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We compare various calculation methods to determine the electronic structures and energy differences 

of the phases of VO2. We show that density functional methods in the form of GGA+U are able to 

describe the enthalpy difference (latent heat) between the rutile and M1 phases of VO2, and the effect 

of doping on the transition temperature and on the band gap of the M1 phase. An enthalpy difference 

of ΔE0= -44.2meV per formula unit, similar to the experimental value, is obtained if the randomly 

oriented spins of the paramagnetic rutile phase are treated by a non-collinear spin density functional 

calculation. The predicted change in the transition temperature of VO2 for Ge, Si or Mg doping is 

calculated and is in good agreement with the experiment data.  

 

I. INTRODUCTION 

     Vanadium Dioxide (VO2) has a first-order metal-insulator transition (MIT) at around 

340K between its high-temperature metallic rutile (R) phase and a low-temperature 

semiconducting monoclinic (M1) phase [1] which make it of great interest for applications 

such as smart window materials, Radio Frequency (RF) or optical switches, sensors [2-6], or 

as the channel material in steep-slope field effect transistors (FETs) [7-10] using the ‘Mott-

FET’ concept [11]. To develop these applications, it is useful to be able to vary the transition 

temperature Tc, and the band gap of the insulating phase by doping, and to be able to 

calculate these properties suitable for use in appropriate device models. For each of these 

uses, it would be advantageous to have a fast but reliable computational method to describe 

the electronic structure and phase energetics that can be extended to large supercells of 

several hundred atoms or more. 

   Three results of an electronic structure calculation are of interest, (1) the atomic and spin 

configurations, (2) the band structure or density of states, and (c) the free energy differences 

between the phases. Here, we are particularly interested in the free energy differences 

between the phases as these are important for modeling the on/off voltages of electronic 

devices [7-9]. On the other hand, many groups are highly interested in trying to separate the 

electronic and structural components of the phase transition by time scales [12,13], but this is 

of less concern here. 

   Correlated materials like VO2 are known to require electronic structure methods that go 

beyond density functional theory (DFT) [14], such as cluster dynamic mean field theory (c-

DMFT), GW or quantum Monte-Carlo [15-18]. However, these methods are computationally 

demanding. On the other hand, efforts to use the less computationally demanding local 

density approximation (LDA) to describe VO2 were deemed a failure because it gave no band 

gap for the insulating M1 phase [19].  

     There are two less demanding methods which can introduce a band gap; applying a 

Hubbard potential U to the transition metal 3d orbitals as in the classic case of NiO [20], or 

by using hybrid functionals [21-23]. The LDA+U method has been used previously on VO2 

by various authors [24]. It was also further developed into the cluster DMFT method [16].  
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     The second less demanding method of hybrid functionals adds a fraction (α) of non-local 

Hartree-Fock (HF) exchange to the semi-local density exchange-correlation function. This 

can correct the DFT band gap error for a wide range of molecules, semiconductors and 

insulators, whether they are s, p bonded or d-electron materials. Typically, these methods add 

α=25% of HF exchange to the local density functional [21-23]. Eyert [25,26] found that the 

Heyd-Scuseria-Ernzerhof (HSE) hybrid functional [22] provides a band gap for the VO2 M1 

phase. 

   However, Grau-Crespo et al [27,28] criticized the hybrid functional approach by noting that 

HSE greatly over-estimated the enthalpy difference between R and M1 phases compared to 

the experimental values of Navrotsky et al [29] and Berglund et al [30]. This would translate 

to a large error in any modeling of FET characteristics. We find that the main error was a 

mis-calculation of the enthalpy of the R phase. We also note that hybrid functional methods 

do over-estimate the latent heats, but that this problem can be reduced by using lower 

fractions of HF admixture, as others noted [31-33]. The second objective of this paper is to 

derive how specific alloying will change the band gap and transition temperature Tc.  

II. METHODS 

The calculations are carried out using both the electronic structure programs VASP [34] and 

supported by CASTEP [35], with a plane-wave basis set converged to 10-6 eV per atom. The 

exchange-correlation functional is the Perdew-Burke-Ernzerhof (PBE) form of the 

generalized gradient approximation (GGA), applying an on-site U potential for the vanadium 

d-electrons to augment the Coulomb repulsion. GGA+U is a computationally convenient 

method to compensate the band gap error. The rotationally invariant Liechtenstein’s form of 

GGA+U [36] (U = 2.0 eV and J= 0.3 eV) was adopted to match the experimental gap [37]. 

The same U value is used for both R and M1 phases.  

We construct the primitive cell of the monoclinic M1 phase by doubling the primitive cell of 

the rutile phase along z-direction [38], as shown in Fig. 1. The R and M1 structures are from 

ref [38], together with the magnetism and exchange couplings shown in Fig. 1. 

The rutile phase can only be modeled by a supercell containing many primitive cells, in order 

to represent the orientation disorder of spins in this paramagnetic (PM) phase. For the PM 

supercells, we generate a random direction for each magnetic moment of V using the spin-

orbital coupling package, with zero initial net magnetic moments in each direction with the 

initial magnitude of each moment of vanadium set to 1. We then use a non-collinear spin 

DFT (NCS-DFT) calculation of the CASTEP or VASP codes. The random spins are then 

relaxed within the self-consistent energy calculation to an energy minimum. The magnitude 

of each spin stays at 1. We average over several different PM runs. The internal atomic 

coordinates are relaxed until the residual force is less than 0.03eV/Å.  

The experimental atomic coordinates are used for the R and M1 structures, as shown in Fig 

1(b) [39]. A spin dimerized V-V geometry of the M1 structure is obtained, with V-V 

separations of 2.65Å and 3.12Å along the chain. These give a greater variation of the V-V 

distance than do relaxed GGA+U calculations. We use 5x5x5 k-points for M1 and small size 

R cells, and 2x2x2 k-points for R supercells with 108 VO2 units (324 atoms) and 256 VO2 

units (768 atoms), converging energy differences to around 10-6 eV per atom.  

     III   RESULTS                     

A. Latent heat in VO2                                                

     The spin ordering in the M1 phase is described as non-magnetic singlet state consisting of 

spin dimers  with strong intra-dimer coupling, along the V-V chains in the Oz direction, as 
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noted by Zheng and Wagner [17] and shown in Fig 1(b). The experimental V-V separations 

are 2.65Å and 3.12Å [39], as in Fig. 1(b). The V-V dimers macroscopically have weak van 

Vleck paramagnetic susceptibility as found by Kosuge [40] and Pouget [41]. However, our 

GGA+U relaxation gives weaker dimerization, with calculated distances of 2.864 Å and 

2.889 Å. This leads to the spin state being described as antiferromagnetic in many DFT 

calculations.  

The total energy differences are shown in Fig. 2. The difference in total energies per formula 

unit in the M1 and paramagnetic R phases, ΔE0, converges to a latent heat of -44.2 meV for a 

large number of cells, as seen in Fig 2(a). This is close to the experimental value. 

 

 

Figure. 1(a) Atomic structure and magnetic moments of VO2 in the high temperature (rutile) and low 

temperature (M1) phases. The primitive cell of rutile is shown in thin black lines, the primitive cell of 

M1 of two rutile cells is shown by thick green lines. (O atoms are not shown for clarity.) (b) M1 

Lattice. Two primitive cells of M1 are shown, to give the V-V dimerization. Experimental V-V 

separations are shown. 

  

Fig. 2(b) shows that s, the average spin per dimer in the PM phase, decreases as the number 

of V atoms in the cell increases, as shown pictorially in Fig. 2(c). In FM, s=1, while for PM, s 

should be zero. As a result, a supercell with more than 32 VO2 units is suitable to describe the 

PM state, which is consistent with Fig. 2(a). The partial density of states (PDOS) of the R and 

M1 phases is shown in Fig. 2(d). A gap of 0.6eV is obtained for M1, which is close to the 

experimental band gap [32]. The band edge of monoclinic VO2 is made of unpaired d 

electrons of vanadium. For each dimer, there is one occupied d band and nine empty d bands, 

so one unpaired electron occupies each V site, which is mainly dz
2 (d//) orbital. For the PM 

rutile supercell, we use the result of 72 VO2 units which is sufficiently PM, the d// and π* 

bands are both partially filled. 

   As noted, Grau-Crespo et al [28] criticized hybrid functionals for over-estimating the latent 

heat of the transition. However these authors took the R phase to be non-magnetic (NM), 

whereas experimentally Kosuga [40] and Pouget [41] found this phase to be paramagnetic 

(PM). Thus, each vanadium atom in the R phase carries a spin of 1𝜇𝐵 pointing in a random 
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direction. This spin ordering and non-collinear spin-polarized GGA+U density functional 

calculation using large supercells give a latent heat close to experiment.  

     Nuclear magnetic resonance (NMR) and electron spin resonance (EPR) found that VO2 is 

indeed a correlated oxide with a magnetic moment 1 𝜇𝐵 on each vanadium atom [41-43]. 

Huffmann et al [37] argued that as the M1, M2 and T phases have the same d-d optical peak at 

2.5 eV, despite their different V-V dimerization patterns, while a Peierls model would give 

different energies, so this favors a Mott insulator description of the band gap of M1.  

     The heat of formation of the PM phase is also calculated approximately with the HSE 

functional, a more expensive calculation than GGA+U, but for a small cell of four VO2 units. 

Interestingly, the latent heat is quite close to the experimental value even for α=0.1 and 

α=0.25 HF fraction, consistent with it being composed mainly of entropy contributions 

[44,45]. Thus varying α or U affects mainly the relative stability of NM and FM states, not 

the PM vs AFM difference, as seen in Fig 3(c), except at very low values of α where FM 

phases appear. The HSE is expected to give similar results to GGA+U by choosing the proper 

α, but it is more time-consuming. It is interesting that one of the first hybrid functionals, 

B3LYP, fits the band gap of most s.p semiconductors and the correlated oxide NiO [24] with 

α = 25%, but VO2 does not seem to fit within this scheme [32].  

 

Figure 2. (a) The calculated latent heat Δ𝐸0 for the MIT vs supercell size. The experimental latent 

heat is marked by the red dashed line. The number of VO2 units per supercell is marked near the black 

dots. (b) average spin per dimer in the PM phase vs. the number of VO2 units per supercell. (c) 

Schematic of atomic structures and magnetic order of pure VO2 in PM rutile and AFM M1 phases, 144 

atoms. (d) Electronic density of states in R and M1 phases. 
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Figure 3. (a) Experimental heats of formation/VO2 unit; (b) GGA+U heat of formation, showing 

latent heat between PM (R) and dimer (M1) phase; (c) HSE version according to Grau-Crespo with 

mis-assigned NM states and HSE energies for PM R, and AFM M1 phases for other fractions of HF. 

 

B.   Transition temperature 

     The Heisenberg Hamiltonian can be used to describe the chains of V spins, and it can be 

written as 

�̂� = −
1

2
∑ 𝐽(𝑟𝑖𝑗)�̂�𝑖�̂�𝑗𝑖≠𝑗          (1) 

where J is the exchange coupling between the i and j pairs of V atoms. J<0 if AFM is 

energetically favored, �̂�𝑖 is the spin of the ith V. The exchange coupling between vanadium 

atoms decays roughly as 𝐽(𝑟𝑖𝑗) ∝ 𝑟𝑖𝑗
−3 due to dipolar interactions in an insulating phase, and 

decays more rapidly in metals. Therefore, exchange between more distant vanadium atoms is 

negligible so we show only intra-chain 𝐽0, 𝐽1, 𝐽2 and inter-chain 𝐽0′, 𝐽1′, 𝐽2′ interactions in Fig 

1(a). Therefore the system can be considered to be made of V-V dimers, and the Heisenberg 

dimer model gives 

�̂� = −𝐽0�̂�1�̂�2 = −
1

2
𝐽0[(�̂�1 + �̂�2)2 − �̂�1

2 − �̂�2
2] = −

1

2
𝐽0[�̂�2 −

3

2
]         (2) 

where �̂�1 and �̂�2 are the spin of two closest V, �̂� is the total spin, �̂�2 = 𝑠(𝑠 + 1), s=1 is the 

triplet state (FM), s=0 is the singlet state (AFM). The singlet energy is -¾|J0|, while the triplet 

energy is ¼|J0|. Then |J0| is the singlet-triplet excitation energy.  

This allows us to calculate J0= -58.9meV or from the latent heat by using 

∆𝐸0 =
3

4
𝐽0                   (3) 
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The transition temperature TC can be derived from mean-field theory [46,47] as: 

𝑇𝐶 =
2𝑆(𝑆+1)

3𝑘𝐵
(−𝐽0)                   (4) 

where S=½ which gives TC = 341.9K.  

Thus, we can obtain the transition temperature of pure VO2 from the latent heat. 

C.  Doped VO2 and their transition temperatures 

       The transition temperature of VO2 can be varied by doping. The MIT in the alloys 

happens in the same way as in pure VO2. We replace a V atom with a dopant in the supercell 

of 48 VO2 units for 2.08% doping and in the supercell of 32 VO2 units for 3.125% doping 

and two isolated V atoms for 6.25% doping [38]. The relaxed structures and schematic spin 

configurations are shown in Fig. 4(a). We choose Ge, Mg and Si as the dopants as they are 

non- magnetic, in order to use eqn (2) for TC. For Mg, O vacancies are also required to 

maintain valence satisfaction, which modifies the V network to give V coordinations of 5 for 

higher alloying ratios in those cases. The overall atomic configurations and electronic and 

spin structures were given earlier [38]. The PDOS of a sample with 2.08% Ge doping is 

shown in Figs. 4(b). 

     The transition temperature of X-doped (X=Ge, Mg, Si) VO2, 𝑇𝐶,𝑋, can be scaled from the 

𝑇𝐶  of the pure VO2. The energy change of X-doped VO2 represents the overall exchange 

coupling (noting that the dopants are sufficiently far away from each other), 

∆𝐸𝑋 =
𝐸𝐴𝐹𝑀−𝐸𝑃𝑀

𝑁
=

3

4
𝐽0,𝑋(1 − 𝑛)                                (5) 

where 𝑛 is the doping ratio and where N is the number of formula units of VO2. The TC of X-

doped VO2 can be written as 

𝑇𝐶,𝑋 = 𝑇𝐶
∆𝐸𝑋

∆𝐸0(1−𝑛)
                                            (6) 

Fig. 4(c) shows the calculated and experimentally measured [49-51] transition temperatures 

of doped VO2. Fig. 4(d) shows the band gap of doped VO2. It is interesting that all three 

dopants reduce the band gap of the M1 phase, while Ge and Si raise TC and Mg lowers it, in 

both experiment and theory. To raise the gap, it is necessary for Mg doping to create the M2 

phase with a different V coordinations, which it does at higher doping concentrations [38]. 

The band gap and Tc values do not vary monotonically for Mg alloys because of changes in 

the atomic configuration of its alloys. 



7 
 

 

Figure 4. (a) The atomic structure and the schematic spin order of the HT and the LT phase of the 

2.08% doped VO2, and their PDOS (b). (c) Transition temperature vs Ge, Si and Mg doping ratio, the 

dashed lines are from experiments [49-51]. (d) Band gaps of Ge, Si and Mg doped VO2. 

 

      In conclusion, we have carried out DFT calculations on pure and doped VO2 to illustrate 

the nature of its MIT. A Hubbard U term is added to correct the Coulomb repulsion in this 

strongly-correlated system. The method is less computational demanding than using the 

hybrid functionals, DMFT or GW but is able to produce robust results. We identify the 

magnetic ground state of the HT phase as PM and the LT phase as effectively AFM. The 

band gap arises from a spin-alignment. The latent heat of transition is calculated by fully 

representing the non-collinear magnetic ordering of the paramagnetic rutile phase. The Ge-

doped VO2 is also calculated. The band gap of Ge doped VO2 is decreased compared to pure 

VO2. The transition temperature of Ge doped VO2 increases. These results are consistent 

with experiment. This paper sheds new light on the long-term debated topic and solves the 

total energy problem, which confirms that magnetic ground state transition plays a crucial 

role in MIT.  
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