, T ) � Nα,β(f+, g+, T ).

We also have
∣∣λf± − λχ

∣∣ 	 η and λχ = π2

2 , thus λf± = π2

2 + O(η). Hence, by Corollary 9.12,∣∣∣Nα,β(a, b, T ) − π2

2 (b− a)
∣∣∣

	 (b− a)η + η′ + η−1(1 + |a| + |b|)2
(
b− a + η′−2

)
κc−

1
κ δ6,(α,β)(T )1/(Bκ)

	 (1 + |a| + |b|)3κc− 1
κ

(
η + η′ + η−1η′−2

δ6,(α,β)(T )1/(Bκ)
)
. (183)

Choosing η = η′ = δ6,(α,β)(T )1/(4Bκ), we obtain (14), with B′ = 4B. �

Remark 14. Of course, the bound in (183) is often wasteful regarding the dependence on
a, b. However, recall that we have to keep η, η′ 	 1 in order for the first bound in (183) to be
valid, and our main aim in Corollary 1.5 was to give a reasonably simple statement of a general
bound with an absolute implied constant, and with a power rate decay with respect to T for
any fixed (α, β) subject to a Diophantine condition.

Proof of Corollary 1.6. This can again be derived from Theorem 1.4 by an approximation
argument; however, it is easier to argue directly from (167), since there m1 and m2 appear
shifted by ξ2, which is exactly what we need. Indeed, let χ : R2 → {0, 1} be the characteristic
function of the open unit ball centered at the origin and let χ(−b/2,−a/2) be the characteristic
function of the interval (−b/2,−a/2); then for g1 = g2 = χ and ĥ = χ(−b/2,−a/2), the left-hand
side of (167) is exactly equal to πR2[a, b](T 2) (cf. (15)). Now the corollary follows by a similar
approximation argument as in the proof of Corollary 1.5. �
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