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Abstract

We consider an open-string realisation of N = 2 → N = 0 spontaneous breaking of supersymme-
try in four-dimensional Minkowski spacetime. It is based on type IIB orientifold theory compactified on 
T 2 × T 4/Z2, with Scherk–Schwarz supersymmetry breaking implemented along T 2. We show that in the 
regions of moduli space where the supersymmetry breaking scale is lower than the other scales, there ex-
ist configurations with minima that have massless Bose-Fermi degeneracy and hence vanishing one-loop 
effective potential, up to exponentially suppressed corrections. These backgrounds describe non-Abelian 
gauge theories, with all open-string moduli and blowing up modes of T 4/Z2 stabilized, while all untwisted 
closed-string moduli remain flat directions. Other backgrounds with strictly positive effective potentials ex-
ist, where the only instabilities arising at one loop are associated with the supersymmetry breaking scale, 
which runs away. All of these backgrounds are consistent non-perturbatively.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The question of how moduli come to acquire masses in the true vacuum is central in the con-
text of string phenomenology. Indeed the working hypothesis in much of string phenomenology 
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is that the system is initially supersymmetric, with supersymmetry being a powerful guarantor of 
vacuum stability. Non-perturbative effects then induce a spontaneous breaking of supersymme-
try at a scale much below the string scale Ms [1–6], introducing mild instabilities in only a very 
limited number of moduli that lead to phenomenologically desirable effects such as the Brout-
Englert-Higgs mechanism. An alternative and arguably more honest approach is to implement 
spontaneous supersymmetry breaking from the outset, at the classical level in flat space, and rely 
on perturbative calculations to derive interesting quantum physics. In this approach, loop correc-
tions generate an effective potential for the entire system, in which one must seek local minima 
for the moduli. Moreover, very few of these minima would be expected to yield a cosmological 
constant that is close to zero.

This general route was advocated in Refs. [7–17], and the question of stability was addressed 
in the heterotic string in [9,10,18–22], and more recently in the type I framework in [23,24]. 
In all these works, supersymmetry breaking was implemented by the string versions [25–37] of 
the Scherk–Schwarz mechanism [38], with the effective potential being studied directly using 
string perturbation theory at one loop. The type I framework has the advantage of providing via
T-dualities geometric descriptions of open-string moduli as positions of D-branes in the internal 
space [39]. The purpose of this paper is to demonstrate how the discussion can be extended to 
more phenomenologically interesting cases that also contain orbifolds.

Let us begin by making some general remarks and observations about the setup. In prac-
tice, the scale M of spontaneous supersymmetry breaking will be assumed to be lower than 
the other scales present, namely the string scale Ms = 1/

√
α′, and the other scales arising 

from compactification. In other words the directions involved in the Scherk–Schwarz super-
symmetry breaking are large compared to 

√
α′ and the other directions (or their T-duals). This 

restriction implies that the one-loop potential is dominated by the massless states and their 
Kaluza-Klein (KK) modes along the large “Scherk–Schwarz directions”, and its dependence 
on the moduli fields becomes tractable. Moreover, any potential tree-level instabilities occurring 
when M = O(Ms) [40,41], which are related to the Hagedorn transition, are avoided. Under this 
assumption, in the string frame the effective potential will inevitably take the following form at 
an extremal point [7–16,18–24]:

V = ξ(nF − nB)Md +O
(
(MsM)

d
2 e−2πc

Ms
M

)
, (1.1)

where d is the spacetime dimension. In this expression, nF and nB are the numbers of precisely 
massless fermionic and bosonic degrees of freedom, while ξ > 0 is a constant that accounts for 
the KK towers. Moreover, the exponentially suppressed terms arise from all other string states, 
where c is an O(1) moduli-dependent quantity, with the exponential factor corresponding to their 
Yukawa potential across the compact Scherk–Schwarz volume.1

Now let us summarise the specific results for toroidal compactification in type I found in 
Ref. [23], and then anticipate and review those that we will find here. Ref. [23] presented the 
rules for perturbatively consistent models to be tachyon free, which were based upon the fact 
that, when an odd number of Dp-branes is stacked on an orientifold plane (Op-plane), the po-
sition of one of the branes is rigid [42], thus enhancing the stability of the setup. Most of these 
configurations yield nF − nB < 0, while some others satisfy nF − nB = 0, which is an interesting 

1 Note that throughout our work, our use of the words “extremal point of the potential” is somewhat abusive, since V
is in fact extremal with respect to all moduli except M itself, which has a tadpole unless nF = nB. In addition when we 
assert properties such as “tachyon free”, “flat direction”, and so forth, these properties are all to be understood at one 
loop, and when all exponentially suppressed corrections are neglected.
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choice for generating a small cosmological constant. The idea being that, if the one-loop effective 
potential is exponentially suppressed, then it may conspire with higher loops effects to stabilise 
M and the dilaton, and eventually yield a cosmological term smaller than in generic models. 
However, after imposing all known non-perturbative consistency conditions [43–47] on configu-
rations satisfying nF − nB ≥ 0 for d ≥ 5, it was found that there is only one survivor which has 
dimension d = 5, and nF − nB = 8 × 8 [48]. T-dualizing the internal T 5, it corresponds to ren-
dering all of the 32 D5-branes2 rigid, by distributing them one by one on 32 distant O5-planes. 
The open-string “gauge group” denoted SO(1)32 is trivial, where SO(1) = {e}, with e being the 
neutral element.

In the present work, we extend the above analysis to d = 4 dimensions, when N = 2 super-
symmetry is spontaneously broken to N = 0. We show that there exist non-perturbatively con-
sistent models that are tachyon free at one loop, with exponentially suppressed (nF − nB = 0) or 
positive (nF − nB > 0) potentials V . We will construct them in the framework of the Bianchi–
Sagnotti–Gimon–Polchinski (BSGP) model [49–51], with the type I theory being compactified 
on the partially orbifolded space T 2 × T 4/Z2. We choose the Scherk–Schwarz mechanism to 
act along the T 2 [30–37,53,54], which implies that the entire spectrum (including the “twisted 
states”) is sensitive to the supersymmetry breaking. As well as the usual closed strings, the model 
contains open strings that have Neumann (N) (or Dirichlet (D)) boundary conditions when they 
are attached to one of the 32 D9-branes (or 32 D5-branes) [39]. There are corresponding moduli 
fields of various kinds, which will be the focus of our attention. Their masses arise at the quan-
tum level once supersymmetry is broken, and can be studied from various perspectives. Indeed 
one of the more general aspects of this paper is the array of tools that can be brought to bear on 
these questions. These will allow us to make the following conclusions about the behaviour of 
the zoo of moduli:

• Applying suitable T-dualities, all Wilson lines (WL’s) on the worldvolumes of the D9- and 
D5-branes can be mapped into positions of 32 + 32 D3-branes. The one-loop effective potential 
is extremal with respect to these moduli when all D3-branes sit on O3-planes. We will derive the 
signs and magnitudes of the quadratic mass terms at one loop using two different (but related) 
methods. The first, which is purely algebraic, is based on the knowledge of the massless spectrum 
that is charged under the Cartan U(1)’s associated with the WL’s. The second method is to 
evaluate the one-loop Coleman–Weinberg effective potential with WL’s switched on, and take 
the double-derivative at the origin of the WL moduli space. The mass matrices of these states is 
derived also taking into account the effect of six-dimensional anomaly-induced masses.

• In general the open-string sector also contains moduli in the ND sector, whose condensa-
tion if they are tachyonic would correspond to “recombinations of branes” [55–58]. One way to 
determine the masses of these states when the D3-branes sit on O3-planes is to compute the two 
points functions of “boundary changing vertex operators”. The computation of such amplitudes 
in non-supersymmetric backgrounds is an interesting and delicate question, that will be presented 
in a companion paper [59].

• The closed strings also yield moduli, namely the internal metric and the dilaton in the 
Neveu–Schwarz-Neveu–Schwarz (NS-NS) sector, as well as the internal components of the 
Ramond-Ramond (RR) two-form. The expression of the one-loop potential V as a function of 
the metric can be derived explicitly. However, because this dependence becomes trivial when the 

2 We make the choice to call “branes” objects that live in the parent type IIB theory, i.e. before any orientifold (or 
orbifold) action is implemented. In other words, there are as many “branes” as Chan–Paton indices. In the descendant
theories, these “branes” are non-dynamically independent objects.
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potential is extremal with respect to the open-string WL’s (see Eq. (1.1)), all degrees of free-
dom of the internal metric are flat directions (up to exponentially suppressed terms), except the 
supersymmetry breaking scale M itself when nF �= nB. Of course, the dilaton remains a flat di-
rection at one loop. To study the dependence of V on the RR moduli, we use type I/heterotic 
duality [60–67], which maps the RR two-form to the antisymmetric tensor. At one loop, the het-
erotic effective potential receives contributions from winding modes running in the virtual loop, 
whose masses depend on the antisymmetric tensor. Up to exponentially suppressed terms, there 
is no additional dependence of the potential on this tensor. Hence, because winding modes on 
the heterotic side are dual to non-perturbative D1-branes in type I, we will conclude that V does 
not depend on the RR moduli (up to the exponentially suppressed terms).

• Finally the moduli arising in the twisted closed-string sector belong to the quaternionic 
scalars of the 16 twisted hypermultiplets localized at the 16 fixed points of T 2 × T 4/Z2 in the 
BSGP model. Thanks to the generalized Green–Schwarz mechanism taking place in six dimen-
sions [51], between two and sixteen of these moduli acquire a large supersymmetric mass. We 
do not analyze the masses, which are generated at one loop by the supersymmetry breaking, of 
the remaining (up to fourteen) twisted quaternions.

The plan of this work is as follows. In Sect. 2, we describe the BSGP model on T 2 × T 4/Z2, 
with the Scherk–Schwarz mechanism implemented along T 2 to break N = 2 → N = 0. In par-
ticular, we derive the massless spectrum and the one-loop effective potential when all D3-branes 
(in suitable T-dual descriptions) sit on O3-planes. In Sect. 3, we determine the mass terms of 
the open-string WL’s, the effects of the Green–Schwarz mechanism, and derive the flatness of 
the untwisted closed-string sector moduli. In Sect. 4, we first discuss the stability/instability 
of representative examples of brane configurations, which belong to distinct non-perturbatively 
consistent components of the open-string moduli space [51].

We then perform a full scan of the hundreds of billions of possible distributions of the 
D3-branes on the O3-planes, which correspond to extremal points of the one-loop effective 
potential.1 We find that at the one-loop level, there are only two non-perturbatively consistent 
marginally stable setups with exponentially suppressed effective potential (nF − nB = 0). All 
open-string moduli are stabilised, together with the blowing up modes of the orbifold, while 
all untwisted closed-string moduli are flat directions. The anomaly free gauge symmetries are 
U(1) × SU(2) × SU(5)2 × SU(7) and U(1) × SU(3) × SU(5)2 × SU(6). There also exist four 
configurations that are tachyon free and have positive potential at one loop (nF − nB > 0), im-
plying that M runs away. There are two further brane distributions that are tachyon free, but 
modulo possible instabilities associated with moduli existing in the ND sector: the relevant one-
loop masses will be studied elsewhere [59]. One of these models has nF − nB = 0, while the 
other has nF − nB > 0.

Our conclusions can be found in Sect. 5. The core of the paper is accompanied by Appen-
dices A and B, which collect those technical details required for Sects. 2 and 3, respectively.

2. N = 2 → N = 0 open-string model

In this section, we will describe the broad features of toroidal orbifold models of type I that 
realize N = 2 → N = 0 spontaneous breaking of supersymmetry in four dimensions. We will 
consider the partition function that takes into account arbitrary marginal deformations arising 
from the NN and DD sectors of the open strings, as well as from the NS-NS closed-string sector 
i.e. the internal metric. We also discuss the associated spectrum of the states that are massless at 
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tree level. This will prepare us for the following sections, where we consider the response of the 
system to the breaking of supersymmetry, in particular its one-loop stability.

2.1. The supersymmetric setup

Original BSGP model: Before implementation of the spontaneous breaking of supersymmetry, 
our framework is the Bianchi–Sagnotti–Gimon–Polchinski model [49–51] compactified down to 
four dimensions. It is obtained by applying an orientifold projection to the type IIB theory, with 
background

R1,3 × T 2 × T 4

Z2
, (2.1)

where we will take Minkowski spacetime to span the directions X0, X1, X2, X3, while the T 2

torus directions are X4, X5. The remaining coordinates, corresponding to the T 4 torus, are 
twisted by the Z2 orbifold generator,

g : (X6,X7,X8,X9) −→ (−X6,−X7,−X8,−X9) , (2.2)

implying that the model has N = 2 supersymmetry. The background contains orientifold planes, 
which are the fixed loci of the orientifold generator � and of the combination �g. Hence, an 
O9-plane lies along the nine spatial directions (the “fixed locus” of �), while an O5-plane is 
located at each of the 16 fixed points of T 4/Z2. In order to cancel their RR charges, the open-
string sector comprises 32 D9-branes, as well as 32 D5-branes transverse to the T 4/Z2 factor. 
Consistency conditions require the algebra of Chan–Paton factors to correspond to unitary or 
symplectic gauge groups rather than orthogonal ones [50]. The simplest configuration, which has 
a U(16) ×U(16) open-string gauge group, is obtained when no WL deformations are introduced 
on the worldvolumes of the D9-branes and D5-branes, and when all D5-branes are coincident on 
a single O5-plane. The only marginal deformations in this system would be those associated with 
the NS-NS internal metric GIJ , I, J = 4, . . . , 9, which we can split into its T 2 components 
GI ′J ′ , I ′, J ′ = 4, 5, and T 4 components GIJ , I, J = 6, . . . , 9.

At one loop, the partition function includes contributions arising from worldsheets of closed 
strings and open strings, with the topologies of a torus and Klein bottle, and an annulus and 
Möbius strip respectively. Accordingly, the one-loop effective potential (which of course van-
ishes at this stage) involves four vacuum-to-vacuum amplitudes T , K, A, M, as shown in 
Eq. (A.2). Using the conventions for lattices and characters given in Appendix A.1, these contri-
butions in the “undeformed” BSGP model are displayed in Appendix A.2.

Marginal deformations: The original model with U(16) × U(16) open-string gauge group can 
be deformed by turning on (i.e. giving a vev to) any of the available marginal deformations 
arising from the open-string or closed-string sectors. In the effective supersymmetric theory these 
correspond to exactly F - and D-flat directions. Let us first enumerate them and then describe 
them in detail:

(i) Generic positions of the D5-branes in T 4/Z2.
(ii) Wilson lines along T 2 for the gauge group associated with the D5-branes (in the DD sec-

tor).
(iii) WL’s along all of the six internal directions for the gauge group generated by the D9-branes 

(in the NN sector). In fact “Wilson line” is a misnomer along T 4/Z2 since we will see that 
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non-trivial vev’s of these moduli reduce the rank of the gauge group. It is only in the N = 4
parent theory, without the orbifold generated by g, that these moduli are truly WL’s.

(iv) Non-trivial vev’s of the moduli in the ND sector. When the latter condense, the background 
can be described in terms of brane recombinations or magnetized branes [55–58].

(v) Non-trivial vev’s of the RR moduli, namely the 2-form components CI ′J ′ , I ′, J ′ = 4, 5, 
and CIJ , I, J = 6, . . . , 9.

(vi) Non-trivial vev’s of the quaternionic scalars of the 16 twisted hypermultiplets in the closed-
string sector. These are the blowing up modes of the orbifold, which are localized at the 16 
fixed points of T 4/Z2. When they are turned on, the T 4/Z2 is deformed into a smooth K3
manifold.

In the present work, we will not consider deformations of the ND sector moduli (iv).3 On the 
contrary, we will justify that the RR moduli (v) do not yield relevant effects. We will also dis-
cuss how the twisted quaternionic moduli in (vi) acquire supersymmetric masses thanks to a 
generalized Green–Schwarz mechanism.

Let us start the detailed discussion of actual deformations, with the moduli (i) corresponding 
to the positions along directions X6, X7, X8, X9 of the 32 D5-branes of the type IIB theory. 
These must be symmetric with respect to the generators � and g, hence the orientifold projection 
requires that if a brane is located at XI , I = 6, . . . , 9, then a distinct brane sits at −XI [39].4

Similarly, the Z2 twist projection correlates the position of a brane at XI , with that of a brane 
(distinct or otherwise) at −XI . Broadly speaking, in the type I string theory, D5-brane positions 
in T 4/Z2 vary in 4’s. For instance, if 2n D5-branes are sitting at a fixed point, they support a 
gauge symmetry U(n) that can be broken to U(n −2k) ×USp(2k), with rank reduced to n −k, if 
2k branes move away from the fixed point together with their 2k “mirror branes” at the opposite 
coordinates. Hence the moduli space splits into disconnected components characterized by the 
value of 2n modulo 4, which can be either 0 or 2. In other words, the parity of n matters.5

The Wilson lines (ii) along the T 2 of the D5 gauge groups parameterise the Coulomb branch 
of the gauge symmetry, and therefore preserve the rank. These also have a geometric interpreta-
tion. Upon T-dualizing T 2, the D5-branes become D3-branes transverse to the six-dimensional 
internal space, and the WL’s can then be thought of as the positions of the D3-branes along the 
T-dual torus T̃ 2 of coordinates X̃4, X̃5. Moreover, the 16 O5-planes become 64 O3-planes sitting 
at the fixed loci of �I45g, where I45 is the inversion (X̃4, X̃5) → (−X̃4, −X̃5). Similarly to the 
deformations (i), the position of a D3-brane in X̃I ′

, I ′ = 4, 5, is correlated with that of a distinct 
partner D3-brane at −X̃I ′

. Hence, brane positions along T̃ 2/I45 vary in 2’s. In this T-dual geo-
metric picture, the six-dimensional internal space can be thought of as a “box”, a generalization 
of a one-dimensional segment, with an O3-plane sitting at each of its 64 corners. This box along 
with the D3-branes sitting on O3-planes is depicted in Fig. 1a.

In the original type I picture, D5-branes and D9-branes are on an equal footing, in the sense 
that a T-duality on T 4/Z2 turns the former into the latter and vice versa. Hence, the moduli 

3 A subsequent work [59] will be entirely devoted to the delicate computation of their masses generated at one loop 
when supersymmetry is spontaneously broken.

4 Before implementation of the Z2 orbifold action, this can be understood by T-dualizing T 4 in order to translate the 
D5-brane positions into D9-brane Wilson lines along the T-dual torus. These WL’s are associated with orthogonal gauge 
groups [39].

5 Even though configurations with an odd number of D5-branes sitting on an O5-plane are symmetric under XI →
−XI , they are not allowed due to the unitary structure of the gauge group factors.
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Fig. 1. Geometric T-dual description of the moduli arising from the NN and DD sectors of the orientifold theory. (For 
interpretation of the colours in the figure, the reader is referred to the web version of this article. This is valid for all 
subsequent figures in this article as they follow the same colour code.)

(iii) associated with the gauge group induced by the D9-branes can also be given a geometric 
interpretation in terms of positions of D3-branes, upon T-dualizing all the directions of T 2 ×
T 4/Z2. An example of a configuration in which the resulting D3-branes sit on O3-planes is 
shown in Fig. 1b, where T̃ 4 denotes the T-dual four-dimensional torus.



8 S. Abel et al. / Nuclear Physics B 957 (2020) 115100
Despite the fact that Figs. 1a and 1b refer to T-dual theories, it is convenient to represent all the 
D-branes on a single picture, as shown in Fig. 1c. Although this depiction is certainly abusive, 
it turns out to be very useful to understand and manipulate various moduli configurations. In 
practice, we will refer interchangeably to “positions” and “Wilson lines” bearing in mind that 
they refer to the appropriate T-dual pictures.

Let us now define the Wilson lines in detail. We should repeat that the denomination “Wilson 
line” is only fully justified along the T 2, or in the parent type I model, when no orbifold action 
is implemented. In such an N = 4 theory, a Wilson line matrix living in the Cartan subgroup 
of the D9-brane SO(32) gauge group can be associated with every direction in T 2 × T 4. For 
I = 4, . . . , 9, it can be parameterised as

WD9
I = diag

(
e2iπaIα , α = 1, . . . ,32

)
= diag

(
e2iπaI1 , e−2iπaI1 , e2iπaI2 , e−2iπaI2 , . . . , e2iπaI16 , e−2iπaI16

)
,

(2.3)

where α labels the 32 D9-branes, and the corresponding D3-brane positions in T̃ 2 × T̃ 4 are 
X̃I = 2πaIα . In the orbifold model, the number of degrees of freedom of the matrices associated 
with the T 4/Z2 directions is reduced, and there are nine disconnected components in the moduli 
space corresponding to different numbers of fixed points supporting 2 modulo 4 branes:

• The first component of moduli space contains a Higgs branch parameterised by

WD9
I = diag

(
e2iπaI

1 , e−2iπaI
1 , . . . , e2iπaI

8 , e−2iπaI
8 , e−2iπaI

1 , e2iπaI
1 , . . . , e−2iπaI

8 , e2iπaI
8
)
,

(2.4)

where I = 6, . . . , 9. Generically this yields a gauge symmetry USp(2)8 of rank 8, whose 
Coulomb branch is parameterised by the WL matrices I ′ = 4, 5,

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , . . . , e2iπaI ′

8 , e−2iπaI ′
8 , e2iπaI ′

1 , e−2iπaI ′
1 , . . . , e2iπaI ′

8 , e−2iπaI ′
8
)
,

(2.5)

and along which the gauge symmetry is reduced at generic points to U(1)8. However, USp(2)8

can be initially enhanced up to U(16) of rank 16 at the points aI
1 = · · · = aI

8 ∈ {0, 12 }, I =
6, . . . , 9, and the Coulomb branch is then parameterised by

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , e2iπaI ′

2 , e−2iπaI ′
2 , . . . , e2iπaI ′

16 , e−2iπaI ′
16
)

(2.6)

for I ′ = 4, 5. This leads generically to an Abelian symmetry U(1)16, with the 8 positions in 
T̃ 4/Z2 stabilised.6

• A second component of the moduli space contains a Higgs branch that may be parameterised 
as

WD9
I = diag

(
e2iπaI

1 , e−2iπaI
1 , . . . , e2iπaI

7 , e−2iπaI
7 , ηI

8, ηI
8,

e−2iπaI
1 , e2iπaI

1 , . . . , e−2iπaI
7 , e2iπaI

7 , ηI
16, η

I
16

)
,

where ηI
8, ηI

16 ∈ {1,−1} , (η6
8, η

7
8, η

8
8, η

9
8) �= (η6

16, η
7
16, η

8
16, η

9
16) .

(2.7)

6 From the gauge theory perspective, they acquire tree level Higgs masses. From the geometric point of view, two pairs 
of D3-branes at a fixed point of T̃ 4/Z2 can only move away from it if the coordinates of the pairs along T̃ 2/I45 match, 
in order to respect the Z2 symmetry in T̃ 4. When this is the case for all 8 pairs of pairs, the Coulomb branch takes 
consistently the form given in Eq. (2.5).
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Generically, the gauge symmetry is USp(2)7 × U(1)2, which can again be enhanced up to 
U(15) × U(1). In the former case, the gauge group in the Coulomb branch is U(1)9 for generic 
matrices WD9

I ′ , while in the second case it is U(1)16 with all positions in T̃ 4/Z2 stabilised.
• There are seven more disconnected components of moduli space. In the ultimate one, the 

Higgs branch is zero-dimensional, the positions of all 32 branes in T̃ 4/Z2 being rigid. To be 
specific, we have

WD9
I = diag

(
ηI

1, ηI
1, . . . , ηI

16, η
I
16

)
,

where ηI
α ∈ {1,−1} , α = 1, . . . ,16 , (η6

α, η7
α, η8

α, η9
α) �= (η6

β, η7
β, η8

β, η9
β) , α �= β .

(2.8)

There is only a Coulomb branch with the gauge symmetry always being U(1)16, regardless of 
the WL’s along T 2,

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , e2iπaI ′

2 , e−2iπaI ′
2 , . . . , e2iπaI ′

16 , e−2iπaI ′
16
)
. (2.9)

Similarly, the positions in T̃ 2 × T 4/Z2 of the D3-branes T-dual to D5-branes α = 1, . . . ,32
can be written as X̃I ′ = 2πbI ′

α , I ′ = 4, 5, XI = 2πbI
α , I = 6, . . . , 9. They span 9 disconnected 

components that admit various Higgs, Coulomb or mixed Higgs/Coulomb branches. The latter 
can be parameterised with matrices WD5

I exactly analogous to those of the D9-branes, up to the 
exchange aIα → bIα .

Discrete deformations: In what follows we will be mostly interested in configurations where all 
branes are located at the corners of the appropriate six-dimensional “boxes”.7 In order to write 
the corresponding one-loop amplitudes, we label the 64 corners by a pair of indices ii′, where 
i ∈ {1, . . . , 16} refers to the T 4/Z2 (or its T-dual counterpart) fixed points, and i′ ∈ {1, . . . , 4}
specifies the T̃ 2/I45 fixed points. Fig. 1d shows schematically how the labelling works. At a given 
corner ii′, we denote Nii′ the number of D3-branes T-dual to D9-branes, and Dii′ the number 
of D3-branes T-dual to D5-branes. In this setup, the Wilson lines/D3-brane positions 2πaIα and 
2πbIα , α = 1, . . . , 32, associated with the D9-branes and D5-branes take values equivalent to the 
coordinates of some corner ii′, which we denote by the six-vectors 2π 	aii′ . It is also convenient 
to write 	aii′ ≡ (	ai′ , 	ai), where 	ai′ , 	ai are two- and four-vectors, whose components take values 0 
or 1

2 . With these definitions, the amplitudes A and M arising from the open-string sector are as 
shown in Appendix A.3. In the closed-string sector, the amplitudes T and K are independent of 
the WL’s/brane positions, and their expressions are simply those of the “undeformed” U(16) ×
U(16) BSGP model (see Appendix A.2). On the contrary, A and M involve the numbers of 
branes Nii′ , Dii′ , as well as their counterparts RN

ii′ and RD
ii′ under the orbifold action. These 

coefficients can be parameterised as

Nii′ = nii′ + n̄ii′ , Dii′ = dii′ + d̄ii′ , RD
ii′ = i(nii′ − n̄ii′) , RD

ii′ = i(dii′ − d̄ii′) ,

(2.10)

where nii′ = n̄ii′ and dii′ = d̄ii′ are positive integers. The tadpole cancellation condition then 
implies

7 We will see in Sect. 3 that in the presence of spontaneous supersymmetry breaking, such configurations yield extrema 
of the effective potential.
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∑
i,i′

nii′ = 16 ,
∑
i,i′

dii′ = 16 , (2.11)

which leads to the open-string gauge group

Gopen =
∏

ii′/nii′ �=0

U(nii′) ×
∏

jj ′/djj ′ �=0

U(djj ′) . (2.12)

Non-perturbative consistency: Although consistent at the perturbative level, the models con-
structed so far must satisfy additional requirements to remain valid at the non-perturbative 
level [51]. To state these additional constraints, let us first consider the BSGP model in six dimen-
sions. We have seen that the moduli space of the positions of the D5-branes in T 4/Z2 splits into 
9 disconnected pieces. These are characterized by the even number R = 0, 2, . . . , 16 of pairs of 
D5-branes mirror to each other with respect to � that have rigid positions at distinct fixed points 
of T 4/Z2. To be consistent non-perturbatively, a model must have R = 0, 8 or 16. When R = 8, 
the mirror pairs must sit on the 8 corners of one of the hyperplanes XI = 0 or π , I = 6, . . . , 9. 
Similarly, the number of mirror pairs of D5-branes T-dual to the D9-branes with rigid positions 
in T̃ 4/Z2 must be R̃= 0, 8 or 16. Hence, there are only 3 × 3 fully consistent components in the 
moduli space, which can be further reduced to 6 by T-duality8:

(R, R̃) = (0,0) , (0,8) , (0,16) , (8,8) , (8,16) , (16,16) . (2.13)

Compactifying down to four dimensions and T-dualizing T 2, there are no additional constraints 
on the distribution of D3-branes. The latter, including the 2R + 2R̃ ones with rigid positions in 
T 4/Z2 or T̃ 4/Z2, can move in pairs along the directions of T̃ 2/I45.

2.2. Spontaneous breaking of supersymmetry

What remains to be implemented is the spontaneous breaking of N = 2 supersymmetry. This 
can be done via a stringy version [30–37] of the Scherk–Schwarz mechanism [38]. To this end, 
we consider an additional Z2 orbifold shift on the fifth direction, X5 → X5 + π , coupled to 
(−1)F , where F is the spacetime fermion number. Denoting the integer momenta along T 2 in 
the “undeformed” supersymmetric BSGP model by 	m′ ≡ (m4, m5), the combined effects of the 
continuous deformations considered so far plus the extra freely acting orbifold action amounts 
to the following shifts:

	m′ −→ 	m′ + F 	a′
S in the closed-string sector ,

	m′ −→ 	m′ + F 	a′
S + 	a′

α − 	a′
β in the NN sector ,

	m′ −→ 	m′ + F 	a′
S + 	b′

α − 	b′
β in the DD sector ,

	m′ −→ 	m′ + F 	a′
S + 	a′

α − 	b′
β in the ND sector .

(2.14)

In the above, we have defined

	a′
S =

(
0,

1

2

)
, (2.15)

while 	a′
α ≡ (a4

α, a5
α) and 	b′

α ≡ (b4
α, b5

α), α = 1, . . . , 32, denote the WL’s along T 2. Equivalently, 
in the D3-brane picture where 2π 	a′

α (or 2π 	b′
α) and 2π 	a′

β (or 2π 	b′
β ) are the positions of the two 

8 They can be connected to each other by deforming T 4/Z2 into smooth K3 manifolds [51].



S. Abel et al. / Nuclear Physics B 957 (2020) 115100 11
ends of the open strings in T̃ 2, the components of 	m′ are winding numbers. The key point is of 
course that the gravitini have acquired masses

M =
√

G55

2
Ms , (2.16)

showing that the breaking of N = 2 → N = 0 supersymmetry is spontaneous. Moreover, M
itself is one of the marginal deformations, provided it is less than the critical value of order of 
the string scale Ms, at which a tree-level tachyonic instability arises [40,41]. In the language of 
supergravity, the background is then a “no-scale model” [68], which means that the tree-level 
potential is positive, semi-definite, and admits a flat direction parameterised by M .

As described above, when the WL deformations are discrete (the D3-branes sit on the O3-
planes of the six-dimensional boxes), the vectors 	a′

α and 	b′
α take values equal to the appropriate 

	ai′ , i′ = 1, . . . , 4. This has an important consequence for the light spectrum, because KK modes 
in the open-string sector are massless if

	m′ + F 	a′
S + 	ai′ − 	aj ′ = 	0 . (2.17)

This equation admits solutions for both bosons (F = 0) and fermions (F = 1) depending on the 
relative displacements. This will be detailed in the next paragraph.

The potential and tree-level massless spectrum: The one-loop effective potential in the non-
supersymmetric case no longer vanishes. For discrete WL deformations, the amplitudes T , K, 
A and M take the form displayed in Appendix A.4. They are expressed in terms of partition 
functions, from which we can derive the massless bosonic and fermionic spectra. To this end, it 
is useful to specify the labelling of the T̃ 2/I45 fixed points as follows: we will denote by i′ = 1, 3
those located at the origin of the T-dual Scherk–Schwarz direction, X̃5 = 0, and by i′ = 2, 4 those 
at X̃5 = π (see Fig. 1d). From Eqs. (A.23)–(A.26), we can then read off the massless spectrum of 
the N = 2 → N = 0 model when the WL’s take discrete values as described above. Knowledge 
of the massless-state representations will be important to derive conditions for the stability of the 
one-loop potential using a simple algebraic method in Sect. 3.1.

In the open-string sector, the massless states arise from characters appearing in A and M at 
the origin of the T 2 and T 4 lattices. Eq. (2.17), which defines the origin of the T 2 lattice, implies 
that massless bosons require the ends of the strings (in the D3-brane picture) to be located on 
fixed points of coordinates 	aii′ ≡ (	ai′ , 	ai) and 	ajj ′ ≡ (	aj ′ , 	aj ) satisfying

massless bosons: 	ai′ − 	aj ′ = 	0 ⇐⇒ i′ = j ′ . (2.18)

On the contrary, massless fermions require

massless fermions: 	ai′ − 	aj ′ = ∓	a′
S ⇐⇒

⎧⎨
⎩

i′ = 2i′′ − 1 , j ′ = 2i′′
or
i′ = 2i′′ , j ′ = 2i′′ − 1

, i′′ = 1,2 ,

(2.19)

implying that in the T̃ 2/I45, the string is stretched along the T-dual Scherk–Schwarz direction 
X̃5. For such states the contributions to the mass induced by the spontaneous breaking of super-
symmetry and by the WL’s cancel exactly, i.e. the Superhiggs and the Higgs mechanisms offset 
each other. In the NN and DD sectors, whose contributions to the partition functions involve 
respectively T 4 momentum and T 4 winding number lattices (in the D9- and D5-brane picture), 
massless states must also satisfy
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Fig. 2. Open-string massless modes.

massless NN or DD states: 	ai − 	aj = 	0 ⇐⇒ i = j . (2.20)

Finally, because the ND sector does not involve T 4 lattices, i and j need not be correlated to 
yield massless states, hence

massless ND states: i, j arbitrary . (2.21)

To illustrate the above considerations, Fig. 2a displays massless states arising in the NN sector 
(green) and DD sector (orange) that are bosonic (solid strings) or fermionic (dashed strings). 
Similarly, Fig. 2b shows massless strings in the ND sector (khaki) which are bosonic (solid 
strings) or fermionic (dashed strings).

At the origin of the lattices appearing in the amplitude A + M, the massless states arise 
from the constant terms in the combinations of characters O4/η

4, V4/η
4, S4/η

4, C4/η
4 (see 

Eqs. (A.25), (A.26)) (i.e. the terms q0 in the notations of Appendix A, where q = e−πτ2 and τ2
is the Schwinger parameter).9 These combinations are dressed with coefficients which can be 
expressed using the unitary parameterisation (2.10). For the bosons and fermions, the relevant 
characters are respectively

Bosons:
1

η8

∑
i,i′

{
V4O4

[
nii′ n̄ii′ + dii′ d̄ii′

]

9 O4, V4, S4, C4 are SO(4) affine characters arising from the breaking of the ten-dimensional little group SO(8) →
SO(4) × SO(4) imposed by the Z2-orbifold action.
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.

+ O4V4

[
nii′(nii′ − 1)

2
+ n̄ii′(n̄ii′ − 1)

2
+ dii′(dii′ − 1)

2
+ d̄ii′(d̄ii′ − 1)

2

]

+ O4C4

∑
j

[
1 − e4iπ 	ai ·	aj

2

(
nii′dji′ + n̄ii′ d̄j i′

)+ 1 + e4iπ 	ai ·	aj

2

(
nii′ d̄j i′ + n̄ii′dji′

)]}
,

Fermions:
1

η8

∑
i,i′′

{
C4C4

[
ni,2i′′−1n̄i,2i′′ + n̄i,2i′′−1ni,2i′′ + di,2i′′−1d̄i,2i′′ + d̄i,2i′′−1di,2i′′

]
+ S4S4

[
ni,2i′′−1ni,2i′′ + n̄i,2i′′−1n̄i,2i′′ + di,2i′′−1di,2i′′ + d̄i,2i′′−1d̄i,2i′′

]
(2.22)

+ S4O4

∑
j

[
1 − e4iπ 	ai ·	aj

2

(
ni,2i′′−1dj,2i′′ + n̄i,2i′′−1d̄j,2i′′ + ni,2i′′dj,2i′′−1 + n̄i,2i′′ d̄j,2i′′−1

)

+ 1 + e4iπ 	ai ·	aj

2

(
ni,2i′′−1d̄j,2i′′ + n̄i,2i′′−1dj,2i′′ + ni,2i′′ d̄j,2i′′−1 + n̄i,2i′′dj,2i′′−1

)]}
We can immediately read off from these formulae the numbers of massless bosonic and fermionic 
open-string degrees of freedom:

n
open
B = 4

[
2
∑
ii′

(
n2

ii′ + d2
ii′
)

+
∑
i,i′,j

nii′dji′ − 32

]
,

n
open
F = 4

[
4
∑
i,i′′

(
ni,2i′′−1ni,2i′′ + di,2i′′−1di,2i′′

)+ ∑
i,i′′,j

(
ni,2i′′−1dj,2i′′ + ni,2i′′dj,2i′′−1

)]
.

(2.23)

We can also deduce the representations in which these massless modes are organized. For the 
bosons, the first line in Eq. (2.22) corresponds to the bosonic content of N = 2 vector multi-
plets in the adjoint representations of the U(nii′) and U(dii′) gauge groups. The second line 
is associated with the scalars of N = 2 hypermultiplets in the antisymmetric ⊕ antisymmetric
representations of U(nii′) and U(dii′). Finally, the last line corresponds to the scalars of hyper-
multiplets in the ND sector, which are in bifundamental representations of U(nii′) × U(dji′). 
To be more precise, they are in tensor products of fundamental ⊗ fundamental or fundamental
representations, depending on the parity of 4	ai · 	aj ∈ Z. The massless fermions in the NN, DD 
and ND sectors are those of hypermultiplets, all in various bifundamental representations of uni-
tary gauge groups supported on stacks of D3-branes separated along the T-dual Scherk–Schwarz 
direction (and possibly for the ND states also along T 4 or T̃ 4).

For later use in Sect. 3.1, it is relevant to perform a precise counting of the representations 
of each individual unitary gauge group factor. In Table 1 we gather the massless states charged 
under U(ni,2i′′−1) and U(ni,2i′′) for given i = 1, . . . , 16 and i′′ = 1, 2, which are found from 
Eq. (2.22). The counting for the gauge groups U(di,2i′′−1) and U(di,2i′′), which are generated by 
the D5-branes, is of course identical, up to the exchange of all coefficients nkk′ ↔ dkk′ .

In the closed-string sector, all the initially massless fermions in the BSGP model acquire a 
mass M after implementation of the Scherk–Schwarz mechanism. The massless spectrum thus 
reduces to the bosonic one encountered in the BSGP model, and is more easily described from a 
six-dimensional point of view. In the untwisted sector, we have the components of (G + C)μ̂ν̂ , 
μ̂, ν̂ = 2, . . . , 5, and the internal components (G + C)IJ , I, J = 6, . . . , 9, which yield in light-
cone gauge (6 − 2) × (6 − 2) + 4 × 4 degrees of freedom. Moreover, there are also the scalars of 
the 16 twisted hypermultiplets. Hence, we obtain a total of
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Table 1
Representations of U(ni,2i′′−1) and U(ni,2i′′ ) into which the massless degrees of freedom 
are organized.

Massless representations of U(ni,2i′′−1)

Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′ (fundamental ⊕ fundamental)

• 4 (antisymmetric ⊕ antisymmetric) • 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental)

• 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental)

Massless representations of U(ni,2i′′ )
Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′−1 (fundamental ⊕ fundamental)

• 4 (antisymmetric ⊕ antisymmetric) • 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental)

• 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental)

nclosed
B = 4 × (4 + 4 + 16) , nclosed

F = 0 (2.24)

bosonic and fermionic degrees of freedom. In terms of six dimensional N = 1 supermultiplets, 
the nclosed

B states comprise the bosonic components of the gravity multiplet (gμ̂ν̂ , C
+
μ̂ν̂

), where 

gμ̂ν̂ is the traceless graviton and C+
μ̂ν̂

is a self-dual 2-form, a tensor multiplet (C−
μ̂ν̂

, φ), where 

C−
μ̂ν̂

is an anti self-dual 2-form and φ is the dilaton, and 4 + 16 hypermultiplets.
Taking into account both the closed-string and open-string sectors, the numbers nF and nB of 

massless fermionic and bosonic degrees of freedom in the N = 2 → N = 0 model that includes 
discrete WL deformations satisfy

nF − nB = 4
[
8 − 2

∑
i,i′′

(
ni,2i′′−1 − ni,2i′′

)2 − 2
∑
i,i′′

(
di,2i′′−1 − di,2i′′

)2
−
∑
i,i′′,j

(
ni,2i′′−1 − ni,2i′′

) (
dj,2i′′−1 − dj,2i′′

) ]
.

(2.25)

3. Stability conditions

Let us now consider the model described in the previous section at those points in moduli 
space where the WL’s take discrete values. In this section we will show that, at such points, 
the one-loop effective potential is extremal with respect to the WL’s,10 and we will derive the 
masses of these moduli at the quantum level. We will also determine the masses of (some of) 
the 16 twisted quaternionic moduli acquired by a generalized Green–Schwarz mechanism in six 
dimensions. For the WL’s, we use an algebraic method based on our knowledge of the repre-
sentations of the massless spectrum, as well as a direct derivation from the one-loop effective 
potential. We will see that the final answer for the WL masses is obtained by combining these 
results with a detailed analysis of the one-loop anomaly cancellation mechanism that involves 
couplings of anomalous U(1) gauge bosons to twisted Stueckelberg fields.

10 It is also extremal with respect to the scalars in the ND sector [59].
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3.1. Signs of the Wilson line masses

In this and the following subsection, we consider the WL mass terms arising from the one-
loop Coleman–Weinberg effective potential. However, we will see in Sect. 3.3 that additional 
large contributions (still proportional to the open-string coupling) arise from a generalized 
Green–Schwarz mechanism that takes place in six dimensions. This effect implies that tachy-
onic instabilities at the one-loop level can only arise in submanifolds of the WL moduli space 
described in Sect. 2.1. Therefore, negative signs of the WL mass terms derived in the present 
subsection do not necessarily imply tachyonic instabilities, as will be seen in Sect. 4.

In Refs. [9,10,21], an expression for the one-loop effective potential V was derived for het-
erotic string compactified on a torus, when supersymmetry is broken by the Scherk–Schwarz 
mechanism acting along one compact coordinate, say X5. It applies in the local neighbourhood
of points in moduli space where extra massless states arise, and is valid provided the size of X5

is greater than the string length as well as all the other compactification length scales (or their 
T-dual counterparts). In four dimensions, denoting the WL of the r-th Cartan U(1) of the gauge 
group G along the internal direction XI by yIr , we can develop the potential to second order 
around a point of enhanced massless spectrum as follows:

V = M4(nF −nB)ξ + M4
( ∑

weightsQ∈RB

−
∑

weightsQ∈RF

)
ξ ′QrQs

( 9∑
I=4�=5

yIr yIs
3G55

+y5
r y5

s

)
+· · · ,

(3.1)

where ξ, ξ ′ > 0, the supersymmetry breaking scale is M , and where nF, nB denote the numbers 
of massless fermionic and bosonic degrees of freedom at yIr = 0, living respectively in reducible 
representations RF, RB of G. Note that there is no WL tadpole. This follows from the fact that 
linear terms in WL’s are also linear in Cartan charges Qr and that the latter can be paired for 
particles and antiparticles. Writing the gauge group as G ≡∏κ Gκ , the sums over the weights of 
RF, RB can be expressed in terms of Dynkin indices TR(κ)

u
of irreducible representations R(κ)

u

of the gauge group factors Gκ , using the relation

TR(κ)
u

δrs = 1

2

∑
weightsQ∈R(κ)

u

QrQs , r, s = 1, . . . , rankGκ . (3.2)

Indeed, we may write (with no sum over r and I)

∂2V
(∂yIr )2

∣∣∣∣
y=0

∝
∑
u

TR(κ)
Bu

−
∑
u

TR(κ)
Fu

, r = 1, . . . , rankGκ , I = 4, . . . ,9 , (3.3)

where R(κ)
Bu and R(κ)

Fu are the bosonic and fermionic massless representations of Gκ .
Note that in Eq. (3.1) the coefficients ξ, ξ ′ capture the contributions of the KK modes propa-

gating along the large extra dimension X5, while all corrections arising from the other massive 
states (level-matched or not) are exponentially suppressed. Therefore, the resulting expression 
holds in more general contexts, such as the type I string theory compactified on tori studied in 
Ref. [23], or in the orbifold model considered in the present work, for the WL’s along T 2. In 
particular, the signs of the one-loop contributions to their squared masses can be found by sub-
tracting the Dynkin indices of the fermionic representations from those of the bosonic ones. From 



16 S. Abel et al. / Nuclear Physics B 957 (2020) 115100
Table 2
Dimensions and Dynkin indices of representations of special orthogonal and 
unitary groups. The Dynkin indices of the fundamental representations are nor-
malized to 1 by convention.

Gauge factor Gκ Representation R(κ)
u dimR(κ)

u T
(κ)
Ru

SO(p), p ≥ 2 fundamental p 1

adjoint p(p−1)
2 p − 2

SU(q), q ≥ 2 fundamental q 1
fundamental q 1
adjoint q2 − 1 2q

antisymmetric q(q−1)
2 q − 2

antisymmetric q(q−1)
2 q − 2

Table 1, which lists the relevant representations of SU(q), and Table 2 which gives the associ-
ated Dynkin indices, we find that the one-loop contributions to the squared masses of the WL’s 
along T 2, of the special unitary groups supported by the stacks of D9-branes and D5-branes are 
proportional (up to positive dressing factors) to11

4(ni,2i′′−1 − ni,2i′′ − 1) +
16∑

j=1

(dj,2i′′−1 − dj,2i′′) for U(ni,2i′′−1) ,

4(ni,2i′′ − ni,2i′′−1 − 1) +
16∑

j=1

(dj,2i′′ − dj,2i′′−1) for U(ni,2i′′) ,

4(di,2i′′−1 − di,2i′′ − 1) +
16∑

j=1

(nj,2i′′−1 − nj,2i′′) for U(di,2i′′−1) ,

4(di,2i′′ − di,2i′′−1 − 1) +
16∑

j=1

(nj,2i′′ − nj,2i′′−1) for U(di,2i′′) .

(3.4)

Note that at this stage, these mass-term coefficients have been derived assuming nii′ ≥ 2 and 
dii′ ≥ 2. To extend them to the case where nii′ = 1 or dii′ = 1, one may consider Eq. (3.3)
where the adjoint representations have vanishing charges and the antisymmetric representations 
are zero-dimensional, so that only “fundamental” or “fundamental” representations contribute. 
Then Eq. (3.3) is still applicable but the corresponding coefficients TR(κ)

Bu

and TR(κ)
Fu

are no longer 

strictly speaking Dynkin indices. As the associated U(1) charges are universal Chan–Paton fac-
tors, one finds that the conditions (3.4) remain valid.

On the contrary, because WL is a misnomer for the moduli describing the positions of 
the D3-branes along T̃ 4/Z2 (or T 4/Z2), the signs of their squared masses cannot be deter-
mined by applying Eq. (3.3) for unitary groups. However, inspecting the amplitude A + M in 
Eqs. (A.25), (A.26), we see that small (continuous) deformations of these positions appear only 

11 The effect of a generalised Green–Schwarz mechanism must be taken into account to determine if the WL’s along 
T 2 are stable or not (see Sect. 3.3).
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in the NN sector (or DD sector), when the Z2-orbifold generator g does not act.12 Consequently, 
up to an overall factor of 1

2 , the NN sector contribution is simply that of the open-string sec-
tor in the parent N = 4 → N = 0 model studied in [23], which has orthogonal gauge groups. 
The signs of the moduli masses arising at one loop can therefore be found using Dynkin in-
dices of representations of special orthogonal groups, which are shown in Table 2. In the parent 
N = 4 → N = 0 model, a pair of stacks of Ni,2i′′−1 and Ni,2i′′ D3-branes T-dual to D9-branes 
produces an SO(Ni,2i′′−1) × SO(Ni,2i′′) gauge factor. The states charged under SO(Ni,2i′′−1)

are 8 bosons in the adjoint representation, and 8Ni,2i′′ fermions in the fundamental arising from 
bifundamentals of SO(Ni,2i′′−1) × SO(Ni,2i′′). The representations of the degrees of freedom 
charged under SO(Ni,2i′′) are identical, up to the exchange Ni,2i′′−1 ↔ Ni,2i′′ . The end result is 
that the masses of the WL’s along T 4 of the special orthogonal groups are non-negative when

Ni,2i′′−1 − Ni,2i′′ − 2 ≥ 0 for SO(Ni,2i′′−1) ,

Ni,2i′′ − Ni,2i′′−1 − 2 ≥ 0 for SO(Ni,2i′′) .
(3.5)

In the N = 2 → N = 0 orbifold model, this result implies that the masses of the position moduli 
of the D3-branes in T̃ 4/Z2 (or T 4/Z2) are non-negative when

ni,2i′′−1 − ni,2i′′ ≥ 1 for U(ni,2i′′−1) , ni,2i′′−1 ≥ 2 ,

ni,2i′′ − ni,2i′′−1 ≥ 1 for U(ni,2i′′) , ni,2i′′ ≥ 2 ,

di,2i′′−1 − di,2i′′ ≥ 1 for U(di,2i′′−1) , di,2i′′−1 ≥ 2 ,

di,2i′′ − di,2i′′−1 ≥ 1 for U(di,2i′′) , di,2i′′ ≥ 2 .

(3.6)

In the above, the conditions for the D5-brane locations are deduced by T-dualizing T 4/Z2, which 
amounts to changing all coefficients nkk′ → dkk′ . Finally we recall the special cases: namely that 
when ni,2i′−1, ni,2i′ , di,2i′−1 or di,2i′ = 1, the antisymmetric and antisymmetric representations 
are zero-dimensional, so the positions of the D3-branes in T̃ 4/Z2 or T 4/Z2 are no longer moduli 
fields.13 Notice that the conditions (3.6) are valid even when there are fewer than 8 dynamical po-
sitions in T̃ 4/Z2 or T 4/Z2 (see Sect. 2.1), i.e. when there are U(k) gauge group factors with odd 
k’s. This follows from the fact that the remaining dynamical positions of the branes generating 
the U(k)’s must not be tachyonic.

Notice that the two first (last) inequalities in (3.6) are incompatible. Hence, one of them must 
be absent, which means that either ni,2i′′−1 or ni,2i′′ (di,2i′′−1 or di,2i′′ ) must be 0 or 1. In other 
words, the WL positions along T̃ 4/Z2 and T 4/Z2 are non-tachyonic if and only if the configu-
ration satisfies

∀ i , i′′ : (ni,2i′′−1, ni,2i′′) , (di,2i′′−1, di,2i′′) ∈ {(0,p), (p,0), (1,p), (p,1) where p ∈ N
}
.

(3.7)

3.2. Wilson line masses and effective potential

Prior to taking into account the effect of the Green–Schwarz mechanism in the next subsec-
tion, let us also discuss how the signs and absolute values of the open-string WL masses may 

12 Explicit expressions are actually given in Eqs. (B.2) and (B.3).
13 As explained in Sect. 2.1, the cause of the rigidity of the position in T̃ 4/Z2 or T 4/Z2 of a pair of coincident 
D3-branes can be six-dimensional (in all components of the moduli space with (R, R̃) �= (0, 0)). Or it can be four-
dimensional, by splitting two pairs of pairs of D3-branes at fixed points ii′ and ij ′ , where i′ �= j ′ .
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be inferred from the one-loop Coleman-Weinberg effective potential V . This is a check on the 
above stability conditions. To this end, the potential may be evaluated for arbitrary (continuous) 
D3-brane positions 2πaIα , 2πbIα , α = 1, . . . , 32, and Taylor expanded at quadratic order around 
the backgrounds of interest corresponding to branes localized on O3-planes. Hence, we define 
the WL fluctuations as

aIα = 〈aIα 〉 + εIα , 〈aIα 〉 ∈
{

0,
1

2

}
,

bIα = 〈bIα 〉 + ξIα , 〈bIα 〉 ∈
{

0,
1

2

}
.

(3.8)

As in the previous subsection, we are interested in regions of moduli space in which the KK 
mass scale associated with the large Scherk–Schwarz direction X5 is lower than the string scale 
as well as all other mass scales induced by the compactification moduli GIJ . In practice, this 
translates to the conditions

G55 � G44, |GIJ | � G55 , |G45|, |G5J | � √
G55 , I, J = 6, . . . ,9 , G55 � 1 .

(3.9)

The detailed computation of the open-string contribution to the one-loop potential is per-
formed in Appendix B. For the closed-string sector, the derivation proceeds as in the N = 4 case 
in four dimensions which can be found in Ref. [23]. The full result takes the form

V = �
( 5

2

)
π

13
2

M4
∑
l5

N2l5+1(ε, ξ,G)

|2l5 + 1|5 +O
(
(MsM)2e−2πc

Ms
M

)
, (3.10)

where c is a positive constant of order 1. In this expression, we have defined

N2l5+1(ε, ξ,G) = nclosed
F − nclosed

B +N open
2l5+1(ε, ξ,G) , (3.11)

where N open
2l5+1(ε, ξ, G) is given in Eq. (B.19). The above quantity captures the dominant contribu-

tions to V , which arise from the massless states as well as their towers of KK modes propagating 
along the direction X5. As compared to M , all other string modes are super heavy, yielding (to-
gether with the non level-matched states in the closed-string sector) exponentially suppressed 
corrections, as indicated in Eq. (3.10). Hence, N open

2l5+1(ε, ξ, G) is expressed as a sum over mass-

less open strings stretched between pairs (α, β) of branes in the NN, DD or ND sectors. The 
dependencies on the WL fluctuations εIα , ξIα appear in the arguments taken by a function H 5

2

given in Eq. (B.9), which is dressed by oscillatory cosines. Finally, the definition of Ĝ44 can be 
found in Eq. (B.11).

In order to find the effective potential contribution to the WL masses, we must expand 
N2l5+1(ε, ξ, G) to quadratic order using the small argument behaviour of the function H 5

2
shown 

in Eq. (B.13). As seen in Sect. 2.1, the εIα , ξIα are however correlated or frozen to zero. To take 
this fact into account, we label the independent degrees of freedom with indices r and r ′ as 
follows,
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′

εI
r , I = 6, . . . ,9, r = 1, . . . ,

∑
i,i′

⌊Nii′

4

⌋
=
∑
i,i′

⌊nii′

2

⌋
≤ 8 − R̃

2
,

ξ I
r , I = 6, . . . ,9, r = 1, . . . ,

∑
i,i′

⌊Dii′

4

⌋
=
∑
i,i′

⌊dii′

2

⌋
≤ 8 − R

2
,

εI ′
r ′ , ξ I ′

r ′ , I ′ = 4,5, r ′ = 1, . . . ,16 ,

(3.12)

where R̃ and R were defined previously as the numbers of pairs of D3-branes with rigid positions 
either in T̃ 4/Z2 or T 4/Z2. To write the expansion in compact notations, it is convenient to 
introduce the following notations:

• i(r)i′(r) denotes the corner of T̃ 2/I45 × T̃ 4/Z2 around which 2πεI
r fluctuates, and i(r)ı̂′(r)

denotes the adjacent corner along the Scherk–Schwarz direction X̃5. Note that because εI
r is 

dynamical, the two pairs of D3-branes whose position it describes are at the same fixed point of 
T̃ /I45.

• Similarly, j (r)j ′(r) denotes the corner of T̃ 2/I45 × T 4/Z2 around which 2πξI
r fluctuates, 

and j (r)ĵ ′(r) denotes the adjacent corner along the Scherk–Schwarz direction X̃5.
• i(r ′)i′(r ′) denotes the corner of T̃ 2/I45 × T̃ 4/Z2 around which 2πεI ′

r ′ fluctuates, and 
i(r ′)ı̂′(r ′) the adjacent corner along the Scherk–Schwarz direction X̃5.

• Similarly, j (r ′)j ′(r ′) denotes the corner of T̃ 2/I45 ×T 4/Z2 around which 2πξI ′
r ′ fluctuates, 

and j (r ′)ĵ ′(r ′) the adjacent corner along the Scherk–Schwarz direction X̃5.
With these conventions, we obtain

N2l5+1(ε, ξ,G) = nF − nB + 32π2(2l5 + 1)2

{
∑

r

(
ni(r)i′(r) − ni(r)ı̂′(r) − 1

)
εI
r �IJ εJ

r

+
∑

r

(
dj (r)j ′(r) − dj (r)ĵ ′(r) − 1

)
ξI
r �IJ ξJ

r

+
∑
r ′

(
ni(r ′)i′(r ′) − ni(r ′)ı̂′(r ′) − 1 + 1

4

∑
i

(
dii′(r ′) − diı̂′(r ′)

))
εI ′
r ′ �I ′J ′

εJ ′
r ′

(3.13)

+
∑
r ′

⎛
⎝dj (r ′)j ′(r ′) − dj (r ′)ĵ ′(r ′) − 1 + 1

4

∑
j

(
njj ′(r ′) − njĵ ′(r ′)

)⎞⎠ ξI ′
r ′ �I ′J ′

ξJ
r ′

+O
(
ε4, ξ4

)}
,

where we have defined

�I ′J ′ = 1

3

(
GI ′J ′

G55
+ 2

G5I ′

G55

G5J ′

G55

)
, �IJ = 2

3

GIJ

G55
, �IJ = 2

3

GIJ

G55
. (3.14)

Because the above tensors have positive eigenvalues, the signs of the WL masses reproduce 
exactly the results displayed in Eqs. (3.6) and (3.4).
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3.3. Mass generation via generalized Green–Schwarz mechanism

In this subsection, we discuss how Abelian vector bosons in six dimensions become massive 
thanks to a generalized Green–Schwarz mechanism [51]. As a result, their WL’s along T 2 are 
automatically heavy, improving the overall stability of the models.

Since all N = 1 supersymmetric theories are chiral, anomaly cancellations in the BSGP 
type IIB orientifold model proceed in a non-trivial way. For any values of the WL’s along T 4/Z2
for the D9-brane gauge group, and arbitrary positions of the D5-branes in T 4/Z2, the fermionic 
spectrum ensures the cancellation of the irreducible gauge and gravitational anomalies. However, 
there are residual reducible anomalies, which are described by an anomaly polynomial I8 explic-
itly written down in Ref. [51]. When the WL’s and positions take discrete values 	ai , the gauge 
symmetry generated by the D9-branes and D5-branes is a product of unitary groups,∏

i/ni �=0

U(ni) ×
∏

j/dj �=0

U(dj ) , where
∑

i

ni =
∑

i

di = 16 , (3.15)

and where the rank is 32. As usual in six dimensions, the anomaly polynomial I8 does not fac-
torise, reflecting the fact that massless forms transform nonlinearly under gauge transformations 
and diffeomorphisms. In the case at hand, these forms are RR fields belonging to the closed-
string spectrum: there is the 2-form C in the untwisted sector, as well as sixteen 4-forms Ci

4 in 
the twisted sector. By Hodge duality (dCi

4 = ∗dCi
0), the magnetic 4-form degrees of freedom 

are equivalent to electric pseudoscalars Ci
0. Each of them combines with 3 NS-NS scalars of the 

twisted sector, thus realizing the bosonic part of the massless twisted hypermultiplet localized at 
the fixed point i of T 4/Z2.

Anomaly cancellation requires the effective action to contain tree-level couplings proportional 
to ∫

C ∧ X4 or
∑
i,a

cia

∫
Ci

0 ∧ F 3
a +

∑
i,a

cia

∫
Ci

4 ∧ Fa , (3.16)

where Fa , a = 1, . . . , 16, are the field strengths of the Cartan U(1) generators of 
∏

i/di �=0 U(di), 
while Fa , a = 17, . . . , 32, are those of 

∏
i/ni �=0 U(ni). Similar couplings involving trR2 also 

exist. In the above expressions, the coefficients are

cia = 4δa∈i , for a = 1, . . . ,16 ,

cia = −e4iπ 	ai ·	aj (a) ,for a = 17, . . . ,32 ,
(3.17)

where δa∈i = 1 when the a-th U(1) belongs to the Cartan subalgebra of U(di), and δa∈i =
0 otherwise. Moreover, we denote by 2π 	aj (a) the coordinate vector of the corner of T̃ 4/Z2
which supports the Cartan U(1) labelled by a of 

∏
j/nj �=0 U(nj ) (in a T-dual description). The 

Lagrangian can be cast into a local form by dualizing the last term in Eq. (3.16), which becomes∑
i

∫ (
Ci

0 +
∑
a

ciaAa

)∧ ∗(Ci
0 +

∑
b

cibAb

)
, (3.18)

where the Aa’s denote the Abelian vector potentials, Fa = dAa . As a result, the latter admit a 
tree-level mass term

1

2

∑
AaM2

abAb , where M2
ab =

∑
ciacib . (3.19)
a,b i
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The mass matrix M2 can be diagonalized by an orthogonal transformation, Aa = PabÂb . De-
noting the eigenvalues by M̂2

a , the nonzero ones (which are actually positive) are in one-to-one 
correspondence with the Stueckelberg fields Ci

0 which are eaten by the Âa’s that gain a mass. 
One can see that if there are 16 or fewer unitary factors in Eq. (3.15), all of them are broken to SU

groups, while if there are more than 16 unitary factors, exactly 16 are broken to SU groups [51]. 
By supersymmetry, all twisted hypermultiplets initially containing the Ci

0’s which are eaten also 
become massive. They combine with Abelian vector multiplets to become long massive vector 
multiplets. As a result, there are between 2 and 16 twisted quaternionic scalars for which stability 
is automatically guaranteed.

Compactifying down to four dimensions, we may define the WL’s along T 2 as ÂI ′
a = ξ̂ I ′

a , 
and write their total mass terms by adding the tree-level contributions to the one-loop effective 
potential corrections,

ξ̂ I ′
a

[
M̂2

a δab δI ′J ′ +Pca

∂V

∂ξI ′
c ∂ξJ ′

d

Pdb

]
ξ̂ J ′
b , (3.20)

where (ξ I ′
1 , . . . , ξI ′

32) ≡ (ξ I ′
1 , . . . , ξI ′

16, ε
I ′
1 , . . . , εI ′

16). In the above formula, both contributions are 
proportional to the open-string coupling. However, while the first one is a supersymmetric mass 
term proportional to M2

s , the second one scales like (M2/Ms)
2, which is always subdominant in 

the regime M < Ms. Hence, all WL’s of massive Âa’s are super heavy and can be safely set to 
zero in a study of moduli stability,

ξ̂ I ′
a ≡ 0 , when M̂2

a > 0 . (3.21)

For the remaining WL’s denoted ξ̂ I ′
u to be non-tachyonic at one loop, one needs to find brane 

configurations such that the mass matrix

Pcu

∂V

∂ξI ′
c ∂ξJ ′

d

Pdv , for u,v such that M̂2
u,M̂2

v = 0 , (3.22)

has non-negative eigenvalues.

3.4. Untwisted closed-string moduli

So far, we have mainly discussed the generation of masses for the open-string moduli, as well 
as for those arising in the closed-string twisted sector. We continue the discussion by considering 
the dependencies of the effective potential on the closed-string untwisted moduli.

We see from Eqs. (3.10) and (3.13) that when the vev’s of the WL’s vanish, the one-loop 
effective potential reduces to

V = ξ(nF −nB)M4 +O
(
(MsM)2e−2πc Ms

M

)
, where ξ = �

( 5
2

)
π

13
2

∑
l5

1

|2l5 + 1|5 . (3.23)

Up to the exponentially suppressed corrections, the dependence on the NS-NS internal metric 
GIJ has disappeared, except via the supersymmetry breaking scale M . Therefore, when the 
D3-branes sit on O3-planes, all components of the (inverse) metric except G55 are flat directions. 
Moreover, unless the potential vanishes i.e. nF = nB, G55 = 4M2 has a tadpole and must run 
away. In the NS-NS sector, the remaining untwisted modulus is the dilaton. However, since the 
one-loop potential is independent of it, that remains a flat direction at this order.
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The components CI ′J ′ of the RR two-form along T 2 can be interpreted as Wilson lines of 
Abelian vector bosons Cμ̂J ′ in six dimensions. Therefore the algebraic method presented in 
Sect. 3.1 can be applied to determine their masses at the quantum level. Using the fact that the 
perturbative type I spectrum does not admit charged states under the RR gauge fields, we can 
conclude that the moduli CI ′J ′ remain massless at one loop. It is however possible to draw much 
stronger statements using heterotic/type I duality as follows. For the case at hand, we have been 
careful to consider type I models that are expected to be well defined at the non-perturbative 
level, so that heterotic duals should exist. In four dimensions, the above equivalence of the two 
theories compactified on T 2 ×T 4/Z2 turns out to be a weak coupling/weak coupling duality [64–
67]. Using the adiabatic argument [69], the equivalence remains valid once the Scherk–Schwarz 
breaking of supersymmetry is implemented along the large periodic direction X5.

Let us consider first the case when the Z2 action generated by g is not implemented yet. 
The duality maps the type I variables (G + C)IJ into (G + B)IJ on the heterotic side, where 
BIJ is the internal antisymmetric tensor. The moduli deformations of the Narain lattice �6,6+16

can be parameterised by (G + B)IJ ≡ YIJ , I, J = 6, . . . , 9, as well as the WL’s of SO(32)

along T 6 denoted as YIJ , J = 10, . . . , 25. Actually, all of these 6 × (6 + 16) moduli are the 
WL’s of SO(44) along T 6. At a generic point in moduli space (the Coulomb branch), the gauge 
symmetry is reduced to U(1)6 × U(1)16. Conversely, non-Abelian gauge symmetries are re-
stored at enhanced gauge symmetry points. In particular, non-Cartan states charged under U(1)6, 
which are generically massive, become massless at special values of (G + B)IJ ≡ YIJ . Their 
Cartan charges are the winding numbers nI , I = 4, . . . , 9. Because the Coleman–Weinberg 
effective potential is expressed in terms of the tree-level mass spectrum, its dependence on 
(G + B)IJ ≡ YIJ can arise only from the aforementioned non-Cartan states running in the 
loop.14 Turning back to the type I picture, these windings states are D1-branes, which belong to 
the non-perturbative spectrum. As a result, when M < Ms, the one-loop effective potential does 
not depend on CIJ , I, J = 6, . . . , 9, up to exponentially suppressed corrections.

Notice however that even though the masses of these D1-branes scale like the inverse string 
coupling, there is a moduli-dependent dressing that can vanish, implying such states to be in 
principle observable in low energy experiments. In the spirit of the seminal works of Seiberg and 
Witten [70] or Strominger [71], their effects in virtual loops are also captured by the heterotic 
effective potential [72,73]. In that case, some of the scalars (G + C)IJ , or rather (G + B)IJ , 
can be stabilised at the enhanced gauge symmetry points described above [74]. As shown in 
Ref. [21], all components (G + B)IJ , I �= 5, J �= 5 can be stabilised. Moreover, the potential 
is periodic in all (G + B)I5 and the latter can also be stabilised. Finally, the moduli (G + B)5J
remain flat directions.15

Re-introducing the Z2-orbifold action generated by g, none of the states arising from the 
twisted sector in heterotic string can induce an enhancement of the gauge symmetry.16 They can 
however have non-trivial winding numbers along T 2 and thus introduce extra dependencies of 
the Coleman–Weinberg effective potential on the WL’s (G + B)I ′J ′ , I ′, J ′ = 4,5. However, due 
to their high masses, their contributions are exponentially suppressed. The type I counterparts 
of these states are “twisted D1-branes”, which would not be taken into account in perturbation 
theory.

14 We always assume that M < Ms, which implies the contributions of the non-level matched states to be suppressed.
15 We stress that this assumes M to be lower than the string scale i.e. the direction X5 to be large.
16 This follows from the fact that the zero-point energy of the twisted vacuum is higher than that of the untwisted sector.
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One might question the extensive use of heterotic/type I duality, because the open-string side 
contains a D5-brane sector, which is mapped to a non-perturbative NS5-brane sector on the 
heterotic side. However, the states that are potentially responsible for the non-perturbative stabil-
isation of type I moduli (G +C)I ′J ′ , I ′, J ′ = 4, 5 and (G +C)IJ , I, J = 6, . . . , 9, are D1-branes. 
The latter are electrically charged under the two-form C, and magnetically neutral (they are not 
dyonic D1-D5 bound states). As a result, the stabilisation mechanism is independent of the exis-
tence of a D5-brane sector.

4. Stability analysis of the models

Let us now turn to the analysis of the one-loop stability of the moduli (or at least a sub-set of 
them) encountered when all D3-branes are located at corners of the six-dimensional box depicted 
schematically in Fig. 1d. We will restrict the discussion to the configurations satisfying the non-
perturbative constraints presented at the end of Sect. 2.1. The mass terms of the WL’s can be 
read from Eq. (3.13), but a projection on the submanifold of the moduli not acquiring a six-
dimensional supersymmetric mass from the Green–Schwarz mechanism must simultaneously be 
applied. In our study, stability of the twisted quaternionic moduli is only guaranteed when they 
become massive due to this mechanism. We will not determine their stability at one loop when 
they remain massless in six dimension. Finally, a sufficient condition for instabilities not to arise 
from the ND sector of the theory is simply the absence of ND moduli, which is ensured if none 
of the D3-branes T-dual to the D9-branes and none of the D3-branes T-dual to the D5-branes 
share the same position in T̃ 2/I45,

no ND-sector moduli: nii′dji′ = 0 for all i, j, i′ (no sum on i′) . (4.1)

If this condition is not satisfied, then the radiatively induced masses-squared of the moduli in 
the ND sector must be computed. This can be done by considering the two-point functions of 
“boundary changing vertex operators”. This is an interesting problem in its own right, which will 
be studied in a companion paper [59].

In what follows, we will first present simple examples lying in the (R, R̃) = (0, 0) and 
(R, R̃) = (16, 16) components of the moduli space to get familiar with the implementation of 
the generalized Green–Schwarz mechanism. Thanks to a numerical exploration of all brane con-
figurations, we then list all setups that yield a vanishing or positive one-loop potential and that 
are tachyon free (up to exponentially suppressed terms).

4.1. Simple configurations in the component (R, R̃) = (0, 0)

At tree level in the branch (R, R̃) = (0, 0) of the WL moduli space, all 32 +32 D3-branes are 
free to move in 4’s in T 4/Z2 or T̃ 4/Z2. Let us consider the simplest configuration where all D3-
branes T-dual to the D5-branes have the same positions 2π 	ai0 in T 4/Z2, while those T-dual to 
the D9-branes have common positions 2π 	aj0 in T̃ 4/Z2. In six dimensions, the open-string gauge 
group before taking into account the Green–Schwarz mechanism is thus U(16) × U(16). To 
determine the anomalous U(1)’s that become massive, we need to write the mass matrix squared 
M2

ab of the 32 Abelian vector potentials Aa in six dimensions. To this end, it is convenient to 
refine our labelling as follows:

a ≡ r ′ = 1, . . . ,16 : Cartan generators of the U(16) arising from the D5-branes,

a ≡ r̃ ′ + 16 = 17, . . . ,32 : Cartan generators of the U(16) arising from the D9-branes.
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With this notation the mass matrix squared is

M2 =
(
M2

r ′s′ M2
r ′ s̃′

M2
r̃ ′s′ M2

r̃ ′ s̃′

)
, (4.2)

where the 16 × 16 blocks are given by

M2
r ′s′ = 16 , M2

r ′ s̃′ = −4 e4iπ 	ai0 ·	aj0 ,

M2
r̃ ′s′ = −4 e4iπ 	aj0 ·	ai0 , M2

r̃ ′ s̃′ = 16 .
(4.3)

Among the 32 eigenvalues, 2 are positive while the others vanish. Setting to zero the vev’s of the 
massive eigenvectors yields the conditions

−
∑
r ′

Ar ′ +
∑
r̃ ′

Ar̃ ′ = 0 and
∑
r ′

Ar ′ +
∑
r̃ ′

Ar̃ ′ = 0 , (4.4)

implying that U(16) × U(16) is actually reduced to SU(16) × SU(16), as expected.
To proceed, let us consider the examples where all D3-branes T-dual to the D5-branes are 

coincident at 2π 	ai′0 in T̃ 2/I45, and similarly those T-dual to the D9-branes are stacked at 2π 	aj ′
0
. 

The gauge symmetry in four dimensions is therefore still SU(16) × SU(16). The mass terms 
of the moduli/positions ξI

r along T 4/Z2 and εI
r along T̃ 4/Z2 (see Eq. (3.12)), I = 6, . . . , 9, 

r = 1, . . . , 8, can be read from Eq. (3.13). Omitting all dressing factors, they are given by nii′ -
and djj ′ -dependent coefficients equal to (16 −0 −1) = 15, which is positive. Hence, the positions 
of the D3-branes along the internal directions I = 6, . . . , 9 are stabilised.

As seen in Eq. (3.13), the mass terms of the T 2 WL’s ξI ′
r ′ and εI ′

r̃ ′ arising from the one-loop 
effective potential depend on the precise locations of the stacks in T̃ 2/I45. Omitting irrelevant 
dressings as earlier, they are given by coefficients (16 − 0 − 1 + δ

4 16) = 15 + 4δ, where

(a) δ = +1 if i′0 = j ′
0,

(b) δ = −1 if the corners i′0 and j ′
0 of T̃ 2/I45 are facing each other along the Scherk–Schwarz 

direction X̃5,
(c) δ = 0 if the corners i′0 and j ′

0 of T̃ 2/I45 have distinct positions along X̃4.

The three possibilities are depicted in Fig. 3. Note that δ = +1 (δ = −1) in Case (a) (Case (b)) 
thanks to the existence at tree level of massless scalars (fermions) in the ND sector. Because these 
mass terms are positive, we can immediately conclude that all positions in T̃ 2/I45 are stabilised. 
However, it is instructive to also take into account the effect of the generalized Green–Schwarz 
mechanism, which makes the components I ′ = 4, 5 of the linear combinations of six-dimensional 
vector bosons of Eq. (4.4) even more massive. Indeed, this can be used to eliminate say ξI ′

1 and 
εI ′

1 ,

ξI ′
1 = −

∑
r ′ �=1

ξI ′
r ′ , εI ′

1 = −
∑
r̃ ′ �=1

εI ′
r̃ ′ , (4.5)

in the mass terms of Eq. (3.13). This results in a new 30 × 30 mass matrix squared for the 
remaining moduli ξI ′

r ′ , εI ′
r̃ ′ , which of course has only strictly positive eigenvalues.17

17 14 are equal and the last one is 16 times larger.
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Fig. 3. D3-brane configurations in component (R, R̃) = (0,0) of the WL moduli space.

To conclude on the above examples, the masses of the moduli we have not analyzed are those 
of the 14 remaining hypermultiplets in the twisted closed-string sector, as well as those of the 
hypermultiplet in the single bifundamental of SU(16) ×SU(16) arising from the open-string ND 
sector in Case (a). Using Eq. (2.25), we have nF −nB = −4064 − 1024 δ < 0, which implies that 
the supersymmetry breaking scale (i.e. gravitino mass) M runs away, while all other components 
of the NS-NS metric GIJ and the dilaton as well as the RR two-form CIJ are flat directions.

4.2. Simple configurations in the component (R, R̃) = (16, 16)

In this case, all D3-branes positions in T 4/Z2 or T̃ 4/Z2 are rigid. Indeed, there is a mirror 
pair (with respect to the orientifold projection) of D3-branes T-dual to the D5-branes at each 
of the 16 fixed point of T 4/Z2, and similarly a mirror pair of D3-branes T-dual to the D9-
branes at each fixed point of T̃ 4/Z2. Before taking into account the effect of the Green–Schwarz 
mechanism, the gauge symmetry is U(1)16 × U(1)16. Hence, all antisymmetric representations 
are zero dimensional (see Eq. (2.22) or Table 1) and there is indeed no position modulus among 
them to consider. In this component of the moduli space, the only freedom is in the coordinates 
of the mirror pairs in T̃ 2/I45, which in our case of interest coincide with the positions of the four 
fixed points.

To study the masses of the moduli/positions along T̃ 2/I45, as well as those of the twisted 
quaternionic scalars in the closed-string sector, our starting point is the mass matrix squared 
M2

ab of the 32 Abelian vector potentials present in the six-dimensional theory. Its components 
are given by
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M2
r ′s′ = 16 δr ′s′ , M2

r ′ s̃′ = −4 e4iπ 	ai(r′)·	ai(s̃′) ,

M2
r̃ ′s′ = −4 e4iπ 	ai(r̃′)·	ai(s′) , Mr̃ ′ s̃′ = 16 δr̃ ′ s̃′ .

(4.6)

Because the gauge group contains more than 16 unitary factors, the matrix has 16 positive eigen-
values and 16 vanishing ones. This implies that the gauge symmetry U(1)32 is actually reduced 
to U(1)16, and that all of the 16 twisted quaternionic scalars are massive, ensuring that T 4/Z2
will not undergo deformation into a smooth K3 manifold. Setting to zero all massive linear com-
binations of vector potentials, we obtain for their components along T̃ 2/I45 the relations

4εI ′
r̃ ′ = −

∑
s′

e4iπ 	ai(r̃′)·	ai(s′) ξ I ′
s′ , (4.7)

showing that all εI ′
r̃ ′ can be eliminated in terms of the ξI ′

r ′ ’s. Let us now consider various D3-brane 
configurations and explore their stability along T̃ 2/I45.

Example 1: The simplest setup amounts to having all D3-branes T-dual to the D5-branes at the 
same position 2π 	ai′0 of T̃ 2/I45, and similarly all D3-branes T-dual to the D9-branes at some 
common position 2π 	aj ′

0
. Three cases (a), (b), (c) can be distinguished however, since all mass-

term coefficients of the ξI ′
r ′ and εI ′

r̃ ′ read from Eq. (3.13) are (1 − 0 − 1 + δ
4 16) = 4δ, where δ

is defined as explained below Eq. (4.4). Fig. 4 shows the three possibilities for distributing the 
pairs of branes. Therefore, we can conclude even before taking into account the Green–Schwarz 
mechanism that the positions of all the D3-branes are stabilised in Case (a), are unstable in 
Case (b), and are massless in Case (c). However, eliminating the εI ′

r̃ ′ thanks to the relations (4.7), 
it turns out that the mass terms of the remaining degrees of freedom ξI ′

r ′ are simply multiplied 
by a factor of 2. Moreover, nF − nB = −224 − 1024 δ, implying that M has a tadpole and runs 
away. In detail the behaviour of the configurations are as follows:

• In Case (a), the potential is negative, and there are 162 massless quaternionic scalars charged 
under U(1)16 arising from the ND sector. Their masses must be determined to make a conclusion 
about the stability/instability of the configuration, which we discuss in [59]. Note however that 
in component (R, R̃) = (16, 16) of the moduli space, Case (a) yields the most negative value of 
nF − nB. Hence, we do not expect the moduli of the ND sector to be tachyonic at one loop, and 
expect the configuration to be stable, except for the supersymmetry breaking scale M , and for 
the remaining closed-string moduli GIJ , CIJ and φ which are flat directions. The possibility 
that the model leads to brane recombination via condensation of the ND-sector moduli remains 
a possibility that is discussed further in [59].

• In Case (b), the potential is positive but the D3-brane positions are unstable, so the distribu-
tion will evolve in T̃ 2/I45.

• In Case (c), the potential is negative and the WL’s are massless. It turns out that (up to ex-
ponentially suppressed terms) the one-loop effective potential does not depend on these moduli, 
which are therefore flat directions.18 Hence, the configuration is marginally stable.

Example 2: Thus far, conclusions about the stability/instability of the WL positions in T̃ 2/I45
could be drawn without taking into account the effect of the Green–Schwarz mechanism. In 
fact, this is possible only for particularly simple choices of brane setups, when all mass terms of 
the ξ I ′

r ′ , εI ′
r̃ ′ in Eq. (3.13) have the same sign. To construct a more generic brane configuration, 

18 The one-loop potential dependencies on U(1) WL’s are identical to those of SO(2) factors treated in Ref. [23], which 
turn out to be trivial.
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Fig. 4. D3-brane configurations in component (R, R̃) = (16,16) of the WL moduli space.

consider Case (a) of Example 1, and move along X̃4 one pair of D3-branes T-dual to D5-branes, 
and move along X̃4 and X̃5 its initially coincident pair of D3-branes T-dual to D9-branes. The 
new configuration, denoted (d), is shown in Fig. 4d. The mass coefficients of fifteen ξI ′

′ and 

r
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fifteen εI ′
r̃ ′ are 15

4 , while those of the last two positions are − 1
4 . Hence, a priori the configuration 

seems unstable. However, eliminating in Eq. (3.13) all εI ′
r̃ ′ ’s by using Eq. (4.7) yields a new 

16 × 16 mass-squared matrix for the ξI ′
r ′ ’s which has only positive eigenvalues. As a result, the 

brane configuration turns out to actually be stable, provided the 152 quaternionic moduli of the 
ND sector do not introduce instabilities, as already mentioned in Case (a) of Example 1. In the 
present Case (d), nF − nB = −1120 is higher than in Case (a), but it remains negative.

4.3. Full scan of the six components of the moduli space

Among the configurations that have been presented so far, none of them is tachyon free with 
a positive or exponentially suppressed potential at one loop. In fact, setups with these properties 
are expected to be rare. For instance, in the case of a compactification on T 6 realising N =
4 → N = 0 breaking, this fact can be understood qualitatively by inspecting Eq. (3.1), where 
the massless fermions contribute positively to the potential and negatively to the WL squared 
masses, and vice versa for the massless bosons. Hence, the more positive the potential is, the 
more tachyonic instabilities are likely to arise. For instance, for toroidal compactifications in 
dimension d ≥ 5, it was shown in Refs. [23,48] that there exists only one orientifold model19

which is non-perturbatively consistent, tachyon-free at one loop and which has non-negative 
potential. It is defined in five dimensions, has a trivial open-string gauge group20 SO(1)32, and 
satisfies nF − nB = 8 × 8.

To determine if tachyon free brane configurations with zero or positive one-loop potentials 
exist in the Z2-orbifold case, we have performed a computer scan of all brane configurations as 
follows:

(i) In each of the six non-perturbatively consistent components of the moduli space, we loop 
over all distributions of mirror pairs (with respect to the orientifold action) of D3-branes in 
T 4/Z2 and T̃ 4/Z2.

(ii) For each configuration, we derive the squared-mass matrix M2 of the 32 Cartan U(1)’s.
(iii) We then loop over all possible distributions of the pairs along T̃ 2/I45. We restrict to the 

configurations that respect the condition (3.7) for the positions in T 4/Z2 and T̃ 4/Z2 not to 
be tachyonic, and eliminate those for which nF − nB < 0.

(iv) For each distribution satisfying the above constraints, we then compute the one-loop contri-
butions to the mass terms of the brane positions in T̃ 2/I45 (see Eq. (3.13)), and project out 
those combinations of moduli that become massive via the Green–Schwarz mechanism. 
We obtain the true squared-mass matrix of the remaining dynamical positions in T̃ 2/I45
and eliminate all configurations for which this matrix admits at least one strictly negative 
eigenvalue.

Among the hundreds of billions of initial possibilities,21 only eight emerge from the scan: six of 
them are tachyon free, and two are tachyon free up to possible instabilities that may arise from 

19 The assumptions are that (i) the Scherk–Schwarz mechanism is implemented along a single direction, (ii) there are 
no exotic orientifold planes, and (iii) there is no discrete background for the internal NS-NS antisymmetric tensor.
20 SO(1) denotes the group containing only the neutral element.
21 When moving a stack of branes from one fixed point to another the massless spectrum is invariant, so we count only 
one of these configurations. However, since the spectra whose masses are of the order of the string scale will in general 
differ, our counting of the inequivalent configurations is actually greatly underestimated.
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Fig. 5. Two brane configurations (a) and (b) in component (R, R̃) = (8, 8) of the moduli space, and one configuration 
(c) in component (R, R̃) = (0, 8).

ND-sector moduli. Most interestingly, two out of the six, and one out of the two configurations 
have vanishing one-loop potential (nF − nB = 0), up to exponentially suppressed terms. Let us 
summarise them:

Exponentially suppressed one-loop potentials:
• In the component (R, R̃) = (8, 8) the scan finds two configurations referred to as Case (a) 

and (b), which are free of tachyons and satisfy nF − nB = 0. The gauge groups generated by the 
D5-branes and D9-branes are

Case (a) :
[
U(1)7 × U(2) × U(7)

]
DD ×

[
U(1)6 × U(5)2

]
NN

,

Case (b) :
[
U(1)7 × U(3) × U(6)

]
DD ×

[
U(1)6 × U(5)2

]
NN

.
(4.8)

The D3-brane configurations are depicted in Figs. 5a and 5b, respectively. In the first case, the 
D3-branes T-dual to the D5-branes are distributed in T 4/Z2 as 7 pairs and one stack of 18 D3-
branes, which is split in T̃ 2/I45 into 14 + 4 branes. The D3-branes T-dual to the D9-branes are 
distributed as 6 pairs and two stacks of 10. The second configuration is identical to the previous 
one, up to the splitting of the 18 D3-branes now into 12 + 6.

In both cases, all dynamical brane positions in T 4/Z2 or T̃ 4/Z2 are stabilised. They are 
associated with the stacks of 2n branes with n ≥ 2, and their masses read from Eq. (3.6) are pro-
portional to n −1 > 0. All other pairs of branes have rigid positions in T 4/Z2 or T̃ 4/Z2 from the 
outset. Because there are initially 17 unitary gauge group factors, there are 16 anomalous U(1)’s 
becoming massive thanks to the Green–Schwarz mechanism, together with the 16 blowing-up 
modes arising from the twisted closed-string sector. The true gauge symmetries are therefore

Case (a) : U(1) × SU(2) × SU(7) × SU(5)2 ,

Case (b) : U(1) × SU(3) × SU(6) × SU(5)2 .
(4.9)
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Along T̃ 2/I45, all D3-brane positions are also stabilised, after freezing the super heavy combina-
tions associated with the anomalous U(1)’s. The ND sector does not contain moduli fields since 
condition (4.1) is satisfied. Thus, in Cases (a) and (b) and at the one-loop level, no tachyons are 
present and the potential admits flat directions parameterised by the internal metric (including 
G55 i.e. M , as justified in the next paragraph), the dilaton, and the RR two-form moduli. Notice 
that these configurations exist in four dimensions but not in five.

The massless spectrum of these two models contains the bosonic parts of N = 2 vector mul-
tiplets transforming under the adjoint representations of the groups given in Eq. (4.9), along 
with the scalars of N = 2 hypermultiplets in antisymmetric ⊕ antisymmetric representations of 
each non-Abelian factors. In terms of degrees of freedom, this yields nopen

B = 800 in Case (a), and 
n

open
B = 736 in Case (b). To this, one must add the 96 degrees of freedom coming from the closed-

string sector yielding nB = 896 in Case (a), and nB = 832 in Case (b). Finally, the massless 
spectrum contains the fermionic degrees of freedom of hypermultiplets in the ND sector. They 
transform under bifundamental representations of all pairs of gauge group factors supported by 
stacks of D3-branes (T-dual to D5-branes) and stacks of D3-branes (T-dual to D9-branes) facing 
each other along the T-dual Scherk–Schwarz direction X̃5. This leads to nF = 4 × 14 × 16 = 896
in Case (a), and nF = 4 ×13 ×16 = 832 in Case (b), which exactly equals the numbers of bosonic 
degrees of freedom.

• The scan also selects a third configuration with nF − nB = 0, in component (R, R̃) = (0, 8)

of the moduli space, which we will refer to as Case (c). The gauge symmetry (including anoma-
lous U(1)’s) is

Case (c) :
[
U(4)4

]
DD

×
[
U(1)11 × U(5)

]
NN

, (4.10)

and the configuration of branes is shown in Fig. 5c. The D3-branes T-dual to the D5-branes are 
distributed in T 4/Z2 as 4 stacks of 8. The D3-branes T-dual to the D9-branes are distributed as 
8 pairs (with rigid positions in T̃ 4/Z2), one stack of 4 split in T̃ 2/I45 into 2 + 2, and one stack 
of 12 split in T̃ 2/I45 into 10 + 2.

All positions along T 4/Z2 and T̃ 4/Z2 are rigid or massive. Because there are 16 unitary 
factors in Eq. (4.10), there are 16 anomalous U(1)’s which are actually massive, together with 
the 16 twisted moduli in the closed-string sector. The true gauge symmetry is thus

Case (c) : SU(4)4 × SU(5) . (4.11)

Taking into account the Green–Schwarz mechanism, the remaining positions along T̃ 2/I45 are 
all massless at one loop, except one which is massive. The internal metric and RR two-form, as 
well as the dilaton are flat directions of the one-loop potential (up to exponentially suppressed 
terms). However, we cannot determine if this configuration is fully marginally stable without also 
considering the masses of the ND sector moduli which are also present in this case: this is left 
for future work.

The massless bosonic degrees of freedom include those of an N = 2 vector multiplet in the 
adjoint representation of the group (4.10), along with the scalars of N = 2 hypermultiplets in an-
tisymmetric ⊕ antisymmetric representations for each non-Abelian factor. There are also bosonic 
degrees of freedom transforming under four bifundamental representations of U(4)DD×U(1)NN. 
Taking into account the closed-string degrees of freedom, we obtain nB = 832. The massless 
fermionic degrees of freedom are in the bifundamental representations of all pairs of gauge group 
factors supported by stacks of D3-branes (T-dual to D5-branes) and stacks of D3- branes (T-dual 
to D9-branes) facing each other along the T-dual Scherk–Schwarz direction X̃5. Their number is 
given by nF = 4 × 16 × 13 = 832, again equating to nB.
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Positive potentials: There also exist five configurations with strictly positive potential. They all 
lie in component (R, R̃) = (8, 8) and have an identical open-string (anomalous) gauge group[

U(1)6 × U(5)2
]

DD
×
[
U(1)6 × U(5)2

]
NN

. (4.12)

The configurations are depicted in Figs. 6a-6e. All position moduli along T 4/Z2 and T̃ 4/Z2 are 
massive. Taking into account the Green–Schwarz mechanism, the gauge symmetry is reduced to

SU(5)4 , (4.13)

all twisted closed-string moduli are massive, and the positions along T̃ 2/I45 are either massive 
or massless, depending on the case at hand.

The configuration in Fig. 6a yields nF − nB = 40. Notice that it may be considered in five 
dimensions by decompactifying the direction X4. In the case shown in Fig. 6b, the direction X̃4

is used to isolate one pair of D3-branes, which leads to nF − nB = 24. By displacing a second 
pair of the same kind as shown in Fig. 6c, one obtains nF −nB = 8. Starting from the distribution 
in Fig. 6c and displacing a pair of D3-branes of the other kind as shown in Fig. 6d, one obtains 
nF −nB = 10. Finally, the configuration in Fig. 6e yields nF −nB = 8, but contains moduli fields 
in the ND sector whose masses need to be analysed at one loop in order to make a conclusion 
about its stability/instability.

5. Conclusions

In this work, we have studied from various perspectives the generation at the quantum level 
of moduli masses in type I string theory compactified on T 2 × T 4/Z2, when N = 2 →N = 0
supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism implemented along 
T 2. Our analysis is perturbative, restricted to the one-loop level, and our conclusions are valid 
when the supersymmetry breaking scale M is the lowest mass scale of the background. We have 
considered gauge-field backgrounds on the worldvolumes of the 32 D9-branes and 32 D5-branes, 
as well as positions of the D5-branes in T 4/Z2, that can be described from T-dual points of view 
as positions of 32 + 32 D3-branes distributed on 64 O3-planes. At such points in moduli space, 
the effective potential is extremal, except with respect to M which runs away when nF �= nB.

We find that the D3-brane positions/moduli that are not already heavy thanks to a generalized 
Green–Schwarz mechanism in six dimensions can be stabilised at one loop. However, up to ex-
ponentially suppressed corrections, all degrees of freedom of the internal metric GIJ (except 
M when nF �= nB), of the two-form CIJ and of the dilaton remain flat directions. From het-
erotic/type I duality, it is however possible to infer that some of the moduli (G + C)IJ can be 
stabilised non-perturbatively at points where D1-branes become massless [21,48]. When mod-
uli occur in the ND sector of the (non T-dualized) theory, their quantum masses can be derived 
by computing two-point functions. This will be presented elsewhere [59]. Finally, the models 
contain blowing-up modes, which belong to quaternionic scalars arising in the twisted closed-
string sector. While those involved in the Green–Schwarz mechanism are very heavy, we have 
not studied the masses generated for the remaining ones (if any).

Among the plethora of allowed distributions of D3-branes on O3-planes, only two are tachyon 
free at one loop, with an exponentially suppressed effective potential, i.e. with nF = nB. Recall 
that such set-ups may be interesting candidates for generating, after stabilisation of M and the 
dilaton, a cosmological constant which is orders of magnitude smaller than in generic models. 
Four more brane configurations lead to positive potentials, i.e. nF > nB, where the only insta-
bilities are associated with the run away of the supersymmetry-breaking no-scale modulus M . 
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Fig. 6. Brane configurations in component (R, R̃) = (8,8) of the moduli space.

Finally, two brane distributions with similar properties contain moduli in the ND sector, whose 
one-loop masses remain to be analysed. It is worth mentioning that in a phenomenological setup, 
these moduli would naturally contain the Standard-Model Higgs field, so it is not a priori obvi-
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ous that one needs to banish tachyonic masses from these states entirely. All of the above models 
are interesting in the sense that they describe non-Abelian gauge theories, with fermions that are 
massless at tree level transforming in bifundamental representations. It would be interesting to 
derive the masses acquired at one loop by this fermionic matter.

To explore further possibilities, it would also be interesting to relax some of the assumptions 
we have made. For instance, one may seek type I vacua that include “exotic” orientifold planes, 
often referred to as O+-planes, which can support even or odd numbers of branes [43]. O+-planes 
have RR charges and tensions opposite to those of the O−-planes we have used in the present 
work. Alternatively, when moduli in the ND sector are tachyonic and condense, branes recombine 
and the theory admits new vacua. Another possibility is to switch on discrete backgrounds for the 
internal components of the NSNS antisymmetric tensor (whose degrees of freedom are projected 
out by the orientifold action). Finally, one may analyze the theory when T 4/Z2 is deformed to a 
smooth K3 manifold.
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Appendix A. One-loop effective potential

In this appendix, our goal is to present in some details the expression of the one-loop effective 
potential arising in a four-dimensional orientifold model of type IIB that realizes the N = 2 →
N = 0 spontaneous breaking of supersymmetry. The background is

R1,3 × T 2 × T 4

Z2
, (A.1)

where a Scherk–Schwarz mechanism is implemented along one of the internal T 2 directions.
In an orientifold theory (see Refs. [52,75–80] for original papers and Refs. [39,53,54] for 

reviews), the one-loop effective potential may be divided into the contributions arising from the 
torus, Klein bottle, annulus and Möbius strip partition functions,

V = − M4
s

2(2π)4 (T +K +A+M) , where

T = 1

2

∫
dτ1dτ2

τ 3
2

Str
1 + g

2
qL0− 1

2 q̄L̃0− 1
2 , K = 1

2

+∞∫
dτ2

τ 3
2

Str�
1 + g

2
qL0− 1

2 q̄L̃0− 1
2 ,
F 0
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A = 1

2

+∞∫
0

dτ2

τ 3
2

Str
1 + g

2
q

1
2 (L0−1) , M = 1

2

+∞∫
0

dτ2

τ 3
2

Str�
1 + g

2
q

1
2 (L0−1) .

(A.2)

In the above formula, τ1, τ2 are the real and imaginary parts of the Teichmüller parameter τ , 
q = e2iπτ , F is the fundamental domain of SL(2, Z), L0, L̃0 are the zero frequency Virasoro 
operators, � is the orientifold generator and g is the twist generator acting on the T 4 coordi-
nates as (X6, X7, X8, X9) → (−X6, −X7, −X8, −X9). The factors 1

2 are due to the orientifold 
projection. In the following, we first introduce our notations and present the amplitudes in the 
supersymmetric BSGP model compactified down to four dimensions. Then, we implement dis-
crete deformations as well as the spontaneous breaking of N = 2 supersymmetry, and display 
the associated amplitudes.

A.1. Summary of conventions and notations

It is useful for reference to summarise the notation for the lattices of zero modes and for the 
characters that account for the oscillator excitations, that we use to write the one-loop amplitudes:

Indices: The metric of T 2 × T 4 is defined as GIJ , I, J = 4, . . .9. However, due to the fac-
torization of the internal space, it is convenient to introduce non-calligraphic indices that refer 
either to the T 2 or T 4 directions only. Hence, we will also use GI ′J ′ , I ′, J ′ = 4, 5 and GIJ , 
I, J = 6, . . . , 9.

Internal momentum and winding numbers along T 2 × T 4 are organized in six-vectors, 	M
and 	N , respectively. They can be split according to the tori factorization in the following way: 
	M = ( 	m′, 	m) and 	N = (	n′, 	n), where primed vectors components are two-vectors and the not 

primed ones are four-vectors.

Lattices: For the genus-1 Riemann surface, the expression of the amplitude T involves

�
(6,6)

	M, 	N(τ) = q
1
4 PL

I GIJ PL
J q̄

1
4 PR

I GIJ PR
J ,

P L
I = mI + GIJ nJ , P R

I = mI − GIJ nJ , I = 4, . . . ,9 ,

(A.3)

where GIJ = G−1
IJ . Due to the orientifold projection, the NS-NS antisymmetric tensor BIJ

present in the type IIB string vanishes. The (6, 6) lattice can again be divided into (2, 2) and 
(4, 4) lattices of zero modes associated with T 2 and T 4, as follows:

�
(6,6)

	M, 	N(τ) = �
(2,2)

	m′,	n′(τ )�
(4,4)

	m,	n (τ ) = q
1
4 PL

I ′GI ′J ′
PL

J ′ q̄
1
4 PR

I ′ GI ′J ′
PR

J ′ × q
1
4 PL

I GIJ PL
J q̄

1
4 PR

I GIJ PR
J .

(A.4)

By contrast, the states that are running in the Klein bottle, annulus or Möbius strip amplitudes 
have a vanishing momentum or winding number along each internal direction, so the relevant 
lattices can be defined as

P
(6)

	M (iτ2) = �
(6,6)

	M,	0 (τ ) = e−πτ2mIGIJ mJ ,

W
(4)

	n (iτ2) = �
(4,4)

	0,	n (τ ) = e−πτ2nI GIJ nJ .
(A.5)

As before, the momentum lattice can be factorized as



S. Abel et al. / Nuclear Physics B 957 (2020) 115100 35
P
(6)

	M (iτ2) = P
(2)

	m′ (iτ2)P
(4)

	m (iτ2) = e−πτ2mI ′GI ′J ′
mJ ′ × e−πτ2mI GIJ mJ . (A.6)

Throughout this work, the implicit arguments of the lattices are as indicated in the above defini-
tions.

Characters: Our definitions of the Jacobi modular forms and Dedekind function are

ϑ
[
α
β

]
(z|τ) =

∑
m

q
1
2 (m+α)2

e2iπ(z+β)(m+α) , η(τ ) = q
1
24

+∞∏
n=1

(1 − qn) . (A.7)

It is standard to denote

ϑ
[0

0

]
(z|τ) = ϑ3(z|τ) , ϑ

[0
1
2

]
(z|τ) = ϑ4(z|τ) ,

ϑ
[ 1

2

0

]
(z|τ) = ϑ2(z|τ) , ϑ

[ 1
2
1
2

]
(z|τ) = ϑ1(z|τ) , (A.8)

and to keep implicit both arguments when z = 0. In these notations, the SO(2n) affine characters 
can be written as

O2n = ϑn
3 + ϑn

4

2ηn
, V2n = ϑn

3 − ϑn
4

2ηn
, S2n = ϑn

2 + i−nϑn
1

2ηn
, C2n = ϑn

2 − i−nϑn
1

2ηn
.

(A.9)

They satisfy the following modular properties:⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ + 1) = e−inπ/12diag

(
1,−1, einπ/4, einπ/4

)⎛⎜⎜⎝
O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ ) ,

⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(− 1

τ

)
= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 i−n −i−n

1 −1 −i−n i−n

⎞
⎟⎟⎠
⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ ) ,

(A.10)

which are relevant for the amplitudes T , K and A. For the Möbius strip, it is convenient to switch 
from the characters χ to the real “hatted” characters χ̂ defined by [53,54]

χ̂
(1

2
+ iτ2

)
= e−iπ(h− c

24 ) χ
(1

2
+ iτ2

)
, (A.11)

where h is the weight of the associated primary state and c is the central charge. The so-called 
P-transformation then takes the form⎛

⎜⎜⎝
Ô2n

V̂2n

Ŝ2n

Ĉ2n

⎞
⎟⎟⎠
(1

2
+ i

2τ2

)
=

⎛
⎜⎜⎝

c s 0 0
s −c 0 0
0 0 ζc iζ s

0 0 iζ s ζ c

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Ô2n

V̂2n

Ŝ2n

C2n

⎞
⎟⎟⎠
(1

2
+ i

τ2

2

)
,

η̂
(1

2
+ i

2τ2

)
= √

τ2 η̂
(1

2
+ i

τ2

2

)
, (A.12)

where c = cos(nπ/4), s = sin(nπ/4) and ζ = e−inπ/4. Throughout this work, the implicit argu-
ments of the characters are τ , 2iτ2, iτ2/2 and (1 + iτ2)/2 for the torus, Klein bottle, annulus and 
Möbius strip amplitudes respectively.
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A.2. Bianchi–Sagnotti–Gimon–Polchinski model

Let us first consider the amplitudes arising in the simplest version of the BSGP model [49–51]
compactified on T 2. The background is as given in Eq. (A.1), with at this stage no Wilson lines 
switched on in the worldvolumes of the D9- and D5-branes, all D5-branes coincident on a single 
O5-plane, and as yet no implementation of the Scherk–Schwarz mechanism. Of course, in the 
absence of any breaking of supersymmetry, ultimately the total effective potential vanishes.

To write the one-loop vacuum amplitudes, we decompose the worldsheet fermion SO(8)

affine characters into characters of SO(4) × SO(4), where the first factor is the little group 
in six dimensions and the second is associated with the internal directions 6, 7, 8, 9:

O8 = O4O4 + V4V4 , V8 = V4O4 + O4V4 ,

S8 = S4S4 + C4C4 , C8 = S4C4 + C4S4 .
(A.13)

It is convenient to define characters that mix NS and R sectors but which diagonalize the action 
of the Z2 orbifold generator g. The transformations of the T4/Z2 characters under g is

g ·

⎛
⎜⎜⎝

O4
V4
S4
C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

O4
−V4
−S4
C4

⎞
⎟⎟⎠ , (A.14)

so that defining

QO = V4O4 − C4C4 , QV = O4V4 − S4S4 ,

QS = O4C4 − S4O4 , QC = V4S4 − C4V4 ,
(A.15)

the states belonging to the characters QO, QS on the one hand, and QV, QC on the other, have 
Z2 eigenvalues +1 and −1 respectively.

With these definitions and the conventions of Appendix A.1, the torus and Klein bottle ampli-
tudes read

T = 1

4

∫
F

d2τ

τ 3
2

{
|QO + QV|2

∑
	m,	n

�
(4,4)

	m,	n∣∣η4
∣∣2 + |QO − QV|2

∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16 |QS + QC|2
∣∣∣∣ η

ϑ4

∣∣∣∣
4

+ 16 |QS − QC|2
∣∣∣∣ η

ϑ3

∣∣∣∣
4 }∑

	m′,	n′

�
(2,2)

	m′,	n′∣∣η4
∣∣2 , (A.16)

K = 1

4

+∞∫
0

dτ2

τ 3
2

{
(QO + QV)

(∑
	m

P
(4)

	m
η4 +

∑
	n

W
(4)

	n
η4

)
+ 32 (QS + QC)

(
η

ϑ4

)2}∑
	m′

P
(2)

	m′
η4 .

In the torus expression, the first term in the braces is the usual |V8 − S8|2 contribution occurring 
in type IIB. The second term is obtained by acting with the orbifold generator g, which imposes 
to be at the origin of the T 4 lattice. The last two terms correspond to the twisted sector and are 
also at the origin of the T 4 lattice.

The model contains D9-branes and D5-branes in order to cancel the RR charges of an O9-
plane and 32 O5-planes that are respectively the fixed point loci of � and �g. Denoting by N
and D the numbers of D9-branes and D5-branes, and by RN and RD their counterparts under the 
action of g on the associated Chan–Paton charges [52–54], the amplitudes are
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A = 1

4

+∞∫
0

dτ2

τ 3
2

{
(QO + QV)

(
N2
∑

	m

P
(4)

	m
η4 + D2

∑
	n

W
(4)

	n
η4

)
+ 2ND (QS + QC)

(
η

ϑ4

)2

+ (R2
N + R2

D) (QO − QV)

(
2η

ϑ2

)2

+ 2RNRD (QS − QC)

(
η

ϑ3

)2 }∑
	m′

P
(2)

	m′
η4 ,

M = −1

4

+∞∫
0

dτ2

τ 3
2

{(
Q̂O + Q̂V

)(
N
∑

	m

P
(4)

	m
η̂4 + D

∑
	n

W
(4)

	n
η̂4

)
(A.17)

− (N + D)
(
Q̂O − Q̂V

)(2η̂

ϑ̂2

)2 }∑
	m′

P
(2)

	m′
η̂4 .

The first line in the amplitude A (M) contains the contributions of the NN, DD and ND sectors 
(N and D sectors), while the second line arises by acting with the orbifold generator g on these 
sectors.

The RR tadpole cancellation condition fixes the number of D9- and D5-branes to be N =
D = 32. Moreover, the structure of the open-string partition functions prevents orthogonal gauge 
groups. Unitary gauge group parameterisation of the Chan–Paton multiplicities is the only pos-
sibility, with

N = n + n̄ , D = d + d̄ , RN = i(n − n̄) , RD = i(d − d̄) , (A.18)

which gives n = n̄ = d = d̄ = 16. In this undeformed model, the open-string gauge group is 
U(16) × U(16).

A.3. Deformations of the BSGP model

The previous model can be deformed in various ways. In particular, the D5-branes can be 
displaced in T 4/Z2, Wilson lines along T 2 can be turned on for the gauge group associated with 
the D5-branes, and “Wilson lines” along all of the six internal directions can be switched on 
for the gauge group generated by the D9-branes. All these deformations spontaneously break 
the original gauge group. As described in Sect. 2.1 we are using a T-dual language in which all 
brane positions and WL’s are understood as D3-brane positions, with the understanding that this 
is merely a convenience, and that there is no common physical prescription where this is actually 
the case.

We are mostly interested in the case where the deformations take discrete values corre-
sponding to all 32 + 32 D3-branes (T-dual to the D9- and D5-branes) sitting on the corners 
of a six-dimensional box (T-dual to T 2 × T 4/Z2). The WL’s are equal to the components of 
	aii′ ≡ (	ai′ , 	ai) which are 0 or 1

2 , where the corners of the box are labelled by a double index ii′, 
in the notation of Sect. 2.1. The annulus amplitude in this case becomes
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A = 1

4

+∞∫
0

dτ2

τ 3
2

∑
i,i′
j,j ′

{
(QO + QV)

(
Nii′Njj ′

∑
	m

P
(4)

	m+	ai−	aj

η4 + Dii′Djj ′
∑

	n

W
(4)

	n+	ai−	aj

η4

)

+ 2Nii′Djj ′ (QS + QC)

(
η

ϑ4

)2

+ δij

(
RN

ii′R
N
jj ′ + RD

ii′R
D
jj ′
)

(QO − QV)

(
2η

ϑ2

)2

+ 2e4iπ 	ai ·	aj RN
ii′R

D
jj ′ (QS − QC)

(
η

ϑ3

)2 }∑
	m′

P
(2)

	m′+	ai′−	aj ′

η4 ,

(A.19)

and the Möbius amplitude reads

M = −1

4

+∞∫
0

dτ2

τ 3
2

∑
i,i′

{(
Q̂O + Q̂V

)(
Nii′

∑
	m

P
(4)

	m
η̂4 + Dii′

∑
	n

W
(4)

	n
η̂4

)

− (Nii′ + Dii′)
(
Q̂O − Q̂V

)(2η̂

ϑ̂2

)2 }∑
	m′

P
(2)

	m′
η̂4 .

(A.20)

By contrast, the amplitudes T and K in the closed-string sector are independent of the deforma-
tions (discrete or otherwise) that we have introduced, and are the same as the expressions given 
in Eq. (A.16).

There are two subtleties in the annulus amplitude of Eq. (A.19): first, in the term that corre-
sponds to the action of the generator g on the NN and DD sectors (the last term on the second 
line), the orbifold action enforces being at the origin of the T 4 or T̃ 4 lattice. This explains the 
presence of a Krönecker symbol δij . Second, the last contribution, which arises from the action 
of g on the ND sector, is dressed by signs e4iπ 	ai ·	aj which are necessary in the presence of discrete 
D9-brane WL’s [51].

This leads to the following open-string gauge symmetry in the presence of discrete deforma-
tions:

Gopen =
∏

ii′/nii′ �=0

U(nii′) ×
∏

jj ′/djj ′ �=0

U(djj ′) , where nii′ = Nii′

2
, djj ′ = Djj ′

2
.

(A.21)

A.4. Supersymmetry breaking

As anticipated in Sect. 2.2, the N = 2 → N = 0 spontaneous breaking of supersymmetry 
is induced by the Scherk–Schwarz mechanism [30–37]. Implementing the associated shifts in 
Eq. (2.14), the T 2 lattices of zero modes in presence of discrete WL’s are modified as follows:

�
(2,2)

	m′,(n4,2n5+h)
−→ �

(2,2)

	m′+F 	a′
S,(n4,2n5+h)

, h = 0,1 ,

P
(2)

	m′+	a ′−	a ′ −→ P
(2)

	m′+F 	a′ +	a −	a .

(A.22)
i j S i′ j ′
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As a result, the mass of the gravitino, which we may take as defining the scale of spontaneous 
supersymmetry breaking, is M = Ms

√
G55/2.

To write the amplitudes, we work in the so called “Scherk–Schwarz basis” [53] and change 
(G54, G55, G5I ) → (G54/2, G55/4, G5I /2), I = 6, . . . , 9. Moreover, for the massless spectrum 
to be easily readable, we split the result into the contributions of the bosonic and fermionic 
degrees of freedom running in the loops. The torus amplitude is lengthy, being given by

T = 1

4

∫
F

d2τ

τ 3
2

{[(
|V4O4 + O4V4|2 + |S4S4 + C4C4|2

)∑
	m,	n

�
(4,4)

	m,	n∣∣η4
∣∣2

+
(
|V4O4 − O4V4|2 + |S4S4 − C4C4|2

) ∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16
(
|O4C4 + V4S4|2 + |S4O4 + C4V4|2

) ∣∣∣∣ η

ϑ4

∣∣∣∣
4

+ 16
(
|O4C4 − V4S4|2 + |S4O4 − C4V4|2

) ∣∣∣∣ η

ϑ3

∣∣∣∣
4 ]∑

	m′,	n′

�
(2,2)

	m′,(n4,2n5)∣∣η4
∣∣2

−
[(

(V4O4 + O4V4)(S̄4S̄4 + C̄4C̄4) + (S4S4 + C4C4)(V̄4Ō4 + Ō4V̄4)
)∑

	m,	n

�
(4,4)

	m,	n∣∣η4
∣∣2

+ ((V4O4 − O4V4)(S̄4S̄4 − C̄4C̄4) + (S4S4 − C4C4)(V̄4Ō4 − Ō4V̄4)
) ∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16
(
(O4C4 + V4S4)(S̄4Ō4 + C̄4V̄4) + (S4O4 + C4V4)(Ō4C̄4 + V̄4S̄4)

) ∣∣∣∣ η

ϑ4

∣∣∣∣
4

(A.23)

+ 16
(
(O4C4 − V4S4)(S̄4Ō4 − C̄4V̄4) + (S4O4 − C4V4)(Ō4C̄4 − V̄4S̄4)

) ∣∣∣∣ η

ϑ3

∣∣∣∣
4 ]

×
∑
	m′,	n′

�
(2,2)

	m′+	a′
S,(n4,2n5)∣∣η4
∣∣2

+
[(

|O4O4 + V4V4|2 + |C4S4 + S4C4|2
)∑

	m,	n

�
(4,4)

	m,	n∣∣η4
∣∣2

+
(
|O4O4 − V4V4|2 + |S4C4 − C4S4|2

) ∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16
(
|O4S4 + V4C4|2 + |S4V4 + C4O4|2

) ∣∣∣∣ η

ϑ4

∣∣∣∣
4

+ 16
(
|O4S4 − V4C4|2 + |S4V4 − C4O4|2

) ∣∣∣∣ η

ϑ3

∣∣∣∣
4 ]∑

	m′,	n′

�
(2,2)

	m′,(n4,2n5+1)∣∣η4
∣∣2

−
[(

(O4O4 + V4V4)(C̄4S̄4 + S̄4C̄4) + (C4S4 + S4C4)(Ō4Ō4 + V̄4V̄4)
)∑ �

(4,4)

	m,	n∣∣η4
∣∣2
	m,	n
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+ ((O4O4 − V4V4)(S̄4C̄4 − C̄4S̄4) + (S4C4 − C4S4)(Ō4Ō4 − V̄4V̄4)
) ∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16
(
(O4S4 + V4C4)(S̄4V̄4 + C̄4Ō4) + (S4V4 + C4O4)(Ō4S̄4 + V̄4C̄4)

) ∣∣∣∣ η

ϑ4

∣∣∣∣
4

+ 16
(
(O4S4 − V4C4)(S̄4V̄4 − C̄4Ō4) + (S4V4 − C4O4)(Ō4S̄4 − V̄4C̄4)

) ∣∣∣∣ η

ϑ3

∣∣∣∣
4 ]

×
∑
	m′,	n′

�
(2,2)

	m′+	a′
S,(n4,2n5+1)∣∣η4
∣∣2

}
.

The proliferation of terms is due to the presence of an untwisted sector along with three twisted 
sectors, either twisted by g, the Scherk–Schwarz generator, or the combination of the two. The 
only states flowing in the Klein bottle are left/right-symmetric, leading to the simpler contribution

K = 1

4

+∞∫
0

dτ2

τ 3
2

{
(V4O4 + O4V4)

(∑
	m

P
(4)

	m
η4 +

∑
	n

W
(4)

	n
η4

)
+ 32 (O4C4 + V4S4)

(
η

ϑ4

)2

− (S4S4 + C4C4)

(∑
	m

P
(4)

	m
η4 +

∑
	n

W
(4)

	n
η4

)
− 32 (S4O4 + C4V4)

(
η

ϑ4

)2 }∑
	m′

P
(2)

	m′
η4 .

(A.24)

Finally, the open-string amplitudes are

A = 1

4

+∞∫
0

dτ2

τ 3
2

∑
i,i′
j,j ′

{[
(V4O4 + O4V4)

(
Nii′Njj ′

∑
	m

P
(4)

	m+	ai−	aj

η4 + Dii′Djj ′
∑

	n

W
(4)

	n+	ai−	aj

η4

)

+ (V4O4 − O4V4)δij

(
RN

ii′R
N
jj ′ + RD

ii′R
D
jj ′
)(2η

ϑ2

)2

+ 2Nii′Djj ′(O4C4 + V4S4)

(
η

ϑ4

)2

+ 2e4iπ 	ai ·	aj RN
ii′R

D
jj ′(O4C4 − V4S4)

(
η

ϑ3

)2 ]∑
	m′

P
(2)

	m′+	ai′−	aj ′

η4 (A.25)

−
[
(S4S4 + C4C4)

(
Nii′Njj ′

∑
	m

P
(4)

	m+	ai−	aj

η4 + Dii′Djj ′
∑

	n

W
(4)

	n+	ai−	aj

η4

)

+ (C4C4 − S4S4)δij

(
RN

ii′R
N
jj ′ + RD

ii′R
D
jj ′
)(2η

ϑ2

)2

+ 2Nii′Djj ′(S4O4 + C4V4)

(
η

ϑ4

)2

+ 2e4iπ 	ai ·	aj RN
ii′R

D
jj ′(S4O4 − C4V4)

(
η

ϑ3

)2 ]∑
	m′

P
(2)

	m′+	a′
S+	ai′−	aj ′

η4

}
,
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M = −1

4

+∞∫
0

dτ2

τ 3
2

∑
i,i′

{[
(V̂4Ô4 + Ô4V̂4)

(
Nii′

∑
	m

P
(4)

	m
η̂4 + Dii′

∑
	n

W
(4)

	n
η̂4

)

− (Nii′ + Dii′)(V̂4Ô4 − Ô4V̂4)

(
2η̂

ϑ̂2

)2 ]∑
	m′

P
(2)

	m′
η̂4

−
[
(Ĉ4Ĉ4 + Ŝ4Ŝ4)

(
Nii′

∑
	m

P
(4)

	m
η̂4 + Dii′

∑
	n

W
(4)

	n
η̂4

)

− (Nii′ + Dii′)(Ĉ4Ĉ4 − Ŝ4Ŝ4)

(
2η̂

ϑ̂2

)2 ]∑
	m′

P
(2)

	m′+	a′
S

η̂4

}
.

(A.26)

Appendix B. Potential and continuous Wilson lines

In this appendix, we derive the effective potential of the model realizing the N = 2 → N = 0
spontaneous breaking of supersymmetry, when continuous open-string WL’s are switched on. 
Our aim is to obtain expressions suitable for the derivation in Sect. 3.2 of the WL mass terms by 
taking two derivatives with respect to these moduli at points in moduli space where all D3-branes 
are coincident with O3-planes.

When generalizing the open-string amplitudes A and M given in Eqs. (A.25) and (A.26) to 
arbitrary positions of the D3-branes, the lattice deformations cannot be defined anymore by the 
positions 2π 	aii′ ≡ (	ai′ , 	ai) of the fixed points ii′. Instead, the deformations must be parame-
terised by the locations 2πaIα and 2πbIα , α = 1, . . . , 32, of the D3-branes in their appropriate 
six-dimensional boxes. However, as described in Sect. 2.1, the moduli space of WL’s admits 
disconnected components, themselves admitting various Higgs, Coulomb and mixed Higgs–
Coulomb branches. The number of moduli fields at tree level is thus highly dependent on the 
branch under interest. To capture the information needed to Taylor expand the potential at any 
point in moduli space where all D3-branes are stacked on O3-planes, we denote

	a′
α ≡ (a4

α, a5
α) , 	aα ≡ (a6

α, a7
α, a8

α, a9
α) ,

	b′
α ≡ (b4

α, b5
α) , 	bα ≡ (b6

α, b7
α, b8

α, b9
α) ,

(B.1)

and write the annulus amplitude as follows,

A = 1

4

+∞∫
0

dτ2

τ 3
2

∑
α,β

∑
	m′

{
(V4O4 + O4V4)

η8

(∑
	m

P
(4)

	m+	aα−	aβ
P

(2)

	m′+	a′
α−	a′

β

+
∑

	n
W

(4)

	n+	bα−	bβ
P

(2)

	m′+	b′
α−	b′

β

)

+ 2(O4C4 + V4S4)

(
η

ϑ4

)2 P
(2)

	m′+	a′
α−	b′

β

η4 (B.2)

−
[
(S4S4 + C4C4)

η8

(∑
P

(4)

	m+	aα−	aβ
P

(2)

	m′+	a′
S+	a′

α−	a′
β

+
∑

W
(4)

	n+	bα−	bβ
P

(2)

	m′+	a′
S+	b′

α−	b′
β

)

	m 	n
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+ 2(S4O4 + C4V4)

(
η

ϑ4

)2 P
(2)

	m′+	a′
S+	a′

α−	b′
β

η4

]}
.

Some remarks are in order:

• In this expression, even if all components aIα , bIα appear formally as independent variables, 
it is understood that they are correlated 4 by 4 or 2 by 2, or identically equal to 0 or 1

2 , 
according to the point in moduli space around which fluctuations are considered.

• All terms appearing in the braces are continuous deformations of the contributions propor-
tional to Nii′ or Dii′ coefficients in Eq. (A.25).

• When continuous WL’s are switched on only along T 2, the model sits in a Coulomb branch 
where the unitary nature of all gauge group factors persists. Hence, all terms proportional 
to coefficients RN

ii′ or RD
ii′ in Eq. (A.25) yield after deformation contributions vanishing 

identically.22

• When continuous WL’s are switched on only along T 4/Z2 or T̃ 4Z2, the model sits in a 
Higgs branch where unitary and symplectic gauge group factors cohabit. In that case, the 
coefficients RN

ii′ and RD
ii′ need to be re-evaluated with the numbers of D3-branes that remain 

localized on the O3-planes. Therefore, all terms proportional to coefficients RN
ii′ or RD

ii′ in 
Eq. (A.25) yield after deformation contributions vanishing identically.22

Similarly, the Möbius strip amplitude (A.26) reads in presence of continuous deformations

M = − 1

4

+∞∫
0

dτ2

τ 3
2

∑
α

∑
	m′

{
(V̂4Ô4 + Ô4V̂4)

η̂8

(∑
	m

P
(4)

	m+2	aα
P

(2)

	m′+2	a′
α
+
∑

	n
W

(4)

	n+2	bα
P

(2)

	m′+2	b′
α

)

− (Ĉ4Ĉ4 + Ŝ4Ŝ4)

η̂8

(∑
	m

P
(4)

	m+2	aα
P

(2)

	m′+	a′
S+2	a′

α
+
∑

	n
W

(4)

	n+2	bα
P

(2)

	m′+	a′
S+2	b′

α

)}
, (B.3)

where all aIα , bIα are again formally treated as free variables. In this expression, the terms pro-
portional to the combinations of SO(4) × SO(4) characters V̂4Ô4 − Ô4V̂4 or Ĉ4Ĉ4 − Ŝ4Ŝ4 are 
omitted, since they vanish identically.22

Next, we may expand the characters as follows,

V4O4 + O4V4

η8 = C4C4 + S4S4

η8 = 8
∑
k≥0

cke
−πkτ2 ,

V̂4Ô4 + Ô4V̂4

η̂8 = Ĉ4Ĉ4 + Ŝ4Ŝ4

η̂8 = 8
∑
k≥0

(−1)kcke
−πkτ2 ,

2(O4C4 + V4S4)

(
η

ϑ4

)2 1

η4 = 2(S4O4 + C4V4)

(
η

ϑ4

)2 1

η4 = 4
∑
k≥0

dke
− π

2 kτ2 ,

(B.4)

where c0 = d0 = 1, to obtain

22 This cancellation is only numerical, thanks to the pairing of degenerate modes of eigenvalues ±1 under the orbifold 
generator g.
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A = 2

+∞∫
0

dτ2

τ 3
2

∑
k≥0

∑
α,β

∑
	m′

{
cke

−πkτ2

[∑
	m

P
(4)

	m+	aα−	aβ

(
P

(2)

	m′+	a′
α−	a′

β

− P
(2)

	m′+	a′
S+	a′

α−	a′
β

)

+
∑

	n
W

(4)

	n+	bα−	bβ

(
P

(2)

	m′+	b′
α−	b′

β

− P
(2)

	m′+	a′
S+	b′

α−	b′
β

)]

+ dke
− π

2 kτ2

(
P

(2)

	m′+	a′
α−	b′

β

− P
(2)

	m′+	a′
S+	a′

α−	b′
β

)}
,

(B.5)

and

M = −2

+∞∫
0

dτ2

τ 3
2

∑
k≥0

∑
α

∑
	m′

{
(−1)kck

[∑
	m

P
(4)

	m+2	aα

(
P

(2)

	m′+2	a′
α
− P

(2)

	m′+	a′
S+2	a′

α

)

+
∑

	n
W

(4)

	n+2	bα

(
P

(2)

	m′+2	b′
α

− P
(2)

	m′+	a′
S+2	b′

α

)]}
.

(B.6)

The moduli space region in which we are interested to find the WL masses is where the 
lightest non-vanishing scale of the model is the supersymmetry breaking scale M = Ms

√
G55/2. 

In terms of internal metric components, this means that

G55 � G44, |GIJ | � G55 , |G45|, |G5J | �√
G55 , I, J ∈ {6, . . . ,9} , G55 � 1 .

(B.7)

The Scherk–Schwarz compact direction X5 being large, it is convenient to Poisson sum over the 
momentum m5 (the new sum index is denoted l5). The annulus amplitude becomes

A =
(
G55

)2 �
( 5

2

)
π

5
2

4
∑
k≥0

∑
α,β

∑
m4

∑
l5

1

|2l5 + 1|5
{∑

	m
ck cos

[
2π |2l5 + 1|

(
a5
α − a5

β + G54

G55
(m4 + a4

α − a4
β)

)]
H 5

2

(
π |2l5 + 1| MA1√

G55

)

+
∑

	n
ck cos

[
2π |2l5 + 1|

(
b5
α − b5

β + G54

G55
(m4 + b4

α − b4
β)

)]
H 5

2

(
π |2l5 + 1| MA2√

G55

)

+ dk

2
cos

[
2π |2l5 + 1|

(
a5
α − b5

β + G54

G55
(m4 + a4

α − b4
β)

)]
H 5

2

(
π |2l5 + 1| MA3√

G55

)}
,

(B.8)

where the function Hν can be expressed in terms of Kν , a modified Bessel function of the second 
kind,

Hν(z) = 1

�(ν)

+∞∫
0

dx

x1+ν
e− 1

x
−z2x = 2

�(ν)
zνKν(2z) . (B.9)

In Eq. (B.8), MA1 , MA2 and MA3 define three characteristic mass scales (in string units) 
satisfying
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M2
A1

= (mI + aI
α − aI

β)GIJ (mJ + aJ
α − aJ

β ) + (m4 + a4
α − a4

β)2Ĝ44 + k ,

M2
A2

= (nI + bI
α − bI

β)GIJ (nJ + bJ
α − bJ

β ) + (m4 + b4
α − b4

β)2Ĝ44 + k ,

M2
A3

= (m4 + a4
α − b4

β)2Ĝ44 + k

2
,

(B.10)

where

Ĝ44 = G44 − G45

G55
G55 G54

G55
. (B.11)

Because we are interested in motions of D3-brane around O3-planes, we split the WL moduli 
into background values and fluctuations,

aIα = 〈aIα 〉 + εIα , 〈aIα 〉 ∈
{

0,
1

2

}
,

bIα = 〈bIα 〉 + ξIα , 〈bIα 〉 ∈
{

0,
1

2

}
,

(B.12)

which allow us to determine when the masses (B.10) are large or small compared to M . This is 
relevant since Hν is finite for small argument and exponentially suppressed for large argument:

Hν(z) = 1 − z2

ν − 1
+O(z4) as |z| � 1 , Hν(z) ∼

√
π

�(ν)
zν− 1

2 e−2z as z � 1 .

(B.13)

For MA1/
√

G55 not to yield exponentially suppressed contributions to A, we need k = 0, mI +
〈aI

α〉 − 〈aI
β〉 = 0 and m4 + 〈a4

α〉 − 〈a4
β〉 = 0. This amounts to having 	m = 	0, m4 = 0 and (α, β) in 

the set LNN such that the D3-branes α, β T-dual to D9-branes

• belong to the same stack of Nii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Ni,2i′′−1 and Ni,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Ni,2i′′ and Ni,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

Similarly, for MA2/
√

G55 not to yield exponentially suppressed terms in A, we need k = 0, 
	n = 	0, m4 = 0 and (α, β) in the set LDD such that the D3-branes α, β T-dual to D5-branes

• belong to the same stack of Dii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Di,2i′′−1 and Di,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Di,2i′′ and Di,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

Finally, terms involving MA3/
√

G55 are relevant when k = 0 and m4 +〈a4
α〉 −〈b4

β〉 = 0. This is 
achieved if m4 = 0 and (α, β) is in the set LND such that the D3-branes α, β T-dual to a D9-brane 
and a D5-brane

• belong respectively to stacks of Nii′ and Dji′ branes, i, j = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Ni,2i′′−1 and Dj,2i′′ branes, i, j = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Nj,2i′′ and Di,2i′′−1 branes, i, j = 1, . . . , 16, i′′ = 1, 2.
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Up to exponentially suppressed terms, we thus obtain

A =
(
G55

)2 �
( 5

2

)
π

5
2

×
∑
l5

4

|2l5 + 1|5
{ ∑

(α,β)∈LNN

(−)
2(〈a5

α〉−〈a5
β 〉) cos

[
2π |2l5 + 1|

(
ε5
α − ε5

β + G54

G55
(ε4

α − ε4
β)

)]

×H 5
2

(
π |2l5 + 1|

[
(εI

α − εI
β)GIJ (εJ

α − εJ
β ) + (ε4

α − ε4
β)2Ĝ44

] 1
2

√
G55

)

+
∑

(α,β)∈LDD

(−)
2(〈b5
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β 〉) cos

[
2π |2l5 + 1|

(
ξ5
α − ξ5

β + G54

G55
(ξ4
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β)

)]

×H 5
2

(
π |2l5 + 1|

[
(ξ I

α − ξI
β )GIJ (ξJ

α − ξJ
β ) + (ξ4

α − ξ4
β)2Ĝ44

] 1
2

√
G55

)
(B.14)

+ 1

2

∑
(α,β)∈LND

(−)
2(〈a5

α〉−〈b5
β 〉) cos

[
2π |2l5 + 1|

(
ε5
α − ξ5

β + G54

G55
(ε4

α − ξ4
β)

)]

×H 5
2

(
π |2l5 + 1|

[
(ε4

α − ξ4
β)2Ĝ44

] 1
2

√
G55

)}
+O

(
G55e

− 2πc√
G55

)
,

where c is positive of order one.
Proceeding in a similar way with the Möbius amplitude, we may write

M = −
(
G55

)2 �
( 5

2

)
π

5
2

4
∑
k≥0

(−1)kck

∑
α

∑
m4

∑
l5

1

|2l5 + 1|5{∑
	m
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2π |2l5 + 1|

(
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α + G54
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(m4 + 2a4

α)

)]
H 5

2

(
π |2l5 + 1|MM1√

G55

)

+
∑

	n
cos

[
2π |2l5 + 1|

(
2b5

α + G54

G55
(m4 + 2b4

α)

)]
H 5

2

(
π |2l5 + 1|MM2√

G55

)}
,

(B.15)

which involves characteristic mass scales

M2
M1

= (mI + 2aI
α)GIJ (mJ + 2aJ

α ) + (m4 + 2a4
α)2Ĝ44 + k ,

M2
M2

= (nI + 2bI
α)GIJ (nJ + 2bJ

α ) + (m4 + 2b4
α)2Ĝ44 + k .

(B.16)

The functions H 5
2

are exponentially suppressed unless their arguments satisfy k = 0 and mI =
−2〈aI

α〉, m4 = −2〈a4
α〉, or nI = −2〈bI

α〉, m4 = −2〈b4
α〉. As a result, the amplitude takes the 

following form



46 S. Abel et al. / Nuclear Physics B 957 (2020) 115100
M = −
(
G55

)2 �
( 5

2

)
π

5
2

∑
α

∑
l5

4

|2l5 + 1|5

⎧⎪⎪⎨
⎪⎪⎩cos

[
4π |2l5 + 1|

(
ε5
α + G54

G55
ε4
α

)]

×H 5
2

(
2π |2l5 + 1|
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αGIJ εJ

α + (ε4
α

)2
Ĝ44

] 1
2

√
G55

)

+ cos

[
4π |2l5 + 1|

(
ξ5
α + G54

G55
ξ4
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)]
(B.17)

×H 5
2

(
2π |2l5 + 1|

[
ξI
αGIJ ξJ

α + (ξ4
α

)2
Ĝ44

] 1
2

√
G55

)⎫⎪⎪⎬
⎪⎪⎭

+O
(

G55e
− 2πc√

G55

)
.

Adding the annulus and Möbius strip amplitudes, the contribution of the open-string sector to 
the one-loop effective potential can be written as

− M4
s

2(2π)4 (A+M) = �
( 5

2

)
π

13
2

M4
∑
l5

N open
2l5+1(ε, ξ,G)

|2l5 + 1|5 +O
(
(MsM)2e−2πc

Ms
M

)
, (B.18)

where N open
2l5+1(ε, ξ, G) is given by

N open
2l5+1(ε, ξ,G) = 2

{
−
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(α,β)∈LNN

(−)F cos
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(B.19)

− 1

2

∑
(α,β)∈LND

(−)F cos
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2π |2l5 + 1|G

5I ′
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(
εI ′
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)]

×H 5
2

(
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)
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+
∑
α

cos

[
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.

In this expression, F is the fermionic number of the string (α, β) ∈ LNN ∪ LDD ∪ LND.
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