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ABSTRACT
Halo model is a physically intuitive method for modelling the non-linear power spectrum,
especially for the alternatives to the standard �CDM models. In this paper, we examine the
Sheth–Tormen barrier formula adopted in the previous CHAM method. As an example, we
model the ellipsoidal collapse of top-hat dark matter haloes in f(R) gravity. A good agreement
between Sheth–Tormen formula and our result is achieved. The relative difference in the
ellipsoidal collapse barrier is less than or equal to 1.6 per cent. Furthermore, we verify that,
for F4 and F5 cases of Hu–Sawicki f(R) gravity, the screening mechanism does not play a
crucial role in the non-linear power spectrum modelling up to k ∼ 1 h Mpc−1. We compare
two versions of modified gravity modelling, namely with/without screening. We find that
by treating the effective Newton constant as constant number, Geff = 4/3GN is acceptable.
The scale dependence of the gravitational coupling is subrelevant. The resulting spectra in
F4 and F5, are in 0.1 per cent agreement with the previous CHAM results. The published
code is accelerated significantly. Finally, we compare our halo model prediction with N-body
simulation. We find that the general spectrum profile agrees, qualitatively. However, via the
halo model approach, there exists a systematic underestimation of the matter power spectrum
in the comoving wavenumber range between 0.3 and 3 h Mpc−1. These scales are overlapping
with the transition scales from two-halo term dominated regimes to those of one-halo term
dominated regimes.

Key words: gravitation – large-scale structure of Universe.

1 IN T RO D U C T I O N

Non-linear matter power spectrum carries fruitful cosmological
information. With the upcoming galaxy surveys, such as Euclid,1

LSST,2 WFIRST,3 DESI,4 J-PAS,5 we are aiming to measure the
matter power spectrum up to 1 per cent accuracy in the range from
0.1 to 10 Mpc h−1. Before going to the non-linear part, let us first
briefly review the status of linear power spectrum modelling for the
non-standard cosmologies. This is because the linear spectrum is
an essential input for the non-linear part computation.

For the non-standard cosmologies, we have a few linear Einstein–
Boltzmann codes6 publicly available on the market, such as

� E-mail: bhu@bnu.edu.cn
1http://sci.esa.int/euclid
2http://www.lsst.org
3https://wfirst.gsfc.nasa.gov
4https://www.desi.lbl.gov
5http://www.j-pas.org/wiki/index.php/Main Page
6These are all patches to the standard solver, such as CAMB (Lewis,
Challinor & Lasenby 2000) and CLASS (Blas, Lesgourgues & Tram 2011).

MGCAMB7 (Zhao et al. 2009; Hojjati, Pogosian & Zhao 2011;
Zucca et al. 2019), ISiTGR8 (Dossett, Ishak & Moldenhauer 2011;
Dossett & Ishak 2012), EFTCAMB9 (Hu et al. 2014; Raveri et al.
2014), hi class10 (Zumalacárregui et al. 2017), etc. These non-
standard Einstein–Boltzmann solvers can be classified into two
categories, namely bottom-up and top-down method. The formers
are more phenomenologically inspired, such as MGCAMB and
ISITGR. They are built upon the phenomenological parametrizations
of non-relativistic gravitational constant (Gmatter) and the relativistic
gravitational constant (Glight).11 The latter, such as EFTCAMB and
HI CLASS, are derived from the first principle point of view, such
as the effective field theory of dark energy (Bloomfield et al. 2013;
Gubitosi, Piazza & Vernizzi 2013; Piazza & Vernizzi 2013).

Both of these two philosophies have their advantages and disad-
vantages. For the bottom-up method, they are more easily portable

7https://github.com/sfu-cosmo/MGCAMB
8https://www.utdallas.edu/ jnd041000/isitgr/
9http://eftcamb.org
10https://miguelzuma.github.io/hi class public/
11They can also be expressed in term of other related quantities, such as μ,
γ , or � functions.
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among different kinds of surveys, covered from CMB to BAO/RSD
observations. It asks for solving much less differential and algebraic
equations. However, their disadvantage is also obvious. These
parametrizations are limited to the linear dynamics. The non-linear
counterpart modellings have some fundamental difficulties, except
for some very well-studied theories, such as f(R) gravity (Zhao
2014). This is because, for the current non-linear power spectrum
modelling, we cannot avoid the calibration from N-body simulation.
And, for the N-body simulation of non-standard cosmologies,
almost all the algorithms are based on the extra scalar field dynamics
modelling. These are completely different modelling languages with
respect to the gravitational constant parametrization. Hence, for
the moment, one needs to cut off all the non-linear data when
we adopt the bottom-up method, as an example shown in Zucca
et al. (2019). Another drawback of the bottom-up method is that
some of the parameter space (even they are more favoured by the
data) are theoretical forbidden (Peirone et al. 2018; Espejo et al.
2019; Frusciante et al. 2019). Thus, this may make our parameter
estimation end up in the physically unviable regime.

The top-down method is anchored to few physical assumptions,
such as space–time symmetry arguments. Then, the dynamical
system is derived from cosmological linear perturbation theory
and dynamical instability analysis (see Frusciante & Perenon 2019
for review). The state of the art of this method (including code
comparison) is nicely summarized in Bellini et al. (2018). Another
merit of this method is that it can be naturally exported into N-
body simulations. Both linear and non-linear modelling of the extra
scalar field dynamics are based on the field theory approach. As
demonstrated in our previous work (Hu, Liu & Cai 2018), an
accurate linear power spectrum input is essential to the non-linear
spectrum calculation. However, the drawback of this method is that,
compared with bottom-up method, it is numerically demanding.
Hence, it is not easily being transported from one likelihood code
to another.

The non-linear power spectrum modelling methods can be
classified into three categories, namely N-body simulation, higher
order perturbation theory, and halo model. Among them, N-body
simulation is the most well-developed method for non-standard
cosmologies, see Winther et al. (2015) for review. The resulting
fractional deviation of the matter power spectrum from lambda
cold dark matter (�CDM) agrees to better than 1 per cent up to k
≤ 5–10h Mpc−1 and redshift z ≤ 3 between the different codes for
testing examples, such as f(R) gravity, DGP, Symmetron models,
etc. As for the higher order perturbation theory approach, there
exist some comparison of different perturbation theory predictions
in the non-standard cosmologies, for example Valogiannis & Bean
(2019). Besides these, there are some ongoing project on extend-
ing Pinocchio algorithm (Monaco, Theuns & Taffoni 2002a;
Monaco et al. 2002b, 2013; Taffoni, Monaco & Theuns 2002)
to non-standard cosmologies. Although compared with simulation
the semi-analytic halo model (see Cooray & Sheth 2002) for
review) is less accurate, its efficiency is far better than all the
other methods. Plus the fact that the current observational data
scatters still dominate the error budget. These two aspects inspire
us that halo model can be a suitable method for exploring the non-
linearities in a wide range of model space. There have already been
some studies (Schmidt et al. 2009; Li & Efstathiou 2012; Li &
Lam 2012; Kopp et al. 2013; Lombriser et al. 2013; Lombriser,
Koyama & Li 2014b; Achitouv et al. 2016; Lombriser 2016) of
halo model in the literature based on the spherical/ellipsoidal halo
collapse assumptions. In the previous work (Hu et al. 2018), we
proposed the screened halo model (CHAM) method for the non-linear

power spectrum modelling in the alternatives to the standard �CDM
scenario. Besides, there also exist some hybrid methods combining
higher order perturbation theory with simulations, such as COLA
(Tassev, Zaldarriaga & Eisenstein 2013) and its modified version
(Valogiannis & Bean 2017; Winther et al. 2017). Furthermore, the
recent progresses in the emulator (Winther et al. 2019) and reaction
method (Cataneo et al. 2019) predict that we are able to approach
1 per cent level of modelling the non-linear power spectrum for the
generic dark energy/modified gravity models.

Following our previous work (Hu et al. 2018), in this paper we
are aiming to validate one of the essential assumption, namely
the Sheth–Tormen barrier formula, by modelling the ellipsoidal
collapse of top-hat dark matter haloes in f(R) gravity. Throughout
this paper, we use the natural unit c = 1, where c is the speed of
light. An overbar such as ρ̄m denotes the background value, and a
subscript 0 such as �m0 denotes the present value. Primes denote
derivatives with respect to ln a, e.g. D

′ ≡ dD/dln a.
The layout of this paper is as follows. In Section 2, we briefly

review the f(R) gravity theory used in this work. In Section 3, we
present the modelling of the top-hat dark matter halo collapse,
in both general relativity (GR) and f(R) gravity. We show the
calculation of the collapse barrier, which is a crucial ingredient of the
excursion set theory. Section 4 describes the traditional excursion
set theory and the halo model. Our conclusions are summarized in
Section 5.

2 f(R) G RAVI TY

In f(R) gravity, the Einstein–Hilbert action is supplemented with a
function of the Ricci scalar R

S = 1

2κ2

∫
d4x

√−g [R + f (R)] + Sm(ψm; gμν) , (1)

where κ2 ≡ 8πG, g is the determinant of the metric gμν , Sm is the
matter action with matter fields ψm. The modified Einstein equation
is derived by varying this action with respect to gμν

Gμν + fRRμν −
(

f

2
− �fR

)
gμν − ∇μ∇νfR = κ2Tμν . (2)

The scalaron fR ≡ df/dR is a new scalar degree of freedom in f(R)
gravity. The trace of the modified Einstein equation is the equation
of motion for the scalar field

�fR = ∂Veff

∂fR

, (3)

with the effective potential defined as

∂Veff

∂fR

≡ 1

3

[
R − fRR + 2f − κ2(ρ − 3p)

]
. (4)

The curvature of this potential, which can be regarded as the
effective mass of the field fR, is given by

m2
fR

= ∂2Veff

∂f 2
R

= 1

3

(
1 + fR

fRR

− R

)
, (5)

where fRR ≡ d2f/dR2. Hereafter, we adopt the most well-studied
example of f(R) gravity, Hu–Sawicki f(R) gravity model (Hu &
Sawicki 2007), which can satisfy the background �CDM expansion
history and evade the Solar system tests. The formula of the extra
gravity term can be written as

f (R) = −2� − f̄R0
R̄2

0

R
, (6)
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where � is an effective cosmological constant driving the acceler-
ating cosmic expansion. In the limit of |fR0| 	 1, the background
expansion history is almost the same as �CDM model (Hu &
Sawicki 2007; Oyaizu, Lima & Hu 2008), in which the background
Ricci scalar can be approximated as

R̄ ≈ 3H 2
0

[
�m0(1 + z)3 + 4��0

]
, (7)

where the density fraction is given by �i0 ≡ 8πGρ̄i0/(3H 2
0 ), i =

{m,�}.

2.1 Cosmic linear perturbation regime

In scalar–tensor theories such as f(R) gravity, the linear growth
function of matter fluctuations D(a, k) becomes scale dependent.
The linear growth function D is defined as

D(a, k; ainit) ≡ δm(a, k)

δm(ainit, k)
, (8)

where δm(a, x) ≡ ρm(a, x)/ρ̄m(a) − 1 is the matter overdensity and
δm(a, k) is the Fourier transform. In the quasi-static limit, the
evolution equation of the growth function is (see e.g. Lombriser
2014)

D′′ +
[

2 − 3

2
�m(a)

]
D′ − 3

2
μ(a, k) �m(a) D ≈ 0 , (9)

where �m(a) ≡ H 2
0 �m0a

−3/H 2(a). μ(a, k) is the modification in
the Poisson equation due to the scalar field, which takes the form

μ(a, k) ≈ 1 + 1

3

k2

a2m̄2 + k2
, (10)

with m̄2 ≈ [
3fRR(R = R̄)

]−1
is the mass of the scalaron evaluated

at the background. Combining the f(R) function form in equation (6)
with the expression of R̄ (equation 7), we have

m̄ =
(
�m0a

−3 + 4��0

)3/2

3 × 103
√

2|fR0|(�m0 + 4��0)
h Mpc−1 . (11)

The above algorithm captures the major feature of linear matter
growth in modified gravity, namely the scale dependence. For
an accurate calculation, we need to take into account the other
ingredients, such as baryon and neutrino. For this purpose, we utilize
the more sophisticated linear Einstein–Boltzmann solver EFTCAMB

(Hu et al. 2014; Raveri et al. 2014). Specifically, for f(R) gravity we
use the code developed in Hu et al. (2016).

2.2 Non-linear regime

Khoury & Weltman (2004) derived an estimation of the radial profile
of the scalar field ϕ(r) ≡ fR(r), in a spherically symmetric top-hat
overdensity of (physical) radius ξTH with constant inner and outer
matter density ρ in and ρout, respectively. The solutions of the scalar
field, ϕ(r), minimize the effective potential Veff(ϕ) in the equation
of motion (3). If ρ in = ρout, then ϕ will be constant in the whole
space. When ρ in �= ρout, if we go towards the centre of the sphere
from outside, the field value will settle from constant ϕout (at far
outside) to another constant ϕin, as long as the difference between
the two values are not too large. Khoury & Weltman (2004) find

that the radial profile ϕ(r) in the thin-shell regime is

ϕ(r) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕin , r ≤ ξ0

ϕin + κβ

3
ρin

(
r2

2
+ ξ 3

0

r
− 3

2
ξ 2

0

)
, ξ0 < r ≤ ξTH

ϕout − �ξ

ξTH

√
κγρinξ

3
TH

r
e−mout(r−ξTH) , r > ξTH

,

(12)

where β = −1/
√

6 for f(R) gravity; �ξ ≡ ξTH − ξ 0 	 1 is
the thickness of the thin shell, and mout ≡ d2Veff(ϕout)/dϕ2 is the
effective mass of the outside field. The distance needed for ϕ to
settle from ϕout to ϕin is (Li & Efstathiou 2012; Lombriser et al.
2013; Lombriser, Koyama & Li 2014a)

�ξ

ξTH
≈ |fR0|a3

�m0ρ̃in(H0ξTH)2
×

[(
1 + 4��0/�m0

ρ̃outa−3 + 4��0/�m0

)2

−
(

1 + 4��0/�m0

ρ̃ina−3 + 4��0/�m0

)2 ]
, (13)

where ρ̃in/out ≡ ρm,in/out/ρ̄m. The enhancement of gravity (the fifth
force) due to the extra scalar field for a unity test particle at r = ξTH

is

F GMTH

ξ 2
TH

≡ κβ|∇ϕ|r=ξTH ≈ 2β2 GMTH

ξ 2
TH

[
1 −

(
ξ0

ξTH

)3
]

(14)

= 2β2 GMTH

ξ 2
TH

[
3
�ξ

ξTH
− 3

(
�ξ

ξTH

)2

+
(

�ξ

ξTH

)3
]

. (15)

Since ξTH ≥ ξ 0 > 0, the ratio �ξ /ξTH ∈ [0, 1], which means the
enhancement of gravity F ∈ [0, 1/3]. For a top-hat overdensity, the
last equation provides an interpolation between the screened and
unscreened regime. We shall follow Lombriser et al. (2013) and use
equation (15) as the force enhancement when studying the spherical
and ellipsoidal collapse model

F = 1

3
min

{[
3
�ξ

ξTH
− 3

(
�ξ

ξTH

)2

+
(

�ξ

ξTH

)3
]

, 1

}
. (16)

3 C OLLAPSING PRO CESS

In this section, we first review the spherical collapsing in f(R) gravity
and ellipsoidal collapsing in GR. Then, we solve the ellipsoidal
collapsing process in f(R) gravity.

3.1 Spherical collapse in f(R) gravity

We study the formation of dark matter haloes in f(R) gravity
using both the spherical and ellipsoidal collapse models. We
approximate the dark matter halo by a top-hat overdensity within the
initial comoving radius Rinit. Afterwards, the local density, ρm(a),
changes due to the physical radius, ξ (a), changing with time. In
the initial matter-dominated era, ξ (ainit) = ainitRinit. We define the
dimensionless comoving radius y(a) as

y(a) ≡ ξ (a)/a

Rinit
, (17)

so that y(ainit) = 1. The conservation of mass in the top-hat region
implies ρ̄m,inita

3
initR

3
init = ρmξ 3(a), thus ρ̃ ≡ ρm/ρ̄m = y−3(a).

The spherical collapse equation in f(R) gravity is given by
(Schmidt et al. 2009; Li & Efstathiou 2012)

1

ξ

d2ξ

dt2
= −κ2

6
(ρ̄m − 2ρ̄�) − κ2

6
(1 + F )δρm . (18)
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Replacing ξ (a) with y(a) and the time variable t with ln a yields

y ′′
h +

[
2 − 3

2
�m(a)

]
y ′

h

+1

2
�m(a) [1 + F (a; yh, yenv)] (y−3

h − 1)yh = 0 , (19)

y ′′
env +

[
2 − 3

2
�m(a)

]
y ′

env + 1

2
�m(a)(y−3

env − 1)yenv = 0 , (20)

where �m(a) = �m0a−3

H 2/H 2
0

= �m0a−3

�m0a−3+��0
, �m0 + ��0 = 1. The sub-

scripts h and env denote the inner and outer overdensities, i.e. the halo
and its local environment, respectively. The modification of gravity
F (�ξ/ξ ) is given by the thin-shell approximation in Section 2.2.
According to equation (13), the thickness of the thin shell is

�ξ

ξ
(a) = |fR0|

�m0

(
c

H0Rinit

)2

a7yh

[(
1 + 4��0/�m0

y−3
env + 4(��0/�m0)a3

)2

−
(

1 + 4��0/�m0

y−3
h + 4(��0/�m0)a3

)2 ]
, (21)

and the factorF (�ξ/ξ ) is given by equation (16). We have assumed
that the environment follows �CDM evolution, i.e. the modification
of gravity F = 0, in equation (20).

Equations (19) and (20) form a system of coupled differential
equations for yh(a) and yenv(a). To solve these equations, we set the
initial conditions at ainit 	 1 in the matter-dominated regime

yh/env,init = 1 − δh/env,init

3
, y ′

h/env,init = − δh/env,i

3
. (22)

For a fixed initial time ainit, we adjust the initial overdensity
δh,init so that yh(a0) = 0, i.e. the top-hat halo collapses at present
time. The extrapolated linear spherical critical density (also called
collapse barrier) δf (R)

sc used in the excursion set formalism is defined
by

δf (R)
sc ≡ D(a0, kh; ainit)δh,init , (23)

δenv ≡ D�CDM(a0; ainit)δenv,init , (24)

where D(a, k) is the f(R) gravity linear growth function
solved from equation (9). For a top-hat halo with mass Mh =
4π
3 (Rinitainit)3ρ̄m,init, its corresponding wavenumber kh ≡ 1/Rinit is

c

H0Rinit
= 3 × 103 ×

(
1.12π

3

)1/3

�
1/3
m0

(
Mh

1012 h−1 M�

)−1/3

. (25)

The extrapolated linear value for environment δenv is defined by
�CDM linear growth function (see e.g. Dodelson 2003)

D�CDM(a) = 5�m0

2

H (a)

H0

∫ a

0

da′[
a′H (a′)/H0

]3 . (26)

As we have discussed above, the spherical collapse barrier in
f(R) gravity depends on both the halo mass, Mh, and environment
overdensity, δenv.12

3.2 Ellipsoidal collapse in GR

The spherical symmetry is an oversimplification of the collapsing
process. Doroshkevich (1970) has shown that a initially spherical
overdensity embedded in a Gaussian perturbation field would

12The initial overdensity δh,init is restricted with condition yh(a0) = 0, so
that it is not a free variable.

evolve into triaxial ellipsoid, approximately. The three main axes
of the ellipsoid are aligned with three eigenvectors of the so-called
deformation tensor ∝∇ i∇ j�, where � is the gravitational potential
perturbation (Mo, van den Bosch & White 2010). Thus, the collapse
of a homogeneous ellipsoid should provide a better description of
halo formation and collapse barrier.

The dynamics of the ellipsoid is set by the potential perturbations
due to the matter interior and exterior to the ellipsoid, respectively.
The Euler equation of a fluid element at the comoving coordinates
x inside the ellipsoid is

dv

dt
= − 1

a
∇�(x) , (27)

where v is the peculiar velocity, and the gravitational potential
perturbation � obeys the Poisson equation

∇2� = 4πGρ̄m(a) a2 �(a) , (28)

with �(a) ≡ [
ρm(a) − ρ̄m(a)

]
/ρ̄m(a) ≈ ρm(a)/ρ̄m(a) the (non-

linear) overdensity of the top-hat ellipsoid.
� can be separated in inside (ellipsoid’s self-gravity) and outside

two parts, � = �int + �out. The inner part of gravitational potential
from the homogeneous ellipsoid has analytical form. As for the
outside part, it can be neglected in the deep non-linear regime since
the density contrast of the ellipsoid is high enough to dominate
the dynamics. However, in order to give a correct initial condition
for the non-linear collapsing process, we cannot completely ignore
the external potential. It has been proven (Mo et al. 2010) that
�out can be approximated by linear perturbation. Let us consider
the ellipsoidal originated from a spherical overdense regime with
initial comoving radius Rinit. According to the Zel’dovich approxi-
mation (Zel’dovich 1970), the sphere evolves into an ellipsoid with
principal axes Xi(a) = Rinit[1 − λiD(a)/D(ainit)] = [1 − λiD(a)/ainit]
in the matter-dominated linear regime,13 where λi(i = 1, 2, 3,) are
the eigenvalues of the deformation tensor, ∇i∇j�init/(4πGρ̄ma3).
Thus, the principal axes of the ellipsoid are parallel to those of the
tidal shear field.

Combining the Euler equation (27), the Poisson equation (28),
the Zel’dovich approximation, and the mass conservation of the
ellipsoid Mh = 4π

3

[
1 + �(a)

]
ρ̄ma3X1X2X3, the dynamical equa-

tions of the principal axes’ comoving length Xj(t) are (Mo et al.
2010)

d2Xj

dt2
+ 2

da/dt

a

dXj

dt
= −4πGρ̄m(t) Xj

[
1

2
αj (t)�(t)

+ D(t)

ainit

(
λj − 1

3
δinit

)]
, (29)

where

αj (t) ≡ X1X2X3

∫ ∞

0
dy(X2

j + y)−1
3∏

k=1

(X2
k + y)−1/2 , (30)

is related to the ellipsoidal geometry.
Defining the dimensionless comoving length

Yj (t) ≡ Xj (t)/Rinit , (31)

13The terms containing linear growth function D(a) differs by a constant
factor D(ainit) with the original form in Mo et al. (2010), for the different
normalization of D(a).
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and changing time variable from t to ln a, equation (29) is expressed
as

Y ′′
j +

[
2 − 3

2
�m(a)

]
Y ′

j = −3

2
�m(a) Yj

[
1

2
αj�

+ D(a)

ainit

(
λj − 1

3
δh,init

)]
. (32)

To solve these equations, we set the initial conditions in matter-
dominated regime ainit 	 1 according to the Zel’dovich approxima-
tion

Yj (ainit) = 1 − λj , (33)

Y ′
j (ainit) = −λj . (34)

Thus, the initial conditions are fully specified by {λj, j = 1, 2,
3, assuming λ1 ≥ λ2 ≥ λ3}. In practice, they are presented by the
initial density of the ellipsoid

δinit = λ1 + λ2 + λ3, (35)

the ellipticity in the (λ1, λ3) plane

e ≡ λ1 − λ3

2δinit
, (36)

and the oblateness (when 0 ≤ p ≤ e) or prolateness (0 ≥ p ≥ −e)
of the ellipsoid

p ≡ λ1 + λ3 − 2λ2

2δinit
. (37)

Sphere corresponds to e = p = 0.
According to equation (32), the shortest axis collapses to Y =

0 first, after which equation (32) is not valid. To alleviate this
problem, it is usually assumed that collapse along each axis is frozen
once the axis has shrunk to a freeze-out radius. The virialization
of ellipsoid is identified by the freeze-out of the longest axis, so
that virial overdensity (the overdensity at the time of virialization)
equals to 179, which reproduces the spherical collapse result. The
ellipsoidal collapse barrier δGR

sc in general relativity depends on
ellipticity parameters e and p (δinit is not free parameter)

δGR
ec = δGR

ec (e, p) . (38)

By fitting the values of δGR
ec (e, p) from the ellipsoidal collapse

model described above, Sheth, Mo & Tormen (2001) found the
ellipsoidal collapse barrier can be approximated by solving

δGR
ec (e, p)

δGR
sc

≈ 1 + β

{
5(e2 ± p2)

[
δGR

ec (e, p)

δGR
sc

]2
}

, (39)

where β = 0.47, γ = 0.615, and δGR
sc is the spherical collapse barrier.

3.3 Ellipsoidal collapse in f(R) gravity

There are research works focusing on the chameleon screening
mechanism in non-spherical cases (e.g. Burrage et al. 2018).
Burrage, Copeland & Stevenson (2015) discussed the full form of
ellipsoidal chameleon force. They found that, in extreme situations
(∼0.99 ellipticity), enhancement of the chameleon force would
differ by up to 40 per cent for a sphere and an ellipsoid with
the same mass. In the following subsection, we will provide our
calculation.

We present a simple ellipsoidal collapse of top-hat overdensity
in f(R) gravity, which combines the ingredients of the above two
subsections. Considering a homogeneous ellipsoid embedded in

a larger spherical environment, the fluid element inside the top-
hat halo experiences the modified gravity, Geff = (1 + F )G. We
approximate this effect of the fifth force as the spherical case
discussed in Section 2.2. That is, replacing the spherical radius
y with an ‘effective’ length (Y1Y2Y3)1/3 in the expression of the
thickness of thin-shell equation (21).

Similar with equation (21), the thickness of the thin shell and the
force enhancement are

�ξ

ξ
= |fR0|c2a7

�m0(H0Rinit)2
(Y1Y2Y3)1/3

[(
1 + 4��0/�m0

y−3
env + 4(��0/�m0)a3

)2

−
(

1 + 4��0/�m0

(Y1Y2Y3)−1 + 4(��0/�m0)a3

)2 ]
, (40)

F = 1

3
min

[
3
�ξ

ξ
− 3

(
�ξ

ξ

)2

+
(

�ξ

ξ

)3

, 1

]
. (41)

The ellipsoidal collapse equations of Yj (dimensionless comoving
length of principle axes of the ellipsoid) in f(R) gravity can be written
as

Y ′′
j +

[
2 − 3

2
�m(a)

]
Y ′

j = −3

2

[
1 + F (a; Yj , yenv)

]
�m(a) Yj

×
[

1

2
αj� + D(a)

ainit

(
λj − 1

3
δh,init

)]
.

(42)

When we come back to spherical case, i.e. Y1 = Y2 = Y3 ≡ yh,
and ignore the tidal force term ∝ (λj − 1

3 δh,init), equation (42) is
consistent with equation (19), as it is supposed to be. The scale-
independent linear growth function in �CDM model D = D�CDM(a)
is used in equation (42), although the more natural choice is to
use the growth function in f(R) gravity. We have checked that
this approximation has little effect, since in early matter-dominated
regime all linear growth functions should be proportional to scale
factor, and in late time the linear term is unimportant.

�CDM evolution of the spherical environment is assumed as
before

y ′′
env +

[
2 − 3

2
�m(a)

]
y ′

env + 1

2
�m(a)(y−3

env − 1)yenv = 0 , (43)

with the same initial conditions

Yj (ainit) = 1 − λj , Y ′
j (ainit) = −λj , (44)

yenv,init = 1 − δenv,init

3
, y ′

env,init = − δenv,init

3
. (45)

To fully specify the ellipsoidal collapse process in f(R) gravity,
the parameters Mh (or equivalent Rinit), δenv, e, p along with
cosmological parameters such as �m0 should be given. For a fixed
initial time ainit, we adjust the initial overdensity δh,init so that the
longest axis of the ellipsoid is frozen at a = 1. We use the f(R) gravity
linear growth function D(a, k) from equation (9) to extrapolate δh, init

to the present time, defining the ellipsoidal collapse barrier

δf (R)
ec (Mh, δenv︸ ︷︷ ︸

MG effect

, e, p︸︷︷︸
EC effect

) ≡ D(a = 1, kh; ainit)δh,init , (46)

where kh ≡ 1/Rinit is given by equation (25). Fig. 1 shows an example
of ellipsoidal collapse model we described above. Given initial
conditions Mh = 1014 M�, δenv = 0.8, e = 0.2, and p = 0, by
adjusting δh,init so that the longest axis (black solid line in Fig. 1) is
frozed at a = 1. We find the ellipsoidal collapse barrier in f(R) gravity
with |fR0| = 10−5, for halo with mass 1014 M� is δf (R)

ec = 1.882. The
values of cosmological parameters follow the f(R) gravity N-body
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4240 C.-Z. Ruan, T.-J. Zhang, and B. Hu

simulation presented by Li et al. (2013a). They are set to �m0 =
0.24 with ��0 = 1 − �m0, h = 0.73 for the dimensionless Hubble
constant, ns = 0.958 for the slope of the primordial power spectrum,
and the power spectrum normalization σ 8 = 0.8 in �CDM.

4 SE M I - A NA LY T I C A L M E T H O D S FO R H A L O
MASS FUNCTION AND POWER SPECTRU M

In the following section, we will first review the idea of excursion
set formalism for halo distribution in mass spectrum. And then,
introduce our method.

4.1 Excursion set formalism

The trajectory of the excursion sets are constructed from the filtered
linear density field with different smoothing scales. A dark matter
halo can be formed once the filtered density cross up the critical
value on the largest scales (Efstathiou et al. 1988; Carlberg &
Couchman 1989; Bond et al. 1991). According to this idea, one can
use the statistics of linear perturbation field to infer the (comoving)
number density of haloes as a function of mass, i.e. the halo mass
function.

Considering the linear perturbation field extrapolated to the phase
of non-linear evolution δlin(x, t) = D(t)δinit(x), according to the
spherical or ellipsoidal collapse model presented in Section 3, re-
gions with δlin(x, t) > δc, or equivalently, δinit(x) > δc/D(t) ≡ δc(t)
have collapsed into dark matter haloes. To assign a halo with a
mass, Press & Schechter (1974) assumed that the probability that
smoothed density field value δs

(
x, R(Mh)

)
exceeds the collapse

barrier, p
[
δs

(
x, R(Mh)

)
> δc(t)

]
, equals to the fraction of mass

materials contained in haloes with M > Mh. The smoothed field is
defined as

δs

(
x, R(Mh)

) ≡
∫

δinit(x′) W (x − x′; R
(
Mh)

)
d3x′ , (47)

where W (x; R) is a filter (window function) with smoothing scale
R corresponding to halo mass Mh = γf ρ̄mR3, with γ f = 4π /3 for
top-hat filter and γ f = 6π2 for sharp k-space filter.

If δinit(x) is a Gaussian random field then it is specified by its
(linear) power spectrum P(k), and δs(x) is also Gaussian according
to its definition. The variance of the smoothed overdensity field
σ 2(Mh) represents the typical fluctuation amplitude smoothed on
scale R ∼ Mh, which is given by

S
(
R(Mh)

) ≡ σ 2(R) ≡ 〈δ2
s (x; R)〉

= 1

2π2

∫ ∞

0
P (k)W̃ 2(kR)k2dk , (48)

where W̃ (kR) is the Fourier transform of the W (x; R). If the linear
power spectrum P(k) is given, S, σ , R, and Mh are equivalent
measures of the smoothing scale and the assigned mass to haloes.
They will be used interchangeably below.

The idea of Press & Schechter (1974) suffers from a ‘fudge-
factor’ problem. The original Press–Schechter postulate predicts
that only 1/2 of all matter in the Universe is locked-up in collapsed
haloes. They ‘solved’ this problem by introducing a fudge factor
two, i.e. relating the mass fraction with 2 × p

[
δs

(
x, R(Mh)

)
>

δc(t)
]
. The excursion set formalism, came up with by Bond et al.

(1991), provides an alternative derivation of the halo mass function
that truly solves the ‘fudge-factor’ problem.

Without loss of generality, we will consider the halo mass
function at present day hereafter, since the discussion below is valid
for any time. We denote the initial overdensity field extrapolated to

Figure 1. Ellipsoidal collapse of the top-hat overdensity in f(R) gravity
(|fR0| = 10−5, F5, solid line) and general relativity (dashed line). The initial
conditions are shown in the title of the figure, besides, δenv = 0.8. Haloes
collapse faster in f(R) gravity than in GR, since the gravity is enhanced. The
freeze-out mechanism ensures that the overdensity at virialization (defined
as when the longest axis is frozen) equals to 179, which is predicted by
spherical collapse.

today as δ(x) and smoothed field as δs(x; S), following standard
literatures. Considering a location x, the smoothed overdensity
δs(x; S) is a trajectory of random walk in δs–S space. In the limit
S → 0, which corresponds to M → ∞ in hierarchical structure
formation cosmologies such as �CDM, δs(x; S) → 0 for any x. So
the random walk can be viewed as starting from (S = 0, δs = 0),
when increasing S (corresponding to decreasing the halo mass), δs

wanders away from zero. A plot of the smoothed density versus the
size of the filter S(R) traces out a random walk.

In the spirit of Press–Schechter formalism, a spherical region of
initial radius R whose centre located in x is considered to have
collapsed to a virialized object today or live in a larger region which
has collapsed earlier if δs(x; S(R)) > δc, where the collapse barrier
δc is solved from spherical or ellipsoidal collapse discussed in last
section. The ansatz of excursion set formalism is that the fraction
of trajectories with a first crossing of the collapse barrier δc at S >

S1 = σ 2(M1) is equal to the mass fraction of haloes with masses M
< M1. Denoting the mass fraction as F(< M1) = 1 − F(> M1), the
predicted halo mass function is (Mo et al. 2010)

dn(M)

dM
dM = ρ̄m0

M

∂F (> M)

∂M
dM = ρ̄m0

M
f (S, δc)dS , (49)

where f(S, δc)dS is the probability that the random walk δs(S) first
crosses the barrier at the interval (S, S + dS). Note that the halo
mass function dn(M)

dM
is denoted as n(M) in some literatures, e.g.

Sheth et al. (2001), Mo et al. (2010), which may cause confusion.
Given the collapse barrier δc, the first-crossing probability f(S)

can be obtained by the Monte Carlo simulation, i.e. simulating
many trajectories {δs(xi ; S) for i = 1, 2, . . . , N}. Zhang & Hui
(2006) derived an elegant formulation for f(S) with arbitrary shape
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of collapse barrier δc = B(S)

f (S) = g(S) +
∫ S

0
dS ′f (S ′)h(S, S ′) , (50)

in which

g(S) ≡
[

B(S)

S
− 2

dB

dS

]
P0

[
B(S), S

]
, (51)

h(S, S ′) ≡
[

2
dB(S)

dS
− B(S) − B(S ′)

S − S ′

]
P0

[
B(S) − B(S ′), S − S ′],

(52)

where

P0(δ, S) = 1√
2πS

exp

(
− δ2

2S

)
(53)

is the Gaussian distribution. In our following calculation, we
will adopt Zhang & Hui (2006) algorithm to compute the mass
function.

4.2 Sheth–Tormen formula as a good approximation for
ellipsoidal collapse barrier in f(R) gravity

Collapse barriers are solved from gravitational collapse of top-
hat overdensities. In the simplest case, spherical collapse in
�CDM background, δ�CDM

sc ≈ 1.676 is constant.14 Sheth et al.
(2001) suggested that the ellipsoidal collapse would substan-
tially improve the predicted halo mass function compared with
simulation. As described in Section 3.2, the ellipsoidal collapse
barrier δGR

ec (e, p) depends on the surrounding shear field, which
is characterized by ellipsoidal-geometry-related parameters e and
p of the collapsed region. The full excursion set random walk
should proceed in this high-dimensional parameter space. Sheth
et al. (2001) considered the averaged collapse barrier by aver-
aging δGR

ec (e, p) over the distribution of e and p of a Gaussian
field. Gaussian field δs smoothed on the scale Mh has variance
σ 2(Mh; ainit). In this field, regions initially having a given over-
density δinit/σ (Mh; ainit) have a most probable ellipticity emp =
σ (Mh; ainit)/(

√
5δinit) and pmp = 0 (see appendix A of Sheth et al.

2001), i.e.

emp = σ (Mh; ainit)√
5δinit

= σ (Mh; a0)√
5δGR

ec

, (54)

and

pmp = 0 , (55)

respectively. To relate e and p to the mass Mh or S, Sheth et al. (2001)
replaced e and p with their most probable values in equation (39),
which yields

δGR
ec (e, p)

S≡σ 2(Mh)∼(
√

5eδGR
ec )2

−−−−−−−−−−−−→
p∼pmp=0

δGR
ec (S) , (56)

δGR
ec (S) = δGR

sc

(
1 + β

[
S

δGR
sc

]γ)
. (57)

This deviation caused by neglecting scatter around the most prob-
able value has been tested, which shows that equation (57) is a
rather good approximation (Sheth & Tormen 2002). Under this
replacement, the high-dimensional random walk is evaded and we
can still use the method of Zhang & Hui (2006) to calculate the
first-crossing distribution.

14In the Einstein–de Sitter universe, δEdS
sc ≈ 1.686.

In order to improve the consistency between the prediction of
the excursion set theory and N-body simulation, Sheth et al. (2001)
found that it is necessary to introduce a new parameter a ≈ 0.707
(a ≈ 0.75 in Schmidt et al. 2009), and postulate the form of the
collapse barrier is rather

δGR
ec (S) = √

aδGR
sc

(
1 + β

[
S√
aδGR

sc

]γ)
. (58)

The parameter a is not derived from the ellipsoidal collapse but
introduced by hand in order to fit the N-body simulation results.
Maggiore & Riotto (2010) argued that the parameter a can be
explained by considering the collapse barrier itself as a stochastic
variable.

The Sheth–Tormen formula equation (57) encodes the ingredients
of ellipsoidal collapse in GR as a function of the spherical collapse
barrier δsc. When extending the excursion set formalism from GR
to modified gravity (MG), we usually assume that the effects of
ellipsoidal collapse and MG on the collapse barrier can be treated
separately (Lombriser et al. 2013; Barreira et al. 2014; Lombriser
et al. 2014a; Hu et al. 2018). That is, replacing δGR

sc in Sheth–Tormen
formula with the spherical collapse barrier in MG. For example, we
assume that the ellipsoidal collapse barrier in f(R) gravity is given
by

δST
c (S) ≡ √

aδf (R)
sc (S)

(
1 + β

[
S√

aδ
f (R)
sc (S)

]γ)
. (59)

The spherical collapse barrier δf (R)
sc in f(R) gravity is a function

of halo mass Mh and environmental overdensity δenv, due to the
existence of the environment-dependent fifth force.

To check the validity of Sheth–Tormen formula (59) as an
approximation of ellipsoidal collapse in f(R) gravity, we directly
solve the ellipsoidal collapse process and inspect the behaviour
of the ‘true’ collapse barrier δf (R)

ec . In Section 3.3, we present
a simple modelling of this and the corresponding critical value
is δf (R)

ec = δf (R)
ec (Mh, δenv, e, p), which combines the ingredients of

ellipsoidal collapse and modified gravity. In the same spirit of Sheth
et al. (2001), we would recast these variables into one variable
S by relating their most probable values. First, e and p can be
approximated by their most probable value as in equation (57).

Second, the environment overdensity is related to the definition
of the radius of environment. We adopt the definition used in Li &
Lam (2012), that is, defining the radius by environment’s Eulerian
(physical) radius ζ = 5 h−1 Mpc−1 at z = 0. The probability
distribution of δenv and its approximate analytical expressions can
be found in Lam & Sheth (2008), Lam & Li (2012), and (Li &
Lam 2012). Assuming cosmological parameter values as defined in
Section 3.3, the most probable value δenv, mp ≈ 0.8 (Lombriser et al.
2014a). We adopt this most probable value as an approximation of
δenv.

Now, we are in the position that the collapse barrier is a function
of both variance S and halo mass Mh, δf (R)

ec = δf (R)
ec (S,Mh). Note

that S and Mh is related via the integration of linear power spectrum
equation (48). Thus we can recast S and Mh into one variable S

δf (R)
ec (Mh, δenv, e, p)

σ (M)∼√
5eδ

f (R)
ec−−−−−−−−→

p∼pmp=0
δf (R)

ec (Mh, δenv, S)

δenv∼δenv,mp−−−−−−→ δf (R)
ec (Mh, S) ,

S=S(Mh)−−−−→ δf (R)
ec (S) . (60)

We find a good consistency between the ‘true’ ellipsoidal col-
lapse barrier δf (R)

ec (S) (recast by replacing other variables with
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Figure 2. Comparison of collapse barriers from Sheth–Tormen formula
and full f(R) gravity ellipsoidal collapse dynamics modelling. The small
relative differences (�δc ≡ |δST

c − δ
f (R)
ec |/δf (R)

ec � 2.7 per cent for a = 1
and � 1.6 per cent for a = 0.97 in Sheth–Tormen formula) indicate that the
Sheth–Tormen formula is a good approximation of ellipsoidal collapse in
f(R) gravity.

their most probable values) and the Sheth–Tormen approximation
equation (59). Fig. 2 shows the comparison of two barriers and
their relative difference |�δc|/δc ≡ |δf (R)

ec − δST
c |/δf (R)

ec , with |fR0|
= 10−5. When the parameter a in Sheth–Tormen equation is equal
to one, the largest deviation is 2.7 per cent. And the optimized value
of a is 0.97, which corresponds to� 1.6 per cent relative difference.
Note that the Sheth–Tormen formula truly used in the excursion set
formalism needs a calibrated value of parameter a such as 0.75,
which cannot be described by the simple ellipsoidal collapse of
top-hat overdensity. We simply set a = 0.75 following Schmidt
et al. (2009) when calculating the first-crossing probability. Our
results show that Sheth–Tormen formula is a good approximation
for ellipsoidal collapse barrier in f(R) gravity. This means that one
does not need to cope with the complex ellipsoidal collapse, at least
in f(R) gravity. This is the main conclusion of this paper.

4.3 Non-dynamical approximation

The Sheth–Tormen formula, summarizing the scale dependence of
the ellipsoidal collapse critical value, still needs spherical collapse
barrier in f(R) gravity. The spherical collapse barrier δf (R)

sc , defined
in equation (23), varies in the range of (1.676, 1.692), with only

Figure 3. The relative difference of non-linear power spectra in f(R) gravity
with |fR0| = 10−4 (F4) calculated by CHAM between full scenario and
non-dynamical approximation, |�P|/P, where �P ≡ Pfull − Pnon-dyn. The
non-dynamical approximation, i.e. a constant δ

f (R)
sc instead of a function of

halo mass, causes 0.5 per cent relative deviation at most.

∼ 1 per cent relative amplitude (Hu et al. 2018). We argue that this
small variation is caused by the offset of two effects, caused by
gravity enhancement in f(R) gravity.

First, when solving the spherical collapse equations of top-hat
overdensities, one shall adjust the initial overdensity δh,init so that
makes the halo collapse at z = 0. Under the same conditions, δinit

in f(R) gravity is smaller than that in GR, since the gravity in f(R)
gravity is stronger and the gravitational collapse is faster. Second,
for the same reason, the linear growth function D(a, k) of f(R)
gravity is larger than the �CDM case. Recall that the collapse
barrier δf (R)

sc ≡ D(a0, kh; ainit)δh,init. Thus, in f(R) gravity, the greater
D(a, k) and smaller δh,init cancel out each other.

Since δf (R)
sc (Mh) is insensitive to mass or scale, we adopt a non-

dynamical approximation, in which δf (R)
sc is approximated by a

constant. The rest of the calculation, such as the mass function,
linear bias, and concentration are the same as Hu et al. (2018).
We have checked that this approximation causes little change on
non-linear matter power spectrum from the original full scenario
presented by Hu et al. (2018). The linear power spectrum is output
from the EFTCAMB15 Hu–Sawicki f(R) module (Hu et al. 2016).
As shown in Figs 3 and 4, the relative differences |�P|/P is less
than 0.1 per cent up to k = 1 h Mpc−1, when the optimized value
δf (R)

sc ≈ 1.692 is adopted, which is the exact value predicted in Hu
et al. (2018). This is another main conclusion of the paper.

4.4 Comparison with N-body simulation results

We use the Extended LEnsing PHysics using ANalaytic ray Tracing
(ELEPHANT) dark matter only N-body simulations, which have
been run using the ECOSMOG (Li et al. 2012) and ECOSMOG-V (Li,
Zhao & Koyama 2013b) codes for f(R) gravity models. ECOSMOG

and ECOSMOG-V are based on the adaptive mesh refinement N-body
code RAMSES (Teyssier 2002). These codes are efficiently optimized
and implemented with methods that speed up the calculations
of the non-linear partial differential equations that characterize
these models. The cosmological parameters were adopted from
the WMAP9 year CMB measurements (Hinshaw et al. 2013). The

15http://eftcamb.org/
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Figure 4. Same as Fig. 3 but for f(R) gravity with |fR0| = 10−5.

Figure 5. Matter spectrum comparison for f(R) gravity with fR0 = −10−4

(F4). Data points are from ELEPHANT simulation and curves are outputs of
CHAM.

Figure 6. Matter spectrum comparison for f(R) gravity with fR0 = −10−5

(F5). Data points are from ELEPHANT simulation and curves are outputs of
CHAM.

simulations follow the evolution of Np = 10243 particles with
mass m = 7.798 × 1010h−1 M� in a cubical box of comoving
size Lbox = 1024 h−1Mpc from their initial conditions (generated
with the MPGRAFIC code, Prunet et al. 2008) at zini = 49 up to
today (z = 0). Here, we compare the matter power spectrum
outputs of ELEPHANT simulation and CHAM, at z = 0, 0.3, 0.5,
and 1. The full matter spectra are shown in Figs 5, 6, and 7,
which correspond to fR0 = −10−4, −10−5, and −10−6. We also

Figure 7. Matter spectrum comparison for f(R) gravity with fR0 = −10−6

(F6). Data points are from ELEPHANT simulation and curves are outputs of
CHAM.

Figure 8. Demonstration of one-halo term and two-halo term.

highlight the spectrum relative differences computed from CHAM
and ELEPHANT simulation in Figs 9, 10, and 11.

Via the halo model approach (Figs 5, 6, and 7), there exist a
systematic underestimation of the power spectrum in the comoving
wavenumber range between 0.3 and 3 h Mpc−1. From low to
high redshifts, this discrepancy ends up in the larger wavenumber.
Compared with our demonstration Fig. 8, we can see that, this
discrepancy regime is overlapped with the transition scale between
the two-halo term and one-halo term. We argue that this is due
to the fact that our modified halo model is based on the original
recipes (Sheth & Tormen 1999; Bullock et al. 2001). As shown
in Mead et al. (2015), even in the �CDM framework, these
problematic behaviours have already existed.

There are several possible reasons for these poor performance.
First of all, in simulations, the halo finders normally only assign
half of the particles into haloes (Jenkins et al. 2001; More et al.
2011). Hence, the mass distribution of the other half of the N-
body particles is treated via an extrapolated formula in the halo

MNRAS 492, 4235–4245 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/3/4235/5700292 by U
niversity of D

urham
 user on 25 M

arch 2020



4244 C.-Z. Ruan, T.-J. Zhang, and B. Hu

Figure 9. Relative matter spectrum comparison for f(R) gravity with fR0 =
−10−4 (F4). Data points are from ELEPHANT simulation and curves are
outputs of CHAM.

Figure 10. Relative matter spectrum comparison for f(R) gravity with fR0

= −10−5 (F5). Data points are from ELEPHANT simulation and curves are
outputs of CHAM.

Figure 11. Relative matter spectrum comparison for f(R) gravity with fR0

= −10−6 (F6). Data points are from ELEPHANT simulation and curves are
outputs of CHAM.

model. Secondly, by definition, the unvirialized objects are not
taken into account in the halo model. This is the intrinsic drawback
of this method. And these objects are expected to give essential
contributions to the power spectrum in the mild non-linear regime.
Besides of the cosmological parameters, the resulting spectra
also rely on some astrophysical parameters, such as the halo
concentration, etc. How the measured power spectra are affected
by these astrophysical parameter uncertainties and astrophysical
assumptions have been investigated in Cooray & Hu (2001),
Giocoli et al. (2010), van Daalen & Schaye (2015), and Pace et al.
(2015).

From Figs 9, 10, and 11, we can see that, in F4 model,
N-body simulations give roughly 40 per cent relative differences
w.r.t. �CDM. While the CHAM predicts 60 per cent ∼ 40 per cent
fractional differences from low to high redshifts. In F5 model, N-
body simulations give roughly 20 per cent differences at redshift
below 0.5 and 10 per cent difference at redshift 1. While the CHAM
predicts 30 per cent differences below redshift 0.3 and 20 per cent at
redshifts 0.5 and 1. In F6 model, the numbers in N-body simulations
are below 5 per cent at all redshifts. While the CHAM predicts
10 per cent ∼ 5 per cent differences from low to high redshifts.

5 SUMMARY AND DI SCUSSI ON

In the previous work (Hu et al. 2018), we developed a fast numerical
halo model algorithm (CHAM, which stands for the sCreened HAlo
Model) for modelling non-linear matter power spectra for modified
gravity cosmological models. In this paper, we examined one of the
essential assumptions of CHAM – using the Sheth–Tormen formula
approximate the ellipsoidal collapse barrier in f(R) gravity. We
model the ellipsoidal collapse of top-hat dark matter haloes in
f(R) gravity and calculate the more realistic collapse barrier. We
find a good agreement between Sheth–Tormen formula and the
‘true’ ellipsoidal collapse critical value in f(R) theory. The relative
difference of the ellipsoidal collapse barrier is less than or equal to
1.6 per cent.

Furthermore, we adopted the Sheth–Tormen collapse barrier
formula and treated δf (R)

sc as constant in halo mass. It means that we
do not need to model the complicated ellipsoidal collapse process
in f(R) gravity. And all the modified gravity effect can be absorbed
into the value shift in δf (R)

sc compared with δGR
sc . The calculation of

the barrier shift is quite simple. We only need to rescale Newton
constant by a factor 4/3 in the linear matter density equation.
Namely, treat the μ function in equation (9) as a constant value.
We call this assumption as ‘non-dynamical’ version. The resulting
non-linear spectra in F4 and F5 models, agree with the original full
dynamical version of CHAM (Hu et al. 2018) within 0.1 per cent
precision up to k = 1 h Mpc−1. Due to the simplification of the
non-linear dynamics modelling, the computational time of the code
reduces significantly, from 10 min to 1 s. The updated version of the
code can be found at https://github.com/hubinitp/CHAM. Finally,
we compare our halo model prediction with N-body simulation.
We find that the general spectrum profile agrees, qualitatively.
However, via the halo model approach, there exists a systematic
underestimation of the matter power spectrum in the comoving
wavenumber range between 0.3 and 3h Mpc−1. These scales are
overlapping with the transition scales from two-halo term dominated
regimes to those of one-halo term dominated regimes. We argue that
these mismatches are the discrepancies inherited from the original
halo model. We will leave this problem for the future studies. We
think halo model is a physical intuitive approach and can help
us understand the non-linear clustering process in the alternative
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theories to standard model. In the future, we plan to validate this
method with more concrete models of modified gravity and dark
energy.
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