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1. Introduction

Motivated by knot theory, Riley studied Kleinian groups generated by two par-
abolic transformations (see [51, 52, 53, 54, 55]). In particular, the construction of
the complete hyperbolic structure on the figure-eight knot complement [52] inspired
Thurston to establish the uniformisation theorem of Haken manifolds. The space of
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marked subgroups of PSL(2,C) generated by two non-commuting parabolic trans-
formations is parametrised by a non-zero complex number. There is an open set, R,
called the Riley slice of Schottky space, of Kleinian groups of this type that are free
and discrete, and for which the quotient of the domain of discontinuity is a four times
punctured sphere. For every group inR, the Klein manifold (the quotient of union of
the hyperbolic space and the domain of discontinuity) is homeomorphic to the com-
plement of the 2-strand trivial tangle. Keen and Series [30] studied the Riley slice
by applying their theory of pleating rays, and it was supplemented by Komori and
Series [33]. Motivated by knot theory, Akiyoshi, Sakuma, Wada and Yamashita [6]
studied the combinatorial structures of the Ford domains, by extending Jorgensen’s
work [29] on punctured torus groups, which leads to a natural tessellation of R (see
Figure 0.2b in [6]). Ohshika and Miyachi [46] proved that the closure of R is equal
to the space of marked Kleinian groups with two parabolic generators which are free
and discrete. Building on his joint work [25], [27] and [38] with Gehring, Hinkkanen
and Marshall, respectively, Martin [37] identified the exterior of R as the Julia set
of a certain semigroup of polynomials and proved a “supergroup density theorem”
for groups in the exterior of R. The problem to detect freeness and non-freeness of
(not necessarily discrete) groups generated by two non-commuting parabolic trans-
formations has attracted attention of various researchers (see [35, 24, 63, 31] and
references therein).

In this paper, we are interested in Kleinian groups that are in the complement
of the closure of R, namely the groups that are discrete but not free. The essential
simple loops on the boundary of the complement of the 2-strand trivial tangle, which
are not null homotopic in the ambient space, are parametrised by a slope r in Q/2Z.
The Heckoid groups, introduced by Riley [54] and formulated by Lee and Sakuma
[34] following Agol [2], are Kleinian groups with two parabolic generators in which
the element corresponding to the curve αr of slope r has finite order. The most
extreme case is the group G(r) where this element is the identity, in which case, the
quotient of hyperbolic space by this group is the complement of a 2-bridge knot or
link.

In [1, Theorem 4.3], Adams proved that a non-free and torsion-free Kleinian
group Γ is generated by two parabolic transformations if and only if the quotient
hyperbolic manifold H3/Γ is homeomorphic to the complement of a 2-bridge link
K(r) which is not a torus link. (We regard a knot as a one-component link.) This
refines the result of Boileau and Zimmermann [11, Corollary 3.3] that a link in S3

is a 2-bridge link if and only if its link group is generated by two meridians.
In 2002, Agol [2] announced the following classification theorem of non-free Kleinian

groups generated by two parabolic transformations, which generalises Adams’ result.
The main purpose of this paper is to give a full proof to this theorem.

Theorem 1.1. A non-free Kleinian group Γ is generated by two non-commuting
parabolic elements if and only if one of the following holds.
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Figure 1. Weighted graphs representing 2-bridge links and Heckoid
orbifolds, where the thick edges with weight ∞ correspond to para-
bolic loci and thin edges with integral weights represent the singular
set. See Definition 3.4 for the precise description of the weighted
graphs.

(1) Γ is conjugate to the hyperbolic 2-bridge link group, G(r), for some rational
number r = q/p, where p and q are coprime integers such that q ̸≡ ±1 (mod p).

(2) Γ is conjugate to the Heckoid group, G(r;n), for some r ∈ Q and some n ∈
1
2N≥3.

In the remainder of the introduction, we explain the meaning of the theorem more
precisely.

Recall that a 2-bridge link is a knot or a two-component link which is represented
by a diagram in the x-y plane that has two maximal points and two minimal points
with respect to the height function determined by the y-coordinate. We may assume
that the two maximal points and the two minimal points, respectively, have the
same y-coordinates. Such a diagram gives a plait (or plat) representation of the 2-
bridge link consisting of two upper bridges, two lower bridges, and a 4-strand braid
connecting the upper and lower bridges (see Figure 1(1)). The 2-bridge links are
parametrized by the set Q∪{∞}, and the 2-bridge link corresponding to r ∈ Q∪{∞}
is denoted by K(r) and is called the 2-bridge link of slope r (see Section 2 for the
precise definition). If r = ∞ then K(r) is the 2-component trivial link, and if r ∈ Z
then K(r) is the trivial knot. If r = q/p ∈ Q, where p and q are coprime integers,
then K(q/p) is hyperbolic, i.e., S3 −K(r) admits a complete hyperbolic structure
of finite volume, if and only if q ̸≡ ±1 (mod p). In this case, there is a torsion-free
Kleinian group Γ, unique up to conjugation, such that H3/Γ is homeomorphic to
the link complement S3−K(r) as oriented manifold. We denote the Kleinian group
Γ by G(r), and call it the hyperbolic 2-bridge link group of slope r.

The Heckoid groups were first introduced by Riley [54] as an analogy of the clas-
sical Hecke groups considered by Hecke [26]. The topological structure of their
quotient orbifolds was worked out by Lee and Sakuma [34], following the descrip-
tion by Agol [2]. Specifically, they showed that the Heckoid groups are the orbifold
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fundamental groups of the Heckoid orbifolds illustrated in Figure 1(2)-(4). (See
[7, 10, 20] for basic terminologies and facts concerning orbifolds.) These figures
illustrate weighted graphs (S3,Σ, w) whose explicit descriptions are given by Defini-
tion 3.4. For each weighted graph (S3,Σ, w) in the figure, let (M0, P ) be the pair of
a compact 3-orbifold M0 and a compact 2-suborbifold P of ∂M0 determined by the
rules described below. Let Σ∞ be the subgraph of Σ consisting of the edges with
weight ∞, and let Σs be the subgraph of Σ consisting of the edges with integral
weight.

(1) The underlying space |M0| of the orbifold M0 is the complement of an open
regular neighbourhood of the subgraph Σ∞.

(2) The singular set of M0 is Σ0 := Σs ∩ |M0|, where the index of each edge of
the singular set is given by the weight w(e) of the corresponding edge e of
Σs.

(3) For an edge e of Σ∞, let P be the 2-suborbifold of ∂M0 defined as follows.
(a) In Figure 1(2), P consists of two annuli in ∂M0 whose cores, respectively,

are meridians of the two edges of Σ∞.
(b) In Figure 1(3), P consists of an annulus in ∂M0 whose core is a meridian

of the single edge of Σ∞.
(c) In Figure 1(4), P consists of two copies of the annular orbifold D2(2, 2)

(the 2-orbifold with underlying space the disc and with two cone points
of index 2) in ∂M0 each of which is bounded by a meridian of an edge
of Σ∞.

By [34, Lemmas 6.3 and 6.6], the orbifold pair (M0, P ) is a Haken pared orbifold
(see Definition 3.1 or [10, Definition 8.3.7]) and admits a unique complete hyper-
bolic structure, which is geometrically finite (see Section 3 or [34, Proposition 6.7]).
Namely there is a geometrically finite Kleinian group Γ, unique up to conjugation,
such that M := H3/Γ is isomorphic to the interior of the compact orbifold M0,
such that P represents the parabolic locus. The pair (M0, P ) is also regarded as a
relative compactification of the pair consisting of a non-cuspidal part of M and its
boundary (see Section 3).

We denote the pared orbifold M := (M0, P ) by M0(r;n), M1(r;m), or M2(r;m)
according as it is described by the weighted graph in Figure 1(2), (3), or (4). We
also denote the Kleinian group Γ by π1(M).

Then the assertion (2) of the main Theorem 1.1 is equivalent to the following
assertion (2’)

(2’) Γ is conjugate to the Kleinian group π1(M) for some pared orbifold M =
M0(r;n), M1(r;m), or M2(r;m) in Definition 3.4.

Agol [2] also announced the following classification of parabolic generating pairs
of the groups in Theorem 1.1, which refines and extends Adams’ results that every
hyperbolic 2-bridge link group has only finitely many parabolic generating pairs
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[1, Corollary 4.1] and that the figure-eight knot group has precisely two parabolic
generating pairs up to equivalence [1, Corollary 4.6].

Theorem 1.2. (1) If Γ is a hyperbolic 2-bridge link group, then it has precisely two
parabolic generating pairs, up to equivalence.

(2) If Γ is a Heckoid group, then it has a unique parabolic generating pair, up to
equivalence.

Here, by a parabolic generating pair of a Kleinian group Γ, we mean an unordered
pair {α,β} of parabolic transformations α and β that generate Γ. Two parabolic
generating pairs {α,β} and {α′,β′} are said to be equivalent if {α′,β′} is equal to
{αϵ1 ,βϵ2} for some ϵ1, ϵ2 ∈ {±1} up to simultaneous conjugacy. In the companion
[4] of this paper by Shunsuke Aimi, Donghi Lee, Shunsuke Sakai and the fourth
author, an alternative proof of the theorem is given.

Theorems 1.1 and 1.2 are beautifully illustrated by a figure produced by Yasushi
Yamashita upon request of Caroline Series, which is to be included in her article [59]
in preparation. The figure is produced by using the results announced in [6, Section
3 of Preface]. (See also Figure 0.2b in [6], which was also produced by Yamashita.)
For further properties of Heckoid groups, please see the article [5] in preparation.

This paper is organised as follows. In Section 2, we recall basic facts concerning
2-bridge links. In Section 3, we give the precise definitions of the Heckoid orbifolds
and Heckoid groups. In Section 4, we give the classification of dihedral orbifolds,
i.e., good orbifolds with dihedral orbifold fundamental groups (Theorem 4.1), which
holds a key to the proof of the main theorem. In Section 5, we prove the relative
tameness theorem for hyperbolic orbifolds (Theorem 5.1), following Bowditch’s proof
of the tameness theorem for hyperbolic orbifolds ([15]). This theorem is used in
the treatment of geometrically infinite two parabolic generator non-free Kleinian
groups. In fact, it turns out there are no such groups. In Section 6, we introduce a
convenient method for describing pared orbifolds (Convention 6.1) and the concept
of an orbifold surgery (Definition 6.3), and then prove a simple but useful lemma for
orbifold surgeries (Lemma 6.4). In Section 7, we follow Adams [1], and recall basic
facts concerning two parabolic generator Kleinian groups, in particular an estimate
of the length of parabolic generators with respect to the maximal cusp (Lemma 7.1).
In Section 8, we give an outline of the proof of the main theorem. Sections 9, 10, and
11 are devoted to the proof of the main theorem. In the appendix, which consists
of Sections 12 and 13, we give the classification of geometric dihedral orbifolds that
is necessary for the proof Theorem 4.1.

Throughout this paper, we use the following notation.

Notation 1.3. (1) For an orbifold O, the symbol π1(O) denotes the orbifold fun-
damental group of O, H1(O) denotes the abelianisation of π1(O), and H1(O;Z2)
denotes H1(O)⊗ Z2.
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(2) For a natural number n, Zn denotes the cyclic group (or the ring) Z/nZ of
order n, and (Zn)× denotes the unit group of the ring Z/nZ.

(3) By a dihedral group, we mean a group generated by two elements of order 2.
Thus it is isomorphic to the group Dn := ⟨a, b | a2, b2, (ab)n⟩ for some n ∈ N ∪ {∞}.
Note that Dn has order 2n or ∞ according to whether n ∈ N or n = ∞. Note also
that the order 2 cyclic group D1 is also regarded as a dihedral group.

Acknowledgement. M.S. would like to thank Ian Agol for sending the slides of
his talk [2], encouraging him (and any of his collaborators) to write up the proof,
and describing key ideas of the proof. He would also like to thank Michel Boileau
for enlightening conversation in an early time. His sincere thanks also go to all
the other authors for joining the project to give a proof to Agol’s announcement.
J.P. would like to thank Sadayoshi Kojima for supporting his trip to Japan. H.A.
was supported by JSPS Grants-in-Aid 19K03497. K.O. was supported by JSPS
Grants-in-Aid 17H02843 and 18KK0071. M.S. was supported by JSPS Grants-in-
Aid 15H03620.

2. Basic facts concerning 2-bridge links

In this section, we recall basic facts concerning 2-bridge links, which we use in
the definitions of the Heckoid orbifolds and the Heckoid groups. The description of
2-bridge links given in this section is a mixture of those in [14, 58].

Let J be the group of isometries of the Euclidean plane R2 generated by the π-
rotations around the points in Z2. Set (S2,P 0) = (R2,Z2)/J and call it the Conway

sphere. Then P 0 consists of four points in the 2-sphere S2. Let Š
2
:= S2 − P 0

be the complementary 4-times punctured sphere. For each s ∈ Q ∪ {∞}, let αs as

be the simple loop in Š
2
obtained as the projection of a line in R2 − Z2 of slope

s. Then αs is essential in Š
2
, i.e., it does not bound a disc nor a once-punctured

disc in Š
2
. Conversely, any essential simple loop in Š

2
is isotopic to αs for a unique

s ∈ Q ∪ {∞}: we call s the slope of the essential loop. For each s ∈ Q ∪ {∞}, let δs
be the pair of mutually disjoint arcs in S2 with ∂δs = P 0, obtained as the image of
the union of the lines in R2 which intersect Z2. Note that the union δ0/1 ∪ δ1/0 is a

circle in S2 containing P 0, which divides S2 into two discs S2
+ := pr([0, 1]× [0, 1])

and S2
− := pr([1, 2]× [0, 1]), where pr : R2 → S2 is the projection.

LetB3 := {(x, y, z) ∈ R3 |x2+y2+z2 ≤ 2} be the round 3-ball in R3 ⊂ R3∪{∞} ∼=
S3, whose boundary contains the set P 0 consisting of the four marked points

SW := (−1,−1, 0), SE := (1,−1, 0), NE := (1, 1, 0), NW := (−1, 1, 0).

Fix a homeomorphism θ : (S2,P 0) → (∂B3, P 0) satisfying the following conditions
(see Figure 2).

(1) θ maps the quadruple (pr(0, 0), pr(1, 0), pr(1, 1), pr(0, 1)) to the quadruple
(SW, SE,NE,NW).
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Figure 2. Conway sphere (S2,P 0) = (R2,Z2)/J and the homeo-
morphism θ : (S2,P 0) → (∂B3,P 0)

(2) θ maps the circle δ0/1 ∪ δ1/0 to the equatorial circle ∂B3 ∩ (R2 × {0}), and
maps the hemispheres S2

+ and S2
− onto the hemispheres ∂B3 ∩ (R2 × R≥0)

to ∂B3 ∩ (R2 × R≤0), respectively.
(3) θ is equivariant with respect to the natural (Z2)2-actions on (S2,P 0) and

(∂B3, P 0). Here the natural (Z2)2-action on (S2,P 0) is that which lifts
to the group of isometries of the Euclidean plane R2 generated by the
π-rotations around the points in (12Z)

2, and the natural (Z2)2-action on
(∂B3, P 0) is that generated by the π-rotations about the coordinate axes of
R3.

We identify (∂B3, P 0) with (S2,P 0) through the homeomorphism θ. Thus for
s ∈ Q ∪ {∞}, αs is regarded as an essential simple loop in ∂B3 − P 0, and δs is
regarded as a union of two disjoint arcs in ∂B3 such that ∂δs = P 0. Moreover, we
can choose αs and δs so that they are (Z2)2-invariant.

For a rational number r = q/p ∈ Q ∪ {∞}, let t(r) be a pair of arcs properly
embedded in B3 such that t(r) ∩ ∂B3 = ∂t(r) = P 0, which is obtained from δr by
pushing its interior into intB3. The pair (B3, t(r)) is called the rational tangle of
slope r. We may assume t(r) is invariant by the natural (Z2)2-action on B3. In
particular, the x-axis intersects t(r) transversely in two points: Let τr be the subarc
of the x-axis they bound, and call it the core tunnel of (B3, t(r)) (see Figure 4).
Two meridional circles of t(r) near ∂τr together with a subarc of τr forms a graph
in B3 − t(r) homeomorphic to a pair of eyeglasses. This determines a canonical

generating meridian pair of the rank 2 free group π1(B
3 − t(r)) ∼= π1(Š

2
)/⟨⟨αr⟩⟩.

By gluing the boundaries of the rational tangles (B3, t(∞)) and (B3, t(r)) by the
identity map, we obtain a link in the 3-sphere: we denote it by (S3,K(r)), and call
it the 2-bridge link of slope r = q/p. The number of components, |K(r)|, of K(r)
is one or two (i.e., K(r) is a knot or a two-component link) according to whether
the denominator p is odd or even. The images of the core tunnels τ∞ and τr in
(S3,K(r)) are called the upper tunnel and the lower tunnel of K(r), respectively.
We denote them by τ+ and τ−, respectively. The canonical generating meridian
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Figure 3. 2-bridge link diagram

pairs of π1(B
3 − t(∞)) and π1(B

3 − t(r)) descend to generating meridian pairs of

the link group π1(S3−K(r)) ∼= π1(Š
2
)/⟨⟨α∞,αr⟩⟩: we call them the upper meridian

pair and the lower meridian pair, respectively.
When we need to care about the orientation of the ambient 3-sphere S3, we regard

(S3,K(r)) as being obtained from (−B3, t(∞)) and (B3, t(r)), where B3 inherits
the standard orientation of R3. In other words, we identify the ambient 3-sphere
S3 with the one-point compactification R3 ∪ {∞} of R3, in such a way that the B3

containing t(r) is identified with the original round ball B3 via the identity map,
whereas theB3 containing t(∞) is identified with cl(R3∪{∞}−B3) via the inversion
ι in ∂B3. Thus K(r) = t(r) ∪ ι(t(∞)) ⊂ R3 ∪ {∞} = S3. Under this orientation
convention, a regular projection is read from the continued fraction expansion

r = [a1, a2, · · · , an] =
1

a1 +
1

a2+ .. . +
1

an

,

in such a way that ai corresponds to the ai right-hand or left-hand half-twists
according to whether i is odd or even (see Figure 3).

The natural (Z2)2-actions on (B3, t(∞)) and (B3, t(r)) can be glued to produce
a (Z2)2-action on (S3,K(r)). Let f and h be the generators of the action whose
restrictions to (B3, t(∞))) are the π-rotations about the y-axis and x-axis, respec-
tively (see Figure 4). We call f , h, and fh, respectively, the vertical involution, the
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Figure 4. Natural (Z2)2-actions on (B3, t(∞)) consisting of the ver-
tical involution f , the horizontal involution h, and the planar invo-
lution fh

horizontal involution, and the planar involution of K(r). They are characterized by
the following properties.

(1) Fix(h) contains τ+, whereas each of Fix(f) and Fix(fh) intersects τ+ trans-
versely in a single point.

(2) The horizontal simple loop α0 in ∂(B3 − t(∞)) is mapped by f to itself
preserving orientation, and it is mapped by fh to itself reversing orientation.

If the rational number r = q/p satisfies the congruence q2 ≡ 1 (mod p), thenK(r)
admits an additional orientation-preserving symmetry which interchanges (B3, t(∞))
and (B3, t(r)). For a description of such symmetries, see e.g. [4, Sections 4 and 6],
[56, Section 3].

We finally recall the classification theorem for 2-bridge links due to Schubert [60]
(cf. [17, Chapter 12]).

Proposition 2.1. For two rational numbers r = q/p and r′ = q′/p′, with p and p′

positive, the following holds.
(1) There is an orientation-preserving auto-homeomorphism ϕ of S3 which maps

K(r) to K(r′) if and only if p = p′ and either q ≡ q′ (mod p) or qq′ ≡ 1 (mod p).
Moreover the following hold.

(a) If p = p′ and q ≡ q′ (mod p), then there there is an orientation-preserving
auto-homeomorphism ϕ of S3 which maps (K(r), τ+, τ−) to (K(r′), τ+, τ−)
and respects the (Z2)2-action. Moreover, the conjugate of the vertical in-
volution of K(r) by ϕ is either the vertical or planar involution of K(r′),
according to whether q′ ≡ q (mod 2p) or q′ ≡ q + p (mod 2p).
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(b) If p = p′ and qq′ ≡ 1 (mod p), then there there is an orientation-preserving
auto-homeomorphism of S3 which maps (K(r), τ+, τ−) to (K(r′), τ−, τ+) which
respects the (Z2)2-action.

(2) There is an orientation-reversing auto-homeomorphism ϕ of S3 which maps
K(r) to K(r′) if and only if p = p′ and either q ≡ −q′ (mod p) or qq′ ≡ −1 (mod p).

3. Heckoid orbifolds and Heckoid groups

In this section, we recall the definition of Heckoid orbifolds and Heckoid groups
given by [34, Section 3].

Consider the quotient orbifold (B3 − t(∞))/(Z2)2, where (Z2)2 is the natural

action illustrated in Figure 4. Note that its boundary is identified with Š
2
/(Z2)2 ∼=

S2(2, 2, 2,∞), which is the quotient of R2 − Z2 by the group generated by the π-

rotations around the points in (12Z)
2. Note that π1(Š

2
) is identified with a normal

subgroup of π1(Š
2
/(Z2)2) of index 4. For each s ∈ Q ∪ {∞}, let βs be the simple

loop in Š
2
/(Z2)2 obtained as the projection of a line in R2 − (12Z)

2 of slope s. The

simple loop αs in Š
2
doubly covers βs, and so we have αs = β2s as conjugacy classes

in π1(Š
2
/(Z2)2).

For r ∈ Q andm ∈ N≥3, consider the 3-orbifoldB(∞; 2) := cl(B3−N(t∞))/(Z2)2,
attach a 2-handle orbifold D2(m)×I to it along the simple loop βr. Since βr divides

Š
2
/(Z2)2 ∼= S2(2, 2, 2,∞) into D2(2, 2) and D2(2,∞), the resulting 3-orbifold has a

spherical boundary S2(2, 2,m) ∼= S2/Dm, where Dm is the dihedral group of order
2m (cf. Notation 1.3(3)). Cap this spherical boundary with the 3-handle orbifold
B3(2, 2,m) ∼= B3/Dm, and denote the resulting 3-orbifold by H(r;m). (Though this
orbifold was denoted by O(r;m) in [34], we employ this symbol, because we use the
symbol O to mainly denote spherical dihedral orbifolds.) Then we have

π1(H(r;m)) ∼= π1(S
2(2, 2, 2,∞))/⟨⟨β2∞,βm

r ⟩⟩.

Let P be the annular orbifold frN(t∞)/(Z2)2 ∼= D2(2, 2) on ∂H(r;m), and continue
to denote the orbifold pair (H(r;m), P ) by the symbol H(r;m).

In [34, Section 6], it is proved that the orbifold pair H(r;m) is a pared 3-orbifold
(see [10, Definition 8.3.7]).

Definition 3.1. An orbifold pair (M0, P ) is a pared 3-orbifold if it satisfies the
following conditions

(1) M0 is a compact, orientable, irreducible 3-orbifold which is very good (i.e.,
M0 has a finite manifold cover).

(2) P ⊂ ∂M0 is a disjoint union of incompressible toric and annular 2-suborbifolds.
(3) Every rank 2 free abelian subgroup of π1(M0) is conjugate to a subgroup of

some π1(Pi), where Pi ⊂ P is a connected component.
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(4) Any properly embedded annular 2-suborbifold (A, ∂A) of (M0, P ) whose
boundary rests on essential loops in P is parallel to P .

It is also observed in [34, Section 6] that H(r;m) = (H(r;m), P ) is a Haken
pared orbifold (see [10, Definitions 8.0.1 and 8.3.7]). Hence, by the hyperbolization
theorem of Haken pared orbifolds [10, Theorem 8.3.9], the pared orbifold H(r;m)
admits a geometrically finite complete hyperbolic structure, namely, the interior
of the orbifold H(r;m) admits a geometrically finite complete hyperbolic structure
such that P represents the parabolic locus (see Section 5 for definitions).

Moreover, such a hyperbolic structure is unique, because the ends of the non-
cuspidal part of H(r;m) are isomorphic to (a turnover) × [0,∞), which are quasi-
isometrically rigid, and every orbifold homeomorphism between two geometrically
finite structures preserving the parabolicity in both directions is isotopic to a quasi-
isometry, as can be seen by the same argument as Marden’s theorem [36]. We denote
the unique (up to conjugation) Kleinian group that uniformises the pared orbifold
H(r;m) by the symbol π1(H(r;m)).

Now the Heckoid groups and the Heckoid orbifolds are defined as follows [34,
p.242 and Definition 3.2].

Definition 3.2. For r ∈ Q and n = m
2 ∈ 1

2N≥3, the Heckoid group G(r;n) of slope
r and index n is the Kleinian group that is obtained as the image of the natural
homomorphism

ψ : π1(cl(B
3 −N(t∞))) → π1(cl(B

3 −N(t∞))/(Z2)
2) → π1(H(r;m)) < PSL(2,C).

The Heckoid orbifold S(r;n) of slope r and index n is the pared orbifold, that is
obtained as the covering of the pared orbifold H(r;m) associated with the subgroup
G(r;n) < π1(H(r;m)). We also denote the Kleinian group G(r;n) by π1(S(r;n)).

Then we have the following proposition. (The main Theorem 1.1 implies that the
converse to the first assertion of the proposition holds.)

Proposition 3.3. For any r ∈ Q and n = m
2 ∈ 1

2N≥3, the Heckoid group is a
(non-free) Kleinian group with nontrivial torsion which is generated by two non-
commuting parabolic transformations. Moreover, the image of the conjugacy class of
the simple loop αr in G(r;n) is an elliptic transformation of rotation angle 2π

n = 4π
m .

Proof. Let {x, y} be the canonical generating meridian pair of the rank 2 free
group π1(cl(B

3 − N(t∞))) (see Section 2). Then G(r;n) is generated by the im-
age {ψ(x),ψ(y)} ⊂ π1(H(r;m)). Since π1(H(r;m)) is the Kleinian group which
uniformises the pared orbifold H(r;m), the generating pair of G(r;n) consists of
non-commuting parabolic transformations. Since αr = β2r and since βr is a merid-
ian of the singular set of H(r;n) of index 2n = m, it follows that ψ(αr) is an elliptic
transformation of rotation angle 2π

n = 4π
m . !
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Next, we recall the topological description of the Heckoid orbifolds. In Defini-
tion 3.2, the Heckoid orbifold S(r;n) is defined as a covering of the pared orbifold
H(r;m). Their explicit topological description is given by [34, Propositions 5.2 and
5.3], which says that the Heckoid orbifold S(r;n) is isomorphic to one of the orbifold
pairs depicted in Figure 1, that is specified by the following formula.

S(r;n) ∼=

⎧
⎪⎨

⎪⎩

M0(r;n) if n ∈ N≥2,

M1(r̂;m) if n = m/2 for some odd m > 2 and if p is odd,

M2(r̂;m) if n = m/2 for some odd m > 2 and if p is even,

where r̂ is defined from r = q/p by the following rule.

r̂ =

⎧
⎪⎨

⎪⎩

q/2
p if p is odd and q is even,

(p+q)/2
p if p is odd and q is odd,

q
p/2 if p is even.

Thus the following precise definition of the orbifold pairs in Figure 1 gives an explicit
topological picture of the Heckoid orbifold S(r;n).

Definition 3.4. (1) For r ∈ Q and for a positive integer n ≥ 2, M0(r;n) denotes
the orbifold pair determined by the weighted graph (S3,K(r)∪ τ−, w0), where w0 is
given by

w0(K(r)) = ∞, w0(τ−) = n.

(2) For r = q/p ∈ Q with p odd and an odd integer m ≥ 3, M1(r;m) denotes
the orbifold pair determined by the weighted graph (S3,K(r) ∪ τ−, w1), where w1

is given by the following rule. Let J1 and J2 be the edges of the graph K(r) ∪ τ−
distinct from τ−. Then

w1(J1) = ∞, w1(J2) = 2, w1(τ−) = m.

(3) For r = q/p ∈ Q and an odd integer m ≥ 3, M2(r;m) denotes the orbifold
pair determined by the weighted graph (S3,K(r) ∪ τ+ ∪ τ−, w2), where w2 is given
by the following rule. Let J1 and J2 be unions of two mutually disjoint edges of the
graph K(r) ∪ τ+ ∪ τ− distinct from τ±. Moreover, if p is even, then both J1 and J2
are preserved by the vertical involution f of K(r). (Thus f interchanges the two
components of each of J1 and J2.) Then

w2(J1) = ∞, w2(J2) = 2, w2(τ+) = 2, w2(τ−) = m.

In Definition 3.4(3), the ‘identity’ w2(J1) = ∞ means that w2(e) = ∞ for each
edge e contained in J1. Similarly, w2(J2) = 2 means that w2(e) = 2 for each edge e
contained in J2. We employ this kind of convention throughout the paper.
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Figure 5. The first two figures (1) and (2) illustrate Remark 3.5(2),
and the last two figures (3) and (4) illustrate Remark 3.5(3). See also
[4, Figures in Section 7].

Remark 3.5. (1) Because of the (Z2)2-symmetry of 2-bridge links, the choice of the
edges J1 and J2 in (2) and (3) does not affect the isomorphism class of the resulting
orbifolds (see [34, Remark 5.4]).

(2) Suppose p is odd. Then, in the definition of M2(r;m), the disjointness con-
dition of J1 and J2 determines the pair (J1, J2) up to the horizontal involution h of
(S3,K(r)∪ τ+ ∪ τ−). Moreover, according to whether q is odd or even, both J1 and
J2 are preserved by f or fh, respectively (see Figure 5(1),(2)).

(3) Suppose p is even. Then, in the definition of M2(r;m), the condition that
both J1 and J2 are preserved by f is not essential in the following sense. Let Ji,1 and
Ji,2 be the components of Ji for i = 1, 2, such that J1,1∩J2,1 = ∅ and J1,2∩J2,2 = ∅.
Set J ′

1 = J1,1 ∪J2,1 and J ′
2 = J1,2 ∪J2,2. Then J ′

1 and J ′
2 are unions of two mutually

disjoint edges of the graph K(r) ∪ τ+ ∪ τ− distinct from τ±, such that both J ′
1 and

J ′
2 are preserved by the planar involution fh, instead of the vertical involution f

(see Figure 5(3),(4)). Let w′
2 be the weight function on the graph K(r) ∪ τ+ ∪ τ−

defined by

w′
2(J

′
1) = ∞, w′

2(J
′
2) = 2, w′

2(τ+) = 2, w′
2(τ−) = m.

Then (S3,K(r) ∪ τ+ ∪ τ−, w′
2) represents the orbifold M2(r′;m), where r′ = (p +

q)/p for r = q/p. This follows from the fact that there is a homeomorphism from
(S3,K(r)∪ τ+ ∪ τ−) to (S3,K(r′)∪ τ+ ∪ τ−) sending (τ±, J1, J2) to (τ±, J ′

1, J
′
2) (see

Proposition 2.1(1a)).

4. Classification of dihedral orbifolds

In this section, we give a classification of the dihedral orbifolds, which plays a
key role in the proof of the main theorem. We refer to [8, 9, 20] for standard
terminologies for orbifolds.
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By using the the orbifold theorem, the geometrisation theorem of compact ori-
entable 3-manifolds, and the classification of geometric dihedral orbifolds (see Ap-
pendix), we obtain the following classification of good orbifolds with dihedral orb-
ifold fundamental groups.

Theorem 4.1. Let O be a compact orientable 3-orbifold with nonempty singular set
satisfying the following conditions.

(i) O does not contain a bad 2-suborbifold.
(ii) Any component of ∂O is not spherical.
(iii) π1(O) is a dihedral group.

Then O is isomorphic to one of the following orbifolds.

(1) The spherical dihedral orbifold O(r; d+, d−) represented by the weighted graph
(S3,K(r)∪ τ+∪ τ−, w) for some r ∈ Q and coprime positive integers d+ and
d−, where w is given by the following rule (see Figure 6).

w(K(r)) = 2, w(τ+) = d+, w(τ−) = d−.

(2) The S2×R orbifold O(∞) represented by the weighted graph (S3,K(∞), w),
where w takes the value 2 at each component of the 2-bridge link K(∞) of
slope ∞, i.e. the 2-component trivial link.

(3) The S2×R orbifold O(RP3, O) represented by the weighted graph (RP3, O,w),
where O is the trivial knot in the projective 3-space RP3 with w(O) = 2.

(4) The orbifold D2(2, 2)× I.

Remark 4.2. For the orbifold O(r; d+, d−), if d+ = 1 (resp. d− = 1), then τ+
(resp. τ−) does not belong to the singular set (cf. Convention 6.2(1)). In particular,
O(r) := O(r; 1, 1) is the π-orbifold associated with the 2-bridge link K(r) in the
sense of [11], i.e. the orbifold with underlying space S3 and with singular set K(r),
whose index is 2. In Adam’s classification of torsion-free Kleinian groups generated
by two parabolic transformations [1, Theorem 4.3], the π-orbifolds O(r) played a
key role, whereas the orbifolds O(r; d+, d−) play the corresponding key role in this
paper.

Proof. Let O be a 3-orbifold satisfying the three conditions. We first treat the
case where O is irreducible, i.e., any spherical 2-suborbifold of O bounds a discal
3-suborbifold (a quotient of a 3-ball by a finite orthogonal group). We can observe
that O is topologically atoroidal as follows. Suppose on the contrary that O contains
an essential toric suborbifold F . Then the inclusion map induces an injective ho-
momorphism from π1(F ) into π1(O), as explained below. Since O does not contain
a bad 2-suborbifold by the condition (i), O is very good, by [8, Corollary 1.3]. Thus
by applying the equivariant loop theorem to the group action, π1(F ) embeds into
π1(O) (see [9, Corollary 3.20]). This contradicts the fact that the dihedral group
π1(O) does not contain Z2.
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Figure 6. The spherical dihedral orbifold O(r; d+, d−)

Hence, by the orbifold theorem [8, Corollary 1.2], O is geometric, i.e., either intO
admits one of Thurston’s geometries or O is a discal 3-orbifold. The latter possibility
does not happen by the assumption (ii), and so intO admits one of Thurston’s
geometry. If the geometry is S3, then by Proposition 12.2, O is isomorphic to the
orbifold O(r; d+, d−) in (1). If the geometry is S2 × R, then by Proposition 13.1,
O is isomorphic to the orbifold O(∞) in (2) or the orbifold O(RP3, O) in (3). (But
this does not happen, because these orbifolds are reducible whereas we currently
assume that O is irreducible.) If the geometry is one of the remaining 6 geometries,
then by Proposition 13.2, O is isomorphic to the orbifold D2(2, 2)× I in (4).

Next, we treat the case when O is reducible. Note that O does not contain a non-
separating spherical 2-suborbifold, because H1(O) is finite. Thus we do not need to
worry about the paradoxical problems concerning spherical splitting of 3-orbifolds
pointed out by Petronio [50]. By [50, Theorems 0.1], there is a finite system of
spherical 2-suborbifolds S such that (a) no component of O − S is punctured discal
(a discal 3-orbifold minus regular neighbourhoods of a finite set) and (b) all prime
factors of O (the orbifolds obtained from the components of O − S by capping the
boundary components with discal orbifolds) are irreducible. It should be noted that
some prime component may be a manifold, i.e., its branching locus is empty. By
Perelman’s geometrisation theorem of compact orientable 3-manifolds [47, 48, 49]
(see also [7, 18, 32, 44, 45]) and the the geometrisation theorem of compact orientable
3-orbifolds (see e.g. [9, Theorem 3.27]), each prime component of O admits a canon-
ical decomposition into geometric pieces by a family of essential toric 2-orbifolds. In
particular, each prime factor has a nontrivial orbifold fundamental group. Since the
only nontrivial free product decomposition of a dihedral group is the decomposition
of the infinite dihedral group D∞ into the free product Z2 ∗ Z2, O is the connected
sum (along a 2-sphere with empty branching set) of two irreducible 3-orbifolds O1

and O2, such that π1(Oi) ∼= Z2. Since Oi is geometric, Oi is isomorphic to (a) the
discal 3-orbifold B3/Z2, (b) the orbifold (S3, O, w), where O is a trivial knot and
w(O) = 2, or (c) RP3. By condition (ii), Oi cannot be a discal orbifold. Since
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O = O1#O2 has nonempty ramification locus, at least one of Oi is not isomorphic
to RP3. Hence, O is isomorphic to the orbifold (S3, O,w)#(S3, O, w) ∼= O(∞) in
(2) or the orbifold (S3, O, w)#RP3 ∼= O(RP3, O) in (3). !
Remark 4.3. By considering the image of O(r; d+, d−) by a π-rotation about a
horizontal axis in Figure 6, we can interchange the role of d+ and d−. To be precise,
we can see from Proposition 2.1(1b) that O(q/p; d+, d−) ∼= O(q′/p; d−, d+) if qq′ ≡ 1
(mod p).

5. Relative tameness theorem for hyperbolic orbifolds

We first recall basic terminology for hyperbolic orbifolds, following [9, Chapter 6].
Let Γ be a finitely generated Kleinian group and M = H3/Γ the quotient hyperbolic
orbifold. For a real number ϵ > 0, the ϵ-thin part M(0,ϵ] of M is the set of all points
x ∈ M such that d(x̃, γx̃) ≤ ϵ for some lift x̃ of x to H3 and some γ ∈ Γ of order > 1/ϵ
(including ∞). By the Margulis Lemma, there is a constant µ > 0, such that for
any real number ϵ ∈ (0, µ], each component X of M(0,ϵ] is either a Margulis tube or
a cuspidal end. Here a Margulis tube is a compact quotient of the r-neighbourhood
of a geodesic in H3 by an elementary subgroup of Γ which preserves the geodesic,
and a cuspidal end is the quotient of a horoball in H3 by an elementary parabolic
subgroup of Γ which preserves the horoball.

Topologically, a cuspidal end is a product F × [0,+∞), where F is a Euclidean
2-orbifold. Thus we have the following possibilities for F .

(1) F is the open annulus S1 × R or S2(2, 2,∞), the quotient of S1 × R by an
involution.

(2) F is the torus T 2 or S2(2, 2, 2, 2), the quotient of T 2 by an involution.
(3) F is S2(2, 3, 6), S2(2, 4, 4) or S2(3, 3, 3), the quotient of T 2 by a finite cyclic

group action of order 6, 4 or 3, respectively.

A cusp F × [0,+∞) is said to be rigid if F ∼= S2(2, 3, 6), S2(2, 4, 4) or S2(3, 3, 3).
Otherwise it is said to be flexible. It is well-known that a cusp F × [0,+∞) is
rigid if and only if the holonomy representation of the orbifold fundamental group
π1(F × [0,+∞) admits no nontrivial deformation (see [39, Proposition 1]).

Let M cusp
(0,ϵ] be the union of the cuspidal ends of M(0,ϵ], and let M0 := M−intM cusp

(0,ϵ]
be the non-cuspidal part of M . Then P := ∂M0 is a disjoint union of euclidean 2-
orbifolds, and is called the parabolic locus of M0. Note that M ∼= intM0 and that
P consists of (closed) toric orbifolds (closed 2-orbifolds obtained as quotients of
the 2-dimensional torus) and open annular orbifolds (open 2-orbifolds obtained as
quotients of the open annulus S1 × R).

The following theorem is an orbifold version of (the relative version of) the tame-
ness theorem established by Agol [2] and Calegari-Gabai [19] (see also Soma [62]
and Bowditch [15]).
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Theorem 5.1. Let M = H3/Γ be a hyperbolic 3-orbifold with finitely generated
orbifold fundamental group Γ. Then there is a compact 3-orbifold M̄0 and a compact
suborbifold P̄ of ∂M̄0, such that (i) int M̄0 = intM0

∼= M and (ii) the interior of P̄
in ∂M̄0 is equal to P = ∂M0.

Proof. We give a proof following the arguments of Bowditch [15, Section 6.6] (cf.
[2, Lemma 14.3]). By Selberg’s lemma, M admits a finite regular manifold cover,
namely there is a complete hyperbolic manifoldN and a finite groupG of orientation-
preserving isometries of N such that N/G ∼= M . The inverse image, N0, of M0 in
N forms a G-invariant non-cuspidal part of N , and we have N0/G ∼= M0. By the
relative version of the tameness theorem [19, Theorem 7.3] (cf. [15, Section 6]),
there is a compact 3-manifold N̄0 and a compact submanifold Q̄ of ∂N̄0, such that
(i) int N̄0 = intN0 and (ii) the interior of Q̄ in ∂N̄0 is equal to ∂N0. Let D(N0) and
be the double of N0 along ∂N0. Then the action of G on N0 extends to an action
on D(N0), and D(N0)/G is isomorphic to the double, D(M0), of M0 along ∂M0.
Consider the double, D(N̄0), of N̄0 along Q̄. Then D(N̄0) is a compact manifold
with interior D(N0). By [42, Theorem 8.5], the action of G on D(N0) extends to an
action on D(N̄0), and int(D(N̄0)/G) = D(N0)/G is identified with D(M0). Let M̄0

be the closure in D(N̄0)/G of one of the two copies of M0 in D(M0) ⊂ D(N̄0)/G,
and let P̄ be the image of Q̄ ⊂ D(N̄0) in D(N̄0)/G. Then the pair (M̄0, P̄ ) satisfies
the desired conditions. !

The above theorem together with the following theorem enables us to reduce the
treatment of geometrically infinite case to that of geometrically finite case.

Theorem 5.2. Under the setting of Theorem 5.1, (M̄0, P̄ ) is a pared orbifold. More-
over, the pared orbifold (M̄0, P̄ ) admits a geometrically finite complete hyperbolic
structure. Namely, there is a geometrically finite Kleinian group Γ′ such that (i) the
orbifold H3/Γ′ is isomorphic to the orbifold int M̄0

∼= M and (ii) P is the parabolic
locus of Γ′.

Proof. The first assertion that (M̄0, P̄ ) is a pared orbifold can be proved as in the
proof of [43, Corollary 6.10 in Chapter V]. So we prove the second assertion that
the pared orbifold (M̄0, P̄ ) admits a geometrically finite hyperbolic structure. If
the orbifold M̄0 is Haken in the sense of [10, Definition 8.0.1] then it follows from
[10, Theorem 8.3.9] that the pared orbifold (M̄0, P̄ ) admits a geometrically finite
hyperbolic structure, as desired. So we may assume the orbifold M̄0 is non-Haken,
i.e., either it contains no essential 2-suborbifold or it contains an essential turnover.
In the first case, ∂M0 consists only of turnovers by [9, Proposition 9.4]. This implies
that every end of M ∼= int M̄0 has a neighbourhood isomorphic to the product of
(a turnover)× [0,∞). Since a hyperbolic turnover is always realised by a totally ge-
odesic surface, each end has a neighbourhood containing no closed geodesics. Thus
every end of the hyperbolic orbifold M is geometrically finite and rigid. Thus M
admits a unique complete hyperbolic structure, and it is geometrically finite. In the
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latter case, by the turnover splitting theorem [9, Theorem 4.8], M̄0 admits a de-
composition by a finite disjoint family of essential hyperbolic turnovers into Haken
orbifolds and small orbifolds. By the orbifold theorem, each piece admits a geomet-
rically finite hyperbolic structure, respecting the parabolic locus. By gluing these
hyperbolic structures along the totally geodesic hyperbolic turnovers, we obtain a
geometrically finite hyperbolic structure on (M̄0, P̄ ). !
Remark 5.3. In [2], Agol suggested to prove the last assertion of Theorem 5.2 by
using a relative version of the work of Feighn and Mess [23, Theorem 2] which proves
the existence of a compact core of an orbifold M = H3/Γ with a finitely generated
orbifold fundamental group Γ. Such a relative version is proved by Matsuzaki [39,
Lemma 2] under the assumption that Γ is indecomposable (over finite cyclic groups
and with respect to the parabolic subgroups) in the sense of [39, Definition in p.26].
But we are not sure if non-free two-parabolic generator Kleinian groups satisfy this
property. Though Theorem 5.1, which is proved by using the deep tameness theorem,
of course, guarantees the existence of a relative core of complete hyperbolic orbifolds
with finitely generated fundamental groups, we are not sure if more ‘elementary’
proof is possible.

6. Orbifold surgery

In this section, we introduce a convenient method for representing pared orbifolds
by weighted graphs, generalising the convention in the introduction (Convention
6.1). Then we introduce the concept of an orbifold surgery (Definition 6.3), which is
a key ingredient of the proof of the main theorem, and prove a basic Lemma 6.4 for
the orbifold surgery. At the end of this section, we also state another basic Lemma
6.5 concerning the Z2-homology of an orbifold, which is repeatedly used in the proof
of the main theorem.

Convention 6.1. Consider a triple (W,Σ, w), where W is a compact oriented 3-
manifold, Σ is a finite trivalent graph properly embedded in W , and w is a function
on the edge set of Σ which takes value in N≥2 ∪ {∞}. Here, a loop component of
Σ is regarded as a single edge, Σ ∩ ∂W is the set of degree 1 vertices of Σ, and all
other vertices have degree 3. For each edge e of Σ, its value w(e) by w is called
the weight of the edge. We call the triple (W,Σ, w) a weighted graph and call w the
weight function of the weighted graph. Let Σ∞ be the subgraph of Σ consisting of
the edges with weight ∞, and let Σs be the subgraph of Σ consisting of the edges
with integral weight.

We regard each component, F , of ∂W as a 2-orbifold as follows: the underlying
space is the complement of an open regular neighbourhood of F ∩Σ∞ in F , and the
singular set is F ∩ Σs, where the index of a singular point is given by the weight
of the corresponding edge of Σs. We assume that the following condition (SC) is
satisfied.
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(SC) For any sphere component S of ∂W , the corresponding 2-orbifold is not a
bad orbifold, a spherical orbifold, a discal orbifold, nor an annulus. Namely,
(i) |S ∩ W | ≥ 3 and (ii) if |S ∩ W | = 3 then

∑3
i=1

1
w(ei)

≤ 1, where ei
(i = 1, 2, 3) are the (germs of) edges of Σ which have an endpoint in F .

A trivalent vertex v of Σ is said to be spherical, euclidean or hyperbolic according
to whether

∑3
i=1

1
w(ei)

is bigger than, equal to, or smaller than 1, where ei (i = 1, 2, 3)

are the (germs of) edges incident on v. Let VE (resp. VH) be the set of the euclidean
(resp. hyperbolic) vertices.

Let M0 be the complement of an open regular neighbourhood of Σ∞ ∪ VE ∪ VH

in M . Then M0 has the structure of an orbifold, with singular set Σ0 := M0 ∩ Σs,
where the indices of the edges of Σ0 are given by w.

For each edge e of Σ∞, let me ⊂ ∂M0 be a meridian loop of e, let P∞ be the
disjoint union of the regular neighbourhoods in ∂M0 of me, where e runs over the
edges of Σ∞. The condition (SC) implies that each component of cl(∂M0 − P∞)
is either a euclidean or hyperbolic 2-orbifold. Let P be the union of P∞ and the
euclidean components of cl(∂M0 − P∞). Then P is a disjoint union of euclidean
2-orbifolds.

We call (M0, P ) the orbifold pair determined by the weighted graph (M,Σ, w).

Convention 6.2. It is sometimes convenient to employ the following slight exten-
sion of Convention 6.1.

(1) We allow w to have an edge e with w(e) = 1. In this case, we consider the
weighted graph (W,Σ′, w′), where Σ′ is the subgraph of Σ consisting of those edges
with w(e) ̸= 1 and w′ is the restriction of w to Σ′. If Σ′ is also trivalent graph
properly embedded in W and the condition (SC) is satisfied, then we define the
orbifold pair determined by (W,Σ, w) to be that determined by (W,Σ′, w′).

(2) We allow a quadrivalent vertex, v, such that the four edge germs incident on
it have index 2. In this case, v represents a parabolic locus, P (v), isomorphic to
S2(2, 2, 2, 2).

A key ingredient of the proof of the main theorem is an orbifold surgery.

Definition 6.3. Let (M0, P ) be a pared orbifold, represented by a weighted graph
(W,Σ, w) satisfying the condition (SC). By replacing the weight function w with
another weight function w′ (which also takes value in N≥2∪{∞}), we obtain another
weighted graph (W,Σ, w′). This fails to satisfy the condition (SC) only when some
sphere component S of the topological boundary ∂W determines a spherical 2-
orbifold with three singular points. In this case, we cap all such sphere boundaries
of W with a cone over (S, S ∩ Σ) to obtain a new weighted graph, which we call
the augmentation of (W,Σ, w′). It satisfies the condition (SC), and determines an
orbifold pair (N0, Q). We call the 3-orbifold O := N0 the orbifold obtained from
(M0, P ) by the orbifold surgery determined by the replacement of the weight function
w with the new weight function w′.
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The following simple lemma is used repeatedly in the proof of the main theorem.

Lemma 6.4. Let (M0, P ) be a pared orbifold, and let O be the orbifold obtained
from (M0, P ) by an orbifold surgery. Then O does not contain a bad 2-suborbifold
and ∂O does not contain a spherical component. In particular, O is very good.

Proof. Let (W,Σ, w) be a weighted graph representing the pared orbifold (M0, P ),
and let w′ be the weight function on Σ that gives the orbifold O = N0, where (N0, Q)
is the orbifold pair that is represented by the augmentation of (W,Σ, w′). Assume
to the contrary that N0 contains a bad 2-suborbifold, S, which is either a teardrop
S2(n) or a spindle S2(m,n) for some integers m > n ≥ 2. Since the underlying space
|S| is disjoint from the vertex set of the singular set, Σ(N0), of N0, we may assume
|S| is a submanifold of W transversal to Σ. Then it determines a suborbifold, S∗, of
M0, such that |S∗| = |S| ∩ |M0|. The singular set of S∗ is equal to |S∗| ∩ Σs, where
Σs is the subgraph of Σ consisting of the edges of integral w-weight, and the index
of each singular point is given by the w-weight of the corresponding edge of Σs.

First, suppose that S ∼= S2(n) for n ≥ 2. Let e be the edge of Σ such that |S|∩ e
is the singular point of S. If e is an edge of Σs, then S∗ is isomorphic to the teardrop
S2(w(e)), which contradicts the fact that M0 is good. If e is an edge of Σ∞, then
S∗ is a disc whose boundary is an essential simple loop on P . This contradicts the
fact that P is incompressible in M0.

Next, suppose that S ∼= S2(m,n) for m > n ≥ 2. Let e1 and e2 be the edges of
Σ corresponding to the singular point of S of index m and n, respectively. Then
w′(e1) = m ̸= n = w′(e2), and so e1 and e2 are distinct. If both e1 and e2 are
contained in Σs, then S∗ ∼= S2(m∗, n∗) for some m∗, n∗ ≥ 2. Since M0 does not
contain a bad 2-suborbifold, m∗ and n∗ must be equal, and hence S∗ is an spherical
suborbifold of M0. Since M0 is irreducible, S∗ bounds a discal 3-orbifold. This
implies e1 and e2 determine the same edge of Σ(N0). By the condition (SC), this
in turn implies e1 = e2, a contradiction. If exactly one of e1 and e2 is contained in
Σs, then S∗ is a discal orbifold whose boundary is an essential simple loop on P .
This contradicts the assumption that P is incompressible in M0. If none of e1 and
e2 is contained in Σs, then S∗ is an annulus whose boundary consists of a pair of
essential simple loops on P . Thus S∗ is parallel to P by Definition 3.1(4), and so
e1 = e2, a contradiction.

Thus we have proved that O = N0 does not contain a bad 2-suborbifold. The
assertion that ∂O does not contain a spherical orbifold follows from the fact that
O = N0 is represented by the augmentation of (W,Σ, w′). The assertion that O
is very good follows from [8, Corollary 1.3], which is a consequence of the orbifold
theorem. !

Another key tool for the proof of the main theorem is the homology with Z2

coefficient. Under Notation 1.3, we have the following lemma, which can be easily
deduced from the definition of H1(O;Z2) and the Alexander duality.
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Lemma 6.5. Suppose an orbifold O is represented by a weighted graph (S3,Σ, w)
in S3. Let Σeven be the subgraph of Σ spanned by the edges of even weight. Then
H1(O;Z2) is determined by H1(Σeven;Z2). To be precise, we have the following
natural isomorphisms.

H1(O;Z2) ∼= H1(S
3 − Σeven;Z2) ∼= H1(Σeven;Z2) ∼= Hom(H1(Σeven;Z2),Z2)

In particular, the following hold.

(1) H1(O;Z2) is generated by the meridians of edges of Σeven.
(2) The meridian of an edge of Σ of odd degree represents the trivial element of

H1(O;Z2).
(3) Let ei (i = 1, 2, 3) be edges of Σ incident on a vertex of Σ, and suppose that

w(e1) is odd and w(e2) and w(e3) are even. Then the meridians of e2 and
e3 represent the same element of H1(O;Z2).

7. Canonical horoball pairs for Kleinian groups generated by two
parabolic transformations

Throughout Sections 7 ∼ 11, Γ = ⟨α,β⟩ denotes a non-elementary Kleinian group
generated by two parabolic transformations α and β, and M = H3/Γ denotes the
quotient hyperbolic 3-orbifold. Let η be the geodesic joining the parabolic fixed
points of α and β, and let h be the π-rotation around η. Then we have

(hαh−1, hβh−1) = (α−1,β−1).

We call h the inverting elliptic element for the parabolic generating pair {α,β} of the
Kleinian group Γ. As shown in [64, Section 5.4], we can find a geodesic intersecting
η orthogonally, such that the π-rotation, f , around it satisfies the following identity.

(fαf−1, fβf−1) = (β,α).

We call f the exchanging elliptic element for the parabolic generating pair {α,β} of
the Kleinian group Γ. It should be noted that fh is the exchanging elliptic element
for the parabolic generating pair {α,β−1} of Γ.

By abuse of notation, we denote the isometries of M induced by f and h by the
same symbols f and h, respectively. Each of them is either the identity map or a
(nontrivial) involution of M , i.e., its order is 1 or 2. We call the isometries f and
h, the exchanging involution and the inverting involution of M associated with the
parabolic generating pair {α,β}. It should be noted that if Γ is isomorphic to a
hyperbolic 2-bridge link group G(K(r)) and {α,β} is the upper-meridian pair, then
the involutions f and h on M ∼= S3 −K(r) are the restrictions of the vertical and
horizontal involutions of K(r) (see Figure 4). This is the reason why we use the
symbols f and h with two different meanings.

Let Γ̂ := ⟨Γ, f⟩ be the group generated by Γ and the exchanging elliptic element
f associated with the parabolic generating pair {α,β} of Γ. Then Γ̂ is a Kleinian
group which is either equal to Γ or a Z2-extension of Γ according to whether f
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belongs to Γ or not. Let M̂ := H3/Γ̂ be the quotient hyperbolic orbifold, and let
Ĉα,β be the maximal cusp of M̂ corresponding to the conjugacy class of Γ̂ containing

both α and β = fαf−1. Then the inverse image p−1(Ĉα,β) of Ĉα,β by the projection

p : H3 → M̂ is a union of horoballs with disjoint interiors but whose boundaries
have nonempty tangential intersections. We call it the canonical horoball system
associated with the parabolic generating pair {α,β} of Γ. If a parabolic element γ
of Γ stabilises a member of the canonical horoball system, we denote the horoball
by Hγ . We denote the translation length of γ on the horosphere ∂Hγ by the symbol
|γ| = |γ|∂Hγ , and call it the length of γ in the canonical horosphere. We call the pair
(Hα, Hβ) the canonical horoball pair for the parabolic generating pair {α,β} of the
Kleinian group Γ.

Note that the definition of |γ| depends on the parabolic generating pair {α,β}, be-
cause the exchanging elliptic element f is involved in the definition. However, it ac-
tually depends only on the pair {Fix(α),Fix(β)}, because any orientation-preserving
isometry, which exchanges Fix(α) and Fix(β), also exchanges the members Hα and
Hβ of the canonical horoball pair associated with {α,β}. (Otherwise, the product
of f and an unexpected involution, which exchanges Fix(α) and Fix(β) but does not
exchange Hα and Hβ , gives a loxodromic transformation which fixes the parabolic
fixed points Fix(α) and Fix(β). This contradicts the assumption that Γ is discrete.)

The following lemmas are proved by Adams [1, Lemma 3.1, Theorem 3.2, and
p.197] (see also Brenner [16]). Since they holds a key to the proof of the main
theorem and since we described the setting in a slightly different way, we include
the proof.

Lemma 7.1. Under the above setting, the following hold.

(1) For any parabolic element γ ∈ Γ which stabilises a member of the canonical
horoball system, we have |γ| ≥ 1.

(2) 1 ≤ |α| = |β|.
(3) If Γ is non-free then |α| = |β| < 2.

Proof. (1) We may assume ∂Hγ is the horosphere C × {1} in the upper half space
model H3 = C×R+. Then some other member, Hg, of the canonical horoball system
touches ∂Hγ and hence has Euclidean diameter 1. Since γ(Hg) = Hγgγ−1 is also
a member of the canonical horoball system, Hg and γ(Hg) have disjoint interiors.
Hence we have |γ| ≥ 1.

(2) Since α and β are conjugate in Γ̂, |α| and |β| are equal. Moreover, |α| = |β|
is ≥ 1 by (1).

(3) We refer the proof to [1, Theorem 3.2] and Brenner [16]. !

Lemma 7.2. Both α and β are primitive in Γ.
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Proof. If Γ is a free, then the assertion follows from the fact that any member of
a free-generating system of a free group is primitive. So, we may assume Γ is non-
free. Suppose on the contrary that one of the two elements, say α, is imprimitive,
namely there is an element α0 ∈ Γ and an integer n ≥ 2 such that α = αn

0 . Then
|α| = n|α0| ≥ n ≥ 2 by Lemma 7.1(1). But, this contradicts Lemma 7.1(3). !

8. Outline of the proof of Theorem 1.1

We now state an outline of the proof of Theorem 1.1. Since the if part is clear (cf.
Proposition 3.3), we prove the only if part. To this end, we summarise the setting
of Theorem 1.1.

Assumption 8.1. Let Γ = ⟨α,β⟩ be a non-free Kleinian group generated by two
non-commuting parabolic transformations α and β, and let M = H3/Γ be the
quotient hyperbolic orbifold. Let M0 be the non-cuspidal part of M , and P = ∂M0

the parabolic locus. By Theorem 5.1, (M0, P ) admits a relative compactification
(M̄0, P̄ ), which is a pared orbifold by Theorem 5.2. The pared orbifold (M̄0, P̄ ) can
be represented by a weighted graph (W,Σ, w), where W is a compact 3-manifold,
Σ is a trivalent graph properly embedded in W , and w is a weight function on the
edge set of Σ (see Convention 6.1). We abuse notation to denote the (compact)
pared orbifold (M̄0, P̄ ) by (M0, P ). We denote the components of P̄ , which is now
denoted by P , corresponding to the cusps Cα and Cβ by Pα and Pβ , respectively.

Outline of the proof of Theorem 1.1. Under Assumption 8.1, the proof is divided
into the following two cases.

Case 1. Pα
∼= Pβ is a flexible cusp (Section 9 for generic case and Section 11 for

exceptional case).
Case 2. Pα

∼= Pβ is a rigid cusp (Section 10).

In both cases, the first task is to find an orbifold surgery that yields an orbifold
O with dihedral orbifold fundamental group.

In Case 1, this can be generically done by using Lemma 7.2. In fact, if Pα
∼= Pβ

is a flexible cusp, then Lemma 7.2 implies that each of the parabolic elements α and
β can be represented by simple loops of Pα and Pβ , respectively. Generically, these
simple loops are disjoint, and such an surgery obviously exists. This generic case is
treated in Section 9.

However, there is an exceptional case where Pα = Pβ
∼= S2(2, 2, 2, 2) and the

simple loops representing α and β intersect nontrivially (Lemma 9.1). In this case,
the exchanging elliptic element f does not belong to Γ, and we need to consider
the Z2-extension Γ̂ := ⟨Γ, f⟩ of Γ and consider the corresponding pared orbifold
(M̂0, P̂ ) := (M0, P )/f , where P̂αβ is isomorphic to the rigid cusp S2(2, 4, 4). The
treatment of this case is deferred to Section 11, after the treatment of the rigid cusp
Case 2 in Section 10, described below.
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In Case 2, if Pα
∼= Pβ is isomorphic to either S2(2, 4, 4) or S2(2, 3, 6), the dihedral

surgery can be found by using an estimate of the shortest, second shortest, and third
shortest lengths of parabolic elements on the maximal rigid cusp, which in turn is
based on Lemma 7.1. If Pα

∼= Pβ is isomorphic to S2(3, 3, 3), the inverting parabolic
element h does not belong to Γ, and we consider the Z2-extension Γh := ⟨Γ, h⟩ and
the corresponding pared orbifold (Mh,0, Ph) := (M0, P )/h. The images of Pα and
Pβ in this quotient are isomorphic to S2(2, 3, 6), and this case can be treated by
using arguments in the case where Pα

∼= Pβ
∼= S2(2, 3, 6).

After finding an orbifold surgery that yields an orbifold O with dihedral orb-
ifold fundamental group, we can appeal to the classification Theorem 4.1 of the
dihedral orbifolds, because Lemma 6.4 guarantees that the orbifold O satisfies the
three conditions in Theorem 4.1. So, O belongs to the list in the theorem. The
original pared orbifold (M0, P ) is obtained from the dihedral orbifold O by inverse
surgery operations. Through case-by-case arguments, by using the homology with
Z2-coefficients, a result concerning the symmetries of the spherical dihedral orbifold
(Corollary 12.7), and a ‘surgery trick’ (the last paragraph in Case 1 in Section 10
and Case 1 in Section 11), we prove the following.

(1) If Pα
∼= Pβ is a flexible cusp, then, in the generic case, the pared orbifold

(M0, P ) is isomorphic to either a hyperbolic 2-bridge link exterior or a Heck-
oid orbifold (Section 9): in the exceptional case, we encounter a contradiction
(Section 11).

(2) If Pα
∼= Pβ is a rigid cusp, then we encounter a contradiction (Section 10).

This ends an outline of the proof of the main Theorem 1.1. !

9. Proof of Theorem 1.1 - flexible cusp: generic case -

Under Assumption 8.1, suppose that Pα
∼= Pβ is a flexible cusp. Then the 2-

orbifold Pα
∼= Pβ is isomorphic to the torus T 2, the pillowcase S2(2, 2, 2, 2), the

annulus A2, or D2(2, 2). The following fact is the starting point of this section.

Lemma 9.1. Under the above setting, α and β are represented by simple loops on
Pα and Pβ, respectively. Moreover, if Pα = Pβ, then one of the following holds.

(1) The parabolic elements α and β are represented by the same (possibly oppo-
sitely oriented) simple loop.

(2) Pα = Pβ
∼= S2(2, 2, 2, 2), f /∈ Γ, and Pα/f = Pβ/f ∼= S2(2, 4, 4), where the

first f is the exchanging elliptic element associated with {α,β} and the last
two f ’s denote the involution on (M0, P ) induced by the exchanging elliptic
element f (see Figure 11).

Proof. The first assertion directly follows from Lemma 7.2, because any primitive
parabolic element in the orbifold fundamental group of the 2-dimensional orbifold
T 2, S2(2, 2, 2, 2), A2, or D2(2, 2) is represented by a simple loop on the 2-orbifold.
For the proof of the second assertion, suppose that Pα = Pβ . If the exchanging
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elliptic element f belongs to Γ, then β is conjugate to α in Γ, and so they are
represented by the same simple loop. Thus we may suppose f /∈ Γ. Then f de-
scends to a nontrivial orientation-preserving involution on M , which we continue to
denote by f , on the flexible cusp Pα. By the classification of orientation-preserving
involutions on flexible cusps, we can observe that either (a) the involution f on
M0 preserves or reverses the homotopy class of each essential simple loop on Pα,
or (b) Pα

∼= S2(2, 2, 2, 2) and Pα/f ∼= S2(2, 4, 4). In the first case, α and β±1 are
represented by the same simple loop, and so we obtain the desired conclusion. !

In this section, we treat the case where either Pα ̸= Pβ or Pα = Pβ and the
conclusion (1) in Lemma 9.1 holds. Thus we assume the following condition in the
remainder of this section. The other case is treated in Section 11.

Assumption 9.2. Under Assumption 8.1, we further assume that (a) Pα
∼= Pβ is

a flexible cusp and that (b) either Pα ̸= Pβ or Pα = Pβ and the conclusion (1) in
Lemma 9.1 holds. It should be noted that either α and β are represented by disjoint
simple loops or they are represented by the same (possibly oppositely oriented)
simple loop.

Under this assumption, we can apply an orbifold surgery on (M0, P ) to the pared
orbifold (M0, P ) to obtain a dihedral orbifold, O, as follows. Note that Assump-
tion 9.2 implies that the pared orbifold (M0, P ) is represented by a weighted graph
(W,Σ, w̃), such that there are (possibly identical) edges eα and eβ of Σ whose merid-
ians represent α and β, respectively. Let w be a weight function on Σ which is
identical with w̃, except that w(eα) = w(eβ) = 2. Then the orbifold O represented
by the augmentation of the weighted graph (W,Σ, w) is a result of an “order 2”
orbifold surgery on (M0, P ), and π1(O) is dihedral, as shown below.

Note that there is a natural epimorphism from Γ = π1(M0) to π1(O), and the
images of α and β in π1(O) have order ≤ 2. Moreover, the images of α and β have
the same order, because (a) if f ∈ Γ then α and β are conjugate in Γ and so in
π1(O), and (b) if f /∈ Γ then f descends to an involution on O which interchanges
the images of α and β. So π1(O) is either the trivial group or a dihedral group.
Since O is very good by Lemma 6.4 and since O has nonempty singular set, π1(O)
is nontrivial and so isomorphic to a dihedral group.

Thus O satisfies the three conditions in Theorem 4.1 and so O belongs to the list
in the theorem. We have the following lemma.

Lemma 9.3. The orbifold O is isomorphic to the spherical dihedral orbifold O(r; d+, d−)
for some r ∈ Q and coprime positive integers d+ and d−.

Proof. We show that the possibilities (2), (3) and (4) in Theorem 4.1 cannot happen.
Suppose (2) happens. Then we can see that one of the following holds, by recalling
the fact that O is obtained from the pared orbifold (M0, P ) an order 2 orbifold
surgery.
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(i) M0 is the exterior of the two-component trivial link, P = ∂M0, and the singular
set of M0 is empty.

(ii) The underlying space of M0 is the solid torus (the exterior of a trivial knot),
P = ∂M0, and the singular set is a trivial knot in the solid torus with index 2.

In each case, (M0, P ) is reducible, a contradiction.
By the same reasoning, we can see that (3) cannot happen.
If (4) happens, then as in the above, we can see that one of the following holds,

where (B3, t1 ∪ t2) is a two-strand trivial tangle.

(i) (M0, P ) ∼= (cl(B3 − N(t1 ∪ t2)), frN(t1 ∪ t2)) and the singular set of M0 is
empty.

(ii) (M0, P ) ∼= (cl(B3−N(t1)), frN(t1)) and the singular set of M0 is t2 with index
2.

In the first case, Γ = π1(M0) is a rank 2 free group, which contradicts the assumption
that Γ is non-free. In the second case, note that H1(M0), the abelianization of the
orbifold fundamental group π1(M0), is Z ⊕ Z2. On the other hand, both α and β
are represented by the core loop of the annulus P = frN(t1), and the pair {α,β}
cannot generate H1(M0), a contradiction. !

By Lemma 9.3, the original orbifold (M0, P ) is recovered from O = O(r; d+, d−)
by applying the inverse orbifold surgery operation. This leads us to the following
proposition.

Proposition 9.4. Under the notation in Lemma 9.3, the following hold, if necessary
by replacing r = q/p with q′/p where q′ = q + p or qq′ ≡ 1 (mod p).

(1) If |K(r)| = 1, then one of the following holds.
(i) d+ = d− = 1 and (M0, P ) ∼= (E(K(r)), ∂E(K(r))), where q ̸≡ ±1

(mod p). Here E(K(r)) denotes the exterior of K(r), i.e. the comple-
ment of an open regular neighbourhood of K(r).

(ii) d+ = 1, d− ≥ 2, and (M0, P ) ∼= M0(r; d−).
(iii) d+ = 1, d− is an odd integer ≥ 3, and (M0, P ) ∼= M1(r; d−).
(iv) d+ = 2, d− is an odd integer ≥ 3, and (M0, P ) ∼= M2(r; d−).

(2) If |K(r)| = 2, then one of the following holds.
(i) d+ = d− = 1 and (M0, P ) ∼= (E(K(r)), ∂E(K(r))), where q ̸≡ ±1

(mod p).
(ii) d+ = 1, d− ≥ 2, and (M0, P ) ∼= M0(r; d−).
(iii) d+ = 2, d− is an odd integer ≥ 3, and (M0, P ) ∼= M2(r; d−).

Proof. Recall thatO = O(r; d+, d−) is represented by the weighted graph (S3,K(r)∪
τ+ ∪ τ−, w) for some r ∈ Q and for some coprime positive integers d+ and d−, and
w is given by the following rule (see Figure 6):

w(K(r)) = 2, w(τ+) = d+, w(τ−) = d−
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Figure 7. H1(O;Z2) ∼= H1(S3 −Σeven;Z2), where Σeven is the sub-
graph of Σ = K(r) ∪ τ+ ∪ τ− spanned by the edges of even weight.

Then (M0, P ) is represented by the weighted graph (S3,K(r)∪τ+∪τ−, w̃), where w̃ is
obtained from w by replacing the label 2 of the edges eα and eβ , which correspond
to Pα and Pβ respectively, with the label ∞. By Remark 4.3, we may assume
1 ≤ d+ ≤ d−, if necessary by replacing r = q/p with q′/p where qq′ ≡ 1 (mod p).

Case 1. d+ = d− = 1. Then Σ(O) is the 2-bridge link K(r). Thus (M0, P ) ∼=
(S3,K(r), w̃), where either (a) w̃(K(r)) = ∞ or (b) K(r) is a 2-component link K1∪
K2 and (w̃(K1), w̃(K2)) = (∞, 2). In the first case, (M0, P ) ∼= (E(K(r)), ∂E(K(r))),
and so H3/Γ is the hyperbolic 2-bridge link complement, S3 −K(r): in particular,
q ̸≡ ±1 (mod p). In the second case, both α and β are meridians of the component
K1, which contradicts the fact that H1(O;Z2) ∼= (Z2)2 .

Case 2. d+ = 1 < d−.
Subcase 2.1. |K(r)| = 2 (see Figure 7(1)). Then the edge set of Σ(O) consists of

τ− and the two components K1, K2 of K(r). Let x−, x1 and x2 be the meridians of
τ−, K1 and K2, respectively. By Lemma 6.5, H1(O;Z2) ∼= (Z2)2 is freely generated
by {x1, x2}, and moreover we have x− = 0. Since H1(O;Z2) is generated by (the
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images of) α and β, we may assume eα = K1 and eβ = K2. Thus (M0, P ) is
represented by (S3,K(r) ∪ τ−, w̃), where w̃(K1) = w̃(K2) = ∞ and w̃(τ−) = d−.
Hence (M0, P ) ∼= M0(r; d−).

Subcase 2.2. |K(r)| = 1 (see Figure 7(2)). Then the edge set of Σ(O) consists of
τ− and the two subarcs J1 and J2 of K(r) bounded by K(r) ∩ τ−. Let x−, x1 and
x2 be the meridians of τ−, J1 and J2, respectively.

Suppose first that d− is odd. Then we see by Lemma 6.5 that x− = 0 in
H1(O;Z2) ∼= Z2 and that H1(O;Z2) ∼= Z2 is generated by x1 = x2. Hence one
of the following holds.

(1) {eα, eβ} = {J1, J2} and so (M0, P ) is represented by (S3,K(r) ∪ τ−, w̃),
where w̃(J1) = w̃(J2) = ∞ and w̃(τ−) = d−. Hence (M0, P ) ∼= M0(r; d−).

(2) eα = eβ = Ji for i = 1 or 2. By the symmetry of O, we may assume
i = 1 and so (M0, P ) is represented by (S3,K(r)∪τ−, w̃), where w̃(J1) = ∞,
w̃(J2) = 2 and w̃(τ−) = d−. Hence (M0, P ) ∼= M1(r; d−).

Suppose next that d− is even. Then x1 + x2 + x− = 0 in H1(O;Z2) ∼= (Z2)2.
Since H1(O;Z2) is generated by α and β, we have eα ̸= eβ . This implies that the
exchanging elliptic element f for {α,β} does not belong to Γ, and f descends to
an involution on O interchanging eα with eβ . We now use Corollary 12.7 on the
symmetry of the orbifold O(r; d+, d−). We first consider the generic case where
p ̸= 1 (i.e., K(r) is a nontrivial knot) or d− > 2. (Recall the current assumption
d+ = 1.) Then, by Corollary 12.7(1), any orientation-preserving involution of O
preserves τ−. So, eα and eβ are different from τ±, and therefore {eα, eβ} = {J1, J2}.
Hence, as in the previous case, we can conclude (M0, P ) ∼= M0(r; d−). In the
exceptional case where p = 1 and d− = 2, The orbifold O ∼= O(0/1; 1, 2) has the
3-fold cyclic symmetry as illustrated in Figure 15. Thus, if necessary after applying
this symmetry, we may assume {eα, eβ} = {J1, J2}. Hence we have (M0, P ) ∼=
M0(r; d−) ∼= M0(0/1; 2).

Since we repeatedly use the above argument in the remainder of the proof of
Proposition 9.4, we state an expanded version of the argument as a lemma.

Lemma 9.5. Under the setting of Proposition 9.4, suppose (d+, d−) ̸= (1, 1) and
H1(O;Z2) ∼= (Z2)2. Then eα ̸= eβ, and the exchanging elliptic element f does
not belong to Γ and it descends to an orientation-preserving involution of O =
O(r; d+, d−) interchanging eα and eβ. Moreover, the following hold.

(1) Except when p = 1 and {d+, d−} = {1, 2}, eα and eβ are different from τ±.
(2) If d+, d− ≥ 2, then the inverting elliptic element h belongs to Γ.

Proof. We have only to prove (2). If h does not belong to Γ, then it descends to
an orientation-preserving involution of O(r; d+, d−) which preserves both eα and
eβ . However, if d+, d− ≥ 2, then by Corollary 12.7(2), no orientation-preserving
involution of O(r; d+, d−) preserves an edge of the singular set different from τ±.
This contradicts the assertion (1). !
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Case 3. 2 ≤ d+ ≤ d−. Since d+ and d− are coprime, we see 2 ≤ d+ < d− and one
of d+ and d− is odd.

Subcase 3.1. |K(r)| = 2 (see Figure 7(3)). Let K1 and K2 be the components of
K(r), and let Ji,j (1 ≤ i, j ≤ 2) be the edges of Σ(O) such that Kj = J1,j ∪ J2,j for
j = 1, 2 and that the vertical involution ofK(r) interchanges Ji,1 and Ji,2 for i = 1, 2.
Let x± and xi,j be the meridians of τ± and Ji,j , respectively. Then by using Lemma
6.5 and the fact that one of d+ and d− is odd, we see that H1(O;Z2) ∼= (Z2)2 is freely
generated by x1 := x1,1 = x2,1 and x2 := x1,2 = x2,2: moreover we have x± = 0.
Hence, we may assume eα ⊂ K1 and eβ ⊂ K2. Since the horizontal involution of
K(r) interchanges J1,j and J2,j (j = 1, 2), we may assume eα = J1,1 ⊂ K1 and
eβ = Ji,2 ⊂ K2 for some i = 1 or 2. By Lemma 9.5(2), we have h ∈ Γ, and so
Pα

∼= Pβ is homeomorphic to D2(2, 2) or S2(2, 2, 2, 2). Since 2 ≤ d+ < d−, we must
have d+ = 2. If i = 1, i.e. eβ = J1,2, then w̃ is given by

w̃(J1,1) = w̃(J1,2) = ∞, w̃(J1,2) = w̃(J2,2) = 2, w̃(τ+) = 2, w̃(τ−) = d−.

Since the vertical involution of K(r) preserves J1 := J1,1 ∪ J1,2, we see that (M0, P )
is isomorphic to M2(r; d−). If i = 2, i.e. eβ = J2,2, then the planar involution
of K(r) preserves J1 := J1,1 ∪ J2,2. Hence, we see by Remark 3.5 that (M0, P ) is
isomorphic to M2(r′; d−), where r′ = (p+ q)/p.

Subcase 3.2. |K(r)| = 1 (see Figure 7(4)). Suppose first that one of d+ and d−
is even. Then H1(O;Z2) ∼= (Z2)2 by Lemma 6.5. Hence, by Lemma 9.5(2), both
eα and eβ are contained in K(r), and h ∈ Γ. In particular, Pα

∼= Pβ
∼= D2(2, 2) or

S2(2, 2, 2, 2). Let ei (1 ≤ i ≤ 4) be the edges of the singular set of O contained in
the knot K(r) in this cyclic order. We also assume that ∂τ+ = (e1 ∩ e2) ∪ (e3 ∩ e4)
and ∂τ− = (e2 ∩ e3) ∪ (e4 ∩ e1). Since the (Z2)2-symmetry of O(r; d+, d−) acts
transitively on the edge set {ei}1≤i≤4 (see Figure 14), we may assume e1 = eα and
so w̃(e1) = ∞. Since eα joins τ+ with τ− and since d± are coprime integers such
that 2 ≤ d+ ≤ d−, the condition that Pα

∼= D2(2, 2) or S2(2, 2, 2, 2) implies that
d+ = 2 and d− ≥ 3. This in turn implies that Pα

∼= Pβ
∼= D2(2, 2). Since ∂D2(2, 2)

is isotopic to the simple loop α in ∂M0, we must have w̃(e2) = 2. Thus eβ is equal to
e3 or e4. However, if eβ = e4 then eα, eβ , and the odd index edge τ− share a vertex,
it follows from Lemma 6.5(3) that the meridian α of e1 and the meridian β of e4
represent the same element of H1(O;Z2) ∼= (Z2)2, a contradiction. Hence eβ = e3.
Set J1 = e1 ∪ e3 and J2 = e2 ∪ e4. Then J1 and J2 are disjoint, K(r) = J1 ∪ J2 and
the following hold.

w̃(J1) = ∞, w̃(J2) = 2, w̃(τ+) = 2, w̃(τ−) = d−

Hence we have (M0, P ) ∼= M2(r; d−) (cf. Remark 3.5(2)).
Suppose finally that both d+ and d− are odd. Then, by Lemma 6.5, the meridians

x± of τ± represent the trivial element of H1(O;Z2) ∼= Z2, and hence both eα and
eβ = f(eα) are contained in K(r). On the other hand, since d± > 2, we have
Pα

∼= Pβ is homeomorphic to an annulus, and hence the inverting elliptic element h
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descends to an involution of O which preserves each of the two mutually different
edges eα and eβ and restricts to an orientation-reversing involution on each of the
edges. But, such an involution does not exist by Corollary 12.7(2), a contradiction.

This completes the proof of Proposition 9.4. !

10. Proof of Theorem 1.1 - rigid cusp case -

Under Assumption 8.1, suppose that Pα
∼= Pβ is a rigid cusp. Thus the 2-orbifold

Pα
∼= Pβ is isomorphic to S2(p, q, r) where (p, q, r) = (2, 4, 4), (2, 3, 6), or (3, 3, 3).
Let G < Γ be the orbifold fundamental group π1(Pα), and let Λ be the subgroup

of G consisting of parabolic transformations. We may assume that (a) G stabilises
the ideal point ∞ of the upper-half space model of H3, and (b) the boundary ∂Hα of
the canonical horoball Hα is identified with the horosphere C× {1} ⊂ H3. For each
element g ∈ Λ, let |g| be the length of g in the canonical horosphere (see Section 7),
namely |g| = |g|∂Hα , the translation length of g in ∂Hα, and simply call it the length
of g. Let L1(Λ) > 0 be the minimum of the lengths of nontrivial elements of Λ.
More generally, for each n ∈ N, let Ln(Λ) be the n-th shortest length of nontrivial
elements of Λ.

Case 1. Pα
∼= S2(2, 4, 4). Then G ∼= ⟨a, b, c | a2, b4, c4, abc⟩, and Λ is the rank

2 free abelian group with free basis {b2a, c2a}. We may assume the action of G on
the horosphere ∂Hα = C× 1 ∼= C is given by the following rule. There is a positive
real ℓ such that a is the π rotation about 0, and b and c are the π/2 rotations about
ℓ and ℓi, respectively. We can easily observe the following.

(i) The shortest length L1(Λ) is equal to 2ℓ, and it is attained precisely by
the conjugates of b2a in G. (Note that c2a = (b−1a−1)2a = b−1a−1b−1 =
b3ab−1 = b(b2a)b−1 is conjugate to b2a.)

(ii) The second shortest length L2(Λ) is equal to 2
√
2ℓ, and it is attained pre-

cisely by the conjugates of b2ac2a in G.
(iii) The third shortest length L3(Λ) is equal to 4ℓ, and it is attained precisely

by the conjugates of (b2a)2 in G.

By Lemma 7.1(1), 2ℓ = L1(Λ) ≥ 1, and so ℓ ≥ 1
2 . Since Γ is non-free, Lemma

7.1(3) implies that the length |α| of the parabolic element α ∈ Λ is less than 2. Since
L3(Λ) = 4ℓ ≥ 2, |α| is equal to either L1(Λ) or L2(Λ). By using this fact, we obtain
the following lemma.

Lemma 10.1. The parabolic element α ∈ Λ is conjugate to b2a or b2ac2a in G.
Moreover the following hold.

(1) If α is conjugate to b2a, then the images of α by the natural epimorphisms
from G ∼= π1(S2(2, 4, 4)) to π1(S2(2, 2, 2)), π1(S2(2, 2, 4)), and π1(S2(2, 4, 2))
have order 2.

(2) If α is conjugate to b2ac2a, then the images of α by the natural epimorphisms
from G ∼= π1(S2(2, 4, 4)) to π1(S2(2, 2, 2)), π1(S2(2, 2, 4)), and π1(S2(2, 4, 2))
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Figure 8. Orbifold surgery on the rigid cusp S2(2, 4, 4): The para-
bolic locus Pα of the pared orbifold (M0, P ) shrinks into the vertex
vα of the singular set of the orbifold O. By Lemma 10.2, the ho-
mology class [α] ∈ H1(O;Z2) determined by the parabolic element
α ∈ Γ is represented by the meridian of the edge eα of the singular
set Σ(O) incident on vα whose index in the original orbifold M0 is 2.

have order 1, 2 and 2, respectively. Moreover, the Z2-homology class of α
vanishes.

Proof. The assertion in the first line follows from the observations preceding the
lemma. The assertions (1) and (2) can be checked easily, by using the fact that b2a
is conjugate to c2a in G. !

Now letO be the orbifold obtained from the pared orbifold (M0, P ) by the orbifold
surgery as illustrated in Figure 8. Namely, for each index 4 edge of the singular set
which has an endpoint in Pα or Pβ , we replace the index 4 with the index 2, and
then cap all resulting spherical boundary components with discal 3-orbifolds. Then
each of Pα and Pβ shrinks into a vertex of O with link S2(2, 2, 2), which we denote
by vα and vβ, respectively. We denote by eα (resp. eβ) the edge of the singular set
Σ(O) incident on vα (resp. vβ) whose index in the original orbifold M0 is 2.

Lemma 10.2. The orbifold O is isomorphic to a spherical dihedral orbifold O(r; d+, d−)
for some r ∈ Q and coprime positive integers d+ and d−. Moreover, α ∈ Λ is con-
jugate to b2a in G, and the homology class [α] ∈ H1(O;Z2) determined by α is equal
to the meridian of the edge eα. Similarly, the homology class [β] ∈ H1(O;Z2) is
equal to the meridian of the edge eβ.

Proof. By Lemma 10.1, α is conjugate to b2a or b2ac2a in G = π1(S2(2, 4, 4)), its
image in π1(S2(2, 2, 2)) has order 2 or 1 accordingly. Hence the image of α in π1(O)
has order ≤ 2. Moreover, the images of α and β have the same order, because
(a) if the exchanging involution f belongs to Γ then α and β are conjugate in Γ
and so in π1(O), and (b) if f /∈ Γ then f descends to an involution on O which
interchanges the images of α and β. Hence π1(O) is either the trivial group or a
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dihedral group. Since O is very good by Lemma 6.4 and since it has a singular point
with link S2(2, 2, 2), π1(O) is a noncyclic dihedral group. Hence, by Theorem 4.1,
O is isomorphic to a spherical dihedral orbifold O(r; d+, d−).

We prove the remaining assertions. If α ∈ Γ is conjugate to b2ac2a, then it
descends to the trivial element of π1(S2(2, 2, 2)), and so it represents the trivial
element of π1(O). This contradicts the fact that π1(O) is a dihedral group generated
by the images of α and β. Hence α is conjugate to b2a. This implies that the Z2-
homology class [α] ∈ H1(O;Z2) is equal to that represented by the element a, and
so it is the meridian of the edge eα. The existence of the exchanging elliptic element
f implies the corresponding assertion for [β]. !
Lemma 10.3. The pared orbifold (M0, P ) is represented by the weighted graph
(S3,K(r) ∪ τ+ ∪ τ−, w̃) for some r ∈ Q, where w̃ is determined by the following
rule (see Figure 9):

w̃(J1) = 2, w̃(J2) = 4, w̃(τ+) = 4, w̃(τ−) = m,

for some odd integer m ≥ 3, where J1 and J2 are unions of two mutually disjoint
edges of the graph K(r) ∪ τ+ ∪ τ− distinct from τ±, such that K(r) = J1 ∪ J2.
Moreover, Pα and Pβ correspond to distinct endpoints of ∂τ+.

Proof. By Lemma 10.2, O is represented by the weighted graph (S3,K(r) ∪ τ+ ∪
τ−, w) for some r ∈ Q, where w is given by the rule

w(K(r)) = 2, w(τ+) = d+, w(τ−) = d−

for some coprime positive integers d+ and d−. Since O is obtained from (M0, P ) by
an orbifold surgery, there is a weight function w̃ on the graph K(r) ∪ τ+ ∪ τ− such
that the pared orbifold (M0, P ) is represented by the weighted graph (S3,K(r) ∪
τ+ ∪ τ−, w̃). By Remark 4.3, we may assume d− is odd, if necessary by replacing
r = q/p with q′/p where qq′ ≡ 1 (mod p). Hence, we see H1(O;Z2) ∼= (Z2)2 by
Lemma 6.5. Since H1(O;Z2) is generated by [α] and [β], which are the meridians
of the edges eα and eβ , respectively (see Lemma 10.2), we have eα ̸= eβ .

Since the links of vα and vβ are isomorphic to S2(2, 2, 2), we see w(τ+) = 2
and {vα, vβ} ⊂ ∂τ+. Since eα (resp. eβ) is the unique edge of the trivalent graph
K(r) ∪ τ+ ∪ τ− incident on the vertex vα (resp. vβ) with w̃-weight 2, and since
eα ̸= eβ , we see that vα and vβ are distinct endpoints of τ+. (If vα = vβ , then its
‘link’ in M0 is of the form S2(2, 2, ∗) ̸∼= S2(2, 4, 4).) Hence Pα and Pβ correspond to
distinct endpoints of ∂τ+.

We observe that eα and eβ are not equal to τ+. If, say eα was equal to τ+,
then it is incident on vβ ∈ ∂τ+. Since w̃(eα) = 2, this implies we have eα = eβ, a
contradiction. This observation implies that both eα and eβ are contained in K(r).

We next observe that d− ≥ 3. If d− = 1, then the endpoints of eα and eβ are all
contained in ∂τ+ = {vα, vβ}. This together with the previous observation implies
that the ‘links’ of vα and vβ in M0 are isomorphic to S2(2, 2, 4), a contradiction.

32



Figure 9. The possible pared orbifold (M0, P ) in Lemma 10.3 and
the orbifold O′ obtained by the orbifold surgery. In this figure, we
apply further normalisation so that J1 and J2 are invariant by the
vertical involution f (cf. Remark 3.5(3)).

We now show that eα and eβ are disjoint. If they are not disjoint, then they share
an endpoint of τ−, which has odd weight d−. This implies that the meridians of
eα and eβ represent an identical element of H1(O;Z2) (see Lemma 6.5(3)), and so
[α] = [β], a contradiction.

Set J1 := eα ∪ eβ and let J2 := cl(K(r)− J1). Then J1 and J2 satisfy the desired
conclusion with m = d−. !

We show that the situation described in Lemma 10.3 cannot happen. To this
end, we perform another orbifold surgery on (M0, P ) which replaces the weight 4 of
τ+ with 2. To be precise, we consider the orbifold O′ represented by the weighted
graph (S3,K(r) ∪ τ+ ∪ τ−, w̃′) for some r ∈ Q, where w̃′ is given by the following
rule.

w̃′(J1) = 2, w̃′(J2) = 4, w̃′(τ+) = 2, w̃′(τ−) = m

Note that Pα
∼= S2(2, 4, 4) shrinks into a singular point of O′ with link S2(2, 2, 4) or

S2(2, 4, 2). Since α is conjugate to b2a in π1(S2(2, 4, 4)) < π1(M0) = Γ, we see by
Lemma 10.1(1) that the image of α in π1(O′) has order ≤ 2. The same argument
can be applied to β and we see that the image of β in π1(O′) also has order ≤ 2.
Since O′ is very good by Lemma 6.4 and since the singular set of O′ contains a
trivalent vertex, π1(O′) is a noncyclic dihedral group. Since the singular set of O′

contains four trivalent vertices, Theorem 4.1 implies that O′ must be isomorphic
to a spherical dihedral orbifold O(r′; d′+, d

′
−) with d′+, d

′
− ≥ 2. In particular, the

singular set Σ(O′) of O′ must contain precisely four or five edges with index 2. This
contradicts the fact that Σ(O′) contains precisely three edges of index 2 (see Figure
9).
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Figure 10. Orbifold surgery on the rigid cusp S2(2, 3, 6)

Case 2. Pα
∼= S2(2, 3, 6). Then G ∼= ⟨a, b, c | a2, b3, c6, abc⟩, and Λ is the rank

2 free abelian group with free basis {ac3, c(ac3)c−1 = cac2}. We may assume the
action of G on the horosphere ∂Hα = C × 1 ∼= C is given by the following rule.
There is a positive real ℓ such that a is the π rotation about

√
3ℓ, b is the 2π/3

rotation about 2ℓeπi/6 =
√
3ℓ + ℓi, and c is the π/3 rotations about 0. The action

of the generators of Λ is given by

ac3(z) = z + 2
√
3ℓ, cac2(z) = z + 2

√
3ℓeπi/3.

We can easily observe the following.

(i) L1(Λ) = 2
√
3ℓ, and it is attained precisely by the conjugates of ac3 in G.

(ii) L2(Λ) = 6ℓ, and it is attained precisely by the conjugates of (ac3)(cac2) =
ac4ac2 in G.

(iii) L3(Λ) = 4
√
3ℓ, and it is attained precisely by the conjugates of (ac3)2 in G.

By Lemma 7.1(1), 2
√
3ℓ = L1(Λ) ≥ 1, and so ℓ ≥ 1

2
√
3
. Since Γ is non-free, Lemma

7.1(3) implies that the length |α| of the parabolic element α ∈ Λ is less than 2.
Hence we obtain the following.

Lemma 10.4. The parabolic element α ∈ Λ is conjugate to ac3 or ac4ac2 in G.

Now letO be the orbifold obtained from the pared orbifold (M0, P ) by the orbifold
surgery as illustrated in Figure 10. Namely, for each edge of the singular set which
has the index 6 cone point of Pα or Pβ as an endpoint, we replace the weight 6 with
the new weight 3, and then cap all resulting spherical boundary components with
discal 3-orbifolds. Then Pα and Pβ shrink into singular points, vα and vβ , of O with
link S2(2, 3, 3).

Lemma 10.5. The image of α by the natural epimorphism from π1(S2(2, 3, 6)) to
π1(S2(2, 3, 3)) has order 2.

Proof. By Lemma 10.4, α is conjugate to either ac3 or ac4ac2 in G = π1(S2(2, 3, 6)).
Moreover, the images of ac3 and ac4ac2 in π1(S2(2, 3, 3)) ∼= ⟨a, b, c | a2, b3, c3, abc⟩
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have order 2. This is obvious for ac3, and the assertion for ac4ac2 is verified as
follows. In π1(S2(2, 3, 3)), we have 1 = b3 = (ac−1)3 and so ac−1 = (ac−1)−2 = (ca)2.
Hence the image of ac4ac2 in π1(S2(2, 3, 3)) is equal to acac−1 = ac(ca)2 = ac2aca =
(ca)−1a(ca). Thus it is conjugate to a, and so has order 2, as desired. !

By the above lemma, the image of α in π1(O) has order ≤ 2. The existence of
the exchanging elliptic element f implies that the images of α and β in π1(O) have
the same order. Thus π1(O) is either a dihedral group or the trivial group. Since
O is very good by Lemma 6.4 and since the singular set of O contains a trivalent
vertex, π1(O) is a noncyclic dihedral group. Hence, Theorem 4.1 implies that O
must be isomorphic to a spherical dihedral orbifold O(r; d+, d−) with (d+, d−) ̸=
(1, 1). However, the orbifold O(r; d+, d−) does not contain a singular point with
link S2(2, 3, 3), a contradiction.

Case 3. Pα
∼= S2(3, 3, 3). Then the inverting elliptic element h does not belong to

Γ, and the group, Γh, obtained from Γ by adding h is a Z2-extension of Γ. Consider
the hyperbolic orbifold Mh := H3/Γh. Then Mh is the quotient of M = H3/Γ
by the isometric involution induced by h, which we continue to denote by h. Set
(Mh,0, Ph) := (M0/h, P/h), Ph,α := Pα/h and Ph,β := Pβ/h. Then Ph,α

∼= Ph,β is
isomorphic to S2(2, 3, 6). Thus Gh := π1(Ph,α) ∼= ⟨a, b, c | a2, b3, c6, abc⟩. Since
the subgroup Γ of Γh generated by α and β is non-free, we see by the arguments in
Case 2 that α is conjugate to ac3 or ac4ac2 in Gh.

Let Oh be the orbifold obtained from the pared orbifold (Mh,0, Ph) by the orbifold
surgery as illustrated in Figure 10 at both Ph,α and Ph,β. Then Ph,α and Ph,β shrink
into singular points, vh,α and vh,β, of Oh with link S2(2, 3, 3). The images of α and
β in π1(Oh) have the same order ≤ 2, and so the subgroup of π1(Oh) they generate
is either a dihedral group or the trivial group. This subgroup has index ≤ 2 in
π1(Oh), because Γ = ⟨α,β⟩ has index 2 in Γh. Hence the group π1(Oh) is a trivial
group, a dihedral group, Z2 (the Z2-extension of the trivial group) or a Z2-extension
of a dihedral group.

Since Oh is very good by Lemma 6.4 and Oh contains a singular point with link
S2(2, 3, 3), π1(O) is either a noncyclic dihedral group or a Z2-extension of a noncyclic
dihedral group. Hence Theorem 4.1 implies that Oh is isomorphic to (a) a spherical
dihedral orbifold O(r; d+, d−) or (b) the quotient of O(r; d+, d−) by an isometric
involution, where (d+, d−) ̸= (1, 1). Since O(r; d+, d−) does not have a singular
point with link S2(2, 3, 3), (a) cannot happen, and so we may assume (b) holds.
Since π1(S2(2, 3, 3)) does not have an index 2 subgroup, the link of an inverse image
of the singular point vh,α in the double cover O(r; d+, d−) of Oh is also isomorphic
to S2(2, 3, 3). But, this is impossible. Hence Pα cannot be isomorphic to S2(3, 3, 3).

Thus we have proved that Pα
∼= Pβ cannot be a rigid cusp.
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11. Proof of Theorem 1.1 - flexible cusp: exceptional case -

In this section, we treat the case where the following assumption is satisfied, and
prove that this assumption is never satisfied.

Assumption 11.1. Under Assumption 8.1, we further assume that Pα = Pβ and
it is a flexible cusp S2(2, 2, 2, 2) and that the conclusion (2) in Lemma 9.1 holds.
Namely, f /∈ Γ, and Pα/f = Pβ/f ∼= S2(2, 4, 4) (see Figure 11).

Let Γ̂ := ⟨Γ, f⟩ be the group generated by Γ and f . Let M̂ := H3/Γ̂ be the
quotient hyperbolic orbifold. Let M̂0 be the non-cuspidal part of M̂ , and P̂ = ∂M̂0

the parabolic locus. By abuse of notation, we denote the pared orbifold obtained as
the relative compactification of (M̂0, P̂ ) by the same symbol (M̂0, P̂ ). We denote the
component of the compact euclidean 2-orbifold P̂ corresponding to the conjugacy
class containing α and β = fαf−1 by P̂αβ . Thus P̂αβ

∼= Pα/f = Pβ/f ∼= S2(2, 4, 4)

and (M0, P )/f ∼= (M̂0, P̂ ), where f denotes the involution on the pared orbifold
(M0, P ) induced by the exchanging involution f . In particular, M0 is the double
orbifold covering of M̂0, associated with the homomorphism ξ : π1(M̂0) = Γ →
Z2 such that ξ(α) = ξ(β) = 0 and ξ(f) = 1. We denote the homomorphism
H1(M̂0;Z2) → Z2 induced by ξ by the same symbol.

Note that π1(P̂αβ) ∼= π1(S2(2, 4, 4)) ∼= ⟨a, b, c | a2, b4, c4, abc⟩. As in Case 1 in

Section 10, we identify π1(P̂αβ) with the stabiliser StabΓ̂(Fix(α)). Then the proof
of Lemma 10.1 also works in this setting, because {α,β} generates the non-free
subgroup Γ of the Kleinian group Γ̂, and we have the following lemma.

Lemma 11.2. The parabolic element α is conjugate to b2a or b2ac2a in StabΓ̂(Fix(α))∼= π1(S2(2, 4, 4)), and of course, the assertions (1) and (2) in Lemma 10.1 also hold.

Let ei and êi (i = 1, 2, 3) be the edges of the singular sets Σ(M0) and Σ(M̂0) as
illustrated in Figure 11. Thus e2 and e3 are contained in the fixed point set of the
involution f on M0, and êi is the image of ei by the covering projection M0 → M̂0.
(Note that it can happen that some of them are identical, though their germs near
the parabolic locus are different.) Then the following holds.

Lemma 11.3. The homomorphism ξ : H1(M̂0;Z2) → Z2, that determines the dou-
ble orbifold covering M0 → M̂0, satisfies

ξ(m1) = 0, ξ(m2) = ξ(m3) = 1,

where mi denotes the meridian of the edge êi. Moreover, the homology class [f ] ∈
H1(M̂0;Z2) determined by f ∈ Γ̂ is equal to either m2 or m3.

Proof. The formula for ξ follows from the fact that the fixed point set of the involu-
tion f on M0 contains e2 and e3, which project to ê2 and ê3, respectively. It is also
obvious that ξ([f ]) = 1. So, if H1(M̂0;Z2) ∼= Z2, we have [f ] = m2 = m3. Suppose
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Figure 11. Assumption 11.1 assumes that f /∈ Γ descends to an
involution, f , on Pα = Pβ

∼= S2(2, 2, 2, 2) such that Pα/f = Pβ/f ∼=
S2(2, 4, 4).

that H1(M̂0;Z2) ∼= (Z2)2. Then, since H1(M̂0;Z2) is generated by [f ] and [α], we
see [α] ̸= 0. So, α is conjugate to b2a by Lemma 11.2. (Otherwise α is conjugate
to b2ac2a and so [α] = 0.) Therefore [α] = [a] = m1 is contained in Ker(ξ) ∼= Z2.
Thus Ker(ξ) is generated by m1. Since ξ([f ]) = ξ(m2), it follows that [f ] is equal
to either m2 or m1 +m2 = m3. !

Let Ô be the orbifold obtained from the pared orbifold (M̂0, P̂αβ) by the orbifold

surgery that replaces the index 4 of the edges ê2 and ê3 with the index 2. Then P̂αβ

shrinks into a singular point, vαβ , with link S2(2, 2, 2), and the image of α in π1(Ô)

has order ≤ 2 by Lemma 11.2. Since Γ̂ is generated by f and α, π1(Ô) is either
trivial, Z2 = D1 or a noncyclic dihedral group. By using Lemma 6.4, Theorem
4.1 and the fact that Ô has a singular point with link S2(2, 2, 2), we see that Ô
is isomorphic to a spherical dihedral orbifold O(r; d+, d−) with noncyclic dihedral
orbifold fundamental group. Moreover, we may assume that d+ = 2 and that vαβ is

an endpoint of τ+. By Lemma 6.5, we have H1(Ô;Z2) ∼= (Z2)2.

Lemma 11.4. Under the above setting, |K(r)| = 1 and so the edges êi (i = 1, 2, 3)
are all distinct.

Proof. We first observe that α cannot be conjugate to b2ac2a. In fact, if α was
conjugate to b2ac2a, then its image in π1(Ô) is trivial by Lemma 11.2 (cf. Lemma
10.1(2)), and so π1(Ô) is generated by the image of f . This contradicts the fact
that π1(Ô) is a noncyclic dihedral group. This observation together with Lemma
11.2 implies that α is conjugate to b2a and so [α] = [a] = m1 ∈ Ker(ξ). Moreover,
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[f ] = m2 or m3 by Lemma 11.3. Hence H1(Ô;Z2) ∼= (Z2)2 is generated by the
meridians of the three edges êi (i = 1, 2, 3) incident on the vertex vαβ ∈ ∂τ+.

Now suppose on the contrary that |K(r)| = 2. Then we see, by using Lemma
6.5, that the meridian of τ+ represents the trivial element of H1(Ô;Z2) and the
meridians of the remaining two edges incident on vαβ ∈ ∂τ+ represent the identical

element of H1(Ô;Z2). This contradicts the fact that H1(Ô;Z2) ∼= (Z2)2. Hence
|K(r)| = 1. This implies that the the edges êi (i = 1, 2, 3) incident on vαβ ∈ ∂τ+
are all distinct, as desired. !

Recall that the weights of the edges ê1, ê2, ê3 of Σ(M̂0) are 2, 4, 4. Since ê2 ̸= ê3
by Lemma 11.4, we can apply the orbifold surgery on (M̂0, P̂ ) of “type (2, 4, 4) →
(2, 2, 4)”, namely we can replace the index 4 of the edge ê2 of the singular set Σ(M̂0)
with the index 2, and leave the other indices, including the index 4 of ê3, unchanged.
We denote the resulting orbifold by Ô(2,2,4). By Lemma 11.2, α has order at most 2 in

π1(Ô(2,2,4)). Hence, by using Lemma 6.4, Theorem 4.1, and the fact that Ô(2,2,4) has

a singular point with link S2(2, 2, 4), we see that Ô(2,2,4) is isomorphic to a spherical
dihedral orbifold O(r; d+, d−) with noncyclic dihedral orbifold fundamental group.
Moreover, we may assume d+ = 4 and that the parabolic locus Pαβ degenerates
into a singular point, vαβ, which is an endpoint of τ+. It should be noted that

the edge ê3 of Σ(M̂0) corresponds to τ+. (Here, we reset the notation, and the
symbols O(r; d+, d−) and vαβ now represent objects different from those they had
represented in the paragraph preceding Lemma 11.4.)

Case 1. d− ≥ 3. We apply the orbifold surgery on (M̂0, P̂ ) of “type (2, 4, 4) →
(2, 4, 2)”, namely we replace the index 4 of the edge ê3 = τ+ of the singular set
Σ(M̂0) with the index 2, and leave the other indices, including the index 4 of ê2,
unchanged. (This is possible by Lemma 11.4.) We denote the resulting orbifold by
Ô(2,4,2). By Lemma 11.2, α has order at most 2 in π1(Ô(2,4,2)). Hence, again by

using Lemma 6.4, Theorem 4.1, and the fact that Ô(2,4,2) has a singular point with

link S2(2, 4, 2), we see that Ô(2,4,2) is isomorphic to a spherical dihedral orbifold
with noncyclic dihedral orbifold fundamental group. Note that the edges ê2 and
τ− of Σ(Ô(2,4,2)), which have indices 4 and d− ≥ 3, respectively, share a common
endpoint (see Figure 12). But this cannot happen in any spherical dihedral orbifold,
a contradiction.

Case 2. d− = 1. Then (M̂0, P̂ ) is represented by a weighted graph (S3,K(r) ∪
τ+, ŵ), such that K(r) = ê1 ∪ ê2 is a knot, ê3 = τ+, and

ŵ(τ+) = 4, ŵ(ê1) = 2, ŵ(ê2) = 4.

Recall that the subset ê2 ∪ ê3 = ê2 ∪ τ̂+ of Σ(M̂0) are the images of the fixed point
set of the involution f on M0. This implies that the map |M0| → |M̂0| induced
by the orbifold covering M0 → M̂0 is the double branched covering branched over
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Figure 12. Since Ô(2,2,4)
∼= O(r; d+, d−) with ê3 = τ+ is as in the

left figure, Ô(2,4,2) is as in the right figure. The latter orbifold has a
singular point with link S2(2, 4, d−) with d− ≥ 3, and so it cannot
be a spherical dihedral orbifold.

Figure 13. Since the orbifold coveringM0 → M̂0 induces the double
branched covering |M0| → |M̂0| branched over ê2 ∪ ê3 = ê2 ∪ τ̂+, the
orbifold (M0, P ) is as illustrated in the right figure.

ê2 ∪ ê3. Hence (M0, P ) is represented by the weighted graph illustrated in Figure
13. Here, we assume the extended Convention 6.2, and the two 4-valent vertices
represent parabolic loci isomorphic to S2(2, 2, 2, 2). Hence we see by Lemma 6.4
that H1(M0;Z) ∼= (Z2)3, a contradiction.

Thus we have proved that the situation in Assumption 11.1 cannot occur. This
completes the proof of the main Theorem 1.1.
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12. Appendix 1: Spherical orbifolds with dihedral orbifold
fundamental groups

In this appendix, we classify the orientable spherical 3-orbifolds with dihedral
orbifold fundamental groups (Proposition 12.2), and determine the (orientation-
preserving) isometry groups of these orbifolds (Propositions 12.5 and 12.6). Propo-
sition 12.2 is used in the proof of Theorem 4.1, and Corollary 12.7 is used in Section
9. Propositions 12.5 and 12.6 are used in the companion [4] of this paper. The clas-
sification of the spherical dihedral orbifolds is implicitly contained in Dunber’s work
[22], which classifies the Seifert fibered orbifolds. The isometry groups of the di-
hedral spherical orbifolds obtained as the π-orbifolds associated with 2-bridge links
are calculated by [57, 28]. Moreover, in the recent papers [40, 41], Mecchia and
Seppi classified the Seifert fibered spherical 3-orbifolds and calculated the isometry
groups of such orbifolds. Since every spherical dihedral orbifold is Seifert fibered,
the results in this section are implicitly contained in [40, 41]. However, we give a
self-contained proof, because it is not a simple task to translate their results into
the form we need.

We first recall basic facts concerning the 3-dimensional spherical geometry fol-
lowing [61, 57]. Let H be the quaternion skew field. We use the symbol q to denote
a generic quaternion

q = a+ bi+ cj + dk ∈ H (a, b, c, d ∈ R).

(We believe this does not cause any confusion, even though q is also used to denote
the numerator of a rational number r = q/p.) For each q ∈ H, q̄ = a− bi− cj − dk
denotes its conjugate, ℜ(q) = a denotes its real part, and |q| denotes its norm√
qq̄ =

√
a2 + b2 + c2 + d2. We identify Sn (n = 1, 2, 3) with the following subspaces

of H.

S3 := {q ∈ H | |q| = 1}
S2 := {q ∈ H | |q| = 1, ℜ(q) = 0}
S1 := {z ∈ C ⊂ H | |z| = 1}

The norm |·| induces a Euclidean metric onH, and Sn (n = 1, 2, 3) are endowed with
the induced metrics. The subspaces S3 and S1 form a Lie group with respect to the
restriction of the product in H. The group S3 acts on itself by conjugation leaving
S2 invariant. This gives an epimorphism ψ : S3 → Isom+(S2), with kerψ = ⟨−1⟩,
defined by

ψ(q)(x) = qxq̄ (q ∈ S3, x ∈ S2).

If q = cos θ+ q0 sin θ with q0 ∈ S2, then ψ(q) is the rotation of S2, by angle 2θ, with
fixed points ±q0.

For a positive integer n, any cyclic subgroup of order n (resp. any dihedral
subgroup of order 2n) of Isom+(S2) is conjugate to the subgroup Zn := ψ(Z∗

n)
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(resp. Dn := ψ(D∗
n)), where Z∗

n := ⟨ω⟩ and D∗
n := ⟨ω, j⟩ with ω = exp(πi/n). Note

that these groups are contained in the subgroup DS := ⟨S1, j⟩ = S1 6 S1j of S3.
Then the following hold (see, e.g. [57, Proposition 2.6]).

Lemma 12.1. (1) If n ≥ 2, then the normaliser N(Z∗
n) of Z∗

n in S3 is equal to DS.
(2) If n ≥ 3, then the normaliser N(D∗

n) of D∗
n in S3 is equal to D∗

2n. If n = 2, then
N(D∗

n) is equal to the binary octahedral group O∗ = ψ−1(O), where O < Isom+(S2)
is the octahedral group obtained as the subgroup of Isom+(S2) preserving the regular
octahedron in the 3-dimensional Euclidean subspace ⟨i, j, k⟩ of H spanned by the 6
vertices {±i,±j,±k}.

Let φ : S3 × S3 → Isom+(S3) be the homomorphism defined by

φ(q1, q2)(q) = q1qq
−1
2 .

Then φ is an ephimorphism with Kerφ = ⟨(−1,−1)⟩ ∼= Z2.
We occasionally identify S3 ⊂ H with the unit sphere

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}
in C2 by the correspondence q = z1 + z2j ↔ (z1, z2). Let L : S1 × S1 → Isom+(S3)
be the injective homomorphism defined by

L(ω1,ω2)(z1, z2) = (ω1z1,ω2z2).

When ωℓ = exp(2πi kℓnℓ
) (ℓ = 1, 2), where kℓ

nℓ
is a rational number, we write

L(ω1,ω2) = L(
k1
n1

,
k2
n2

),(1)

because its restriction to the circles S3 ∩ (C× {0}) and S3 ∩ ({0}×C) are the ‘ k1n1
-

rotation’ and ‘ k2n2
-rotation’, respectively. Though the symbol L(·, ·) is used in two

different ways, we believe this does not cause any confusion, because its meaning is
clearly understood from the context according to whether · is a unit complex or a
rational number.

Observe that

φ(η1, η2) = L(η1η̄2, η1η2) ((η1, η2) ∈ S1 × S1).

In particular, we have

φ(S1 × S1) = L(S1 × S1) < Isom+(S3).(2)

Consider the isometries J := φ(j, j), J1 := φ(1, j) and J2 := φ(j, 1), which acts
on S3 ⊂ C2 as follows.

J(z1, z2) = (z̄1, z̄2), J1(z1, z2) = (z2,−z1), J2(z1, z2) = (−z̄2, z̄1)

Observe J = J1J2 and that

φ(DS × DS) = ⟨L(S1 × S1), J, J1⟩, ⟨J, J1⟩ ∼= Z2 × Z2.(3)
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In fact, φ(DS ×DS) is the split extension of L(S1 × S1) by ⟨J, J1⟩ ∼= Z2 ×Z2, where
the action of ⟨J, J1⟩ on L(S1×S1) by conjugation is given by the following formula.

JL(ω1,ω2)J
−1 = L(ω̄1, ω̄2), J1L(ω1,ω2)J

−1
1 = L(ω2,ω1)(4)

The following proposition gives a classification of the orientable spherical 3-
orbifolds with dihedral orbifold fundamental groups.

Proposition 12.2. Let O be an oriented spherical 3-orbifold. Then π1(O) is
isomorphic to a dihedral group, if and only if O is isomorphic to the orbifold,
O(r; d1, d2), represented by the weighted graph (S3,K(r) ∪ τ+ ∪ τ−, w) in Figure
6 for some r ∈ Q and coprime positive integers d1 and d2, where w is given by the
following rule.

w(K(r)) = 2, w(τ+) = d1, w(τ−) = d2.

In fact, O(r; d1, d2) with r = q/p is isomorphic to S3/Γ, where Γ is the subgroup of
Isom+(S3) given by

Γ =

〈
L(

k1
pd2

,
k2
pd1

), J

〉
∼= Dn with n = pd1d2(5)

for some integers k1 and k2 such that

gcd(pd2, k1) = 1, gcd(pd1, k2) = 1, k2 ≡ qk1 (mod p).(6)

Moreover, the spherical structure of O(r; d1, d2) is unique, i.e., if Γ′ is a subgroup
of Isom+(S3) such that S3/Γ′ is isomorphic to O(r; d1, d2) as oriented orbifolds,
then Γ′ is conjugate to the subgroup Γ defined by (5).

Proof. We first prove the only if part of the first assertion. Let Γ be a subgroup of
Isom+(S3) isomorphic to the dihedral group Dn, and let f and h be the elements
of Γ such that

Γ ∼= ⟨f, h | fn = 1, h2 = 1, hfh−1 = f−1⟩.
(Though the symbols Γ, f and h are used in different meanings in the previous
sections, we believe this does not cause any confusion.) We show that S3/Γ is
isomorphic to some O(q/p; d1, d2), such that n = pd1d2.

Claim 12.3. After taking conjugation in Isom+(S3), we may assume f = L( k1
pd2

, k2
pd1

),

where p, d1, d2, k1, and k2 are positive integers such that gcd(d1, d2) = 1, gcd(pd2, k1) =
1, gcd(pd1, k2) = 1, and n = pd1d2.

Proof of Claim 12.3. Since any element of S3 is conjugate to an element in S1, we
may assume, by taking conjugation, that f ∈ φ(S1 × S1) = L(S1 × S1) (see (2)).

Since f has order n, we may assume f = L(
k′1
n ,

k′2
n ) for some integers k′1 and k′2 such

that gcd(n, k′1, k
′
2) = 1. For ℓ = 1, 2, set dℓ = gcd(n, k′ℓ), nℓ = n

dℓ
and kℓ =

k′ℓ
dℓ
, so

that f = L(
k′1
n ,

k′2
n ) = L( k1n1

, k2
n2
), where gcd(k1, n1) = gcd(k2, n2) = 1. Note also that

gcd(d1, d2) = gcd(n, k′1, k
′
2) = 1. Set p = gcd(n1, n2) and n′

ℓ =
nℓ
p (ℓ = 1, 2). Then
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n = lcm(n1, n2) = pn′
1n

′
2. Thus n1d1 = n = pn′

1n
′
2 = n1n′

2 and so d1 = n′
2. Similarly

we have d2 = n′
1. Hence we have n = pd1d2 and f = L( k1n1

, k2
n2
) = L( k1

pd2
, k2
pd1

). !

Now consider the subgroup ⟨fp⟩ ∼= Zd1d2 generated by fp = L(k1d2 ,
k2
d1
). Since

gcd(d1, d2) = 1, we have

⟨fp⟩ ∼= ⟨fpd2⟩ × ⟨fpd1⟩ ∼= Zd1 × Zd2 .

Note that

⟨fpd2⟩ = ⟨L(0, k2d2
d1

)⟩ = ⟨L(0, 1

d1
)⟩, ⟨fpd1⟩ = ⟨L(k1d1

d2
, 0)⟩ = ⟨L( 1

d2
, 0)⟩.

Hence we have

⟨fp⟩ = ⟨L(0, 1

d1
)⟩ × ⟨L( 1

d2
, 0)⟩.

Thus S3/⟨fp⟩ is the orbifold with underlying space S3 and with singular set the
Hopf link, where one component has index d1 and the other component has index
d2. To give a precise description of this orbifold, identify S3 with the join S1 ∗ S1,
by the correspondence (tz1,

√
1− t2z2) ↔ tz1 + (1− t)z2. Thus the first and second

factor circles of S1 ∗S1 correspond to the circles S1 × {0} and {0}×S1 in S3 ⊂ C2,
respectively. For ω ∈ S1, let L(ω) be the isometry of S1 defined by L(ω)(z) = ωz
(z ∈ S1). Then the isometry L(ω1,ω2) is identified with the self-homeomorphism
L(ω1) ∗ L(ω2) of S1 ∗ S1, defined by

(L(ω1) ∗ L(ω2))(tz1 + (1− t)z2) = tω1z1 + (1− t)ω2z2.

Under the above convention, the orbifold S3/⟨fp⟩ is described as follows. The
underlying space of the orbifold is given by

|S3/⟨fp⟩| ∼=
(
S1/L(

1

d2
)

)
∗
(
S1/L(

1

d1
)

)
∼= S1 ∗ S1 ∼= S3,

and the singular set is the union of the two circles which gives the join structure of
S3, where the first factor circle (which corresponds to S1/L( 1

d2
)) has index d1 and

the second factor circle (which corresponds to S1/L( 1
d1
)) has index d2. Here, L( 1

dℓ
)

denotes L(e
2πi
dℓ ) as in (1).

The isometry f descends to the periodic isomorphism of the orbifold S3/⟨fp⟩ ∼=
S1 ∗ S1 given by L(k1p ) ∗ L(

k2
p ), because the periodic map L( k1

pd2
) (resp. L( k2

pd1
)) on

S1 descends to the periodic map L(k1p ) (resp. L(k2p )) on the circle S1/L( 1
d2
) (resp.

S1/L( 1
d1
)). Note that ⟨L(k1p )∗L(

k2
p )⟩ = ⟨L(1p)∗L(

q
p)⟩, with q ≡ k−1

1 k2 (mod p), where

k−1
1 is the inverse of k1 in the multiplicative group (Zp)× (cf. Notation 1.3(2)). Hence

we see that the orbifold S3/⟨f⟩ is isomorphic to the orbifold, O(L(p, q), d1, d2), with
underlying space the lens space, L(p, q), and with singular set the union of the core
circles of the standard genus 1 Heegaard splitting of L(p, q) with indices d1 and d2,
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respectively. (Though the notation L(p, q) looks similar to the notation L(·, ·) in
(1), we believe there is no fear of confusion.)

Since h2 = 1 and hfh−1 = f−1, we see by using Lemma 12.1(1) that h = φ(q1, q2)
for some (q1, q2) ∈ S1j × S1j. Since any element of S1j is conjugate to j by
an element of S1, we may assume h = φ(j, j) = J , and so h(z1, z2) = (z̄1, z̄2).
This implies that the involution h of S3 descends to the hyper-elliptic involution
of |S3/⟨f⟩| ∼= L(p, q). Recall that (i) the quotient map determined by the hyper-
elliptic involution gives the double branched covering of S3 branched over the 2-
bridge link K(q/p) and that (ii) the core circles of the genus 1 Heegaard splitting
project to the upper and lower tunnels, respectively. Hence, the quotient S3/Γ, with
Γ = ⟨f, h⟩ ∼= Dn, is isomorphic to the orbifold O(q/p; d1, d2). This completes the
proof of the only if part of the first assertion. The proof also shows that the group
Γ is given by the formula (5) for some integers k1 and k2 satisfying the condition
(6).

The if part of the first assertion follows from the above argument and the following
claim.

Claim 12.4. For any rational number r = q/p and a pair of coprime integers
(d1, d2), there is a pair (k1, k2) of integers which satisfies the condition (6).

Proof of Claim 12.4. Consider the homomorphism

Ψ : (Zpd2)
× × (Zpd1)

× → (Zp)
× × (Zp)

× → (Zp)
×,

where the first homomorphism is the product of the natural projections and the
second homomorphism maps (k1, k2) ∈ (Zp)×× (Zp)× to k−1

1 k2 ∈ (Zp)×. Then both
of the two homomorphisms are surjective and so is their composition Ψ. Regard the
numerator q of the rational number r = q/p as an element of (Zp)×, and let (k1, k2)
be a pair of integers which projects to an element in the inverse image Ψ−1(q). Then
(k1, k2) satisfies the condition (6). !

Finally we prove the uniqueness of the spherical structure on the orbifoldO(q/p; d1, d2).
The preceding arguments show that the triple (q/p, d1, d2) ∈ Q×N×N uniquely de-
termines a dihedral subgroup Γ < Isom+(S3), up to conjugation, such that S3/Γ is
isomorphic to O(q/p; d1, d2) as oriented orbifolds. Thus we have only to show that
there are no unexpected orientation-preserving topological isomorphism between
two orbifolds, O(q/p; d1, d2) = S3/Γ and O(q′/p′; d′1, d

′
2) = S3/Γ′.

Assume that O(q/p; d1, d2) and O(q′/p′; d′1, d
′
2) are isomorphic as oriented orb-

ifolds. Then pd1d2 = p′d′1d
′
2 and {d1, d2} = {d′1, d′2}, because they have isomorphic

orbifold fundamental groups and the same index sets of the singular sets. In partic-
ular we have p = p′.

Suppose first that n := pd1d2 ≥ 3. Then Dn has the unique cyclic subgroup
of index 2, and so each of O(q/p; d1, d2) and O(q′/p′; d′1, d

′
2) has the unique double

orbifold covering with cyclic orbifold fundamental group. The underlying spaces of
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the covering orbifolds are the lens spaces L(p, q) and L(p′, q′), respectively. Hence,
by the classification of lens spaces, we have p = p′ and either q ≡ q′ (mod p)
or qq′ ≡ 1 (mod p). Moreover, by using the uniqueness of the genus one Heegaard
splittings (see [12, 13]), we see that O(q/p; d1, d2) and O(q′/p′; d′1, d

′
2) are isomorphic

as oriented orbifolds if and only if one of the following conditions hold.

(1) p = p′, q ≡ q′ (mod p), and (d1, d2) = (d′1, d
′
2).

(2) p = p′, qq′ ≡ 1 (mod p), and (d1, d2) = (d′2, d
′
1).

In both cases, we can see that the subgroups Γ and Γ′ are conjugate in Isom+(S3).
In the exceptional case when n := pd1d2 = 2, we have either (i) p = p′ = 1 and

{d1, d2} = {d′1, d′2} = {1, 2} or (ii) p = p′ = 2 and d1 = d2 = d′1 = d′2 = 1. We can
easily see that the subgroups Γ and Γ′ are conjugate in Isom+(S3).

This completes the uniqueness of the spherical structure. !
Next, we calculate the (orientation-preserving) isometry group of the dihedral

spherical 3-orbifold O(q/p; d1, d2). If (d1, d2) = (1, 1), then O(q/p; d1, d2) is the π-
orbifold, O(q/p), associated with the 2-bridge link K(q/p) (cf. [11]) and its isometry
group is calculated by [57, Theorem 4.1] and [28, Corollary 3.2.11]. (There are errors
in [57, Theorem 4.1] for the special case when p = 1, 2. There are also misprints for
the generic case in the statement of Theorem 4.1, though the correct result can be
found in the tables in [57, p.184].)

Proposition 12.5. The orientation-preserving isometry group of the spherical orb-
ifold O(q/p) := O(q/p; 1, 1) is described as follows.

(1) If q ̸≡ ±1 (mod p), then the following holds.

Isom+(O(q/p)) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Z2)2 if q2 ̸≡ 1 (mod p)

D4 if p is odd and q2 ≡ 1 (mod p)

or if p is even and q2 ≡ p+ 1 (mod 2p)

(Z2)3 if p is even and q2 ≡ 1 (mod 2p)

(2) If q ≡ ±1 (mod p), then then the following holds.

Isom+(O(q/p)) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S1 ! Z2 if p is odd and ≥ 3

S1 ! (Z2)2 if p is even and ≥ 4

(S1 × S1)! (Z2)2 if p = 2

(S1 × S1)! Z2 if p = 1

In the remainder of this section, we treat the remaining case (d1, d2) ̸= (1, 1).
In the very special case, when p = 1 and {d1, d2} = {1, 2}, we call O(0/1; 1, 2) the
trivial θ-orbifold, because its singular set is the trivial θ-curve in S3. Then we have
the following proposition.

Proposition 12.6. The orientation-preserving isometry group of the spherical di-
hedral orbifold O(q/p; d1, d2) with (d1, d2) ̸= (1, 1) is described as follows.
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Figure 14. Isom+(O(q/p; d1, d2)) ∼= (Z2)2 if (d1, d2) ̸= (1, 1) and
O(q/p; d1, d2)) ̸∼= O(0/1; 1, 2).

(1) Isom+(O(q/p; d1, d2)) ∼= (Z2)2, except when O(q/p; d1, d2) is isomorphic to
the trivial θ-orbifold O(0/1; 1, 2), i.e. except when p = 1 and {d1, d2} =
{1, 2}.

(2) For the the trivial θ-orbifold O(0/1; 1, 2), we have Isom+(O(0/1; 1, 2)) ∼=
D3 × Z2.

Before proving the proposition, we give the following consequence of the propo-
sition (and the orbifold theorem), which is used in the proof of the main theorem.

Corollary 12.7. Consider a spherical orbifold O(q/p; d1, d2) with (d1, d2) ̸= (1, 1),
and let g be an orientation-preserving involution of the orbifold. Then the following
hold.

(1) Except when p = 1 and {d1, d2} = {1, 2}, (i.e. except when O(q/p; d1, d2)
is isomorphic to the trivial θ-orbifold O(0/1; 1, 2)), g stabilises the edges τ+
and τ− of the singular set (when it is contained in the singular set).

(2) If d1, d2 ≥ 2, then g does not stabilise any edge of the singular set different
from τ±.

Proof of Corollary 12.7. By the orbifold theorem, we may assume g is an isometry
of the spherical orbifold. (This is proved by applying the orbifold theorem to the
finite group action on the universal cover S3 of O(q/p; d1, d2) generated by a lift
of g and the covering transformation group.) On the other hand, the action of
Isom+(O(q/p; d1, d2)) in the generic case is as illustrated in Figure 14. (See also [4,
Figure 6-8], and replace the weights ∞ with 2, then we obtain the desired visual-
isation, besides the exceptional case.) The exceptional case where the orbifold is
the trivial θ-orbifold is illustrated in Figure 15. The assertion (1) is now obvious
from Figure 14. The assertion (2) also follows from the figure by noting that K(r)
consists of four edges if d1, d2 ≥ 2 (otherwise, K(r) consists of two edges). !
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Figure 15. Isom+(O(0/1; 1, 2)) ∼= D3 × Z2. The singular set of the
trivial θ-orbifold O(0/1; 1, 2) is the standardly embedded θ-graph in
S2 ⊂ S3, consisting of three geodesics joining the north and south
poles, which are permuted by the 2π/3-rotation around the earth
axis. The orientation-preserving isometry group is visualised as the
product of the dihedral group D3 generated by the π-rotations about
the three great circles containing the singular edges and cyclic group
Z2 generated by the π-rotation about the equator.

The proof of Proposition 12.6 presented below is parallel to that of [57, Theorem
4.1]. Consider the dihedral spherical 3-orbifold O(q/p; d1, d2) with (d1, d2) ̸= (1, 1).
By Proposition 12.2, the orbifold fundamental group π1(O(q/p; d1, d2)) is identified
with the subgroup

Γ =

〈
L(

k1
pd2

,
k2
pd1

), J

〉
= ⟨L(ω1,ω2), J⟩ < Isom+(S3)

where ω1 = exp(2πi k1
pd2

), ω2 = exp(2πi k2
pd1

) for some integers k1 and k2 satisfying

the condition (6). Pick (η1, η2) ∈ S1 × S1 such that (ω1,ω2) = (η1η̄2, η1η2). Then
Γ = ⟨φ(η1, η2),φ(j, j)⟩. Set

Γ̃ := φ−1(Γ) = ⟨(η1, η2), (j, j)⟩ < S3 × S3.

Then Isom+O(q/p; d1, d2) ∼= N(Γ̃)/Γ̃, where N(Γ̃) is the normaliser of Γ̃ in S3×S3.
For ℓ = 1, 2, set Γ̃ℓ = prℓ(Γ̃), where prℓ : S3 × S3 → S3 is the projection to

the ℓ-th factor. Then Γ̃ℓ = ⟨ηℓ, j⟩ = D∗
mℓ

for some positive integer mℓ. Then the
following lemma is obvious from the definition of D∗

mℓ
, where o(·) denotes the order

of a group element.

Lemma 12.8. (1) o(η2ℓ ) = mℓ.
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(2) If mℓ is even, then o(ηℓ) = 2mℓ. If mℓ is odd, then o(ηℓ) is either mℓ or 2mℓ.

Note that the orientation-reversing isometry c : S3 → S3, defined by c(q) = q̄,
acts on Isom+(S3) by conjugation, as follows:

cφ(q1, q2)c
−1 = φ(q2, q1)

Hence, we assume m1 ≤ m2 without loss of generality.

Lemma 12.9. (1) 2 ≤ m1 ≤ m2.
(2) If m1 = 2, then m2 = 2m′

2 for some odd integer m′
2, and {d1, d2} = {1, 2}.

Moreover, m1 = m2 = 2 if and only if p = 1.

Proof. (1) Suppose on the contrary that m1 = 1. Then η1 = ±1, and so (ω1,ω2) =
±(η̄2, η2). This implies pd2 = o(ω1) = o(ω2) = pd1 and therefore d1 = d2. Since
gcd(d1, d2) = 1, we have d1 = d2 = 1, a contradiction.

(2) Suppose m1 = 2. Then η1 = ±i, and so (ω1,ω2) = ±(iη̄2, iη2). By using
Lemma 12.8, we can verify the following, from which the assertion (2) follows.

(i) If m2 is odd, then (o(ω1), o(ω2)) = (4m2, 4m2) and so d1 = d2 = 1 as in (1), a
contradiction.

(ii) If m2 = 2m′
2 for some odd integer m′

2, then ω
m′

2
1 = −ωm′

2
2 = ±1 and so

{pd2, pd1} = {o(ω1), o(ω2)} = {m′
2, 2m

′
2}. Hence we have p = m′

2 and {d1, d2} =
{1, 2}.

(iii) If m2 = 4m′
2 for some integer m′

2, then ω
2m′

2
1 = −ω2m′

2
2 = ±i and so o(ω1) =

o(ω2) = 8m′
2. Hence d1 = d2 = 1, a contradiction.

!
Lemma 12.10. Except for the special case where p = 1 and {d1, d2} = {1, 2},
namely except when O(q/p; d1, d2) is the trivial θ-orbifold, we have

N(Γ̃) < D∗
2m1

× D∗
2m2

< DS × DS .

Proof. If m1 ≥ 3, then Lemma 12.1 implies N(Γ̃ℓ) = D∗
2mℓ

for each ℓ = 1, 2 (because

m2 ≥ m1 by assumption), and hence we haveN(Γ̃) < N(Γ̃1)×N(Γ̃2) < D∗
2m1

×D∗
2m2

.
Since m2 ≥ m1 ≥ 2 by Lemma 12.9(1), we have only to treat the case where

m1 = 2. Since we exclude the case where p = 1 and {d1, d2} = {1, 2}, Lemma
12.9(2) implies m2 ≥ 3, and so N(Γ̃2) = D∗

2m2
. On the other hand, since m1 = 2,

we see by Lemma 12.1 that N(Γ̃1) = O∗. Hence N(Γ̃) < O∗ × D∗
2m2

.
Now observe that the decomposition DS = S1 6 S1j induces the decomposition

of Γ̃ < DS × DS into the following two non-empty subsets.

Γ̃(1) := Γ̃ ∩ (S1 × S1) and Γ̃(j) := Γ̃ ∩ (S1j × S1j).

Note that pr1(Γ̃
(1)) = ⟨i⟩ = {±1,±i} and pr1(Γ̃

(j)) = ⟨i⟩j = {±j,±k}. Pick
an arbitrary element (q1, q2) ∈ N(Γ̃). Then q2 ∈ D∗

2m2
< DS , and so the inner-

automorphism of S3 determined by q2 preserves the subgroup S1 < DS . Thus the
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inner-automorphism of S3 × S3 determined by (q1, q2) preserves the subset Γ̃(1) of
Γ̃ = Γ̃(1) 6 Γ̃(j). Hence the inner-automorphism of S3 determined by q1 preserves
the subgroup pr1(Γ̃

(1)) = ⟨i⟩, and so it preserves the subset {±i}, i.e., q1iq̄1 = ±i.
By the description of O∗ in Lemma 12.1, this implies that q1 ∈ D∗

2 < D∗
2m1

. Hence
(q1, q2) ∈ D∗

2m1
× D∗

2m2
, as desired. !

Lemma 12.11. The normaliser N(Γ) of Γ in Isom+ S3 is contained in ⟨L(S1 ×
S1), J⟩.

Proof. By the formula (3) and Lemma 12.10, we have

N(Γ) = φ(N(Γ̃)) < φ(DS × DS) = ⟨L(S1 × S1), J, J1⟩.
Since J ∈ Γ, we have only to show that J1 /∈ N(Γ). To this end, recall that
Γ = ⟨L( k1

pd2
, k2
pd1

), J⟩. Now suppose on the contrary that J1 ∈ N(Γ). Then the con-

jugation by J1 preserves the subgroup ⟨L( k1
pd2

, k2
pd1

)⟩ and we have J1L(
k1
pd2

, k2
pd1

)J−1
1 =

L( k2
pd1

, k1
pd2

) by (4). Thus we have d1 = d2 and so d1 = d2 = 1, a contradiction.

Hence J1 /∈ N(Γ) as desired. !
Lemma 12.12. Except when O(q/p; d1, d2) is the trivial θ-orbifold, we have the
following.

N(Γ) =

〈
L(

k1
2pd2

,
k2

2pd1
), L(

1

2
, 0), L(0,

1

2
), J

〉

∼=
〈
L(

k1
2pd2

,
k2

2pd1
), L(

1

2
, 0), L(0,

1

2
)

〉
! ⟨J⟩

Proof. Recall that Γ = ⟨L(ω1,ω2), J⟩ where ω1 = exp(2πi k1
pd2

) and ω2 = exp(2πi k2
pd1

).

Set
√
ω1 = exp(πi k1

pd2
) and

√
ω2 = exp(πi k2

pd1
). Suppose an element L(ζ1, ζ2) ∈

L(S1 × S1) belongs to N(Γ). Then L(ζ21 , ζ
2
2 )J = L(ζ1, ζ2)JL(ζ1, ζ2)−1 ∈ Γ, and

hence (ζ1, ζ2) belongs to the subgroup ⟨(√ω1,
√
ω2), (−1, 1), (1,−1)⟩.

Conversely, the image by L of any element in the above subgroup belongs to
N(Γ). Hence

N(Γ) ∩ L(S1 × S1) = ⟨L(
√
ω1,

√
ω2), L(−1, 1), L(1,−1)⟩

=

〈
L(

k1
2pd2

,
k2

2pd1
), L(

1

2
, 0), L(0,

1

2
)

〉
.

(Recall the abuse of notation given by (1).) This together with Lemma 12.11 implies
the desired result. !
Proof of Proposition 12.6. Consider the spherical dihedral orbifold O(q/p; d1, d2)
with (d1, d2) ̸= (1, 1). We first treat the generic case where O(q/p; d1, d2) is not
the trivial θ-orbifold O(0/1; 1, 2). Then, by using Lemma 12.12 and the fact that
J ∈ Γ, Isom+O(q/p; d1, d2) ∼= N(Γ)/Γ is isomorphic to the quotient of the group
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N := ⟨L( k1
2pd2

, k2
2pd1

),L(12 , 0),L(0,
1
2)⟩ by its subgroup G := ⟨L( k1

pd2
, k2
pd1

)⟩. Set a =

L( k1
2pd2

, k2
2pd1

), b1 = L(12 , 0) and b2 = L(0, 12). It should be noted that ⟨b1, b2⟩ ∼= (Z2)2

and that the subset {b1, b2, b1b2} is equal to the set of all order 2 elements of
L(S1 × S1).

Note that the order of L( k1
2pd2

) is equal to 2pd2 or pd2 according to whether k1

is odd or even. Similarly, the order of L( k2
2pd1

) is equal to 2pd1 or pd1 according to

whether k2 is odd or even. Thus the order of a = L( k1
2pd2

, k2
2pd1

) is 2pd1d2 or pd1d2,
where the latter happens if and only if both k1 and k2 are even.

Case 1. o(a) = 2pd1d2. Then the element apd1d2 ∈ L(S1×S1) has order 2. Hence
it is equal to one of the elements of {b1, b2, b1b2}. Thus ⟨a⟩ ∩ ⟨b1, b2⟩ ∼= Z2. This
implies that N ∼= ⟨a | a2pd1d2⟩ ⊕ ⟨bℓ | b2ℓ ⟩ for some ℓ ∈ {1, 2}. Since G corresponds to
the subgroup ⟨a2⟩, we have

Isom+O(q/p; d1, d2) ∼= N/⟨a2⟩ ∼= ⟨a | a2⟩ ⊕ ⟨bℓ | b2ℓ ⟩ ∼= (Z2)
2.

Case 2. o(a) = pd1d2. Since o(a2) = o(L( k1
pd2

, k2
pd1

)) = pd1d2, we have o(a) = o(a2),

and so o(a) = pd1d2 is odd. Thus ⟨a⟩∩⟨b1, b2⟩ = {1}, and therefore N ∼= ⟨a | apd1d2⟩⊕
⟨b1 | b21⟩ ⊕ ⟨b2 | b22⟩. Hence, we have

Isom+O(q/p; d1, d2) ∼= N/⟨a2⟩ ∼= N/⟨a⟩ ∼= ⟨b1 | b21⟩ ⊕ ⟨b2 | b22⟩ ∼= (Z2)
2.

This completes the proof of Proposition 12.6 in the generic case.
In the exceptional case, where O(q/p; d1, d2) is the trivial θ-orbifold O(0/1; 1, 2),

we may assume

Γ̃ = ⟨(i, i), (j, j)⟩ = {±(1, 1),±(i, i),±(j, j),±(k, k)}.
Then, by using Lemma 12.1, we can see that N(Γ̃) = {(q, q) | q ∈ O∗}! ⟨J1⟩. Hence
we have

Isom+O(0/1; 1, 2) ∼= (O∗/(Z2))! Z2
∼= D3 × Z2.

!

13. Appendix 2: Non-spherical geometric orbifolds with dihedral
orbifold fundamental groups

In this section, we classify the non-spherical geometric orbifolds with dihedral
orbifold fundamental groups (Propositions 13.1 and 13.2). These results are used in
the proof of Theorem 4.1.

We first deal with the dihedral orbifolds with S2 × R geometry.

Proposition 13.1. Let O be a compact orientable S2 × R orbifold with nonempty
singular set which satisfies the following conditions.

(i) No component of ∂O is spherical.
(ii) π1(O) is a dihedral group.

Then O is isomorphic to one of the following orbifolds.
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(1) O(∞), the orbifold represented by the weighted graph (S3,K(∞), w), where
w takes the value 2 at each component of the 2-bridge link K(∞) of slope
∞, i.e. the 2-component trivial link.

(2) O(RP3, O), the orbifold with underlying space RP3 whose singular set is the
trivial knot (i.e., the boundary of an embedded disc in RP3) with index 2.

Proof. By the assumption that O has the geometry S2 × R, we have π1(O) <
Isom(S2×R) ∼= Isom(S2)× Isom(R) and intO ∼= (S2×R)/π1(O). By the condition
(ii), π1(O) ∼= Dn for some n ∈ N ∪ {∞}.

If n ∈ N, then the action of the finite dihedral group π1(O) on S2 × R extends
to an action on the compact 3-manifold S2 × [−∞,∞], where [−∞,∞] ∼= I is a
compactification of R, and O is identified with S2 × [−∞,∞]/π1(O). Thus O has a
spherical boundary component, which contradicts the condition (i). So n = ∞ and
π1(O) ∼= ⟨f, h | h2, hfh = f−1⟩. Since the action of π1(O) on S2 × R is properly
discontinuous, f ∈ Isom(S2 × R) is the product of a (possibly trivial) rotation of
S2 and a nontrivial translation of R. Thus the orbifold O(f) := (S2 × R)/⟨f⟩
is homeomorphic to the manifold S2 × S1. The isometry h descends to a fiber-
preserving involution of O(f) ∼= S2 × S1 which acts on the second factor as a
reflection. Thus O = O(f)/h is the quotient of S2× [0, 1] by an equivalence relation
(x, 0) ∼ (γ0(x), 0) and (x, 1) ∼ (γ1(x), 1) where γ0 and γ1 are orientation-reversing
involutions of S2. Thus γi is conjugate to either the reflection in a great circle or
the antipodal map. According to the combination (reflection, reflection), (reflection,
antipodal map), or (antipodal map, antipodal map), O is isomorphic to O(∞),
O(RP3, O), or RP3#RP3. The last case cannot happen because O has the empty
singular set. !

The following proposition deals with the dihedral orbifolds with the remaining 6
geometries.

Proposition 13.2. Let O be a compact orientable 3-orbifold with nonempty singular
set which has one of the 6 geometries different from S3 and S2×R and satisfies the
following conditions.

(i) π1(O) is a dihedral group.
(ii) No component of ∂O is spherical.

Then O is isomorphic to D2(2, 2)× I.

Proof. Let X be the geometry which O possesses. Then X is H3, E3, S̃L2(R), Nil
or Sol, and intO is isomorphic to X/Γ for some discrete subgroup Γ ∼= π1(O) of
Isom(X). Note that the underlying topological space of X is homeomorphic to R3.
The proof is divided into two cases according to whether π1(O) is finite or infinite.

Case 1. Suppose that π1(O) is a finite dihedral group Dn. Then, as will be shown
below, the action of Dn on X has a global fixed point x. Then the exponential map
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from TxX, the tangent space to X at x, to X is a Dn-equivariant homeomorphism.
This implies that ∂O ∼= S2(2, 2, n), contradicting the condition (ii).

The existence of a global fixed point can be proved as follows. For the constant
curvature case X = H3 or E3, this is well-known. We shall first deal with the case

where X is Nil, H2 × R, or S̃L2R. Recall that there is an exact sequence

1 → Isom(R) → Isom(X) → Isom(E) → 1,

where E is the Euclidean plane E2 when X is Nil and the hyperbolic plane H2 when

X is H2 ×R or S̃L2R. We also note that the projection Isom(X) → Isom(E) above
is induced by a fibration p : X → E. Let D̄n be the image of Dn in Isom(E) and K
the kernel in D∞ of the projection to D̄n. Then the action of D̄n on E has a global
fixed point y, and the action of K on the fibre p−1(y) has a global fixed point since
both of them are finite. Thus Dn has a global fixed point on X when X is Nil,

H2 × R, or S̃L2R.
We shall now show the same property when X = Sol. In this case, there is an

exact sequence

1 → Isom(E2) → Isom(Sol) → Isom(R) → 1,

and the projection Isom(Sol) → Isom(R) is induced by a fibration q : Sol → R. Let
D̄n be the projection of Dn in Isom(R). Then D̄n is either trivial or Z2 generated
by a reflection on R. In either case, it fixes a point y on R. In the former case,
Dn

∼= ⟨g, h | g2, h2, (gh)n⟩ acts on the fibre q−1(y) by Euclidean isometries in such
a way that g and h correspond to reflections, and hence Dn fixes a point on the
fibre. In the latter case, the kernel K of the projection Dn → D̄n is isomorphic to
Zn, and fixes a point on the fibre in the same way. Thus we have shown that Dn

has a fixed point also in the case when X = Sol.

Case 2. Suppose π1(O) is the infinite dihedral group D∞ ∼= ⟨g, h | g2, h2⟩. First
we shall consider the case when X has constant curvature. Then g and h are order 2
elliptic transformations, and hence fix pointwise axes ag and ah respectively. They
do not meet each other since otherwise the action fixes their intersection and cannot
be faithful and discrete. Let ℓ be the common perpendicular to ag and ah if it exists.
(This does not exist when X = H3 and ag touches ah at infinity. This exceptional
case will be considered later.) Let Πg be the totally geodesic plane containing ah
and perpendicular to ℓ. We define Πh in the same way. Then the region cobounded
by Πg and Πh constitutes a fundamental domain of the action of D∞. Suppose now
that X = H3 and ag touches ah at infinity. Then there is a totally geodesic plane
H containing both ag and ah and it is preserved by D∞. We then let Πg and Πh be
totally geodesic planes containing ag and ah respectively, which are perpendicular
to H. Then a fundamental domain is cobounded by Πg and Πh again. Therefore,
in either case, we can see intO ∼= intD2(2, 2)× R and so O ∼= D2(2, 2)× I.
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Next, we shall consider the case when X is Nil or H2 × R or S̃L2R. As before,
let D̄∞ be the projection of D∞ to Isom(E), and K the kernel of the projection.
We first observe that the images ḡ and h̄ of g and h in D̄∞ are nontrivial. In fact,
if say ḡ is trivial, then g acts on R as a nontrivial order 2 isometry. Thus g acts on
R by a reflection, and so the image ḡ must be an orientation-reversing isometry on
E, which contradicts our assumption that ḡ is trivial.

Since g and h have order 2, their images ḡ and h̄ in D̄∞ also have order 2. We first
deal with the case where both of them are orientation-preserving, i.e. π-rotations.
Let yg and yh be the centres of the π-rotations ḡ and h̄, respectively. Then g and
h are π-rotations about the geodesics p−1(yg) and p−1(yh), respectively. Since the
action of D∞ is faithful, we have yg ̸= yh. Now consider the geodesic line ℓ in E
containing yg and yh, and let ℓg and ℓh be the lines which intersects ℓ perpendicularly
at yg and yh, respectively. Then ℓg and ℓh are disjoint, and they cobound a region
R in E. We see that p−1(R) is a fundamental region of the action of D∞, and we
have intO ∼= intD2(2, 2)× R.

We next treat the case where both of ḡ and h̄ are orientation-reversing, i.e. re-
flections. Let ag and ah be the axes of the reflections ḡ and h̄, respectively. Then
g and h are the ‘symmetries’ with respect to the geodesics ãg and ãh, respectively,
where ãg and ãh are lifts of ag and ah, respectively. If ag and ah are disjoint, they
cobound a region R in E, and p−1(R) is a fundamental region of the action of D∞,
and we have intO ∼= intD2(2, 2)×R. If ag and ah meet each other at a point y ∈ E.
Then D∞ acts effectively and discretely on the fiber p−1(y), and so the axes ãg and
ãh intersect p−1(y) perpendicularly at distinct points, zg and zh, respectively. Let
Pg and Ph be the ruled surfaces in X obtained as the unions of the geodesics which
intersect p−1(y) perpendicularly at zg and zh, respectively. Then Pg and Ph are
disjoint planes in X, and the domain they cobound is a fundamental domain of D∞,
and we can see intO ∼= intD2(2, 2)× R.

We now treat the case where one of ḡ and h̄ is orientation-preserving and the
other is orientation-reversing. We may assume ḡ is orientation-preserving and h̄ is
orientation-reversing. Let yg be the center of the π-rotation ḡ, and let ah be the
axis of the reflection h̄. If yg belongs to ah, then the axes of the π-rotations of g
and h intersect, and the action of D∞ cannot be discrete and faithful. So yg is
not contained in ag. Let ℓ be a geodesic line in E which passes through y and is
disjoint from ah. Let R be the region in E bounded by ah and ℓ. Then p−1(R) is a
fundamental region of the action of D∞, and we have intO ∼= intD2(2, 2)× R.

Finally, suppose that X = Sol. Then the projection D̄∞ of D∞ to Isom(R) is
either trivial or Z2 or D∞ itself. In the case when D̄∞ is trivial, the generators
g and h act on each fibre by π-rotations, and their fixed points must differ. Thus
intO ∼= X/D∞ is a bundle over R with fiber E2/D∞ ∼= intD2(2, 2). So we have
intO ∼= intD2(2, 2)×R. In the case when D̄∞ is Z2, the action of D̄∞ is a reflection
with respect to a point x. We set P = q−1(x). Then the g and h act on P by
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reflections, and by the same argument as in the previous paragraph, we have a
homeomorphism intO ∼= D2(2, 2) × R. Finally, suppose that D̄∞ = D∞. Then g
and h fix points xg and xh on R respectively, and they differ. We consider fibres
Πg = q−1(xg) and Πh = q−1(xh). The elements act on Πg and Πh as reflections
with axes ag ⊂ Πg and ah ⊂ Πh. Then the region cobounded by Πg and Πh

constitutes a fundamental region for the action of D∞, and we see that intO ∼=
intD2(2, 2)× R. !
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[12] F. Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), 305–314.
[13] F. Bonahon and J. P. Otal, Scindements de Heegaard des espaces lenticulaires, C. R. Acad.

Sci. Paris Sér. I Math. 294 (1982), 585–587.
[14] F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classifi-

cation and symmetries of arborescent knots, http://www-bcf.usc.edu/~fbonahon/Research/
Publications.html

[15] B. H. Bowditch, Notes on tameness, Enseign. Math. 56 (2010), 229–285.
[16] J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris 241 (1955), 1689–

1691.
[17] G. Burde, H. Zieschang and M. Heusener, Knots. Third, fully revised and extended edition, De

Gruyter Studies in Mathematics, 5. De Gruyter, Berlin, 2014. xiv+417.
[18] H.-D. Cao and X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures
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