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ABSTRACT
Forthcoming space-based observations will require high-quality point spread function (PSF) models for weak gravitational
lensing measurements. One approach to generating these models is using a wavefront model based on the known telescope
optics. We present an empirical framework for validating such models to confirm that they match the actual PSF to within
requirements by comparing the models to the observed light distributions of isolated stars. We apply this framework to TINY

TIM, the standard tool for generating model PSFs for the Hubble Space Telescope (HST), testing its models against images
taken by HST’s Advanced Camera for Surveys in the Wide Field Channel. We show that TINY TIM’s models, in the default
configuration, differ significantly from the observed PSFs, most notably in their sizes. We find that the quality of TINY TIM PSFs
can be improved through fitting the full set of Zernike polynomial coefficients that characterize the optics, to the point where the
practical significance of the difference between model and observed PSFs is negligible for most use cases, resulting in additive
and multiplicative biases both of order ∼4 × 10−4. We also show that most of this improvement can be retained through using
an updated set of Zernike coefficients, which we provide.

Key words: gravitational lensing: weak – methods: data analysis.

1 IN T RO D U C T I O N

Optical observations are fundamentally limited by the point spread
function (PSF) of the observing instrument and conditions. This
describes the manner in which a point light source will be affected
to spread the paths of photons, displaying not as a point but as
an extended profile. Various effects contribute to this, including
atmospheric diffraction, diffraction due to obscurations within the
instrument, aberrations in the instruments optics, and various detector
effects (Krist, Hook & Stoehr 2011). Accurate knowledge of the PSF
is thus necessary for any pursuit that requires knowledge of the
undistorted light distribution of an object.

For instance, weak gravitational lensing uses the shapes of objects
before PSF distortion as an estimator for the gravitational shear
field. Elliptical PSFs will contribute to the observed ellipticities of
sources, and since in general the PSF spreads detected photons, this
contributes to circularizing them. These effects, respectively, result
in additive and multiplicative biases in the ellipticities of sources,
and so it is necessary to have a proper characterization of the PSF
in order to make unbiased measurements of source shapes (Kaiser,
Squires & Broadhurst 1995; Luppino & Kaiser 1997; Hoekstra et al.
1998; Bartelmann & Schneider 1999; Kaiser 2000).

� E-mail: brg@roe.ac.uk

For ground-based observations, the PSF is dominated by atmo-
spheric conditions that vary on short time-scales, and so its profile
in any given observation must be determined empirically, using
point source objects such as stars to sample it and interpolating
appropriately (Jarvis & Jain 2004; Rowe 2010; Hamana et al. 2013;
Lu et al. 2017). For space-based observations, however, it is possible
to design a system so that the PSF is relatively stable, determined
only by instrumental effects such as diffraction due to obscurations,
optical aberrations, and polishing errors. It is therefore theoretically
possible to instead model the PSF based on an understanding of the
instrument’s optics (Krist et al. 2011). This is particularly useful
for measurements that require high precision such as the upcoming
Euclid mission (Laureijs et al. 2011), as for an empirical model, the
number of observed stars might not be sufficient to overcome noise,
particularly in the wings of the PSF. Additionally, the Euclid mission
is designed to have as stable a PSF as possible, making it an ideal
candidate for using a model PSF.

Before such PSF models can be used for measurements, it will be
necessary to validate them through comparisons with observations,
to ensure that the models actually are faithful recreations of the
instrumental PSF. It is not immediately obvious how best to perform
such validation, and it is necessary to weight the chances and impacts
of false positives and false negatives for any validation procedure.
In this paper, we discuss the decisions that must be made, and we
present a validation framework which is targeted at ensuring a PSF
model is suitable for weak lensing measurements.
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We demonstrate this framework by applying it to TINY TIM

(Krist 1993; Krist et al. 2011) model PSFs and comparing them
to observations taken with the Hubble Space Telescope (hereafter
‘HST’). TINY TIM has a long history of use in processing HST
images, for purposes such as e.g. measuring the sizes of star clusters
(Whitmore et al. 1999) and distant galaxies (van Dokkum et al.
2008), measuring the width of a protostar jet (Burrows et al. 1996),
strong gravitational lensing observations (Surpi & Blandford 2003),
and weak gravitational lensing observations (Leauthaud et al. 2007).

The literature is sparse, however, when it comes to validation tests
of TINY TIM. Of note, van der Wel et al. (2012) tested Tiny-Tim-
based PSF models against a sample of 46 isolated stars and found a
4 per cent discrepancy in the amount of light outside of an 0.2 arcsec
circular aperture. Imperfections in the model were also noted in Krist
et al. (2011), where they note ‘For subtraction in the wings, usually
an observed reference PSF provides superior results than using a
model, as the match to the fine scale structure is better.’ Hoffmann
& Anderson (2017) also compared TINY TIM to an empirical PSF,
and found that the empirical model outperformed TINY TIM by a
factor of 2 in their quality-of-fit metric. Insight can also be gained
from comparisons of observed PSFs with models generated in
other manners, such as Jee et al. (2007)’s analysis of PSF models
generated with a principle-component analysis technique.

Further testing of TINY TIM is thus warranted to see if these results
can be replicated with a larger sample and to test further properties
of the PSF beyond its light profile that might affect lensing measure-
ments and other applications which rely on TINY TIM models.

In Section 2, we discuss the data and models we use to test our
framework. In Section 3, we present our proposed testing framework
for the validation of PSF models. In Section 4, we present and discuss
our control tests. We discuss our findings in Section 5 and conclude
in Section 6.

2 DATA A N D M O D E L S

2.1 Data

For our tests, we use data from the HST observed with the Advanced
Camera for Surveys (‘ACS’, Avila et al. 2016) in the wide-field
channel using the F606W filter. We use a set of 217 pointings
observed between the dates 2009 July 9 and 2011 July 16, selected
for high-stellar density. These are generally observations of globular
clusters such as NGC 104, but also include images of the nearby
dwarf galaxy NGC 185. Each pointing comprises a set of two
4096 × 2048 pixel images, with an approximate pixel scale of
0.05 arcsec pixel−1, for an observed area of ∼5.8 arcmin2 for each
image. The pointings cover regions of varying stellar number density
and have varying exposure, resulting in a greatly variable number
of usable stars per image (from ∼10 to ∼200, with significant
bimodality in the distribution).

The full reduction pipeline used for our data is detailed in
Schrabback et al. (2018), but in short, the images are reduced
primarily with the standard ACS calibration pipeline CALACS. The
images are corrected for the effects of charge-transfer inefficiency
through the procedure presented in Massey et al. (2014). Each of
the images is then processed by the MultiDrizzle tool (Koekemoer
et al. 2003) to correct for cosmic rays, but the final ‘drizzle’ step
(which stacks exposures together) is not performed, as this alters the
effective PSF of the stacked image and complicates analysis of it.
Since we work only with unstacked images from this point forwards,
we must be careful to ONLY perform operations that are valid on
unstacked images, which means e.g. avoiding interpolation.

2.2 TINY TIM PSF models

For this work, we test the PSF models generated by TINY TIM (Krist
1993; Krist et al. 2011), the standard tool for generating model PSFs
for the HST. TINY TIM calculates the PSF through a wavefront model,
using the known obscuration pattern of the HST and assuming that
all obscuration happens in a single plane (see section 3.1 of Krist
et al. 2011 for justification of this assumption). The wavefront is
represented by an n × n array, where n is sufficiently large that the
wavefront is Nyquist sampled, and the wavefront is propagated to
the focus with a fast Fourier transform. The square of the magnitude
of the electromagnetic field is then taken to produce the model PSF.
TINY TIM also includes prescriptions to model aberrations due to
defocus and polishing errors, and can also include a prescription for
jitter if desired.

The effective PSF is also affected by the diffusion of charge
between neighbouring pixels. This step can be modelled by TINY

TIM if desired, but it is often more useful for the user to request a
subsampled model PSF. Such a model PSF can be shifted so that it
represents the proper placement of the point source relative to the
centre of the nearest pixel. The subsampled model PSF can then
be rebinned and convolved with the 3 × 3 charge diffusion kernel
provided by Tiny Tim to generate the final model PSF, which is what
we do in our analysis.

We test TINY TIM with a use-case similar to the approach of e.g.
Rhodes et al. (2007), who fit focus offset value input to TINY TIM

for each image by finding the value which resulted in PSF models
being generated which best matched the observed stars. We use the
downloadable TINY TIM tool, version 7.5,1 to generate model PSFs.
The tool’s first executable, tiny1, asks the user a series of questions
which allow it to determine the PSF to be generated, and it stores
the necessary information in a parameter file. This file also contains
values which the tool does not ask the user about but which can be
modified, such as the assumed coma and astigmatism. As we expect
users will not do this unless it is shown to be necessary, we will start
by testing the scenario in which the only adjusted parameters are
those which the tool asks about. These parameters and our selections
for them are as follows:

(i) Camera: 15 (ACS – Wide Field Channel).
(ii) Detector: Chosen per image based on the ‘CCDCHIP’ header

keyword.
(iii) Position on detector: Chosen per star, taking the nearest of a

fixed 32 × 16 grid of positions. This constrains the number of PSFs
which need to be generated, and was found to not noticeably impact
our results per our analysis on control fields (see Section 4).

(iv) Filter passband: F606W.
(v) Spectrum: 1; 15 (Use the K7V spectrum, which is chosen to

represent a typical star in the sample. We discuss the impact of this
in Section 4.)

(vi) PSF diameter: 2.0 arcsec.
(vii) Focus-secondary mirror despace: Fit per image. As HST

‘breathes’ due to its passing in and out of the Earth’s shadow, the
position of the focus relative to the secondary mirror changes over
time and cannot be perfectly predicted for any given observation
(Krist 2003; Anderson & King 2006). We thus have to fit the best
focus position by simulating multiple sets of PSFs for each image.

The chosen Position on Detector value is used by TINY TIM to
determine field dependent aberrations and charge diffusion, which

1http://tinytim.stsci.edu/static/tinytim-7.5.tar.gz
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are used in the generation of the PSF. If the user desires, it is possible
to edit the generated parameter file to change the Zernike coefficients
that determine aberrations, as we test in Section 5.2. The values
in this parameter file correspond to the values at the centre of the
field, and TINY TIM adds these to position-dependent offsets for each
coefficient to determine the value to use for each generated PSF.

A finely subsampled model PSF is then generated through
running tiny2 with the generated parameter file. For the ACS, it
is also necessary to apply distortion due to the fact that it is installed
off-axis. This is done through the tiny3 command, which also
allows the user to determine their desired subsampling factor for
the final model PSF. We choose a subsampling factor of 8×, based
on our analysis on control fields (see Section 4). This factor is large
enough to allow us to shift the model PSF to adequately match the
proper subpixel centre for any given star. We apply this shift for
each star, based on the relative positions of the best-fitting centre
of the star and the subsampled model PSF, and then rebin the model
PSF to the same pixel scale as the detector. Finally, we apply the
charge-diffusion kernel provided for each subsampled model PSF to
generate the final model PSF for each star. At this stage, we compare
the subpixel centre for the star and rebinned model PSF. If the
difference is greater than the subsampled pixel scale, we return to the
subsampled model and shift it an additional amount corresponding
to this offset, and then rebin and convolve with the charge-diffusion
kernel again. We repeat this process until the centre converges.

3 PSF VA LIDATION FRAMEWORK

3.1 Designing tests

For a given PSF model, ideally its predictions of the PSF from a point
source will differ from its observed light profile only in noise and the
effects of environment (i.e. other nearby sources on the sky). We can
therefore propose various statistical tests which we expect that an
ideal model will typically pass. The most straightforward such test
is a χ2 test on the fluxes of a set of pixels, comparing the predicted
flux from the model to the observed flux surrounding an isolated
point source, using a proper characterization of the noise and taking
into account the number of parameters of the PSF model which must
be fitted to the data. Such a test has the following issues, however:

(i) It tests the statistical significance of a departure from a perfect
model, but a statistically significant failure of the test does not mean
that the model is unusable. Depending on what the model is used
for, its imperfections may have negligible or even no effect on the
resulting measurements.

(ii) Truly isolated point sources are difficult to identify. Stars are
effectively point sources, and the brighter stars can be reasonably
distinguished from galaxies through a selection in size–magnitude
space, but many apparent stars are in fact unresolved binary star
systems (e.g. Lada 2006 finds ∼31 per cent of stellar systems host
more than one star), and this binary nature will result in the light
profile being larger and more elliptical than that of a point source.

(iii) This test requires that the background behind each point
source be uniformly zero. If the background is not perfectly sub-
tracted, this will result in the χ2 statistic for the comparison being
spuriously large.

We discuss these issues in the following subsections.

3.1.1 Relevant quantities

As the primary motivation of this work is to develop a validation
framework for PSF models to be used for gravitational lensing,
we desire our tests to be failed if and only if imperfections in the
PSF would lead to significant errors in the measured gravitational
lensing signals. To determine what tests might be necessary, let us
briefly provide an overview of how lensing signals are measured.
Lensing signals are determined from the measured shear estimates
derived from galaxies light distributions. If galaxies are assumed to
be elliptical and randomly oriented, then their measured ellipticities2

will provide unbiased estimates of the amount of shear in the absence
of pixelization and the influence of a PSF. The influence of the PSF
will affect the apparent ellipticities of observed galaxies, and so it
must be properly characterized for an accurate measurement of a
lensing signal. See e.g. Mandelbaum (2015) for further details on the
theory and methods underlying weak gravitational lensing.

The two most common approaches to shear-measurement algo-
rithms are moments-based and model-fitting approaches. Moments-
based approaches primarily use measurements of the weighted
quadrupole moments of observed galaxies and PSFs3 to calculate
the most likely ellipticity of the undistorted galaxy image. Model-
fitting approaches use model profiles for the undistorted galaxies,
convolve these with the PSFs, and test the convolved models
against the observed galaxies to find the best-fitting models, and
the ellipticities of these models are then used. Often, an approach
called ‘Metacalibration’ (Sheldon & Huff 2017) is applied, testing
the impact of perturbations to the data on the shear estimates and
using this to calibrate the shear estimates. This still assumes a perfect
PSF model in the most straightforward implementations though, and
as such will not remove the sensitivity to imperfections in the model.

For the purposes of testing PSFs, the manner in which moments-
based shear-measurement algorithms work is particularly illumi-
nating. These methods are primarily sensitive to the quadrupole
moments of the PSFs, and so PSF models that have imperfections in
these moments will have direct effects on the estimates of galaxies’
undistorted ellipticities. The PSF’s dipole moments are also relevant,
as they will affect the determination of its centre and thus the
calculations of its quadrupole moments. As the PSF conserves flux,
its monopole moment is only useful for normalizing other moments.

As used in gravitational lensing analysis, the normalized weighted
multipole moments are defined as

Mx = 1

m0

∫∫
x w(x, y) I (x, y) d2A,

My = 1

m0

∫∫
y w(x, y) I (x, y) d2A,

Mxx = 1

m0

∫∫
x2 w(x, y) I (x, y) d2A,

Myy = 1

m0

∫∫
y2 w(x, y) I (x, y) d2A,

Mxy = 1

m0

∫∫
xy w(x, y) I (x, y) d2A, (1)

2For ellipticity, we use the definition |e| = (1 − r)/(1 + r), where r is the
axial ratio of the galaxy.
3Methods typically also use higher order moments for corrections to their
estimates. It is not necessary to take this into account here, as the quadrupole
moments are the most significant factors going into the estimates, and they
sufficiently constrain the PSF fitting.
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where

m0 =
∫∫

w(x, y) I (x, y) d2A,

w(x, y) is a weight function that quickly approaches zero at some
finite radius, d2A represents an integral over the full relevant area,
and the central position (x, y) = (0, 0) is generally chosen so that
Mx and My will be zero for some weight function. In the case of a
pixelized image, the integral can be replaced with a summation. The
two ellipticity components of an object can be calculated through
one of many algorithms using these moments. For example, one of
the simpler algorithms is

ε̂1 = Mxx − Myy

Mxx + Myy + 2
√∣∣M∣∣ ,

ε̂2 = 2Mxy

Mxx + Myy + 2
√∣∣M∣∣ , (2)

(Seitz & Schneider 1997) where∣∣M∣∣ = MxxMyy − M2
xy . (3)

Note that this particular algorithm is not commonly used, as the
reliance on

∣∣M∣∣, which includes the products of moments, gives
the algorithm high sensitivity to noise. More commonly, algorithms
instead use simply Mxx + Myy in the denominator and apply other
corrections that do not rely on the products of moments (e.g. Kaiser
et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998). However,
the mathematical simplicity of this algorithm is more beneficial for
our purpose here of estimating the impact of model PSF inaccuracies
on shear estimates.

In the simplified scenario of unweighted moments, the normalized
quadrupole moments of the undistorted galaxy can be calculated from
the difference of the normalized moments of the observed galaxy and
PSF:

M(u) = M(o) − M(p), (4)

where M(u) represents the quadrupole moments of the undistorted
galaxy, M(o) those of the observed galaxy, and M(p) those of the PSF.
Combined with equation (2), we can identify and define the most
relevant moments-based quantities for the PSF as

M+ = Mxx − Myy,

M× = 2Mxy,

M∗ = Mxx + Myy + 2
√∣∣M∣∣. (5)

As the dipole moments of the PSF are used to determine its centroid,
it is important to test them as well, so we will additionally include
Mx and My in our analysis.

From work by Paulin-Henriksson et al. (2008) and Rowe (2010),
we know in particular that errors in the PSF size will lead to
multiplicative biases in shear estimates, and errors in PSF shape
will lead to additive biases. We can identify here M∗ as related to the
size of the PSF, and M+ and M× as related to the shape of the PSF,
which implies errors in the former will cause multiplicative biases,
and errors in the latter will cause additive biases. This is confirmed
by our own calculations in Appendix B.

Note that of these five terms, all except M∗ are independent to
changes to the background by a flat offset in the limit of zero pixel
size, due to the cancellation of terms in the calculation. Even outside
this limit, this will tend to be the case on average due to the uniform
random positioning of stars relative to the centres of the nearest
pixels. For the quadrupole terms (but not the dipole terms), this is

also true for changes to the background by a linear gradient. This
means that even if the observation has a non-zero background in
the region surrounding a star used for comparison with the model,
all quantities except for M∗ will be relatively insensitive to this
effect. However, as M∗ is sensitive to this, a measured difference
in it between the model and observed stars may be due either to
imperfect flat-fielding or background subtraction, or to the model
itself being imperfect. Worse, it is possible for the effects of imperfect
flat-fielding or background subtraction to cancel out the effects
of model imperfections, falsely reassuring us that the model is
adequate. Therefore, either we must ensure that any imperfections
in subtracting off the sky background are unbiased with respect to
the locations of the stars we select, or else we must test a different
quantity in its place.

For our work here, we choose the latter approach, developing
an alternative quantity which we will use in the place of M∗. The
key requirement on this quantity is that it should in general be
positively correlated with changes in M∗ due to changes in the central
flux distribution but be insensitive to the addition of a flat light
distribution. As M∗ can be seen as representative of the distribution’s
size, we look for an alternate size measurement which is background-
independent.

To accomplish this goal, we generate a new size estimator Ms

through the following algorithm:

(i) Bin all pixels in the image by distance from the centroid, in
bins of size 1 pixel.

(ii) For each bin i except the innermost, determine Wi = I<i − Ii ,
where Ii is the mean flux of all pixels in this bin, and I<i is the
mean flux of all pixels interior to it. For the innermost bin, W0 =
0. These W are designed to be insensitive to the background level
– a flat background added to the image will have no effect on the
calculated Wi.4 Due to the symmetry of this procedure, they will also
be insensitive to any linear gradient in the background.

(iii) Determine the size measure m′
s =∑

i(diw(di)Wi)/
∑

i(w(di)Wi), where di is the distance from
the centre of the image to the middle of each bin and w(r) is the
weight function used for other moments (which is limited to being
circularly symmetric for this method).

(iv) Repeat the above for an image in which the flux of the central
pixel is 1 and all other pixels are zero, to determine m0

s . Determine
the final size estimate Ms = (m′

s − m0
s )2. The subtraction here is

performed to regularise Ms so that it converges to zero for objects of
the minimum possible size, and it is squared so that it has equivalent
units to M∗.

This size estimator is analysed in detail in Appendix A. Notably, we
find that in the circumstances we intend to use it for, this estimator
has the additional advantage that it is relatively less sensitive to noise
than other commonly used size estimators.

We now have the parameters M+, M×, Ms, Mx, and My, all of
which we expect to be the same between an ideal model PSF and a
selection of isolated stars, differing only due to noise. We will refer
to this set of parameters collectively as Mk.

4This form was inspired by the formula for the signal from weak gravitational
lensing around a mass distribution, the result of which is degenerate with the
addition of a constant-value mass sheet to the field of view.
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3.1.2 Combining weight functions

The parameters we developed in the previous section are sensitive to
the choice of weight function used. If the weight function is strongly
weighted towards the core of the PSF, these parameters will be
relatively insensitive to imperfections outside the core, which might
pose issues if galaxy ellipticities are ultimately measured with a
weight function which is less weighted towards the core (with similar
issues in the opposite scenario). Many shear-measurement algorithms
use adaptive weight functions, which makes it impossible to know
which weight function to use here. What we can do is to bracket
the possible weight functions, using one weight function which is
weighted to the core of the PSF, and another which is weighted to
the wings. For our tests, we use the following weight functions:

Core : wc(R) =
{

exp
(−R2/

(
2σ 2

c

))
R ≤ Rmax,

0 R > Rmax,

Wings : ww(R) =
{

1 R ≤ Rmax,

0 R > Rmax,
(6)

with σ 2
c = 0.15 square arcseconds and Rmax = 0.′′5. Note that the

number of pixels within an annulus scales linearly with R, so for the
wings weight function, the total influence of all pixels at radius R
will also scale with R, up to the cut-off radius Rmax.

An ideal PSF model will have all five of our tested Mk parameters
being on average the same for the models as for the star images
for both the core and wings weight functions. However, the fact
that these weight functions sample overlapping regions means that
they are not independent of each other, and so we must take into
account the resulting covariances of each M parameter for the two
weight functions in our final statistic for the model. We can do this
by defining and using the quantities ‘Q(+)

k ’ and ‘Q(−)
k ’, which are

linear combinations of the Mk parameters as measured with the two
weight functions:

Q
(+)
k = 1

2
√

2

[
M

(c)
k

(
1 + σ

(
M

(w)
k

)
σ
(
M

(c)
k

)
)

+ M
(w)
k

(
1 + σ

(
M

(c)
k

)
σ
(
M

(w)
k

)
)]

,

Q
(−)
k = 1

2
√

2

[
M

(c)
k

(
1 + σ

(
M

(w)
k

)
σ
(
M

(c)
k

)
)

− M
(w)
k

(
1 + σ

(
M

(c)
k

)
σ
(
M

(w)
k

)
)]

,

(7)

where M
(c)
k is the Mk parameter using the core weighting function,

M
(w)
k is the Mk parameter using the wings weighting function, and

σ (M (c)
k ) and σ (M (w)

k ) are the standard deviations of these quantities.
The covariance of these two quantities can be shown to be zero,
and in the scenario where σ (M (c)

k ) = σ (M (w)
k ), we will have the

property (Q(+)
k )2 + (Q(−)

k )2 = (M (c)
k )2 + (M (w)

k )2, implying the Q
(±)
k

values will be of similar magnitude to the M
(c/w)
k values.

Using these linear combinations has the additional benefit that it
allows us to address the fact that the PSF centres are determined as the
positions which make the dipoles zero for a certain weight function.
If we were using a single weight function, it would be impossible to
detect any differences between the dipole moments of the model and
observed point sources, as these differences would be removed in
the centring step. However, when we are using two weight functions,
only the dipoles using one of them will be set to zero, and we can
get information from the dipoles that use the other weight function.

If the weight function is flat near the centre (as is true of both tophat
and Gaussian weight functions), then changes in the dipole moments
will be linearly correlated with changes in the centre to a first-order
approximation. Thus, if we shift the centre so that, for instance, M (c)

x

and M (c)
y are made equal to zero, M (w)

x and M (w)
y will be reduced by

an amount proportional to the original M (c)
x and M (c)

y . The final M (w)
x

and M (w)
y values will then be analogous the differences between the

values for each weight function. Looking at the linear combinations
we presented above, we see that Q

(−)
x/y also uses a difference between

the moments from the two weight functions. We can therefore still
use Q

(−)
x/y for our analysis. This gives as a final set of eight values

which provide a linearly independent basis: Q(−)
x , Q(−)

y , Q
(+)
+ , Q

(−)
+ ,

Q
(+)
× , Q

(−)
× , Q(+)

s , and Q(−)
s . In the following sections, we will use

the shorthand ‘Qk’ to refer to this particular set of parameters.

3.1.3 Quality of fit parameters

As many PSF models have one or more free parameters (the focus-
secondary-mirror offset in the case of TINY TIM) which must be fit
for each image, it is useful to determine a single value which can
serve as a quality-of-fit metric. The focus parameter can then be fit
by minimizing this value. A natural value to use for this purpose
is the χ2 value for the Qk parameters, but this would require us to
calculate a theoretical estimate of the errors for each Qk value. This
is not a trivial matter, as the determination of the centre of each
star interacts with the calculation of the moments in a complicated
manner. We therefore wish to use empirical estimates of the error
in each parameter, calculating it from the scatter of the differences
between the star and model values of that parameter for each image.

This, however, raises the issue that the resulting parameter from a
χ2-like calculation will not follow a standard χ2 distribution, since
the information in the scatter is reused both in the error calculation
and in the χ2 calculation. Additionally, a χ2 value may not be optimal
for fitting purposes: If a fit is imperfect, it indicates the statistical
significance of a failure, rather than the practical significance of it. In
our case, if we cannot fit perfectly, we would like to find the closest
possibility, which may not be the same as that which minimizes the
statistical significance of the failure.5 We can calculate a value more
indicative of the practical significance through the following process.
We start by calculating Z2

k values through

Z2(−)
x = (0.71 px−2)2

N

N∑
i=0

(
Q

(−)
x,star,i − Q

(−)
x,model,i

)4
,

Z2(−)
y = (0.71 px−2)2

N

N∑
i=0

(
Q

(−)
y,star,i − Q

(−)
y,model,i

)4
,

Z
2(±)
+ = (0.14 px−2)2

N

N∑
i=0

(
Q

(±)
+,star,i − Q

(±)
+,model,i

)2
,

Z
2(±)
× = (0.14 px−2)2

N

N∑
i=0

(
Q

(±)
×,star,i − Q

(±)
×,model,i

)2
,

Z2(±)
s = (0.43 px−2)2

N

N∑
i=0

(
Q

(±)
s,star,i − Q

(±)
s,model,i

)2
. (8)

5Here, a notable difference between minimizing the statistical and practical
significances of fitting failures arises due to our decomposition into the Q

(+)
k

and Q
(−)
k values. As Q

(i)
k represents a difference between highly correlated

values, the statistical error on it is much smaller than the sum, Q(+)
k . As such,

if we were to take a χ2-like value, weighting the differences from zero by
their errors, a similar practical difference [e.g. (0.1,0.1) versus (0.1, −0.1)]
will correspond to a much larger statistical significance if it corresponds to a
non-zero Q

(−)
k value than if it corresponds to a non-zero Q

(+)
k value.
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and a final fitting statistic:

X2 =
∑

k

Z2
k , (9)

summing over the set of eight Z2
k values. (Here, we use ‘Z2

k ’ as a
shorthand for this set of eight parameters.) The formulae here are
justified in Appendix B, but in summary:

(i) Z2(−)
x and Z2(−)

y approximate the worst-case scenario for the
mean square of contributions to shear bias from centroiding issues.

(ii) Z
2(±)
+ approximates the mean square contribution of PSF shape

inaccuracies to the first additive component of shear bias (c1).
(iii) Z

2(±)
× approximates the mean square contribution of PSF

shape inaccuracies to the second additive component of shear bias
(c2).

(iv) Z2(±)
s approximates the mean square contribution of PSF size

inaccuracies to the both multiplicative components of shear bias (m1

+ m2).
(v) X2 approximates the mean square of total contribution to shear

bias.

We can minimize X2 to fit the optimal PSF model, but due to the
presence of noise in the images, if we wish to judge whether or
not a given image passes a test of the PSF model, we will need a
baseline for its expected value and variance in ideal circumstances.
We accomplish this by applying our testing procedure to a set of
control images, as detailed in Section 4.

The choice of the value X2 to minimize is admittedly arbitrary,
and an argument could be made that it is better to weight the
contributions to additive and multiplicative biases differently, given
the different magnitudes of and requirements on them. However, it is
first necessary to see if one or the other might be more problematic
before choosing such weights, and so we use equal weights in our
analysis here, and invite others to let our results inform how they
might choose to weight these components.

It is also worth comparing to requirements that might be imposed
on the PSF. For instance, HST images are planned to be used
for validation of the processing pipeline for the Euclid mission
(Laureijs et al. 2011). This mission imposes the following shear
bias requirements on its full pipeline:

m1, m2 ≤ 2 × 10−3,

c1, c2 ≤ 5 × 10−5. (10)

The requirements on HST images for validation of the Euclid pipeline
are likely to be much less strict, but as these requirements have
not yet been calculated, we will use the above values as example
requirements for our work here. This will allow us to judge, for
instance, whether the multiplicative or additive requirements on shear
bias are more difficult for PSF models to meet.

These shear bias requirements will correspond to requirements
on the various Z2

k values. However, in order to test against these
requirements, we must first account for the fact that noise in
observations translates to non-zero typical Z2

k values (which are in
effect scaled mean square deviates) even for an ideal PSF model.
If we assume that the Z2

k values we calculate for the control fields
in the ideal scenario, which we will here label as Z2

k,Ideal, then we
can consider the Z2

k values for observations to be the sum of this,
a contribution from excess variance (which might, for instance, be
caused by the model not fully capturing the spatial dependence of the
PSF) and a contribution from a difference in the mean of the measured
moments between the modelled and observed PSFs. That is,

Z2
k = Z2

k,Ideal + Z2
k,ExcessVariance + Z2

k,MeanDeviate. (11)

It is only the latter two terms which we want to test against
requirements on the PSF, which we can do by imposing the
requirements on the difference between the measured Z2

k values and
those measured for the control images, Z2

k,Ideal.
Additionally, if we wish to ensure that we meet requirements to

a given threshold of certainty (for instance, 95 per cent), we must
require that this difference is below the required value by at least
1.645σ

(
Z2

k

)
, where the factor 1.645 is the z score that corresponds

to a one-sided p-value of 0.95, and σ
(
Z2

k

)
is the standard deviation

of this Z2
k value, as measured from tests on control images. This

gives us the requirements:

Z
2(±)
+ − Z

2(±)
+,Ideal � 2.5 × 10−9 − 1.645σ

(
Z

2(±)
+

)
,

Z
2(±)
× − Z

2(±)
×,Ideal � 2.5 × 10−9 − 1.645σ

(
Z

2(±)
×

)
,

Z2(±)
s − Z

2(±)
s,Ideal � 4 × 10−6 − 1.645σ

(
Z2(±)

s

)
. (12)

Here, we assume that centroiding is handled carefully so that even
if issues are present with the x and y moments of the PSF, they
do not impact shear estimation. Note that these requirements are
approximate due to the assumptions we made in our calculations
of the weighting factors for the Z2

k , which assume a typical galaxy
size of 1.5× the size of the PSF, and the specifics of the validation
procedure used might require more or less stringent requirements.

3.2 Implementing tests

We implement our tests on each image independently. For each
image, we start by using the SEXTRACTOR utility (Bertin & Arnouts
1996) to identify all candidate objects in the image, using the image’s
exposure time to set the proper zero-point for it in the configuration.
To form our star sample, we then impose the following cuts on the
generated catalogue:

(i) CLASS STAR ≥0.99
(ii) 22.4 ≤ MAG AUTO ≤25.4 (approximately signal-to-noise

ratio 20–200)
(iii) FLUX AUTO/FLUXERR AUTO ≥50

This ensures that all objects in the sample are likely stars and are
detected with enough significance to be useful for our tests. The
lower limit on the magnitude is used to prune stars that are possibly
bright enough to show non-linear effects or saturate their central
pixels. For each star in the sample, we then determine the distance
to the nearest other object (star or otherwise) in the catalogue. We
remove any stars from the sample for which the nearest neighbour
is within 2Rmax (1′′) of it or the edge of the image is within Rmax of
it to form a sample of isolated stars. It is still possible that some of
these stars might neighbour a faint object which was not identified
by SEXTRACTOR or that they might in fact be a binary system, so it
will be necessary later to check the sample for outliers.

For each of the isolated stars in our sample, we first determine
the ideal centre position (xc, yc) for it as the position for which
Mc

x = Mc
y = 0 (where the c superscript represents calculation using

the core weight function). To do this, we start with the centre provided
by SEXTRACTOR and calculate Mc

x and Mc
y . We then shift the centre

positions by these values:

xc,new = xc,old + M (c)
x ,

yc,new = yc,old + M (c)
y . (13)

This process is iterated until the convergence of both xc and yc. Using
this centre, we then calculate the moments and Qk values for the star,
as detailed in Sections 3.1.1 and 3.1.2.
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We now proceed to determine the best-fitting focus value for each
image by fitting for the focus value that minimizes X2 (as defined
in equation 9) for the image. The calculation of X2 for each image
is detailed in Section 3.1.3, except for the determination of outliers.
To do this, we first calculate all M

(c)
k and M

(w)
k values (i.e. M+ etc.

calculated with each of the core and wings weight functions) except
for M (c)

x and M (c)
y (which will be zero due to the centre fitting) for

each star, assuming a focus offset value of −1 μm, which is at the
centre of the observed range of fit values, −8 to +6 μm. For each of
these parameters, we then calculate the mean and standard deviation
of the differences between the measured values for the stars and their
corresponding models.

Since we expect that there will be some contamination of our
sample due to objects misclassified as stars, binary star systems,
and other blends, we apply Chauvenet’s criterion to each parameter,
marking as outliers for this parameter stars where:∣∣(Mk,star,i − Mk,model,i) − (Mk,star − Mk,model)

∣∣
σ (Mk,star − Mk,model)

> Dmax(N ), (14)

where Dmax(N) is chosen such that for N realizations of a normal
distribution, there is a less than 50 per cent chance that any value
will be this far or farther from the mean, and N is the initial number
of stars. This process is iterated, updating the standard deviation and
mean (but not N) until the sample has converged. A star will be
considered an outlier if any of its Qc or Qw parameters is marked as
an outlier.6

We use the samples of non-outlier stars to calculate the X2 value
for each image, and fit for the focus that provides the minimum such
value. Since we are only fitting a single parameter, we apply a simple
brute-force procedure, sampling focus values between −6 and 6 μm
at intervals of 1 μm. We take the best of these values, and then use
a downhill simplex method to determine the best focus to within
0.1 μm. This gives us the best-fitting focus value, and we use the
statistics this value provides for our analysis.

4 C ONTROL TESTS

It is important to check our testing procedure against control images
for various reasons. It allows us to validate that it works and has no
apparent bugs, it informs us of the ideal fitting statistic X2 for various
scenarios, and it allows us to perform convergence tests.

4.1 Control image design

Our control images are generated to match the properties which are
shared by all our test images:

(i) Dimensions: 4096 × 2048 pixels
(ii) Pixel scale: 0.05 arcsec px−1

(iii) Gain: 2.0e(−)/ADU
(iv) Instrumental zero-point7: 26.50

We also make the following choices to make the image representative
of one of the exposures in our sample, using the values from one of
the exposures of NGC-0104, labelled as jb6v09shq in the archive:

6This is indeed likely to reject more stars than necessary, but aside from
giving us a smaller sample size to work with, this is unlikely to affect our
final statistics, as they are based off of empirical scatter calculations on the
samples of non-outlier stars.
7Per https://hst-docs.stsci.edu/display/ACSIHB/9.2+Determining+Count+
Rates+from+Sensitivities

(i) Exposure time: 1298 sec
(ii) Pixel noise: Approximated by Gaussian distribution with σ =

51e(−) px−1. This is a conservative overestimate of the noise to
account for the contributions of the wings of bright stars in addition
to the image background and read noise.

(iii) Chip: 1

We generate a set of 100 images, with focus offset values
distributed uniformly between −6.0 and 4.0, which covers the
typical range of values expected in observations. For each image,
we generate 1000 mock stars, with positions drawn from a uniform
random distribution on the image and magnitudes drawn from
a uniform random distribution between 22.4 and 25.4, and with
appropriate shot noise applied to the images. TINY TIM is called
to generate a PSF model for each star (using its actual position,
rather than the nearest grid point as done elsewhere in our analysis),
subsampled at a factor of 10×, which is the maximum factor allowed
by Tiny Tim. Unlike in our testing procedure, where we rebin models
through simple summation after shifting, here we use the GalSim
toolkit (Rowe et al. 2015) to interpolate and integrate the models.
This is much slower, but it allows for more precise determinations
of the rebinned PSF models. We will later test the accuracy of the
faster simple summation approach for various subsampling factors
in Section 4.2. By default, each star is generated using the K7V
spectrum in TINY TIM.

We generate a set of variant control images, each accounting
for different effects which would be difficult or time-consuming
to account for in our testing procedure, to estimate the impact these
effects would have on our testing procedure. We limit our analysis to
representative cases of different effects, using the following image
variants, with random seeding used to maintain the positions of stars
between variants:

(i) Base: All default options, as described above.
(ii) Binaries: For a randomly-selected 30 per cent of stars, an

additional mock star is added to the image at a random position within
a circle of radius 1 px around the star’s position. The additional star’s
magnitude is drawn from the same distribution as the other stars.

(iii) Wide binaries: As Binaries, except in all cases where a star
is selected to be a binary, the additional mock stars are added to the
image within circles of radius 2 px around the stars’ positions instead
of circles of radius 1 px.

(iv) 1D guiding error: To simulate the effects of guiding error (see
Lucas et al. 2018, section 5.2.3), each model PSF is convolved with
a tophat profile of length 0.2 px in the x-dimension and length 0 in
the y-dimension.

(v) 2D guiding error: Differential velocity aberration causes both
an elongation of images similar to that of guiding error and a
scale change (Pirzkal et al. 2001). The latter is small enough to
be negligible, but the former is of concern. We simulate this in the
extreme case where this effect is orthogonal to the elongation caused
by guiding error by convolving each PSF model with a tophat profile
of length 0.2 px in both the x- and y-dimensions.

(vi) Galaxy background: To test the impact of possibly unresolved
blends, we add to the image a background consisting of a randomly
generated galaxy field, with size and magnitude distributions de-
signed to approximate what would be observed in the F606W filter.
Galaxies with magnitude �28 are rendered.

(vii) Varying spectral type: Rather than using the K7V spectrum
for all stars, stars are generated with spectral types drawn from a
random distribution. This distribution is a simple model that allows
all types but is strongly weighted towards redder types, with P(i) ∝ i3,
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Figure 1. Convergence tests for the PSF gridding scheme (left) and subsampling factor (right). In each plot, the vertical axis shows the mean quality of fit
statistics for a test of control fields using a given set-up, where the solid black line shows X2, the sum of the other statistics. In the left plot, the horizontal axis
shows the side-length in pixels of each cell in the PSF gridding scheme, and in the right plot, it shows the subsampling factor used. Note that in the left plot, many
lines are not shown as scaling the plot to show them would result in making it difficult to judge the slope of the X2 line, which is the most important result here.

where i is the index of the spectral type as provided to TINY TIM. For
reference, the default K7V spectral type is index 15 out of 17 total.

(viii) Full: This variant includes the combination of effects from
the binaries, 2D guiding error, galaxy background, and varying
spectral-type variants.

Two additional possible complicating factors are jitter and imperfect
correction for charge transfer inefficiency (‘CTI’, see Massey et al.
2014). Jitter results in a blurring of scale �7 × 10−3 ′′ (Clapp 2009),
or 0.14 px, which is subdominant to the guiding error and differential
velocity aberration effects and not worth testing separately. CTI
manifests as a blurring of images in the readout dimension. Aside
from the fact that CTI is a non-linear transformation, this is similar
to the convolution we use for our Guiding Error variants, and so it is
not necessary to use separate variants for imperfect CTI correction.

4.2 Convergence tests

In Fig. 1, we plot the results of our convergence tests. In the left
plot, we test the gridding scheme for PSF models, where models are
generated only for a fixed number of points at the centres of grid
cells, and these models are used for all positions within their cells.
This can greatly save time in testing if multiple stars reside in the
same cell (even on different images), as fewer PSF models will need
to be generated, but we must assess the impact of this approach to
ensure that it does not significantly impact the results of our testing
framework. We thus test the framework on our set of control images,
using the known focus offset value for each and a set of cell sizes
from 2048 px2 (only two cells per image) to 1 px2. For all cases, we
use the maximum possible subsampling factor of 10 to ensure that
no additional errors are introduced from a lack of convergence for
that variable.

We see from the plot that if the gridding scheme is too coarse, X2

can be increased by up to a factor of ∼1.5. A cell size of 512 px2

provides a reasonable balance of time saved versus accuracy, but
for our purposes we decide to use a size of 128 px2. By this point,
the accuracy has definitely converged, and it will likely still have
converged if accuracy is improved (e.g. by increased exposure time).
This corresponds to 512 cells per image, which means few stars on
the same image will share a cell. It still allows for significant time
savings if models are reused for different images, though.

In the right-hand panel of Fig. 1, we test the subsampling factor
used for the generated PSF models before they are shifted and
rebinned to match the positions of stars. In this case, the effect on X2

is more drastic, increasing it by up to an order of magnitude when no
subsampling is used. Here, a subsampling factor of 4 provides a good
balance between time and accuracy. We choose to use a subsampling
factor of 8 for the same reasoning as before; it has converged by this
point, and likely still will have if the accuracy is improved.

To ensure high accuracy for our tests, we choose a gridding scheme
with cell sizes of 128 px2 and a subsampling factor of 8.

4.3 Expected fitting statistics

In order to determine the expected fitting statistic X2 for an ideal
scenario, we apply our testing framework to each control field, using
the converged grid scheme and subsampling factor determined in
Section 4.2. We test both using the known focus offset value and
fitting for the best value, and we plot the resulting X2 and Z2

k values
in Table 1.

Let us first compare the fitting statistics from using the known
focus offset versus fitting it, to understand the impact of the fitting
procedure on the results. In the case where we use the known focus
offset, the size-related parameter Z2(+)

s is the largest contributor to
X2 in all scenarios, but particularly when unresolved binary stars are
included. When the focus offset is instead fit, the magnitude of Z2(+)

s

tends to decrease slightly, while other statistics slightly rise, resulting
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Table 1. The fitting statistics resulting from applying our testing procedure to each control image variant. The details of the variants are listed in Section 4.1,
and the fitting statistics are defined in Section 3.1. The top table lists the fitting statistics resulting from a test in which the known focus offset for each control
image is used, the middle table lists the statistics when the focus offset is fit for each image, and the bottom table lists the statistics when all possible optical
parameters are fit for each image.

Type X2 Z
2(−)
x Z

2(−)
y Z

2(+)
+ Z

2(−)
+ Z

2(+)
× Z

2(−)
× Z

2(+)
s Z

2(−)
s

Known focus offset
Base 1.0 × 10−7 5.1 × 10−11 5.1 × 10−11 2.4 × 10−8 9.5 × 10−9 2.3 × 10−8 9.2 × 10−9 3.5 × 10−8 1.2 × 10−9

Binaries 1.6 × 10−7 3.7 × 10−11 3.9 × 10−11 2.0 × 10−8 8.6 × 10−9 1.9 × 10−8 8.6 × 10−9 9.9 × 10−8 1.5 × 10−9

Wide binaries 1.7 × 10−7 4.2 × 10−11 3.9 × 10−11 2.3 × 10−8 9.9 × 10−9 2.2 × 10−8 9.7 × 10−9 1.1 × 10−7 2.0 × 10−9

1D guiding error 1.0 × 10−7 5.1 × 10−11 5.1 × 10−11 2.4 × 10−8 9.5 × 10−9 2.3 × 10−8 9.2 × 10−9 3.5 × 10−8 1.2 × 10−9

2D guiding error 1.0 × 10−7 5.1 × 10−11 5.0 × 10−11 2.4 × 10−8 9.6 × 10−9 2.3 × 10−8 9.5 × 10−9 3.5 × 10−8 1.2 × 10−9

Galaxy Background 1.0 × 10−7 5.7 × 10−11 5.8 × 10−11 2.4 × 10−8 9.6 × 10−9 2.3 × 10−8 9.2 × 10−9 3.4 × 10−8 1.2 × 10−9

Varying spec. type 1.0 × 10−7 5.1 × 10−11 5.0 × 10−11 2.4 × 10−8 9.6 × 10−9 2.3 × 10−8 9.4 × 10−9 3.5 × 10−8 1.3 × 10−9

Full 1.6 × 10−7 4.2 × 10−11 4.4 × 10−11 2.0 × 10−8 8.9 × 10−9 2.0 × 10−8 8.6 × 10−9 1.1 × 10−7 1.6 × 10−9

Fit focus offset
Base 1.1 × 10−7 9.9 × 10−11 1.0 × 10−10 2.6 × 10−8 1.1 × 10−8 2.4 × 10−8 9.6 × 10−9 3.9 × 10−8 1.3 × 10−9

Binaries 1.6 × 10−7 6.9 × 10−11 7.1 × 10−11 2.2 × 10−8 9.9 × 10−9 2.0 × 10−8 8.9 × 10−9 9.5 × 10−8 1.7 × 10−9

Wide binaries 1.8 × 10−7 7.0 × 10−11 7.0 × 10−11 2.4 × 10−8 1.1 × 10−8 2.3 × 10−8 1.0 × 10−8 1.1 × 10−7 2.4 × 10−9

1D guiding error 1.1 × 10−7 1.0 × 10−10 1.1 × 10−10 2.5 × 10−8 1.1 × 10−8 2.4 × 10−8 9.5 × 10−9 3.9 × 10−8 1.3 × 10−9

2D guiding error 1.1 × 10−7 1.0 × 10−10 1.0 × 10−10 2.5 × 10−8 1.1 × 10−8 2.4 × 10−8 9.8 × 10−9 3.9 × 10−8 1.3 × 10−9

Galaxy Background 1.1 × 10−7 1.1 × 10−10 1.1 × 10−10 2.6 × 10−8 1.1 × 10−8 2.4 × 10−8 9.4 × 10−9 3.8 × 10−8 1.3 × 10−9

Varying spec. Type 1.1 × 10−7 9.3 × 10−11 1.0 × 10−10 2.5 × 10−8 1.1 × 10−8 2.4 × 10−8 9.6 × 10−9 3.9 × 10−8 1.3 × 10−9

Full 1.6 × 10−7 7.7 × 10−11 8.9 × 10−11 2.3 × 10−8 1.1 × 10−8 2.1 × 10−8 9.1 × 10−9 9.6 × 10−8 1.9 × 10−9

Fit all parameters
Base 1.1 × 10−7 9.3 × 10−11 7.8 × 10−11 2.6 × 10−8 1.1 × 10−8 2.4 × 10−8 1.0 × 10−8 3.6 × 10−8 1.4 × 10−9

Full 1.5 × 10−7 8.0 × 10−11 7.7 × 10−11 2.2 × 10−8 1.0 × 10−8 2.1 × 10−8 9.2 × 10−9 8.9 × 10−8 2.5 × 10−9

in only a slight decrease in the total X2. This is likely due to the fact
that modifying the focus offset has the most significant impact on the
size of the PSF model, and since this is already the largest contributor
to X2 – even when the observed size is incorrect (due to noise and
possibly other factors) – X2 can be improved by fitting a different
focus offset. We will keep this effect in mind in our analysis.

In Fig. 2, we plot the fitted focus offset for each control image
against the actual value for each control variant. We see that when
unresolved binary stars are not included, the fitted value is very close
to the actual value, but when binaries are included, the fitted values
become more extreme, biased to either side of ∼−3. This is due to the
minimum PSF size resulting from this value, and binaries biasing the
fit to prefer larger model PSFs. Since larger PSFs result from focus
offsets further from ∼−3, the fitted values are thus biased away from
it, resulting in a bifurcation in the fitted values.

As the fit values are what we will obtain with observed images,
we focus the remainder of our discussion on the values in that table.
Looking first at the base image variants, which include no extra
complicating factors, we see that the quantities that impact additive
shear bias, Z

2(±)
+ and Z

2(±)
− are all significantly above the threshold

to determine if the model PSFs meet the example requirements we
have imposed, while those that impact multiplicative bias, Z2(±)

s , are
well below the threshold. The standard deviations of these values
(not shown in the table) are as follows:

σ
(
Z

2(+)
+

) = 3.2 × 10−9,

σ
(
Z

2(−)
+

) = 1.6 × 10−9,

σ
(
Z

2(+)
×

) = 3.2 × 10−9,

σ
(
Z

2(−)
×

) = 1.6 × 10−9,

σ
(
Z2(+)

s

) = 7.2 × 10−9,

σ
(
Z2(−)

s

) = 2.2 × 10−10. (15)

Unfortunately, the standard deviations for the factors that contribute
to additive bias on shear measurements are all sufficiently large they
result in the threshold to confidently state that a PSF model meets this
requirement being negative. This means that in practice we will not
be able to confidently make this claim, although we may be able to
confidently claim that a PSF model fails to meet this requirement. For
the case of multiplicative bias, the standard deviation and ideal values
of the contributing factors are sufficiently low that we can say that
a model PSF confidently meets our multiplicative bias requirements
if

Z2(+)
s � 4 × 10−6, and

Z2(−)
s � 4 × 10−6. (16)

If it is in fact necessary to ensure the PSF model meets the
example requirements for additive bias that we are using, testing
only the brightest stars in an image will make this test more feasible
mathematically, as it will reduce the impact of noise on the Z2

k

values, but this will come at the expense of worse sampling of the
PSF across the image. Taking deeper exposures can additionally
help mitigate this problem. However, this applies only to the ideal
scenario, which assumes that various other complicating factors are
properly handled. It also assumes that there is no loss of data due to
bright stars becoming oversaturated and useless, or if there is, it is
counteracted by fainter stars becoming usable.

The remaining rows in Table 1 show the representative impact of
these effects, which we will now discuss.

The most significant complicating factor is the presence of
unresolved binaries in the sample of stars. Although our testing
procedure includes both a detection step (with cuts on SEXTRACTOR’s
CLASS STAR parameter and object size) and an outlier-rejection
step, the presence of binary stars still increases the fitting statistic
significantly, to ∼1.6−1.8 × 10−7. This error cannot be reduced
through longer exposures, but instead will require binary stars to
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5026 B. R. Gillis et al.

Figure 2. The fit focus offset plotted against the actual focus offset for each control image. Each panel shows a different control variant, including different
complicating factors. The dashed line indicates an ideal fit, where all fitted focus offsets match the input values.

be identified and excluded from the sample, for instance through
analyses of their spectra as measured by supplementary observations.
Interestingly, there is only a small difference in the fitting statistic
when the width of binaries is increased, which is likely due to wider
binaries being more likely to be identified in the outlier-rejection
process and excluded from the sample.

All other factors tested (the presence of a background of resolved
and unresolved galaxies, guiding error, and varying spectral type)
have no significant impact on the fitting statistic.

For our analysis in this paper, we take the approach of ignoring
these effects in our testing procedure and comparing the resulting
fitting statistics to those for the Full variant.
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PSF model validation 5027

5 R ESULTS AND ANALYSIS

Having confirmed that our testing procedure works on control images
and obtained data on the expected fitting statistics for an ideal PSF
model in ideal and more realistic situations, we now move on to
testing TINY TIM PSFs on the HST observations we introduced in
Section 2.1. In Section 5.1, we present the results of testing TINY

TIM with its default configurations, and we test fitting more advanced
configurations in Section 5.2. We compare our results against di Nino
et al. (2008) and Niemi & Lallo (2010)’s model for HST’s focus offset
in Section 5.3, and discuss our results in Section 5.4.

5.1 Testing results

We can judge the quality of model PSFs by looking at the X2 and Z2
k

statistics of our tests, as defined in Section 3.1.3. For an ideal model
in ideal circumstances, we would expect these values to be clustered
around those found for the Base control images, as seen in the first
row of Table 1. As multiple factors which we have not accounted
for can complicate the analysis, even an ideal model will likely have
larger quality-of-fit statistics. The final row of Table 1 presents a
reasonable estimate of the upper bound, using representative values
for various possible complicating factors, and so comparisons against
these values will present a more conservative test of the PSF models.

We plot histograms of our fitting statistics for all tested images after
fitting the best focus offset for each in Fig. 3, and compare them to the
expected values from the Base and Full control images, shown as the
dashed and dotted black lines, respectively. The corresponding grey
lines show these values plus twice the standard deviation among all
control fields, and so represents the approximate maximum values
we would expect to see if the PSF models are ideal. If we look
just at the total statistic, X2, the values for the tested images are
clustered significantly above the expected value from the Full control,
which implies either an issue with the model or that our control
underestimates the impact of complicating factors by nearly an order
of magnitude.

This is similarly the case when we look at the Z2
k values that

together compose X2. Of these values, all are on average significantly
above the expectations for the Full control. In the worst case, for
Z2(−)

y , the resulting statistics are on average nearly 1.5 orders of
magnitude higher than the expectation from the control images.

As the Z
2(+/−)
+ and Z

2(+/−)
× values generally greatly exceed those

values for the control images, we can state that our example additive
bias requirement (c < 5 × 10−5) will not be met by this PSF model.
The multiplicative bias requirement will be met however, as although
the Z2(+/−)

s values generally exceed the control values, it is not by
nearly enough to violate our requirement of m < 2 × 10−3.

We can gain further insight into the issue here by looking at
the relationships between the quality of fit parameter X2 and other
parameters. We show this in Fig. 4, where we plot the relationships
between X2 and the best-fitting focus value, the chip with which each
image was observed, the observation date, and the number of stars
in each image. There is no apparent relationship between X2 and the
observation date, suggesting that there is no time-dependent effect
in this period affecting the PSF (at least to our level of sensitivity).
Similarly, if our exclusion of objects with nearby neighbours were
not sufficient to deal with crowding, we would expect to see a trend
between the number of stars in each image and X2, and we see
none. This suggests that our exclusion is indeed sufficient, at least
for detected objects (and for undetected objects, the control tests
outlined in Section 4.3 show that this effect is minimal).

However, we do see notable oddities when we compare X2 to the
best-fitting focus offset value and the chip with which each image was
observed. We see that the focus offset values are clustered between 0
and 6 μm, where we expect from the HST’s breathing that they will
span the range of −6 to 6 μm. The chip with which each image was
observed also seems to play a role – images observed with chip 2
systematically have lower best-fitting focus offset values by roughly
a micron, and larger X2.

One might consider that this is in part due to the fact that the
fitting algorithm prioritizes fitting the size of the PSF model, as it is
the largest contributor to X2. Since we cannot efficiently remove all
unresolved binary stars from the sample, these bias the model to a
focus offset value which provides a larger size. It seems that the fitting
algorithm generally finds the best solution to this at larger focus offset
values. However, this explanation is not fully consistent with our tests
on control fields, as although the fitting does prefer more extreme
focus offset values, as seen in Fig. 2, it is split between high and low
values, with the mean bias actually being to a too-low focus offset.
One potential explanation to this is that the symmetry observed in the
control fields only holds for small deviations between the model and
observed PSFs, and large deviations result in this symmetry breaking
and appearing as we observe here.

Further analysis of the data shows that in the control fields,
the model PSFs fail to match the sizes of the observed PSFs,
but differences between the model and observed sizes are tightly
clustered, while in the actual fields, the model PSFs match the sizes
of the observed PSFs on average, but there is very large scatter in
this relationship. This suggests that a possible explanation for this
discrepancy might be that there is more spatial variation in the PSFs
than is accounted for in the model. Inspection of the data shows that
while there is a statistically significant correlation between position
and size difference for many images, the nature of this correlation
is not consistent between images. This could be due to temperature
variations and gradients distorting the image plane in ways that are
not accounted for by the TINY TIM model.

The difference between the two chips might be considered to be
due to the fact that there is a vertical offset between them. However,
TINY TIM already does implement a correction for this effect. Even
if it didn’t, a focus offset difference between the two chips of just
one micron, as we tend to see here, would correspond to a height
difference of hundreds of microns in the chips (Cox & Niemi 2011),
which is implausibly large. This effect was also noticed by Cox &
Niemi (2011), who attributed it to most likely being due to differences
in spherical aberration and charge diffusion between the two chips.
As we will discuss further in Section 5.2, we find this to be an
insufficient explanation.

It seems that while the impact of unresolved binaries or some
similar effect is responsible for some of the difference between our
expected and measured X2, this cannot explain all of it. Many of the
fitting statistics are significantly worse in the real images than in our
control tests, and this cannot be explained by any of the possible
complicating factors we tested. The most likely conclusion at this
point is that the issue lies with the model PSFs. In the following
section, we will test options for improving the models.

5.2 Advanced configuration of TINY TIM

As we found in the previous section, the TINY TIM PSF models we
tested seem to fail to adequately characterize the observed PSFs,
even when accounting for complicating factors that might result in
apparently poor fits. However, the models we tested were limited to
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5028 B. R. Gillis et al.

Figure 3. Distributions of the quality of fit parameter X2 across all tested images, as the contributions of each tested moment, presented as Z2
k (see equation 8).

The expected values for an ideal fit for each parameter are shown with the dashed black lines, and the expected values allowing for complicating factors are
shown with the dotted black lines. The grey lines show these values plus twice their respective standard deviations among all control fields. The solid grey
line, for the Z

2(+/−)
s panels, indicates the threshold for these values such that the PSF model will meet our example requirements on multiplicative bias m <

2 × 10−3. Our example requirements on additive bias are failed if the Z
2(+/−)
+ or Z

2(+/−)
× values exceed the control values.

the default configuration for TINY TIM. It is also possible to modify
various parameters of the model, notably the Zernike polynomial
coefficients which characterize the optics, but these options are not
normally presented to the user. Given the discrepancies we have
found between the models and reality, it is reasonable to consider
that the default values for these parameters might be incorrect, at
least for the observations we tested.

To test this hypothesis, we repeat our testing procedure, this
time fitting each image not only for the focus offset (which in fact
corresponds to the fourth Zernike polynomial’s coefficient) but also

for the coefficients of all polynomials Z2 through Z21. Only the focus
offset is expected to vary from image to image, so ideally the other
fitted parameters will be consistent across all images, or else vary
only with the date of observation (which would imply some factor
changed the optics over time).

In addition to these, the possibility was also raised in private
correspondence with TINY TIM’s author, John Krist, that the charge
diffusion kernel determined by TINY TIM is only an approximation
and might not be accurate enough. As the possible variations to
the kernel are infinite, we will test only one modification which
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PSF model validation 5029

Figure 4. Left: The quality of fit parameter X2 for each image plotted against the best-fitting focus value, with points coloured according to which of the two
detector chips the image was taken with. Right: The quality of fit parameter χ2 for each image plotted against the date of observation, with points coloured
according to the number of non-outlier isolated stars in the image.

will roughly characterize whether too much or too little intensity
is diffused. We introduce a parameter c, and the eight non-central
pixels of the kernel are then multiplied by c. The central pixel is
then rescaled so that the kernel sums to 1. A value of c > 1 then
corresponds to more diffusion, and a value c < 1 corresponds to less
diffusion. If there is an indication that the default value c = 1 is not
appropriate, further investigation can be undertaken to determine a
better model for charge diffusion.

Finally, as we discussed in Section 4.3, it is possible to include the
effects of guiding error and similar effects in the PSF model. This can
be roughly approximated by convolving the PSF with a rectangular
tophat profile, which will have free parameters representing its
height, width, and orientation. However, this has the drawback
that including this effect will necessitate a much greater amount of
computer time: In addition to adding three more parameters which
must be fit, this convolution would require the use of an interpolation
and integration approach to rebinning PSF models, rather than simple
summation. As this can result in up to double the total time required,
and since the effect of guiding error is dwarfed by the effect of
unresolved binary stars in the sample, we choose not to include this
effect in our analysis.

We perform our fitting procedure using a two-stage approach. First,
the focus offset is fit using a brute-force followed by steepest-descent
algorithm, while all other parameters are held constant. Secondly, a
steepest-descent algorithm is used to fit all parameters. This is done to
help avoid the fitting algorithm getting trapped in a local minimum.
Since the focus offset is the most significant factor, fitting it first
ensures that this approach will provide results at least as good as the
focus-only approach, and will not get trapped in a local minimum
far from the global minimum.

In Fig. 5, we plot the resulting fitting statistics when all optical
parameters are fit for each image. This shows a small but noticeable
improvement over the case where only the focus offset is fitted, and
the overall statistic, X2, lies closer to the mean value found when
testing on representative control images. The fact that we still do not

reach the expected quality of fit from the control tests might be due to
our control images not properly accounting for some physical effect
which is present in reality, or it might be due to a flaw in TINY TIM’s
modelling.

The comparison to our example requirements remains the same
even with this fit; the PSF model meets our requirements on
multiplicative bias, but fails to meet our requirements on additive
bias, although it is somewhat closer to meeting these requirements
when all optical parameters are fit to each image. This is well beyond
the accuracy limit to which TINY TIM was originally tested, though,
and is unlikely to be large enough to have any practical impact on
shear measurements using HST data. It is only an issue here, since
we are testing the PSF model against the requirements for the Euclid
mission, which are much stricter given the much greater volume of
data involved.

The left-hand panel of Fig. 6 illustrates the relationship between
the quality of fit and the fitted focus offset value now that all optical
parameters are being fit. We no longer see a significant difference
between the X2 for the two chips, but a difference in the best-fitting
focus offset remains. This suggests that the issues we saw when
only the focus offset was fit were possibly due to the use of other
improper optical parameters being used. From the right-hand panel,
which shows the relationship between the quality of fit, the date of
observation, and the number of stars per image, we see no significant
change from before aside from the previously-noted fact that the
quality of fit has generally improved.

In Fig. 7, we plot the best-fitting values for each of these fitted
parameters against the fitted focus offset, with TINY TIM’s default
value for each shown for comparison with a solid black line. From
this plot, we see that certain parameters are consistently fit to different
values from the defaults used by TINY TIM, and in some cases there
is also a correlation between these fitted values and the fitted focus
offset. Of particular note is the X coma parameter, which differs very
significantly from its default value: Its mean fitted value is 0.0159,
compared to the default value of 0.003.
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5030 B. R. Gillis et al.

Figure 5. As Fig. 3, except all optical parameters were fit for each image.

It is possible that some or all of the cases where we see a correlation
between these values and the focus offset might be due simply to a
degeneracy in the models rather than a correlation between the actual
values, but an actual correlation is possible. This could occur if the
heating and cooling pattern of HST has more complicated effects
than simply changing the focus offset. This could be caused by, for
instance, certain parts of the telescope shading other parts, resulting in
deformation due to different portions of it being heated by different
amounts. This could result in the optical parameters for the PSF
model being altered at the same time that the focus offset is altered,
appearing as a linear correlation between them.

If our hypothesis is correct that the default optical parameters
used by TINY TIM are incorrect, then if we fit only the focus offset
and use either the mean fitted values for the other parameters or

the predictions from a linear regression of them against the focus
offset, we should see significant improvement in the fitting statistics
as compared to using the default parameters. If we do not see this,
then it would imply that the improvement in fitting statistics here is
likely due to fitting to noise, degeneracies between the focus offset
and other parameters, and complicating factors such as unresolved
binary stars.

In Fig. 8, we show the resulting fitting statistics from fitting the
focus offset with either the mean best-fitting optical parameters (solid
bars) or a best-fitting linear relationship between these parameters
and the focus offset (transparent bars). Comparing this plot to Fig. 3,
we see that either approach provides a notable improvement over
using the default parameters, but not quite as much as fitting all
optical parameters to each image. This also fails to bring the X2
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PSF model validation 5031

Figure 6. As Fig. 4, except all optical parameters were fit for each image.

statistic below the expected value predicted from our representative
control tests. This implies that the discrepancy between the models
and reality cannot be explained entirely by the optical parameters
having shifted since they were originally fit.

As using a linear relationship between the fitted focus offset and
other parameters showed similarly little benefit, the discrepancy also
cannot be adequately explained by these parameters varying due to
the heating and cooling cycle of the instrument, like the focus offset
does, unless they vary with a different periodicity or phase. We tested
this hypothesis through Fourier analysis (see Appendix C), but this
failed to uncover any evidence of any parameters varying with a
different periodicity or phase from the focus.

5.3 Comparison to focus model

A model to predict the focus offset of HST was developed by di
Nino et al. (2008) and Niemi & Lallo (2010). As reported in Cox
& Niemi (2011), from tests comparing the model’s predictions to
measurements of the focus offset made through the phase-retrieval
process described in Krist & Burrows (1995), this model predicts the
focus offset to within 1 μm ∼50 per cent of the time, and to within
2 μm ∼80 per cent of the time.

In Fig. 9, we show a comparison of our fitted focus offset values
to those predicted from the model (taken from the Annual Summary
files published online, for the time of the exposure). We can see
that the fitted and model values correlate well for large values of
the focus, but the relationship worsens for lower values. Part of this
is due to the known effect in our fitting procedure that focus offset
values are biased away from ∼−3 μm. However, this effect is not
sufficiently large to explain the cluster of images for which our fitted
focus is ∼−7, while the model focus is ∼−2.

We confirm the finding of Cox & Niemi (2011) that there is
a significant difference between the two chips in comparison to
the model, of approximately 0.5 μm. However, Cox & Niemi
(2011) attributed this to possible differences in charge diffusion and
spherical aberration between the two chips, but our results here fit
for these parameters individually for each chip, and this difference

remains. This suggests that this is not the full explanation for this
effect, and other possibilities will have to be investigated.

Since the model’s predictions were validated against measure-
ments to be generally accurate within 2 μm, it is worth considering
why our measurements differ by more than this threshold. The key
difference between our fitting procedure and the phase-retrieval
process used for validation of the model (see Krist & Burrows
1995) is that the latter uses only out-of-focus observations to fit
the focus offset, while we use in-focus observations. Inaccuracy in
the extrapolation from out-of-focus to in-focus measurements, for
instance due to unknown non-linearity in the motion of the secondary
mirror, could result in these measurements differing. Another notable
difference is that the measurements used for validation of the model
were all made from images of a star at the centre of the detector, while
our measurements use stars from various positions on the detectors.
If the model fails to properly account for spatial variation of the PSF
(see our discussion of this possibility in Section 5.1), this could also
account for the difference.

5.4 Discussion

In Section 5.1, we showed that our PSF validation framework indi-
cates a significant discrepancy between the model PSFs generated
by the TINY TIM tool and the PSFs of observed stars when using the
default parameters and only fitting the focus offset. The magnitude
of this discrepancy is too large to be explained by the various effects
we expect to see in observations but which were not accounted
for in the TINY TIM models (see Section 4.1), the most notable
of which is the presence of unresolved binary stars in the sample.
One possible explanation of this that we highlight is that the model
might not fully capture that spatially varying nature of the PSF, as we
see indications that this effect might vary between images, perhaps
due to time-dependent temperature gradients distorting the image
plane.

We showed in Section 5.2 that if the user takes advantage of the
advanced configuration options for TINY TIM and fits all possible
optical parameters for each image, the fit can be significantly
improved. The improved models unfortunately still fail to match
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5032 B. R. Gillis et al.

Figure 7. The best-fitting optical parameters over all tested images, plus the adjustment c to the charge diffusion kernel, plotted against the fitted focus offset
value. The solid black line indicates the default value used for each by TINY TIM, and the dashed green line is the best linear fit to the data. The blue triangular
points correspond to data from Chip 1, and red circular points to data from Chip 2. The p-values stated on each panel are the two-tailed Gaussian probabilities
that the mean fitted value is consistent with the default value and that the slope is consistent with zero. When the mean is separated from the default value by at
least one standard deviation, or the slope is separated from zero by at least one standard deviation, the respective p-value is emboldened.

the observed PSFs, but the remaining difference is small enough that
it is unlikely to cause issue for most use cases on HST data. It does
fail to meet the more stringent requirements for the Euclid mission
on additive bias, but it as yet uncertain whether this requirement will
in fact need to be met in order for HST images to be suitable for
validation of the Euclid pipeline.

Unfortunately, performing a fit on all possible optical parameters
is significantly more time-consuming than fitting the focus offset

alone, and may not be possible with images which only contain
a few stars. We investigated two possible ways to improve the
fit without having to fit all parameters, by fitting just the focus
offset and using either the mean values from the all-parameters fit
or a linear relationship between them and the focus offset. Both
of these methods provided notable improvement over the focus-
offset-only fit. They did not provide quite as significant a benefit
as the all-parameter fit, but they require orders of magnitude less
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PSF model validation 5033

Figure 8. As Fig. 3, except showing cases where the mean best-fitting optical parameters (aside from the focus offset) are used for the model PSFs (solid bars)
and where a linear fit between the optical parameters and the focus offset is used (transparent bars). The focus offset is still fit for each image.

computer time to perform, and are thus recommended. In the case
of the use of the best-fitting parameters, we calculate that the
remaining inaccuracies in the PSF model will cause approximate
multiplicative shear-measurement bias of m1 ≈ m2 ≈ 4.6 × 10−4

and additive bias of c1 ≈ 3.6 × 10−4 and c2 ≈ 3.0 × 10−4 (see
the calculations in Appendix B for further details on how this is
determined).

In order to aid others, we have provided a PYTHON wrapper script
in Appendix D to generate TINY TIM PSFs using either the best-fitting
optical parameters or a linear fit with the focus offset.

In Section 3.1.3, we had to make an arbitrary choice about what
single parameter to minimize in our fitting procedure, and we decided
to use X2, which is an equally weighted sum of the Z2

k values

which contribute to additive and multiplicative bias, as we did not
beforehand know which would be more of an issue. Now that we
have our results, we can see that while the Z2(+)

s value was the most
significant contributor to X2 and had the greatest differences between
the model and observed PSFs, it still ended up falling well within the
range that would confidently meet the Euclid mission’s requirements
on multiplicative bias. On the other hand, while the Z

2(±)
+ and Z

2(±)
×

values did not contribute as much to X2 nor differ as much between
the model and observed PSFs, they greatly exceeded the range of
values that would be consistent with the requirements on additive
bias for the Euclid mission. This suggests that for future work, it
would be more useful to weight the Z

2(±)
+ and Z

2(±)
× values more than

the Z2(+)
s value, so that the contribution to additive bias might be
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5034 B. R. Gillis et al.

Figure 9. The focus offset, as predicted by the model from di Nino et al.
(2008) and Niemi & Lallo (2010), plotted against our fitted focus offset values
from our all-parameter fit. The dashed line indicates an ideal match between
the model and our fitted values. Recall that our fitted values are biased away
from a focus offset value of ∼−3, so the actual focus offset values are likely
closer to ∼−3 μm than plotted here.

reduced, while the contribution to multiplicative bias is still within
requirements.

In Section 5.3, we compared our fitted focus offset values to those
predicted by the model from di Nino et al. (2008) and Niemi &
Lallo (2010). For positive focus offsets, we found a reasonable
correspondence between our fitted values and the model’s values,
and we confirmed the offset they found between the two chips of
the detector. However, for negative values of the focus offset, we
fitted significantly lower values than were predicted by the model.
This suggests that there is some issue either with the TINY TIM PSFs
models for negative focus offsets or with the model’s predicted values
in this regime. Further investigation into this issue is thus warranted.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a framework for the validation
of models for space-based PSFs, with a particular focus on the
requirements for weak gravitational lensing measurements. As
lensing measurements are most directly affected by the dipole and
quadrupole moments and size of the PSF, we focused on testing these
aspects. We developed a framework which tests these parameters,
providing indications when a model fails and allowing it to be
determined if a failure will be significant for weak gravitational
lensing measurements.

As an example of how this framework can be applied in practice,
we used it to assess the quality of model PSFs generated by the
TINY TIM tool. To form a basis for analysis, we generated control
images on which we first applied the framework. Mock stars were
placed on these control images, using PSFs generated from the
TINY TIM tool with a known configuration for each image. We then
applied the testing framework to each image and compiled the results,

determining the typical statistics we expect from this framework in
ideal and more realistic usage scenarios.

We then applied the framework to test model PSFs generated
with TINY TIM against stars observed in HST ACS images. In
the first test, we used the default configuration for TINY TIM,
only fitting the focus-secondary-mirror despace for each image.
Here, we found that there was a significant difference between the
models and observations, most notably with the measured sizes of
the model PSFs differing from those of the observed PSFs with
significantly more scatter than would be predicted from noise alone.
This finding of a significant difference between the model and
observations is consistent with the findings of van der Wel et al.
(2012), who found a similar effect on a smaller sample of stars
observed with the F160W filter, and with the findings of Rhodes et al.
(2007).

We then tested more advanced usage of TINY TIM, to see if
it is possible for the end-user to generate improved models in
some manner. To do this, we tried additionally fitting all Zernike
polynomials for the optics up to Z22 for each image. In this case,
the quality of the fit improved significantly. Although the mismatch
between the model and observed PSFs is still statistically significant,
the practical significance is minimal for the purposes of weak lensing.
Most of this improvement can be retained through the use of the best-
fitting optical parameters from this fit and only fitting the focus offset,
or else by using a linear relationship between these parameters and
the focus offset, with a significantly lower computer time cost.

We thus conclude that our testing framework is a valuable tool
for assessing the quality of model PSFs for the purposes of weak
gravitational lensing. Additionally, through testing the framework
on the TINY TIM tool, we have been able to identify deficiencies with
it in its standard configuration and are able to provide a script which
will generate improved models, which we supply in Appendix D.
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Figure A1. Comparison of our background-independent size estima-
tor, Ms, with moments-based size estimators through tests on an Airy
profile of varying size λ/d, using a weighting function favouring the
core of the profile (left) and the wings of the profile (right).
Figure A2. As Fig. A1, except with the Qs size estimate on the
horizontal axis and the squares of the other two estimates on the
vertical axis, and without displaying versions containing mock noise.
Figure C1. The best-fitting optical parameters, plus the adjustment
c to the charge diffusion kernel, for each image plotted against the
date of observation.
Figure C2. The amplitudes of the Fourier modes of all optical
parameters when they were all fit to each image.
Appendix D. Generating TINY TIM Psfs with our fitted parameters.

Please note: Oxford University Press is not responsible for the content
or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

APPENDIX A : SIZE ESTIMATOR TESTS

In Section 3.1.1, we explained our need for a background-
independent size estimator. In this appendix, we present tests and
analysis of this estimator.

In Fig. A1, we show comparisons of Ms with two moments-
based size estimators: an estimator not including a determinant term,
calculated as Mxx + Myy, and an estimator including a determinant
term, calculated as Mxx + Myy + 2

√|M|. Both of these estimators
have been used for shear-measurement; the former by e.g. Kaiser
et al. (1995), and the latter by e.g. Seitz & Schneider (1997). The
comparison illustrates that Ms, like the other two estimators, is
monotonic increasing with the size of the measured profile. It is
less sensitive when the size is smaller than one pixel, but it is much
less prone to oscillations when the wings weighting function is used.

The comparison also illustrates the response of each estimator to
mock noise, applied with the same prescription used in Section 2.2,
using the same total flux for each profile. This shows that Ms has
significantly different noise properties from the other estimators.
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Notably, it has a higher signal-to-noise ratio when the wings
weighting function is used.

It is also useful to directly compare the moment combinations
used for ellipticity estimation to the corresponding Ms values. This
allows us to convert observed differences in Ms between models
and observed stars to the equivalent changes in these moment
combinations, which will allow estimates of how significantly weak
lensing measurements would be affected. We show this in Fig. A2,
plotting these moment combinations against Ms.

APPENDIX B: R ELATING FITTING
STATISTICS TO SHEAR BIAS

Using our definition of the relevant moments for shear estimation in
equation (5), as well as equations (2) and (4), we can express the
calculation of the ellipticity parameters of the undistorted galaxy as

ê1 = M
(u)
+

M
(u)
∗

= M
(o)
+ − M

(p)
+

M
(o)
∗ − M

(p)
∗

,

ê2 = M
(u)
+

M
(u)
∗

= M
(o)
× − M

(p)
×

M
(o)
∗ − M

(p)
∗

. (B1)

Let us now consider how these are affected by perturbations in M(p),
as might be caused by an imperfect PSF model being used.

Starting with M+:

ê1(1 + m1) + c1 = M
(o)
+ − (

M
(p)
+ + δM

(p)
+

)
M

(o)
∗ − M

(p)
∗

= M
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(p)
+

M
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∗ − M

(p)
∗

− δM
(p)
+

M
(o)
∗ − M

(p)
∗

, (B2)

while ê2 is unchanged. This implies that a perturbation in the M+
of the PSF model will result in an additive bias on ê1, with the
relationship

c1 = − 1

M
(u)
∗

δM
(p)
+ . (B3)

Similarly, we can calculate

c2 = − 1

M
(u)
∗

δM
(p)
× . (B4)

For M∗:
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∗
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∗ − M

(p)
∗

)
, (B5)

and similarly for ê2, so

m1 = m2 = 1

M
(u)
∗

δM (p)
∗ . (B6)

Mx and My do not directly enter the equations for estimating
ellipticity, but are used instead to determine the centres of objects.
For a moments-based method, this should generally not impact the
ellipticity estimate as long as the PSF is centred using the same
weight function as the galaxy. For model-fitting methods, however,
we cannot rule out that this might have an impact. To estimate the
maximum magnitude of this impact, we will consider the worst-case
scenario for a moments-based method, where one of our two extreme
weighting functions is used to centre the PSF, and the other is used
to measure its moments.

If the difference in moments between the two weight functions
is δ(Mc

x − Mw
x ) when measured near the centre, and this is small

relative to the scale of the weight functions, then δ(Mc
x − Mw

x ) will
approximate the difference in centre positions for the two weight
functions. It can be shown from equation (1) that when measured
offset from the centre by a small distance dx, Mxx will increase by
d2

x . The situation is similar for Myy. This implies that a difference
in these moments between the weight function can possibly result
in changes to the second-order moments, contributing both additive
and multiplicative bias of magnitudes

|m| ≈ 4

M
(u)
∗

[(
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Mc
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δ
(
Mc
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(
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δ
(
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y − Mw
y

))2
]
. (B7)

The factor 4 in the m bias is due to a factor of 2 from Mxx and Myy

each showing up twice in the definition of M∗ and another factor of
2 since any change in the size affects both m1 and m2.

Since we wish to combine all statistics together for a single quality-
of-fit parameter, we must decide how to weight additive versus
multiplicative bias. For the sake of simplicity, we decide to weight
them both equally for this work. We thus have the following scaling
relationships between shear bias b = m1 + m2 + c1 + c2 and each
parameter:
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∗

= 2

M
(u)
∗

, (B8)

with the proviso that the bias relationships for M (p)
x and M (p)

x are
estimates of a worst-case scenario and only relevant for the difference
in measurements between weight functions.

We can use these expressions if we wish to relate a perturbation in
M(p) to the amount of bias which will result if we know the M (u)

∗ of
the undistorted galaxy. In order to determine estimates representative
of the worst-case scenario, we assume that the smallest possible
galaxies are being measured, with their size comparable to the size
of the PSF. Here, this corresponds to a typical size of M (u)

∗ ∼ 5 px2

when measured with the core weighting function, and M (u)
∗ ∼ 9 px2

with the wings weighting function.
For our fitting procedure, we decided to linearize the relevant

parameters for each weight function through equation (7), as well
as to use an alternative, background-independent size estimator in
place of M∗. For the size estimator, we can see from Fig. A1 that Ms

has a nearly linear relationship with M∗ for an Airy profile, with a
slope of

δM (p)
∗

δM
(p)
s

≈ 1.5. (B9)

We can thus calculate
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(p)
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Since we decided to linearize the Mc/w values for each weight
function into linear combinations Q(±), we cannot directly apply
equations (B8) and (B10) without undoing the benefits of lineariza-
tion. Instead, since in any case we cannot calculate exact bias
projections without knowing what weight functions will be used,
we decide to use representative values instead. Making use of the
fact that in the scenario where σ (M (c)

k ) = σ (M (w)
k ), we will have the

property (Q(+)
k )2 + (Q(−)

k )2 = (Mc
k )2 + (M (w)

k )2, we can assume that
the Q

(±)
k values will be of similar magnitude to the M

c/w

k values, and
thus

δb

δQk

≈ δb

δMk

. (B11)

Finally, since we are using a combination of the core and wings
weighting function, we must use a representative size M (u)

∗ interme-
diate the two size calculations, and so we choose to use the average
value M (u)

∗ = 7 px2.
This gives us the ultimate set of representative bias scaling

relationships,
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which we can use to calculate Z2 values for each statistic, each
of which will be representative of the square of the shear bias
contributed by each parameter:
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Under the assumptions that these quantities are generally indepen-
dent and that each is as likely to cause a positive or negative bias, we
can treat the sum of these values,

X2 =
∑

k

Z2
k , (B14)

as representative of the square of the total shear bias contributed by
inaccuracies in the PSF. This provides us with our desired goal of a
single representative quantity which we can minimize in the fitting
procedure.

APPENDI X C : TI ME D EPENDENCE OF
BEST-FI TTI NG O PTI CAL PARAMETERS

In Section 5.2, we showed that fitting all possible optical parameters
to each image provided a significantly better match between the
model PSFs and observed stars than only fitting the focus offset.
When the mean best-fitting values for each parameter were used, or
when linear relationships between these values and the focus offset
were used, the improvement over the focus-offset-only case was not
nearly as significant. In this appendix, we illustrate other tests we
performed on these best-fitting values to test if there is evidence for
any time-dependent behaviour.

In Fig. C1, we plot the best-fitting optical parameters and our
adjustment to the charge diffusion kernel against the date of obser-
vation and show the best-fitting linear relationship. If any parameter
varies gradually or discontinuously with time, we would expect to
a significantly non-zero slope in the best-fitting linear relationship
here. However, the slope is nearly zero for all parameters except
Z21. With this many parameters tested, it is not unusual that one
might have a significantly non-zero slope due to noise alone, and so
overall we see no evidence here to indicate a significant gradual or
discontinuous relationship between any parameters and the date of
observation.

Another possibility is that one or more of the optical parameters
might vary periodically with time. To test this, we calculate Fourier
modes for each parameter through

Af =
∣∣∣∣∣∣
∑

j

(vj − 〈vj 〉) exp 2πif tj

∣∣∣∣∣∣ , (C1)

where summation is performed over all images j, vj is the value of a
given optical parameter (or the modification to the charge-diffusion
kernel) fit for image j, <vj > is the expected value of vj from a
linear fit to the focus offset, f is the frequency, and tj is the time of
observation for image j. The subtraction of <vj > here is done to
reduce or remove the impact of degeneracies with the focus offset on
the calculated amplitudes here. Note that due to sparse sampling, the
calculated amplitudes for different frequencies are not necessarily
independent.

We plot the resulting amplitudes in Fig. C2. We would expect any
periodic behaviour to manifest as spikes in these plots. Parameters
such as Z7 (the ‘X coma’) and Z17 show coherent variations in the
amplitude across a large range of frequencies, which likely arises
simply from coincidental noise in the time-domain values, and does
not have any physical meaning.

The dotted lines in this plot correspond to integer multiples
of HST’s orbital frequency. Any spikes near these values would
correspond to variations out of phase with changes to the focus,
but we see no such spikes. There may however be variations in phase
with the focus, but we cannot disentangle these from the effects of
degeneracies between the parameters.

Overall, there is not enough evidence to confirm the presence of
periodic behaviour in any of the optical parameters, but the data are
too noisy to entirely rule it out.

APPENDIX D : G ENERATING TINY TIM PSFS
WI TH OUR FI TTED PARAMETERS

In order to aid others in easily generating TINY TIM PSFs using the
best-fitting optical parameters we have determined in this paper, we
list both the mean values and the parameters for the linear fit in
Table D1, and we provide PYTHON code that uses them to call TINY

MNRAS 496, 5017–5038 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/4/5017/5861948 by D
urham

 U
niversity user on 21 August 2020



5038 B. R. Gillis et al.

TIM to generate subsampled PSFs. This code is hosted online at https:
//bitbucket.org/brgillis/tinytim psfs and in the electronic version of
this document.

Table D1. The mean values and slope and intercept of a linear fit against
focus offset (in μm) for the optical parameters used by TINY TIM, determined
from our all-parameter fits.

Name Mean Intercept Slope

Z2 (Tip) −0.0042 −0.0043 0.0000
Z3 (Tilt) 0.0046 0.0048 −0.0002
0 degree astigmatism 0.0241 0.0246 −0.0005
45 degree astigmatism 0.0300 0.0302 −0.0002
X coma 0.0159 0.0172 −0.0012
Y coma 0.0000 0.0000 0.0000
X clover 0.0074 0.0079 −0.0004
Y clover 0.0163 0.0169 −0.0005
Spherical third −0.0217 −0.0207 −0.0008
Z12 0.0037 0.0002 0.0005
Z13 0.0001 0.0003 −0.0002
Z14 0.0043 0.0039 0.0003
Z15 0.0059 0.0061 −0.0002
Z16 −0.0061 −0.0069 0.0007
Z17 0.0059 0.0059 0.0000
Z18 0.0039 0.0034 −0.0004
Z19 0.0020 0.0026 −0.0005
Z20 −0.0008 −0.0014 0.0005
Z21 0.0072 0.0062 0.0008
Spherical fifth 0.0101 0.0088 0.0011
Kernel adjustment 0.9978 0.9978 0.0000

This paper has been typeset from a TEX/LATEX file prepared by the author.
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