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The ground state of the simple Heisenberg nearest-neighbor quantum kagome antiferromagnetic model
is a magnetically disordered spin liquid, yet various perturbations may lead to fundamentally different
states. Here we disclose the origin of magnetic ordering in the structurally perfect kagome material
YCu3ðOHÞ6Cl3, which is free of the widespread impurity problem. Ab initio calculations and modeling of
its magnetic susceptibility reveal that, similar to the archetypal case of herbertsmithite, the nearest-neighbor
exchange is by far the dominant isotropic interaction. Dzyaloshinskii-Moriya (DM) anisotropy deduced
from electron spin resonance, susceptibility, and specific-heat data is, however, significantly larger than in
herbertsmithite. By enhancing spin correlations within kagome planes, this anisotropy is essential for
magnetic ordering. Our study isolates the effect of DM anisotropy from other perturbations and
unambiguously confirms the predicted phase diagram.
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Quantum spin liquids are magnetically disordered, yet
highly entangled states, promoted by quantum fluctuations
on some geometrically frustrated spin lattices [1]. A
paradigm predicting such a state even at zero temperature
is the two-dimensional (2D) nearest-neighbor quantum
kagome antiferromagnetic model (KAFM) [2–4] repre-
sented by Heisenberg, i.e., isotropic J1 exchange bonds
between spin-1=2 sites in Fig. 1. Yet, even small perturba-
tions to this simple model can stabilize fundamentally
different ground states, as their influence is strongly
amplified by frustration. Various factors, including fur-
ther-neighbor exchange interactions [5–11], magnetic
anisotropy [9–14], defects [14–16], and structural distor-
tions [17] have been the focus of theoretical investigations
in recent years. One of the seminal predictions that still
calls for a clear experimental validation is a quantum
critical point induced by Dzyaloshinskii-Moriya (DM)
magnetic anisotropy, separating a spin liquid from a
magnetically ordered ground state of KAFM [12]. Here
we elucidate the role of the DM interaction in promoting
correlations that lead to magnetic ordering in a material that
closely realizes the KAFM.
Actual KAFM realizations are as a rule plagued by

several perturbations, making the assessment of the indi-
vidual roles of these perturbations challenging. A direct
consequence of many effects being intertwined is that even
the existence of a spin gap in the spin-liquid ground state of
the KAFM remains unsettled. In fact, for the hitherto most

intensively studied KAFM material herbertsmithite [24],
indications of a finite gap [25] have been recently super-
seded by the conclusion that the gap is absent [26].
However, the effects of particular perturbations present
in this material on its low-energy magnetism remain
unknown. Relevant imperfections include sizable intersite
ion mixing [27–29], large DM anisotropy [30], and subtle
structural distortion away from perfect kagome symmetry
[31,32]. On the contrary, in the recently synthesized KAFM
material YCu3ðOHÞ6Cl3 [33] no structure-related pertur-
bations are present; there is no Cu-Y intersite disorder [33]
and the initially reported small Y-site disorder [33] is absent
in high-resolution neutron diffraction of high-quality pow-
der samples [34]. Therefore, the recent discoveries of static
internal magnetic fields below TN ¼ 12 K [34,35] and
magnetic Bragg peaks at low temperatures [36] are rather
surprising. Initially, a broad maximum in specific heat at a
notably higher temperature of Tmax ¼ 16 K was also
assigned to 3D ordering [35], causing a discrepancy with
TN where static internal fields appear. Experiments have
further established that the average ordered Cu2þ magnetic
moment of an otherwise regular 120° magnetic structure is
strongly reduced [36] and is accompanied by persisting
spin fluctuations even at the lowest temperatures [35]. The
origin of such exotic magnetism is unknown, but even more
fundamentally, the basic question of the magnetic-ordering
mechanism present in this material remains unexplained.
Since YCu3ðOHÞ6Cl3 is a unique KAFM material with a
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very limited number of possible perturbations, determining
the ordering mechanism would be very important for
assessing the impact of these perturbations on the spin-
liquid ground state of KAFM.
Here we show a combination of density functional theory

(DFT), finite-temperature Lanczos method (FTLM), and
electron spin resonance (ESR) results, which allows us to
address the origin of the unexpected magnetic ordering in
YCu3ðOHÞ6Cl3. DFT calculations together with modeling
of the magnetic susceptibility show that the nearest-neigh-
bor Heisenberg exchange J1 ¼ 82ð2Þ K is by far the
dominant isotropic interaction. Almost perfect agreement
between numerical modeling and complementary ESR
measurements, magnetic susceptibility, and specific heat
data reveals an additional sizable out-of-plane DM
anisotropy Dz=J1 ¼ 0.25ð1Þ that places the investigated
compound in the magnetically ordered region of the KAFM
phase diagram [12]. Moreover, FTLM modeling provides a
novel insightful view into the role of DM interaction in
KAFM and allows the precise determination of Dz, which
is responsible for the maximum in specific heat at Tmax ¼
16 K related to the enhancement of 2D chiral spin
correlations. 3D order is established via a small interlayer
exchange below TN ¼ 12 K, where static internal magnetic
fields appear [35].
To understand the magnetism of YCu3ðOHÞ6Cl3, the

first task is to determine its dominant isotropic exchange
interactions. As in other kagome compounds [37–40], we
tackle this problem using total-energy (broken-symmetry)
DFTþ U calculations [41] (for details see Ref. [18]). We

assume that each site is coupled with sites up to the third
nearest neighbor in the kagome layer and with equivalent
sites in the neighboring two kagome layers (Fig. 1). Our
calculated exchange constants and the correspondingWeiss
temperature θW ¼ −

P
i ziJi=4, where zi is the number of

neighbors coupled to a particular site with Ji [42], depend
on the effective on-site Hubbard repulsion Ueff [18]. θW is
compared with its experimental value of −99ð1Þ K, which
is obtained from a Curie-Weiss fit to the susceptibility data
(inset in Fig. 2). The experiment is well reproduced for
Ueff ¼ 6 eV (Fig. 1), a value consistent with previous
studies on similar materials [37–40]. We find that the
exchange interaction between nearest neighbors J1 ¼
84.2ð4Þ K by far exceeds all other Heisenberg interactions,
as all of them are below 5% of J1, irrespective of the chosen
value of Ueff [18].
Next, we focus on the temperature dependence of the

magnetic susceptibility to verify that the calculated
exchange constants are consistent with experiment. We
first compare the experimental susceptibility [35] to a high
temperature series expansion (HTSE) calculation for a
simplified J1–J2–Jd model [43] in Fig. 2. The HTSE
curve fitted in the temperature range between 100 and
300 K matches the experiment very well and yields the
exchange constants J1 ¼ 79.5ð1Þ, J2 ¼ 2.8ð27Þ, and
Jd ¼ 4.3ð54Þ K. Furthermore, we can compare the experi-
ment to FTLM calculations for a pure nearest-neighbor
KAFM on a N ¼ 42 spin cluster [44]. Good agreement is
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FIG. 1. Weiss temperature θW of YCu3ðOHÞ6Cl3 determined
from DFTþ U calculations for different values of the effective
on-site Hubbard repulsion Ueff (points). The dashed line shows
the experimental value θW ¼ −99 K, while the solid line serves
as a guide to the eye. The inset depicts two neighboring kagome
layers of Cu2þ spin-1=2 ions with in-plane Heisenberg exchange
interactions Ji (solid arrows) and interplane interactions J0i
(dashed arrows). The nearest-neighbor coupling J1 is by far
the dominant one [18].
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FIG. 2. Molar susceptibility χmol of YCu3ðOHÞ6Cl3 in a field of
0.1 T [35], with its sharp increase at low temperatures indicating
magnetic ordering. The solid line is a fit with the HTSE J1–J2–Jd
model [43]. The dotted line shows FTLM calculations for
isotropic KAFM on N ¼ 42 sites [44]. The dashed lines are
ED calculations with additional out-of-plane DM component Dz
and in-plane component Dp for N ¼ 15 sites [45], which are
accurate to within 4% down to TN [18]. The inset shows a Curie-
Weiss analysis, 1=χmol ¼ ðT − θWÞ=C, with the Weiss temper-
ature θW ¼ −99 K and g factor g ¼ 2.077.
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obtained for temperatures down to 0.6J1 ∼ 50 K with J1 ¼
82.2ð1Þ K being the only free parameter (Fig. 2).
The fact that all three independent approaches yield very

similar predictions, namely, a dominant Heisenberg
exchange interaction J1 ¼ 82ð2Þ K, gives strong credibility
to these results. As isotropic exchange interactions beyond
the nearest neighbors are limited to at most 5% of J1,
YCu3ðOHÞ6Cl3 can be placed alongside herbertsmithite
[38] as one of the best realizations of the nearest-neighbor
KAFM. In all other well-studied examples, like kapellasite
[37,39,43], haydeeite [37,39,46], volborthite [47], and
vesignieite [48], further-neighbor interactions are much
larger. As interactions jJ2j; jJ3j; jJdj≳ 0.2J1 [5–7,9] or
jJ0j≳ 0.15J1 [8] are needed to induce magnetic ordering
in the KAFM, these are evidently too small in
YCu3ðOHÞ6Cl3. The only remaining perturbation that
can account for its ordered ground state is magnetic
anisotropy. Since there are no symmetry restrictions
[49], both the antisymmetric DM and the symmetric
anisotropic exchange (AE) interaction are allowed.
However, DM anisotropy is generally dominant in Cu2þ-
based magnets because it is a one order lower correction to
the isotropic exchange [49], so that the AE term is smaller
by a factor Δg=g ∼ 0.2 [50]. Here Δg is the shift of the g
factor from the free electron value. Furthermore, as the
easy-plane AE interaction that would be compatible with
the observed planar magnetic order [36] does not lead to
ordering of the KAFM [13,51], we expect the DM
interaction to play a dominant role.
The next task is, therefore, to determine the DM

interaction D · ðSi × SjÞ between the nearest neighbors.
First, we note that further-neighbor isotropic exchange
interactions are too small to account for the large discrep-
ancy between the experimental magnetic susceptibility and
the nearest-neighbor FTLM calculations already at temper-
atures as high as 0.6J1 ∼ 50 K (Fig. 2). On the contrary, a
sizable DM interaction can explain this deviation. Indeed,
according to exact-diagonalization (ED) calculations [45],
the out-of-plane component Dz suppresses susceptibility
compared to the isotropic KAFM, while the in-plane
component Dp enhances it [18]. The experimental sup-
pression is well reproduced for Dz=J1 ¼ 0.25ð1Þ all the
way down to the ordering temperature if Dp ¼ 0 (Fig. 2).
For Dp > 0 a larger Dz is required [18], e.g., for Dp=J1 ¼
0.30 one finds Dz=J1 ¼ 0.30ð1Þ (Fig. 2).
We can place further constraints on the magnitude of

both DM components based on ESR results (for details see
Ref. [18]), as magnetic anisotropy directly broadens the
ESR spectra [52]. The measured spectra [18] are broader
than in other Cu-based kagome compounds like herberts-
mithite [30], vesignieite [53], and kapellasite [54] by
almost an order of magnitude. Above 200 K the ESR
linewidth is constant at ΔB ¼ 6.8ð5Þ T (inset in Fig. 3),
which is consistent with the high-temperature paramagnetic
regime and allows for the application of Kubo-Tomita (KT)

theory [55]. The well-established expression for the ESR
linewidth on the kagome lattice [30,53] allows us to derive
the DzðDpÞ solution [18] shown in Fig. 3. Contrary to
the case of susceptibility, which is affected oppositely
by the two DM components, they both broaden the
ESR linewidth. The total magnitude of the DM
vector is therefore approximately limited by D=J1≃
½2gμBΔB=ð

ffiffiffi
π

p
kBJ1Þ�1=2 ¼ 0.36, where kB is the

Boltzmann constant and μB is the Bohr magneton. The
joint ESR and susceptibility analysis yields the limits
0.25 < Dz=J1 < 0.29 andDp=J1 < 0.15 (Fig. 3). We note,
though, that in accordance with recent ED calculations
demonstrating that the KT approach might somewhat
overestimate the DM anisotropy on the kagome lattice
[56], the true DM components should be closer to the lower
limits, Dz=J1 ¼ 0.25 and Dp=J1 ≃ 0.
An independent check of the above estimates is provided

by modeling previously published zero-field specific heat
(c) data [35]. FTLM calculations [57,58] of the magnetic
contribution to the specific heat cm, which were performed
on spin clusters with up to N ¼ 30 spins for various Dz=J1
andDp=J1 ratios (for details see Ref. [18]), reveal twowell-
resolved maxima in cm for Dz=J1 ≳ 0.08 [Fig. 4(a)], as
previously also observed in ED calculations on smaller
clusters [45]. A broad high-temperature maximum is,
similarly to the spin-1=2 square lattice [59], found around
0.67J1 and does not shift with the DM interaction.
Therefore, it is associated with the enhancement of near-
est-neighbor spin correlations [60,61]. On the contrary, a
much narrower low-temperature maximum shifts almost
linearly with the out-of-plane DM component and is found

FIG. 3. The interdependence of both DM components in
YCu3ðOHÞ6Cl3 based on the analysis of the ESR linewidth
(shown in the inset), magnetic susceptibility, and specific heat.
Shaded regions show experimental uncertainty, while the arrows
imply that ESR only gives an upper bound. The red area is the
region with globally acceptable parameters, where the solid red
line indicates the 1-sigma boundary.
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at Tmax ≃ 0.91Dz [inset in Fig. 4(a)]. In sharp contrast, cm is
almost insensitive to the in-plane DM component at least
up to Dp=J1 ≤ 0.3 [18,45]. As the Dz term linearly shifts
the energy of the 120° spin structure of basic kagome
triangles [36] while Dp does not, we attribute the low-
temperature maximum to growing chiral spin correlations
within the kagome planes. This makes specific heat a
unique probe of the DM component Dz on the kagome
lattice, which is much more sensitive [Fig. 4(c)] than
magnetic susceptibility [18].
For Dz=J1 ¼ 0.25, the predicted magnetic specific heat

nicely matches the experiment [Fig. 4(c)]. Indeed, we can
fit the c=T data very well with the model c ¼ cm þ cph that
includes a phonon contribution cph. The fit is already good
for a simple Debye phonon model with the Debye temper-
ature θD ¼ 224ð5Þ K and is further improved by including
an additional Einstein phonon contribution [inset in
Fig. 4(c)] [18], corresponding to a Raman active mode
at 123 cm−1, as found in structurally similar herbertsmithite
[62]. The obtained Dz=J1 ¼ 0.25ð1Þ is in excellent agree-
ment with the lower-bound estimate based on ESR and
susceptibility modeling (Fig. 3) and thus provides further
evidence that the in-plane DM component is much smaller,
i.e., Dp=J1 < 0.05. Although the DM anisotropy in
YCu3ðOHÞ6Cl3 is larger than in some other Cu2þ-based
KAFM materials [30,53], its size is compatible with the
order-of-magnitude estimate [49] Dz=J1 ∼ Δg=g ∼ 0.2 for
the Cu2þ ions [50].
Having established the main terms in the spin

Hamiltonian of YCu3ðOHÞ6Cl3, we are now in position
to discuss the origin of its magnetic ordering. It is

theoretically well established that the out-of-plane DM
interaction leads to a q ¼ 0 long-range order of KAFM at
zero temperature if its strength exceeds the critical value
Dc

z ¼ 0.10ð2ÞJ1 [9,10,12,14] separating the spin liquid and
the ordered phase. Contrary to the paradigmatic KAFM
material herbertsmithite, which appears to be on the verge
of criticality [30], we find that YCu3ðOHÞ6Cl3 lies well
inside the ordered phase. Nevertheless, the average ordered
moment should be strongly suppressed due to quantum
fluctuations. Indeed, the predicted moment of 0.35 μB for
Dz=J1 ¼ 0.25 [12] matches reasonably well with the
experimental value of 0.42ð2Þ μB [36].
Finally, let us comment on the compatibility of our

results with the celebrated Mermin-Wagner theorem [63],
which precludes long-range order in the considered 2D
model at nonzero temperatures due to continuous in-plane
symmetry. As revealed by FTLM calculations, 2D short-
range chiral order is established below Tmax ¼ 16 K, while
3D order is only established below TN ¼ 12 K [Fig. 4(c)],
where static internal magnetic fields appear, the longi-
tudinal muon spin relaxation rate suddenly starts increasing
and bulk susceptibility exhibits a clear cusp (see Fig. 6 in
Ref. [18]). Finite TN requires additional interlayer inter-
actions J0 and is determined by the growth of the in-plane
correlation length ξ to the extent that the thermal
energy drops below the interaction energy of short-range
ordered 2D regions on neighboring kagome planes, when
TN ≈ ½ξðTNÞ=d�2J0SðSþ 1Þ, with d being the nearest-
neighbor distance [60,61]. As ξ should only marginally
depend on the interlayer interaction for J0=J1 ≪ 1 and thus
TN should only logarithmically depend on J0 [59,61,64],
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TN is dominantly determined by Dz in YCu3ðOHÞ6Cl3.
This anisotropy promotes building up of 2D chiral spin
correlations, which corresponds to effectively shifting a
large release of the system’s entropy to temperatures
around Tmax ≈Dz [Fig. 4(b)]. As a result, for J0=J1 ≪ 1
yielding TN < Tmax most of the entropy is already released
around Tmax and the effective number of degrees of
freedom involved in 3D ordering is significantly reduced,
making the cusp in cm at TN unobservable [59]. Thus, 2D
physics essentially prevails down to TN and justifies the
absence of any cluster-size dependence of the cm curves in
FTLM calculations [18].
In conclusion, YCu3ðOHÞ6Cl3 turns out to be an

extremely rare structurally perfect KAFM material, with
the nearest-neighbor isotropic exchange interaction J1 ¼
82ð2Þ K dominating all other isotropic interactions, while
by far the most relevant perturbation is the out-of-plane DM
anisotropy Dz=J1 ¼ 0.25ð1Þ. This is determined from a
perfect coincidence of the experiments and numerical
calculations for the two most common bulk magnetic
characterization techniques as well as ESR, which is unique
in the field of frustrated magnetism. Such Dz=J places the
system in the magnetically ordered part of the predicted
phase diagram [12]. This provides an unambiguous exper-
imental confirmation of the key role of the DM interaction
in inducing magnetic order on the kagome lattice.
Furthermore, now that this role is well understood, a sister
compound Y3Cu9ðOHÞ18OCl8 with a slightly distorted
kagome lattice and apparently a spin-liquid ground state
[34] provides an ideal opportunity to study the effects of
further perturbations. Since in this compound very similar
exchange interactions and magnetic anisotropy as in
YCu3ðOHÞ6Cl3 are expected, the reasoning for its lack
of magnetic ordering should be searched in deviations from
perfect kagome symmetry.
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